JP5742253B2 - Tire contact state estimation device - Google Patents

Tire contact state estimation device Download PDF

Info

Publication number
JP5742253B2
JP5742253B2 JP2011015208A JP2011015208A JP5742253B2 JP 5742253 B2 JP5742253 B2 JP 5742253B2 JP 2011015208 A JP2011015208 A JP 2011015208A JP 2011015208 A JP2011015208 A JP 2011015208A JP 5742253 B2 JP5742253 B2 JP 5742253B2
Authority
JP
Japan
Prior art keywords
steered wheel
estimated
road surface
friction coefficient
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015208A
Other languages
Japanese (ja)
Other versions
JP2012153290A (en
Inventor
拓郎 松田
拓郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011015208A priority Critical patent/JP5742253B2/en
Publication of JP2012153290A publication Critical patent/JP2012153290A/en
Application granted granted Critical
Publication of JP5742253B2 publication Critical patent/JP5742253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤ接地状態推定装置に関するものである。   The present invention relates to a tire ground contact state estimation device.

特許文献1に記載された従来技術は、タイヤ特性によって定まるマップを参照し、セルフアライニングトルク、タイヤすべり角、タイヤ横力、タイヤ前後力等に基づいて、タイヤ状態を推定している。この従来技術でタイヤ状態とは、タイヤ力が限界に至るまでの余裕を表している。   The conventional technique described in Patent Document 1 estimates a tire state based on self-aligning torque, tire slip angle, tire lateral force, tire longitudinal force, and the like with reference to a map determined by tire characteristics. In this conventional technique, the tire condition represents a margin until the tire force reaches a limit.

特許第4213994号公報Japanese Patent No. 4213994

しかしながら、上記の従来技術では、後輪で発生するスリップ率の影響を考慮していないため、例えば急制動によってスリップ率が大きくなるようなシーンで、タイヤ状態の推定精度が低下する可能性がある。また、予め定められたマップに基づいてフィードフォワードとしてタイヤのグリップ度を推定しているので、例えばセルフアライニングトルク、タイヤすべり角、タイヤ横力、タイヤ前後力等にノイズが含まれると、推定精度を低下させてしまう。
本発明の課題は、タイヤ接地状態の推定精度を向上させることである。
However, the above-described conventional technology does not consider the effect of the slip ratio generated at the rear wheels, and therefore, the accuracy of estimating the tire condition may be reduced in a scene where the slip ratio increases due to sudden braking, for example. . In addition, since the grip degree of the tire is estimated as a feed forward based on a predetermined map, it is estimated that noise is included in, for example, self-aligning torque, tire slip angle, tire lateral force, tire longitudinal force, etc. It will reduce accuracy.
The subject of this invention is improving the estimation precision of a tire ground-contact state.

本発明に係るタイヤ接地状態推定装置は、転舵輪及び非転舵輪の路面摩擦係数を推定し、転舵角、車速、並びに転舵輪及び転舵輪の路面摩擦係数に基づいて、転舵輪セルフアライニングトルク推定値と、非転舵輪スリップ状態推定値と、車両の旋回状態推定値とを推定する。一方、転舵輪のセルフアライニングトルク検出値と、非転舵輪スリップ状態検出値と、車両の旋回状態検出値とを検出する。そして、転舵輪セルフアライニングトルクと、非転舵輪スリップ状態と、旋回状態とにおいて、夫々、推定値と検出値との差分を推定誤差として演算し、各推定誤差の少なくとも一つに応じて、転舵輪及び非転舵輪の路面摩擦係数を補正する。   The tire ground contact state estimation device according to the present invention estimates the road surface friction coefficient of steered wheels and non-steered wheels, and based on the steered angle, vehicle speed, and road surface friction coefficients of steered wheels and steered wheels, self-aligning steered wheels A torque estimated value, a non-steered wheel slip state estimated value, and a vehicle turning state estimated value are estimated. On the other hand, a self-aligning torque detection value of a steered wheel, a non-steered wheel slip state detection value, and a vehicle turning state detection value are detected. And in the steered wheel self-aligning torque, the non-steered wheel slip state, and the turning state, respectively, the difference between the estimated value and the detected value is calculated as an estimated error, and according to at least one of the estimated errors, The road surface friction coefficient of the steered wheel and the non-steered wheel is corrected.

本発明に係るタイヤ接地状態推定装置によれば、転舵輪セルフアライニングトルクと、非転舵輪スリップ状態と、旋回状態との各推定誤差の少なくとも一つに応じて、転舵輪及び非転舵輪の路面摩擦係数の推定値を更新することで、路面摩擦係数を含めたタイヤ接地状態の推定精度を向上させることができる。   According to the tire ground contact state estimation device according to the present invention, according to at least one of the estimation errors of the steered wheel self-aligning torque, the non-steered wheel slip state, and the turning state, the steered wheel and the non-steered wheel By updating the estimated value of the road surface friction coefficient, it is possible to improve the estimation accuracy of the tire contact state including the road surface friction coefficient.

車両の概略構成図である。1 is a schematic configuration diagram of a vehicle. タイヤ接地状態推定装置のシステム構成図である。It is a system configuration diagram of a tire ground contact state estimation device. 車両出力推定部のシステム構成図である。It is a system block diagram of a vehicle output estimation part. タイヤ出力推定部のシステム構成図である。It is a system block diagram of a tire output estimation part. タイヤすべり角‐前輪SATの特性変化を示す図である。It is a figure which shows the characteristic change of tire slip angle-front wheel SAT. 第二実施形態のシステム構成図である。It is a system configuration figure of a second embodiment. 第二実施形態を示す車両出力推定部のシステム構成図である。It is a system block diagram of the vehicle output estimation part which shows 2nd embodiment. 第三実施形態を示す車両の概略構成図である。It is a schematic block diagram of the vehicle which shows 3rd embodiment. 第三実施形態を示すタイヤ接地状態推定装置のシステム構成図である。It is a system configuration | structure figure of the tire ground-contact-state estimation apparatus which shows 3rd embodiment. 第三実施形態を示すタイヤ出力推定部のシステム構成図である。It is a system block diagram of the tire output estimation part which shows 3rd embodiment. 第四実施形態を示す車両の概略構成図である。It is a schematic block diagram of the vehicle which shows 4th embodiment. 第四実施形態を示すタイヤ接地状態推定装置のシステム構成図である。It is a system block diagram of the tire ground-contact state estimation apparatus which shows 4th embodiment. 第四実施形態を示すタイヤ出力推定部のシステム構成図である。It is a system block diagram of the tire output estimation part which shows 4th embodiment. 第五実施形態を示すタイヤ接地状態推定装置のシステム構成図である。It is a system block diagram of the tire ground-contact-state estimation apparatus which shows 5th embodiment. 第五実施形態を示す車両出力推定部のシステム構成図である。It is a system block diagram of the vehicle output estimation part which shows 5th embodiment. 第五実施形態を示すタイヤ出力推定部のシステム構成図である。It is a system block diagram of the tire output estimation part which shows 5th embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
本明細書では、次に定義する車両パラメータ、変数、タイヤ力関数を用いる。
[車両パラメータ]
m :車両重量
z :車体ヨー慣性モーメント
w :車輪回転軸まわりの車輪慣性モーメント
f :車両重心点から前輪までの長さ
r :車両重心点から後輪までの長さ
l :タイヤ接地面長
w :タイヤ有効半径
g :重力加速度
t :トレッドベースの半分
f :前輪タイヤコーナリングスティフネス
r :前輪タイヤコーナリングスティフネス
s :タイヤドライビングスティフネス
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In this specification, vehicle parameters, variables, and tire force functions defined below are used.
[Vehicle parameters]
m: vehicle weight I z: vehicle yaw inertia moment I w: wheel inertia l f about the wheel rotational axis: length of the vehicle center of gravity to the front wheel l r: to the rear wheels from the vehicle center of gravity length l: Tires Contact surface length R w : Effective tire radius g: Gravitational acceleration l t : Half of tread base C f : Front tire cornering stiffness C r : Front tire cornering stiffness C s : Tire driving stiffness

[変数]
V :車速
ωr :後輪車輪速
ωrl :左後輪車輪速
ωrr :左後輪車輪速
yf :前輪タイヤ横力
yr :後輪タイヤ横力
yrl :左後輪タイヤ横力
yrr :右後輪タイヤ横力
xr :後輪タイヤ縦力
r :後輪スリップ率
rl :左後輪スリップ率
rr :左後輪スリップ率
zf :前輪輪荷重
zr :後輪輪荷重
z :前輪SAT
r :後輪制駆動トルク
rl :左後輪制駆動トルク
rr :右後輪制駆動トルク
αf :前輪タイヤすべり角
αr :後輪タイヤすべり角
β :車体すべり角
r :ヨーレート
y :横加速度
μf :前輪路面摩擦係数
μr :後輪路面摩擦係数
μrl :左後輪路面摩擦係数
μrr :右後輪路面摩擦係数
δ :前輪転舵角
ξ :無次元タイヤ粘着域長
ρ :静的前後輪荷重比
[variable]
V: vehicle speed ω r : rear wheel speed ω rl : left rear wheel speed ω rr : left rear wheel speed F yf : front tire lateral force F yr : rear tire lateral force F yrl : left rear wheel tire lateral force F yrr: the right rear wheel tire lateral force F xr: a rear wheel tire longitudinal forces s r: rear-wheel slip ratio s rl: left rear wheel slip ratio s rr: left rear wheel slip ratio F zf: the front wheel load F zr: after Wheel load M z : Front wheel SAT
T r : Rear wheel braking / driving torque T rl : Left rear wheel braking / driving torque T rr : Right rear wheel braking / driving torque α f : Front wheel tire slip angle α r : Rear wheel tire slip angle β: Vehicle slip angle r: Yaw rate a y : Lateral acceleration μ f : Front wheel road friction coefficient μ r : Rear wheel road friction coefficient μ rl : Left rear wheel road friction coefficient μ rr : Right rear wheel road friction coefficient δ: Front wheel turning angle ξ: Dimensionless tire adhesion area Length ρ: Static front and rear wheel load ratio

[タイヤ力関数]
f :前輪タイヤ横力
r :後輪タイヤ横力
xr :後輪タイヤ縦力
f :前輪SAT特性
[Tire force function]
h f : Front wheel tire lateral force h r : Rear wheel tire lateral force h xr : Rear wheel tire longitudinal force J f : Front wheel SAT characteristics

《第一実施形態》
《構成》
図1は、車両の概略構成図である。
この車両は、駆動力発生源としての駆動モータ107Hを備えており、駆動モータ出力軸は減速ギア106Hを介して、後輪車軸に連結されており、左右後輪104HRL、104HRRを駆動する。駆動回路102Hは、駆動モータ出力トルクが統合コントローラ130Hから受信するトルク指令値と一致するようにリチウムイオンバッテリ103Hからの電力で駆動モータ107Hを駆動する。
前輪104HFL、104HFRは運転者が操作するステアリングホイール111Hの回転運動によりステアリングギア114Hを介して機械的に主操舵される他に、補助操舵用モータ112Hによるトルクで補助操舵される。
<< First embodiment >>
"Constitution"
FIG. 1 is a schematic configuration diagram of a vehicle.
This vehicle includes a drive motor 107H as a drive force generation source, and a drive motor output shaft is connected to a rear wheel axle via a reduction gear 106H, and drives the left and right rear wheels 104HRL and 104HRR. The drive circuit 102H drives the drive motor 107H with electric power from the lithium ion battery 103H so that the drive motor output torque matches the torque command value received from the integrated controller 130H.
The front wheels 104HFL and 104HFR are not only mechanically steered mechanically via the steering gear 114H by the rotational movement of the steering wheel 111H operated by the driver, but are also auxiliary steered by torque from the auxiliary steering motor 112H.

統合コントローラ130Hには、ステアリングホイール111Hの回転軸に取り付けられた操舵角センサ121Hによって検出するハンドル角信号と、補助操舵用モータ112Hから検出された補助操舵用モータ電流検出値と、ステアリングシステムに備えられたトルクセンサ115Hにより検出されるステアリングトルク検出値と、各輪に取り付けられた車輪速センサ105HFL、105HFR、105HRL、105HRRによって検出する車輪速と、横加速度センサ108Hによって検出する横加速度検出値及び縦方向加速度検出値と、ヨーレートセンサ109Hによって検出するヨーレート検出値と、駆動モータ107Hから検出された駆動モータ電流検出値が入力される。統合コントローラ130Hには、次に説明するタイヤ接地状態推定装置を備える。   The integrated controller 130H includes a steering wheel angle signal detected by a steering angle sensor 121H attached to the rotation shaft of the steering wheel 111H, an auxiliary steering motor current detection value detected from the auxiliary steering motor 112H, and a steering system. Steering torque detection value detected by the torque sensor 115H, wheel speed detected by the wheel speed sensors 105HFL, 105HFR, 105HRL, 105HRR attached to each wheel, lateral acceleration detection value detected by the lateral acceleration sensor 108H, and The longitudinal acceleration detection value, the yaw rate detection value detected by the yaw rate sensor 109H, and the drive motor current detection value detected from the drive motor 107H are input. The integrated controller 130H includes a tire ground contact state estimation device described below.

次に、本実施形態におけるアルゴリズムについて説明する。
図2は、タイヤ接地状態推定装置のシステム構成図である。
タイヤ接地状態推定装置は、転舵角検出部110と、後輪制駆動トルク検出部111と、車速検出部120と、車両出力推定部130と、前輪路面摩擦係数推定部150と、後輪路面摩擦係数推定部160と、前輪SAT検出部170と、後輪スリップ率検出部180と、横加速度検出部190と、推定誤差演算部200と、を備える。
Next, an algorithm in the present embodiment will be described.
FIG. 2 is a system configuration diagram of the tire ground contact state estimation device.
The tire ground contact state estimation device includes a turning angle detection unit 110, a rear wheel braking / driving torque detection unit 111, a vehicle speed detection unit 120, a vehicle output estimation unit 130, a front wheel road surface friction coefficient estimation unit 150, and a rear wheel road surface. A friction coefficient estimation unit 160, a front wheel SAT detection unit 170, a rear wheel slip ratio detection unit 180, a lateral acceleration detection unit 190, and an estimation error calculation unit 200 are provided.

転舵角検出部110では、例えば、ステアリングシステムに備えられたハンドル角センサ値から、ステアリングギア比とサスペンション幾何構造を考慮して、転舵角を検出する。
後輪制駆動トルク検出部111では、例えば、後輪駆動モータ電流から、駆動モータのトルク係数を考慮して、制駆動トルクを検出する。
For example, the turning angle detection unit 110 detects the turning angle from the steering wheel angle sensor value provided in the steering system in consideration of the steering gear ratio and the suspension geometric structure.
For example, the rear wheel braking / driving torque detection unit 111 detects braking / driving torque from the rear wheel driving motor current in consideration of the torque coefficient of the driving motor.

車速検出部120では、例えば従動輪速度を計測値に基づいて、車速を検出する。本実施形態では、従動輪速度は、左前輪車輪速センサ105HFL、右前輪車輪速センサ105HFRによって検出されるので、これらの検出値から車速を検出する。
車両出力推定部130では、転舵角検出値と、車速検出値と、前輪路面摩擦係数推定値と、後輪路面摩擦係数推定値とに基づいて、前輪セルフアライニングトルク(以下、前輪SATと称す)推定値と、後輪スリップ率推定値と、横加速度推定値と、車体すべり角推定値と、を推定する。
The vehicle speed detection unit 120 detects the vehicle speed based on the measured value of the driven wheel speed, for example. In the present embodiment, since the driven wheel speed is detected by the left front wheel speed sensor 105HFL and the right front wheel speed sensor 105HFR, the vehicle speed is detected from these detected values.
The vehicle output estimation unit 130 determines the front wheel self-aligning torque (hereinafter referred to as the front wheel SAT) based on the steered angle detection value, the vehicle speed detection value, the front wheel road surface friction coefficient estimation value, and the rear wheel road surface friction coefficient estimation value. Estimated value, rear wheel slip ratio estimated value, lateral acceleration estimated value, and vehicle slip angle estimated value are estimated.

ここで、車両出力推定部130について説明する。
図3は、車両出力推定部のシステム構成図である。
車両出力推定部130は、車体すべり角推定部131と、ヨーレート推定部132と、タイヤ出力推定部133と、を備える。
車体すべり角推定部131では、前輪横力推定値と、後輪横力推定値と、車速検出値と、推定誤差とに基づいて、車体すべり角を推定する。車体すべり角のダイナミクスは次式で表現される。
Here, the vehicle output estimation unit 130 will be described.
FIG. 3 is a system configuration diagram of the vehicle output estimation unit.
The vehicle output estimation unit 130 includes a vehicle body slip angle estimation unit 131, a yaw rate estimation unit 132, and a tire output estimation unit 133.
The vehicle slip angle estimation unit 131 estimates the vehicle slip angle based on the front wheel lateral force estimated value, the rear wheel lateral force estimated value, the vehicle speed detection value, and the estimation error. The dynamics of the body slip angle is expressed by the following equation.

Figure 0005742253
Figure 0005742253

連続時間微分方程式を離散時間に変換する手法として、例えば、オイラー法を用いて離散化すると、次式を得る。   As a method for converting a continuous-time differential equation into discrete time, for example, when the discretization is performed using the Euler method, the following equation is obtained.

Figure 0005742253
Figure 0005742253

下付き添え字kは離散時間を表し、kが付された文字は、各計算時間で変化する量を表わす。Δtは離散サンプル時間である。上式に基づいて、推定誤差演算部200で算出された推定誤差を考慮して、すべり角推定値を更新する。
すなわち、次式によって車体すべり角を推定する。
The subscript k represents the discrete time, and the letter with k represents the amount that changes at each calculation time. Δt is the discrete sample time. Based on the above equation, the estimated slip angle is updated in consideration of the estimated error calculated by the estimated error calculator 200.
That is, the vehicle slip angle is estimated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、各推定値には、^の記号を付して表記した。ekは、推定誤差演算部で算出される、前輪SAT、後輪スリップ率、横加速度各々に関する推定誤差からなる列ベクトルである。すなわち、次式で表現される。 Here, each estimated value is described with a symbol of ^. ek is a column vector composed of estimation errors for the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration, which are calculated by the estimation error calculation unit. That is, it is expressed by the following equation.

Figure 0005742253
Figure 0005742253

ここで上付き添え字のTは、ベクトルの転置を示す。
Lβkは、車体すべり角に関するゲインであって、次のような構造を持つ。
Here, the superscript T indicates transposition of a vector.
k is a gain related to the slip angle of the vehicle body and has the following structure.

Figure 0005742253
Figure 0005742253

Lβkの成分のうち、Lβ1kは前輪SAT推定誤差に掛かる係数、Lβ2kは後輪スリップ率の推定誤差に掛かる係数、Lβ3kは横加速度推定誤差に掛かる係数であるので、車体すべり角は、前輪SAT、後輪スリップ率、横加速度の各々の誤差に基づいて推定されることがわかる。
一般に、車体すべり角は、車両の旋回状態と、前輪路面摩擦係数と、後輪摩擦係数とを支配的な要因として決定される。そこで、本実施形態のように、旋回状態を表わす横加速度と、前輪摩擦係数の情報を含むSATと、後輪摩擦係数の情報を含むスリップ率とを、併せて用いながら車体すべり角を推定することで、推定精度を向上することができる。なお、ゲインLβkの詳細な設定方法は、後に述べる。
ヨーレート推定部132では、前輪横力推定値と、後輪横力推定値と、左右後輪縦力推定値と、推定誤差とに基づいて、次式に従ってヨーレートを推定する。
Of the components of Lβ k , Lβ 1k is a coefficient related to the front wheel SAT estimation error, Lβ 2k is a coefficient related to the estimation error of the rear wheel slip ratio, and Lβ 3k is a coefficient related to the lateral acceleration estimation error. It can be seen that the estimation is based on the errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration.
In general, the vehicle body slip angle is determined based on the turning state of the vehicle, the front wheel road surface friction coefficient, and the rear wheel friction coefficient. Therefore, as in the present embodiment, the vehicle slip angle is estimated using the lateral acceleration representing the turning state, the SAT including the information on the front wheel friction coefficient, and the slip ratio including the information on the rear wheel friction coefficient. Thus, the estimation accuracy can be improved. A detailed method for setting the gain Lβ k will be described later.
The yaw rate estimation unit 132 estimates the yaw rate according to the following equation based on the front wheel lateral force estimated value, the rear wheel lateral force estimated value, the left and right rear wheel longitudinal force estimated value, and the estimation error.

Figure 0005742253
Figure 0005742253

車体すべり角ダイナミクスと同様にして離散化すると、次式を得る。   When discretized in the same manner as the vehicle slip angle dynamics, the following equation is obtained.

Figure 0005742253
Figure 0005742253

本式で表現されるダイナミクスに基づいて、推定誤差演算部180で算出された推定誤差を考慮して、すべり角推定値を下記に示すように更新する。   Based on the dynamics expressed by this equation, the estimated slip angle is updated as shown below in consideration of the estimation error calculated by the estimation error calculation unit 180.

Figure 0005742253
Figure 0005742253

rkは、ヨーレートに関するゲインベクトルである。車体すべり角の推定と同様に、一般に、ヨーレートは、旋回状態と、前輪路面摩擦係数と、後輪摩擦係数とを支配的な要因として決定される。そこで、推定誤差ekに含まれる、旋回状態を表わす横加速度と、前輪摩擦係数の情報を含むSATと、後輪摩擦係数の情報を含むスリップ率とを、併せて用いることで、ヨーレートを精度良く推定できる。なお、Lrkの設定方法は、後に詳細に述べる。 L rk is a gain vector related to the yaw rate. Similar to the estimation of the vehicle slip angle, the yaw rate is generally determined based on the turning state, the front wheel road surface friction coefficient, and the rear wheel friction coefficient. Therefore, the estimation error is included in the e k, and a lateral acceleration representing the turning state, the SAT including information of the front wheel friction coefficient and a slip ratio including information of the rear wheel friction coefficient, by using the same time, the precision yaw rate Can be estimated well. The method for setting Lrk will be described in detail later.

タイヤ出力推定部133は、車速検出値と、車体すべり角推定値と、ヨーレート推定値と、転舵角検出値と、後輪駆動トルク検出値と、前輪路面摩擦係数推定値と、後輪路面摩擦係数推定値と、推定誤差とに基づいて、前輪SAT推定値と、後輪スリップ率推定値と、横加速度推定値と、前輪横力推定値と、後輪横力推定値と、後輪縦力推定値と、を推定し出力する。   The tire output estimation unit 133 includes a vehicle speed detection value, a vehicle body slip angle estimation value, a yaw rate estimation value, a turning angle detection value, a rear wheel driving torque detection value, a front wheel road surface friction coefficient estimation value, and a rear wheel road surface. Based on the friction coefficient estimated value and the estimation error, the front wheel SAT estimated value, the rear wheel slip rate estimated value, the lateral acceleration estimated value, the front wheel lateral force estimated value, the rear wheel lateral force estimated value, and the rear wheel Estimate and output the estimated longitudinal force.

図4は、タイヤ出力推定部のシステム構成図である。
タイヤ出力推定部133は、タイヤすべり角推定部134と、SAT推定部135と、横力推定部136と、横加速度推定部137と、縦力推定部138と、車輪速推定部139と、スリップ率推定部140と、を備える。
タイヤすべり角推定部134では、ヨーレート推定値と、車体すべり角推定値と、転舵角検出値と、車速検出値とに基づいて、タイヤすべり角を次式で算出する。
FIG. 4 is a system configuration diagram of the tire output estimation unit.
The tire output estimating unit 133 includes a tire slip angle estimating unit 134, a SAT estimating unit 135, a lateral force estimating unit 136, a lateral acceleration estimating unit 137, a longitudinal force estimating unit 138, a wheel speed estimating unit 139, a slip A rate estimator 140.
The tire slip angle estimating unit 134 calculates the tire slip angle based on the yaw rate estimated value, the vehicle slip angle estimated value, the turning angle detected value, and the vehicle speed detected value by the following equation.

Figure 0005742253
Figure 0005742253

SAT推定部135では、前輪すべり角推定値と、前輪路面摩擦係数推定値と、制動時スリップ率とに基づいて、予め取得したSAT特性Jf(,)を用いて前輪SAT推定値を求める。すなわち、次式で表現できる。 The SAT estimation unit 135 obtains a front wheel SAT estimated value using a previously acquired SAT characteristic J f (,) based on a front wheel slip angle estimated value, a front wheel road surface friction coefficient estimated value, and a braking slip ratio. That is, it can be expressed by the following equation.

Figure 0005742253
Figure 0005742253

一般的に、SAT特性はスリップ率の発生量によっても変化するが、本実施形態において前輪は従動輪であり、スリップ率は無視できるほど小さいとした。例えば、SAT特性としてフィアラモデルを用いると、前輪SATは、次式で計算できる。   In general, the SAT characteristic also changes depending on the amount of slip rate generated, but in this embodiment, the front wheels are driven wheels, and the slip rate is negligibly small. For example, when a filar model is used as the SAT characteristic, the front wheel SAT can be calculated by the following equation.

Figure 0005742253
Figure 0005742253

但し、φ^kは次式とする。 However, φ ^ k is as follows.

Figure 0005742253
Figure 0005742253

あるいは、マジックフォーミュラや、実験により取得したデータに基づいて数値的に定義したマップを用いて、前輪SATを計算してもよい。
横力推定部136では、前輪すべり角推定値と、後輪すべり角推定値と、前輪路面摩擦係数推定値と、後輪摩擦係推定値と、転舵角検出値と、後輪スリップ率推定値とに基づいて、前輪横力推定値と、後輪横力推定値とを演算する。
前輪横力推定値は、前輪すべり角推定値と前輪路面摩擦係数推定値に応じて次式に示すように算出される。
Alternatively, the front wheel SAT may be calculated using a magic formula or a map that is numerically defined based on data obtained through experiments.
In the lateral force estimation unit 136, a front wheel slip angle estimated value, a rear wheel slip angle estimated value, a front wheel road surface friction coefficient estimated value, a rear wheel friction coefficient estimated value, a turning angle detected value, and a rear wheel slip ratio estimated Based on the value, the front wheel lateral force estimated value and the rear wheel lateral force estimated value are calculated.
The estimated front wheel lateral force value is calculated as shown in the following equation in accordance with the estimated front wheel slip angle value and the estimated front wheel road surface friction coefficient.

Figure 0005742253
Figure 0005742253

f(,)は前輪横力特性である。一般的に、タイヤ横力特性はスリップ率の発生量によっても変化するが、本実施形態において前輪は従動輪であり、スリップ率は無視できるほど小さいとした。例えば、横力特性として、フィアラモデルを用いると、前輪横力は、次式で表現される。 h f (,) is a front wheel lateral force characteristic. In general, the tire lateral force characteristics vary depending on the amount of slip rate generated, but in this embodiment, the front wheels are driven wheels, and the slip rate is negligibly small. For example, when the filar model is used as the lateral force characteristic, the front wheel lateral force is expressed by the following equation.

Figure 0005742253
Figure 0005742253

但し、φ^kは次式とする。 However, φ ^ k is as follows.

Figure 0005742253
Figure 0005742253

また、横力特性として、マジックフォーミュラや数値的なマップを用いてもよい。後輪横力推定値は、後輪すべり角推定値と後輪路面摩擦係数推定値と後輪スリップ率推定値によって決定される。すなわち、次式によって算出される。   Further, a magic formula or a numerical map may be used as the lateral force characteristic. The estimated rear wheel lateral force value is determined by the estimated rear wheel slip angle value, the estimated rear wheel road surface friction coefficient, and the estimated rear wheel slip ratio. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

後輪横力特性hr(,)には、前輪の場合と同様に、種々のモデルを用いることができる。
また、横加速度推定部137では、前輪横力推定値と、後輪横力推定値とに基づいて、次式で横加速度を計算する。
Various models can be used for the rear wheel lateral force characteristics h r (,) as in the case of the front wheels.
Further, the lateral acceleration estimation unit 137 calculates the lateral acceleration by the following equation based on the front wheel lateral force estimated value and the rear wheel lateral force estimated value.

Figure 0005742253
Figure 0005742253

縦力推定部138では、後輪スリップ率推定値と、後輪路面摩擦係数推定値と、後輪すべり角とに基づいて、後輪縦力推定値を、次式に基づいて演算する。   The longitudinal force estimator 138 calculates a rear wheel longitudinal force estimated value based on the following equation based on the rear wheel slip ratio estimated value, the rear wheel road surface friction coefficient estimated value, and the rear wheel slip angle.

Figure 0005742253
Figure 0005742253

ここで、hxr(,)はタイヤ縦力特性である。例えば、縦力特性として、ブラッシュモデルを用いると、後輪縦力推定値は、制動時には、次式で表される(自動車の運動と制御、山海堂、安部正人著)。 Here, h xr (,) is a tire longitudinal force characteristic. For example, when a brush model is used as the longitudinal force characteristic, the estimated rear wheel longitudinal force value is expressed by the following equation at the time of braking (by automobile movement and control, by Sankaido and Masato Abe).

Figure 0005742253
Figure 0005742253

但し、ξ^kは次式とする。 However, ξ ^ k is as follows.

Figure 0005742253
Figure 0005742253

また、cosθ^kは次式とする。 Also, cos θ ^ k is as follows.

Figure 0005742253
Figure 0005742253

また、駆動時には、次式で表される(自動車の運動と制御、山海堂、安部正人著)。   In driving, it is expressed by the following equation (movement and control of automobiles, by Sankaido and Masato Abe).

Figure 0005742253
Figure 0005742253

但し、ξ^kは次式とする。 However, ξ ^ k is as follows.

Figure 0005742253
Figure 0005742253

また、cosθ^kは次式とする。 Also, cos θ ^ k is as follows.

Figure 0005742253
Figure 0005742253

車輪速推定部139では、後輪制駆動トルク検出値と、後輪縦力推定値と、推定誤差とに基づいて、車輪速推定値を推定する。制駆動トルクが作用したときの車輪速のダイナミクスは、次式で与えられる。   The wheel speed estimation unit 139 estimates the wheel speed estimation value based on the detected value of the rear wheel braking / driving torque, the estimated value of the rear wheel longitudinal force, and the estimation error. The dynamics of the wheel speed when the braking / driving torque is applied is given by the following equation.

Figure 0005742253
Figure 0005742253

本式を、例えば、オイラー法を用いて離散化すると、次式を得る。   When this equation is discretized using, for example, the Euler method, the following equation is obtained.

Figure 0005742253
Figure 0005742253

Δtはサンプル時間である。この離散時間ダイナミクスに基づいて、推定誤差に応じて後輪車輪速を演算する。すなわち、次式により後輪車輪速を演算する。   Δt is the sample time. Based on the discrete time dynamics, the rear wheel speed is calculated according to the estimation error. That is, the rear wheel speed is calculated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ekは推定誤差である。Lωkは車輪速に関するゲインベクトルであり、後に決定方法を詳細に説明する。
スリップ率推定部140では、車輪速推定値と車速検出値とから、後輪スリップ率を推定する。
Here, e k is an estimation error. Lω k is a gain vector related to the wheel speed, and the determination method will be described in detail later.
The slip ratio estimation unit 140 estimates the rear wheel slip ratio from the wheel speed estimated value and the vehicle speed detected value.

Figure 0005742253
Figure 0005742253

分母では、車体速と後輪車輪速を比較し、何れか大きい値が選択されるが、一般に、制動時には車体速が、駆動時には車輪速がより大きい値となる。
図3の前輪路面摩擦係数推定部150では、推定誤差から、路面摩擦係数ダイナミクスモデルに基づいて、前輪路面摩擦係数を推定する。路面摩擦係数が区分的に一定であると仮定すると、路面摩擦係数ダイナミクスモデルは次式のように定義される。
In the denominator, the vehicle body speed and the rear wheel speed are compared and a larger value is selected. In general, the vehicle speed is higher during braking and the wheel speed is higher during driving.
The front wheel road surface friction coefficient estimation unit 150 in FIG. 3 estimates the front wheel road surface friction coefficient from the estimation error based on the road surface friction coefficient dynamics model. Assuming that the road friction coefficient is piecewise constant, the road friction coefficient dynamics model is defined as:

Figure 0005742253
Figure 0005742253

本式を離散化した式に基づき、推定誤差に応じて前輪路面摩擦係数を推定する。すなわち、次式により、前輪路面摩擦係数を推定する。   Based on an equation obtained by discretizing this equation, a front wheel road surface friction coefficient is estimated according to an estimation error. That is, the front wheel road surface friction coefficient is estimated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ゲインLμfkの決定法は後に示す。なお、路面摩擦係数のダイナミクスは、本例のように、時間の一階微分が0と定義してもよいし、例えば、二階微分が0と定義したモデルを用いてもよい。
後輪路面摩擦係数推定部160では、推定誤差から、路面摩擦係数ダイナミクスモデルに基づいて、前輪路面摩擦係数を推定する。路面摩擦係数が区分的に一定であると仮定すると、路面摩擦係数ダイナミクスモデルは次式のように定義される。
Here, a method for determining the gain Lμ fk will be described later. The dynamics of the road surface friction coefficient may be defined such that the first derivative of time is 0 as in this example, or a model in which the second derivative is defined as 0 may be used, for example.
The rear wheel road surface friction coefficient estimation unit 160 estimates the front wheel road surface friction coefficient from the estimation error based on the road surface friction coefficient dynamics model. Assuming that the road friction coefficient is piecewise constant, the road friction coefficient dynamics model is defined as:

Figure 0005742253
Figure 0005742253

本式を離散化した式に基づき、推定誤差に応じて前輪路面摩擦係数を推定する。すなわち、次式により、前輪路面摩擦係数を推定する。   Based on an equation obtained by discretizing this equation, a front wheel road surface friction coefficient is estimated according to an estimation error. That is, the front wheel road surface friction coefficient is estimated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ゲインLμfkの決定法は後に示す。路面摩擦係数のダイナミクスは、本例のように、時間の一階微分が0と定義してもよいし、例えば、二階微分が0と定義したモデルを用いてもよい。
このように、路面摩擦係数のダイナミクスを定義することで、推定誤差にゲイン乗じることで算出される補正信号に基づいて、現在推定値μ^fk、μ^rkから次離散時間推定値μ^fk+1、μ^rk+1を推定することができる。この演算は、車体すべり角推定部131において、車体すべり角の現在推定値β^kからその次離散時間推定値β^k+1を推定する演算と、同一の計算ステップで行われるので、車体すべり角と路面摩擦係数とを同時に推定できる構成となっている。
Here, a method for determining the gain Lμ fk will be described later. The dynamics of the road surface friction coefficient may be defined such that the first derivative of time is 0 as in this example, or a model in which the second derivative is defined as 0 may be used, for example.
In this way, by defining the dynamics of the road friction coefficient, based on the correction signal calculated by multiplying the estimation error by the gain, the next discrete time estimation value μ ^ fk from the current estimation value μ ^ fk , μ ^ rk +1 and μ ^ rk + 1 can be estimated. This calculation is performed in the same calculation step as the calculation for estimating the next discrete time estimated value β ^ k + 1 from the current estimated value β ^ k of the vehicle slip angle in the vehicle slip angle estimating unit 131. The slip angle and the road surface friction coefficient can be estimated simultaneously.

前後輪の路面摩擦係数をタイヤ力やSATに基づいて推定する際には、車体すべり角の情報が必要であり、多くの場合、車両ダイナミクスモデルを用いて推定される。ところが、一般に、車体すべり角は、前後輪の路面摩擦係数に依存して発生量が決定されるので、推定値すべき量である路面摩擦係数に基づいて推定されるべきである。本実施形態の構成では、車体すべり角と前後輪の路面摩擦係数を同時に推定することを可能にしており、推定値の精度を向上することができる。   When estimating the road surface friction coefficient of the front and rear wheels based on tire force and SAT, information on the vehicle slip angle is necessary, and in many cases, estimation is performed using a vehicle dynamics model. In general, however, the vehicle slip angle is determined on the basis of the road surface friction coefficient, which is an amount to be estimated, because the generation amount is determined depending on the road surface friction coefficient of the front and rear wheels. In the configuration of the present embodiment, it is possible to simultaneously estimate the vehicle body slip angle and the road surface friction coefficient of the front and rear wheels, and the accuracy of the estimated value can be improved.

前輪SAT検出部170では、前輪SATを検出する。前輪SATは、例えば、電動パワーステアリングにおけるトルクセンサ値、アシストモータ電流値、ハンドル角とから、ステアリングシステム回転運動ダイナミクスに基づいて、検出される The front wheel SAT detection unit 170 detects the front wheel SAT. The front wheel SAT is detected from, for example, a torque sensor value, an assist motor current value, and a steering wheel angle in electric power steering based on steering system rotational motion dynamics .

また、SATを直接検出せず、例えば、タイロッド軸力を前輪SAT検出部170の出力としてもよい。
後輪スリップ率検出部180では、後輪スリップ率を検出する。例えば、車速と後輪車輪速とから後輪スリップ率を検出される
Further, the SAT may not be directly detected, and for example, the tie rod axial force may be output from the front wheel SAT detection unit 170.
The rear wheel slip ratio detector 180 detects the rear wheel slip ratio. For example, the rear wheel slip ratio is detected from the vehicle speed and the rear wheel speed .

横加速度検出部190では、横加速度を検出する。例えば、市販車に搭載されている横すべり防止装置における加速度センサの計測値を参照することで、横加速度を検出する。
推定誤差演算部200では、車両出力推定部130で推定された前輪SAT推定値と、前輪SAT検出部170で検出された前輪SAT検出値の差と、車両出力推定部130で推定された後輪スリップ率推定値と、後輪スリップ率検出部180で検出された後輪スリップ率検出値の差と、車両出力推定部130で推定された横加速度推定値と、後輪スリップ率検出部180で検出された横加速度検出値の差を、演算する。すなわち、推定誤差ekを、次式により演算する。
The lateral acceleration detector 190 detects lateral acceleration. For example, the lateral acceleration is detected by referring to the measured value of the acceleration sensor in the skid prevention device mounted on the commercial vehicle.
In the estimation error calculating unit 200, the difference between the front wheel SAT estimated value estimated by the vehicle output estimating unit 130, the front wheel SAT detected value detected by the front wheel SAT detecting unit 170, and the rear wheel estimated by the vehicle output estimating unit 130. The difference between the slip ratio estimated value, the rear wheel slip ratio detected value detected by the rear wheel slip ratio detecting unit 180, the lateral acceleration estimated value estimated by the vehicle output estimating unit 130, and the rear wheel slip ratio detecting unit 180 The difference between the detected lateral acceleration detection values is calculated. That is, the estimation error ek is calculated by the following equation.

Figure 0005742253
Figure 0005742253

上付き添え字のTはベクトルの転置を示す。
なお、推定誤差eyは、車両出力推定部において、車体すべり角とヨーレートの推定に用いられ、前輪路面摩擦係数推定部と後輪路面摩擦係数推定部において、前輪路面摩擦係数と後輪路面摩擦係数の推定に用いられる。
次に、推定値の更新に用いたゲインの設定方法について説明する。
状態ベクトルxk=[βkk ωrk μfk μrkTを用いて、車体すべり角、ヨーレート、車輪速、前輪路面摩擦係数、後輪路面摩擦係数、夫々の推定に用いた式をまとめて表現すると、次式のように表現できる。
The superscript T indicates vector transposition.
The estimation error e y is used in the vehicle output estimation unit to estimate the vehicle slip angle and the yaw rate. In the front wheel road surface friction coefficient estimation unit and the rear wheel road surface friction coefficient estimation unit, the front wheel road surface friction coefficient and the rear wheel surface friction coefficient are used. Used for coefficient estimation.
Next, a method for setting the gain used for updating the estimated value will be described.
Using the state vector x k = [β k r k ω rk μ fk μ rk ] T , the vehicle slip angle, yaw rate, wheel speed, front wheel road surface friction coefficient, rear wheel road surface friction coefficient, and the equations used to estimate each When expressed together, it can be expressed as:

Figure 0005742253
Figure 0005742253

ここで、入力はuk=[δkrk]であり、ゲインLは、Lk=[Lβkrk Lωk Lμfk LμrkTである。
本式は、時間k+1の状態x^k+1が前離散時間kにおける状態x^kと入力uk、及び推定誤差ekによって、決定されることを示している。
またシステムの出力をyk=[MzkkykTと定義する。出力ykは、状態ベクトルx^kに含まれる車体すべり角と、ヨーレートと、後輪車輪速と、前後輪路面摩擦係数、及び、車両への入力ukによって代数的に演算されるので、次式で表現することができる。
Here, the input is u k = [δ k T rk ], and the gain L is L k = [Lβ k L rkkfkrk ] T.
This formula shows that the time k + 1 in state x ^ k + 1 is the state x ^ k in the previous discrete time k input u k, and the estimated error e k, which is determined.
Also define the output of the system as y k = [M zk s k a yk] T. Since the output y k is algebraically calculated by the body slip angle, yaw rate, rear wheel speed, front and rear road surface friction coefficient included in the state vector x ^ k , and the input u k to the vehicle, It can be expressed as:

Figure 0005742253
Figure 0005742253

上式に基づいて、システムのヤコビアン行列は次式のように計算される。   Based on the above equation, the system Jacobian matrix is calculated as:

Figure 0005742253
Figure 0005742253

ヤコビアンは例えば、状態x^kでの関数の値と、状態を微小に変化させた状態x^k+Δxでの関数の値から差分とることで、数値的に計算できる。すなわち、次式により計算される。 Jacobian example, by taking the difference from the value of the function at state x ^ and the value of the function at k, state micro changing state x ^ k + [Delta] x, numerically be calculated. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

こうして計算されたヤコビアン行列に基づき、各計算ステップで、例えばカルマンフィルタアルゴリズムを用いると、適切なゲインを定めることができる。カルマンフィルタアルゴリズムは、各計算ステップで次の演算を実行する。   Based on the Jacobian matrix calculated in this way, an appropriate gain can be determined by using, for example, a Kalman filter algorithm at each calculation step. The Kalman filter algorithm performs the following operations at each calculation step.

Figure 0005742253
Figure 0005742253

ここで、添え字−は事前推定値を表わし、Pkは推定値の共分散行列である。また、Qkはプロセスノイズ共分散行列、Rk+1は検出値に含まれる観測ノイズ共分散行列である。これらは、ノイズ耐性と、推定値応答性のトレードオフを調節するパラメータであって、実用上は、設計者によって定められる。例えば、Rkの対角成分を大きく設定すると、SAT、スリップ率、ヨーレートの検出値に含まれるノイズへの耐性は向上するが、路面摩擦係数が急変したときの、路面摩擦係数推定値の追従応答性は低下する。また、Qkの対角成分を大きく設定すると、SAT、スリップ率、ヨーレートの検出値に含まれるノイズへの耐性は低下するが、路面摩擦係数が急変したときの、路面摩擦係数推定値の追従応答性は向上する。 Here, the subscript-represents a prior estimated value, and P k is a covariance matrix of estimated values. Q k is a process noise covariance matrix, and R k + 1 is an observation noise covariance matrix included in the detected value. These are parameters for adjusting a trade-off between noise tolerance and estimated value response, and are practically determined by a designer. For example, if the diagonal component of R k is set to be large, the resistance to noise included in the detected values of SAT, slip ratio, and yaw rate is improved, but tracking of the road surface friction coefficient estimated value when the road surface friction coefficient changes suddenly. Responsiveness decreases. Further, if the diagonal component of Q k is set to be large, the resistance to noise included in the detected values of SAT, slip ratio, and yaw rate is reduced, but tracking of the road surface friction coefficient estimated value when the road surface friction coefficient changes suddenly. Responsiveness is improved.

ゲインの決定に本アルゴリズムを用いると、推定状態のノイズ分散を最小化するように状態を推定するため、観測量に含まれるノイズが顕著な場合や、プロセスノイズを仮定したい場合に、精度良い推定値を得ることができる。
あるいは、本アルゴリズムのかわりに極配置法を用いると、推定値の応答時間と減衰係数とを設計仕様としてゲインを決定することができる。
また、前輪SAT、後輪スリップ率、ヨーレートに基づいてゲイン特性を調整するとよい。
先ず、後輪スリップ率検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は後輪スリップ率推定誤差が予め定められた閾値よりも大きいときには、前輪SAT推定誤差、及びヨーレート推定誤差が小さくなるように、ゲインを設定する。
When this algorithm is used to determine the gain, the state is estimated so as to minimize the noise variance of the estimated state. Therefore, when the noise included in the observation amount is significant or when it is desired to assume process noise, accurate estimation is possible. A value can be obtained.
Alternatively, when the pole placement method is used instead of the present algorithm, the gain can be determined using the estimated response time and the attenuation coefficient as design specifications.
Further, the gain characteristic may be adjusted based on the front wheel SAT, the rear wheel slip ratio, and the yaw rate.
First, when the absolute value of the detected rear wheel slip ratio is smaller than a predetermined threshold value near 0, or when the rear wheel slip ratio estimation error is larger than a predetermined threshold value, the front wheel SAT estimation error and the yaw rate estimation are performed. Set the gain so that the error is small.

また、前輪SAT検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は前輪SAT推定誤差が予め定められた閾値よりも大きいときには、後輪スリップ率推定誤差、及びヨーレート推定誤差が小さくなるように、ゲインを設定する。
また、ヨーレート検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又はヨーレート推定誤差が予め定められた閾値よりも大きいときには、前輪SAT推定誤差、及び後輪スリップ率推定誤差が小さくなるように、ゲインを設定する。
Further, when the absolute value of the front wheel SAT detection value is smaller than a predetermined threshold value near 0, or when the front wheel SAT estimation error is larger than a predetermined threshold value, the rear wheel slip ratio estimation error and the yaw rate estimation error are Set the gain so that it becomes smaller.
Further, when the absolute value of the yaw rate detection value is smaller than a predetermined threshold value near 0, or when the yaw rate estimation error is larger than a predetermined threshold value, the front wheel SAT estimation error and the rear wheel slip rate estimation error are small. Set the gain so that

《作用》
後輪駆動車両において、後輪で発生するスリップ率の影響を考慮せずに、前輪の路面摩擦係数を推定しようとすると、例えば急制動によってスリップ率が大きくなるようなシーンで、タイヤ状態の推定精度が低下する可能性がある。また、予め定められたマップに基づいてフィードフォワードとしてタイヤのグリップ度を推定しているので、例えばセルフアライニングトルク、タイヤすべり角、タイヤ横力、タイヤ前後力等にノイズが含まれると、推定精度を低下させてしまう。
<Action>
In a rear-wheel drive vehicle, if you try to estimate the road surface friction coefficient of the front wheels without considering the effect of the slip ratio generated on the rear wheels, for example, in a scene where the slip ratio increases due to sudden braking, the estimation of the tire condition Accuracy may be reduced. In addition, since the grip degree of the tire is estimated as a feed forward based on a predetermined map, it is estimated that noise is included in, for example, self-aligning torque, tire slip angle, tire lateral force, tire longitudinal force, etc. It will reduce accuracy.

図5は、タイヤすべり角‐前輪SATの特性変化を示す図である。
また、駆動輪車輪速、従動輪車輪速、従動輪加速度、駆動輪車輪速差分値、従動輪車輪速差分値、従動輪加速度差分値、駆動輪接地荷重に基づいて、スリップ率の変化量に対する路面摩擦係数の変化量に基づいて路面摩擦係数を推定することも考えられる。しかしながら、旋回時に前後輪に発生するすべり角による、スリップ率に対する縦力特性の変化を考慮せずに、後輪の路面摩擦係数を推定することになるため、旋回時に精度良く路面摩擦係数を推定することが困難である。また、従動輪速度差分値と従動輪速差分値とを算出する際に、車輪速度に含まれるノイズが増幅され、推定精度が低下する可能性もある。
FIG. 5 is a diagram showing a change in characteristics of the tire slip angle-front wheel SAT.
Also, based on the driving wheel wheel speed, driven wheel speed, driven wheel acceleration, driving wheel wheel speed differential value, driven wheel wheel speed differential value, driven wheel acceleration differential value, and driving wheel ground load, It is also conceivable to estimate the road surface friction coefficient based on the amount of change in the road surface friction coefficient. However, since the road surface friction coefficient of the rear wheels is estimated without considering the change in the longitudinal force characteristics with respect to the slip ratio due to the slip angle that occurs on the front and rear wheels during turning, the road surface friction coefficient is estimated accurately during turning. Difficult to do. Further, when the driven wheel speed difference value and the driven wheel speed difference value are calculated, noise included in the wheel speed is amplified, and the estimation accuracy may be reduced.

そこで、路面摩擦係数μ^f及びμ^rを推定し、転舵角δ、車速V、路面摩擦係数μ^f及びμ^rに基づいて、前輪SAT推定値M^zと、後輪スリップ率推定値s^と、横加速度推定値a^yとを推定する。一方、前輪SAT検出値Mzと、後輪スリップ率検出値sと、横加速度検出値ayとを検出する。そして、前輪SATと、後輪スリップ状態と、旋回状態とにおいて、夫々、推定値と検出値との差分ekを推定誤差として演算し、各推定誤差ekの少なくとも一つに応じて、路面摩擦係数μ^f及びμ^rを補正する。 Therefore, the road surface friction coefficients μ ^ f and μ ^ r are estimated, and based on the turning angle δ, the vehicle speed V, the road surface friction coefficients μ ^ f and μ ^ r , the front wheel SAT estimated value M ^ z and the rear wheel slip The estimated rate value s ^ and the lateral acceleration estimated value a ^ y are estimated. On the other hand, the front wheel SAT detection value M z , the rear wheel slip ratio detection value s, and the lateral acceleration detection value a y are detected. Then, a front wheel SAT, and the rear wheel slip state, in a turning state, respectively, calculates the difference e k between the estimated value and the detected value as an estimated error, according to at least one of the estimated error e k, road Correct the friction coefficients μ ^ f and μ ^ r .

このように、前輪セルフアライニングトルクと、後輪スリップ状態と、旋回状態との各推定誤差ekの少なくとも一つに応じて、路面摩擦係数の推定値μ^fk及びμ^rkを、μ^fk+1及びμ^rk+1へと更新することで、路面摩擦係数の推定精度を向上させることができる。
また、前輪SAT、後輪スリップ率を他方輪の推定にまで考慮して、前輪路面摩擦係数と後輪路面摩擦係数を推定器内で関連付けながら独立に推定可能な構成としたことで、前輪及び後輪の路面摩擦係数を精度良く推定することができる。すなわち、前輪路面摩擦係数は、後輪で発生するスリップ率の影響を考慮して推定し、後輪路面摩擦係数は、前輪及び後輪で発生するすべり角の影響を考慮して推定するため、従来技術と比較して推定精度を改善できる。
Thus, the front wheel aligning torque, and the rear wheel slip state, in response to at least one of the estimated error e k with the turning state, the road surface friction coefficient estimated value mu ^ fk and mu ^ rk, mu By updating to ^ fk + 1 and μ ^ rk + 1 , the estimation accuracy of the road friction coefficient can be improved.
In addition, considering the front wheel SAT and the rear wheel slip ratio to the estimation of the other wheel, the front wheel road friction coefficient and the rear wheel road friction coefficient can be estimated independently while being associated in the estimator. The road surface friction coefficient of the rear wheel can be accurately estimated. That is, the front wheel road surface friction coefficient is estimated in consideration of the effect of the slip ratio generated at the rear wheel, and the rear wheel road surface friction coefficient is estimated in consideration of the effect of the slip angle generated at the front wheel and the rear wheel. The estimation accuracy can be improved compared to the prior art.

なお、車両から検出する量として前輪のSAT相当量及び、後輪のスリップ状態を用いたことで、例えばSAT相当量は電動パワーステアリングシステムに備えられた操舵補助モータ電流及びトルクセンサ値から検出でき、スリップ状態は車輪速に基づいて検出できるので、多くの市販車においてセンサを新たに追加する必要がなく、車両原価の増加を抑えることができる。
上記のように、独立に推定された前輪と後輪の路面摩擦係数に基づいて、例えば低速旋回時に前輪と後輪の軌跡が異なり、前輪と後輪の路面摩擦係数が異なる場合の車両運動制御をより精度良く実施することができる。
By using the front wheel SAT equivalent amount and the rear wheel slip state as the amount detected from the vehicle, for example, the SAT equivalent amount can be detected from the steering assist motor current and the torque sensor value provided in the electric power steering system. Since the slip state can be detected based on the wheel speed, it is not necessary to add a new sensor in many commercial vehicles, and an increase in vehicle cost can be suppressed.
As described above, based on the independently estimated road surface friction coefficient of the front and rear wheels, for example, when the vehicle travels at a low speed, the front wheel and the rear wheel have different trajectories, and the front wheel and the rear wheel have different road surface friction coefficients. Can be carried out with higher accuracy.

また、一般に、車体すべり角βの発生量は、前輪路面摩擦係数μfと、後輪路面摩擦係数μrと、横加速度ayと、が支配的な要因となって決定されるため、前輪路面摩擦係数の情報を比較的多く含む前輪SAT相当量の検出値と推定値との差と、後輪路面摩擦係数の情報を比較的多く含む後輪スリップ率検出値と推定値との差と、横加速度検出値と推定値の差と、に基づいて、車体すべり角βを推定する構成とした。これにより、精度良く車体すべり角βを推定でき、それを基に推定される前輪路面摩擦係数μfと、後輪摩擦係数μrの推定精度を向上できる。 In general, the generation amount of the vehicle slip angle β is determined mainly by the front wheel road surface friction coefficient μ f , the rear wheel road surface friction coefficient μ r, and the lateral acceleration a y. The difference between the detected value and the estimated value of the front wheel SAT equivalent amount that includes a relatively large amount of road surface friction coefficient information, and the difference between the detected value and the estimated value of the rear wheel slip ratio that includes a relatively large amount of information of the rear wheel road surface friction coefficient The vehicle slip angle β is estimated based on the difference between the lateral acceleration detection value and the estimated value. As a result, the vehicle slip angle β can be estimated with high accuracy, and the estimation accuracy of the front-wheel road surface friction coefficient μ f and the rear-wheel friction coefficient μ r estimated based thereon can be improved.

また、前輪路面摩擦係数μfと後輪路面摩擦係数μrを、前輪SATモデル及びタイヤ力モデルに基づいて推定する場合には、前輪タイヤすべり角αfと後輪タイヤすべり角αrの情報が必要であるが、一方で、これらのタイヤすべり角αf及びαrを推定するためには、これから推定しようとしている前輪路面摩擦係数μfと後輪路面摩擦係数μrの情報が必要である。 Further, when the front wheel road surface friction coefficient μ f and the rear wheel road surface friction coefficient μ r are estimated based on the front wheel SAT model and the tire force model, information on the front wheel tire slip angle α f and the rear wheel tire slip angle α r is obtained. While it is necessary, on the one hand, those to estimate the tire slip angle alpha f and alpha r is required front wheel road surface friction coefficient mu f and the rear wheel road surface friction coefficient mu r information that is intended to be estimated is there.

そこで、前輪SAT相当量の検出値と推定値との差と、後輪スリップ状態検出値と推定値との差と、車両旋回状態検出値と推定値の差と、に基づいて、前輪路面摩擦係数と後輪路面摩擦係数とタイヤすべり角の算出に必要な車体すべり角とを同時に推定する構成としたことで、各推定値を精度良く推定できる。
また、路面摩擦係数μ^f及びμ^rの推定は、時間による一階微分を0と定義した動特性モデルを含み、この動特性モデルに、前輪SAT相当量の検出値と推定値との差と、後輪スリップ状態検出値と推定値との差と、車両旋回状態検出値と推定値の差とから算出した量を入力することで、各検出値に含まれるノイズによって路面摩擦係数の推定精度が低下することを防げる。
Therefore, based on the difference between the detected value of the front wheel SAT equivalent amount and the estimated value, the difference between the detected value of the rear wheel slip state and the estimated value, and the difference between the detected value of the vehicle turning state and the estimated value, the front wheel road surface friction is determined. Each estimated value can be estimated with high accuracy by employing a configuration in which the coefficient, the rear wheel road surface friction coefficient, and the vehicle slip angle necessary for calculating the tire slip angle are simultaneously estimated.
In addition, the estimation of the road surface friction coefficients μ ^ f and μ ^ r includes a dynamic characteristic model in which the first-order derivative with respect to time is defined as 0, and the detected value and estimated value of the front wheel SAT equivalent amount are included in this dynamic characteristic model. By inputting the amount calculated from the difference, the difference between the detected value of the rear wheel slip condition and the estimated value, and the difference between the detected value of the vehicle turning condition and the estimated value, the noise of the road surface friction coefficient is determined by the noise included in each detected value. It is possible to prevent the estimation accuracy from being lowered.

《効果》
以上より、転舵角検出部110が「転舵角検出手段」に対応し、車速検出部120が「車速検出手段」に対応し、前輪路面摩擦係数推定部150及び後輪路面摩擦係数推定部160が「路面摩擦係数推定手段」に対応する。また、車両出力推定部130におけるタイヤ出力推定部133のSAT推定部135、及び数10、数11の演算が「転舵輪セルフアライニングトルク推定手段」に対応し、車両出力推定部130におけるタイヤ出力推定部133のスリップ率推定部140、及び数28の演算が「非転舵輪スリップ状態推定手段」に対応し、車両出力推定部130におけるタイヤ出力推定部133の横加速度推定部137、及び数17の演算が「旋回状態推定手段」に対応する。また、前輪SAT検出部170が「転舵輪セルフアライニングトルク検出手段」に対応し、後輪スリップ率検出部180が「非転舵輪スリップ状態検出手段」に対応し、横加速度検出部190が「旋回状態検出手段」に対応する。また、推定誤差演算部200、及び数33の演算が「転舵輪セルフアライニングトルク推定誤差演算手段」に対応し、推定誤差演算部200、及び数33の演算が「非転舵輪スリップ状態推定誤差演算手段」に対応し、推定誤差演算部200、及び数33の演算が「旋回状態推定誤差演算手段」に対応する。前輪路面摩擦係数推定部150、後輪路面摩擦係数推定部160、及び数30、数32の演算が「路面摩擦係数補正手段」に対応する。
"effect"
From the above, the turning angle detection unit 110 corresponds to the “steering angle detection unit”, the vehicle speed detection unit 120 corresponds to the “vehicle speed detection unit”, and the front wheel road surface friction coefficient estimation unit 150 and the rear wheel road surface friction coefficient estimation unit. 160 corresponds to “road surface friction coefficient estimating means”. Further, the SAT estimation unit 135 of the tire output estimation unit 133 in the vehicle output estimation unit 130 and the calculations of Equations 10 and 11 correspond to “steered wheel self-aligning torque estimation means”, and the tire output in the vehicle output estimation unit 130 The slip ratio estimating unit 140 of the estimating unit 133 and the calculation of Equation 28 correspond to “non-steered wheel slip state estimating means”, the lateral acceleration estimating unit 137 of the tire output estimating unit 133 in the vehicle output estimating unit 130, and Equation 17 Corresponds to the “turning state estimating means”. Further, the front wheel SAT detection unit 170 corresponds to “steered wheel self-aligning torque detection means”, the rear wheel slip rate detection unit 180 corresponds to “non-steered wheel slip state detection means”, and the lateral acceleration detection unit 190 corresponds to “ Corresponds to "turning state detection means". Further, the estimation error calculation unit 200 and the calculation of Equation 33 correspond to the “steered wheel self-aligning torque estimation error calculation means”, and the calculation of the estimation error calculation unit 200 and Equation 33 corresponds to the “non-steered wheel slip state estimation error”. Corresponding to the “calculation means”, the estimation error calculation unit 200 and the calculation of Equation 33 correspond to the “turning state estimation error calculation means”. The front wheel road surface friction coefficient estimation unit 150, the rear wheel road surface friction coefficient estimation unit 160, and the calculations of Equations 30 and 32 correspond to “road surface friction coefficient correction means”.

また、車両出力推定部130の車体すべり角推定部131が「車体すべり角推定手段」に対応し、車両出力推定部130の車体すべり角推定部131、及び数3の演算が「車体すべり角補正手段」に対応し、車両出力推定部130のヨーレート推定部132が「ヨーレート推定手段」に対応し、車両出力推定部130のヨーレート推定部132、及び数8が「ヨーレート補正手段」に対応し、車両出力推定部130におけるタイヤ出力推定部133の車輪速推定部139が「後輪車速推定手段」に対応し、車両出力推定部130におけるタイヤ出力推定部133の車輪速推定部139、及び数27が「後輪車速補正手段」に対応する。   Further, the vehicle slip angle estimation unit 131 of the vehicle output estimation unit 130 corresponds to “vehicle slip angle estimation means”, and the calculation of the vehicle slip angle estimation unit 131 of the vehicle output estimation unit 130 and Equation 3 is “vehicle slip angle correction”. The yaw rate estimation unit 132 of the vehicle output estimation unit 130 corresponds to the “yaw rate estimation unit”, the yaw rate estimation unit 132 of the vehicle output estimation unit 130 and the equation 8 correspond to the “yaw rate correction unit”, The wheel speed estimation unit 139 of the tire output estimation unit 133 in the vehicle output estimation unit 130 corresponds to “rear wheel vehicle speed estimation means”, the wheel speed estimation unit 139 of the tire output estimation unit 133 in the vehicle output estimation unit 130, and Equation 27 Corresponds to “rear wheel speed correction means”.

(1)タイヤ接地状態推定装置は、後輪及び前輪の路面摩擦係数を推定し、転舵角、車速、及び前輪の路面摩擦係数に基づいて、前輪SAT推定値を推定し、車速に基づいて、後輪スリップ率推定値を推定し、転舵角、車速、及び後輪及び前輪の路面摩擦係数に基づいて、車両の横加速度推定値を推定する。一方、前輪のSAT検出値を検出し、後輪スリップ率検出値を検出し、車両の横加速度検出値を検出する。そして、前輪SATの推定値と検出値との差分で定義される前輪SAT推定誤差を演算し、後輪スリップ率の推定値と検出値との差分で定義される後輪スリップ率推定誤差を演算し、横加速度の推定値と検出値との差分で定義される横加速度推定誤差を演算する。そして、前輪SAT推定誤差、後輪スリップ率推定誤差、横加速度推定誤差のうち、少なくとも一つに応じて、後輪及び前輪の路面摩擦係数を補正する。
このように、前輪SATと、後輪スリップ率と、横加速度との各推定誤差の少なくとも一つに応じて、後輪及び前輪の路面摩擦係数の推定値を更新することで、路面摩擦係数を含めたタイヤ接地状態の推定精度を向上させることができる。
(1) The tire ground contact state estimating device estimates the road surface friction coefficient of the rear wheel and the front wheel, estimates the front wheel SAT estimated value based on the turning angle, the vehicle speed, and the road surface friction coefficient of the front wheel, and based on the vehicle speed. Then, the estimated rear wheel slip ratio is estimated, and the estimated lateral acceleration of the vehicle is estimated based on the turning angle, the vehicle speed, and the road surface friction coefficient of the rear and front wheels. On the other hand, the front wheel SAT detection value is detected, the rear wheel slip ratio detection value is detected, and the vehicle lateral acceleration detection value is detected. Then, the front wheel SAT estimation error defined by the difference between the estimated value of the front wheel SAT and the detected value is calculated, and the rear wheel slip ratio estimated error defined by the difference between the estimated value of the rear wheel slip ratio and the detected value is calculated. The lateral acceleration estimation error defined by the difference between the lateral acceleration estimated value and the detected value is calculated. Then, the road surface friction coefficient of the rear wheels and the front wheels is corrected according to at least one of the front wheel SAT estimation error, the rear wheel slip ratio estimation error, and the lateral acceleration estimation error.
Thus, the road surface friction coefficient is updated by updating the estimated value of the road surface friction coefficient of the rear wheels and the front wheels according to at least one of the estimation errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration. It is possible to improve the estimation accuracy of the ground contact state of the tire.

(2)タイヤ接地状態推定装置は、車体すべり角を推定し、前輪SAT推定誤差、後輪スリップ率推定誤差、横加速度推定誤差のうち、少なくとも一つに応じて、前記車体すべり角推定手段で推定した車体すべり角を補正する。
このように、前輪SATと、後輪スリップ率と、横加速度との各推定誤差の少なくとも一つに応じて、車体すべり角の推定値を更新することで、車体すべり角の推定精度を向上させることができる。したがって、この車体すべり角を用いて推定される前輪SATや後輪スリップ率や横加速度の推定精度を向上させることができる。
(2) The tire ground contact state estimation device estimates a vehicle slip angle, and the vehicle slip angle estimator determines at least one of a front wheel SAT estimation error, a rear wheel slip ratio estimation error, and a lateral acceleration estimation error. Correct the estimated vehicle slip angle.
Thus, the estimated value of the vehicle slip angle is updated by updating the estimated value of the vehicle slip angle according to at least one of the estimation errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration. be able to. Accordingly, it is possible to improve the estimation accuracy of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration estimated using the vehicle body slip angle.

(3)タイヤ接地状態推定装置は、路面摩擦係数の推定と、車体すべり角の推定とは、同一の演算周期で実行される。
このように、同一の演算時間ステップにおいて、路面摩擦係数の推定と、車体すべり角の推定とを実行することで、各推定精度を向上させることができる。
(3) In the tire ground contact state estimating device, the estimation of the road surface friction coefficient and the estimation of the vehicle slip angle are executed at the same calculation cycle.
As described above, the estimation accuracy can be improved by executing the estimation of the road surface friction coefficient and the estimation of the vehicle slip angle in the same calculation time step.

(4)タイヤ接地状態推定装置は、ヨーレートを推定し、前輪SAT推定誤差、後輪スリップ率推定誤差、横加速度推定誤差のうち、少なくとも一つに応じて、ヨーレートを補正する。
このように、前輪SATと、後輪スリップ率と、横加速度との各推定誤差の少なくとも一つに応じて、ヨーレートの推定値を更新することで、ヨーレートの推定精度を向上させることができる。したがって、このヨーレートを用いて推定される前輪SATや後輪スリップ率や横加速度の推定精度を向上させることができる。
(4) The tire ground contact state estimation device estimates the yaw rate, and corrects the yaw rate according to at least one of the front wheel SAT estimation error, the rear wheel slip ratio estimation error, and the lateral acceleration estimation error.
In this way, the yaw rate estimation accuracy can be improved by updating the yaw rate estimation value according to at least one of the estimation errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration. Accordingly, it is possible to improve the estimation accuracy of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration estimated using the yaw rate.

(5)タイヤ接地状態推定装置は、後輪の車輪速を推定し、前輪SAT推定誤差、後輪スリップ率推定誤差、横加速度推定誤差のうち、少なくとも一つに応じて、後輪車輪速を補正する。
このように、前輪SATと、後輪スリップ率と、横加速度との各推定誤差の少なくとも一つに応じて、後輪車輪速の推定値を更新することで、後輪車輪速の推定精度を向上させることができる。したがって、この後輪車輪速を用いて推定される横加速度の推定精度を向上させることができる。
(5) The tire ground contact state estimation device estimates the wheel speed of the rear wheel, and determines the rear wheel speed according to at least one of a front wheel SAT estimation error, a rear wheel slip ratio estimation error, and a lateral acceleration estimation error. to correct.
In this way, the estimated value of the rear wheel speed is updated by updating the estimated value of the rear wheel speed according to at least one of the estimation errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration. Can be improved. Therefore, it is possible to improve the estimation accuracy of the lateral acceleration estimated using the rear wheel speed.

(6)タイヤ接地状態推定装置は、時間による一階微分を0と定義した動特性モデルを用いて路面摩擦係数を推定する。
このように、時間による一階微分を0と定義した動特性モデルを用いることで、各検出値に含まれるノイズによって路面摩擦係数の推定精度が悪化することを防ぐことができる。
(6) The tire ground contact state estimation device estimates a road surface friction coefficient using a dynamic characteristic model in which a first-order derivative with respect to time is defined as zero.
Thus, by using the dynamic characteristic model in which the first-order derivative with respect to time is defined as 0, it is possible to prevent the estimation accuracy of the road surface friction coefficient from deteriorating due to noise included in each detection value.

(7)タイヤ接地状態推定装置は、スリップ状態検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又はスリップ状態推定誤差が予め定められた閾値よりも大きいときには、前輪SAT推定誤差、及び横加速度推定誤差が小さくなるように、後輪及び前輪の路面摩擦係数を補正する。
このように、スリップ状態検出値又はスリップ状態推定誤差に応じて、補正の重み付けを調整することで、後輪及び前輪の路面摩擦係数の推定精度を向上させることができる。
(7) When the absolute value of the slip state detection value is smaller than a predetermined threshold value near 0, or when the slip state estimation error is larger than a predetermined threshold value, the tire ground contact state estimation device determines the front wheel SAT estimation error. And the road surface friction coefficient of the rear wheels and the front wheels are corrected so that the lateral acceleration estimation error is reduced.
As described above, by adjusting the correction weighting according to the slip state detection value or the slip state estimation error, it is possible to improve the estimation accuracy of the road surface friction coefficient of the rear wheels and the front wheels.

(8)タイヤ接地状態推定装置は、前輪SAT検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は前輪SAT推定誤差が予め定められた閾値よりも大きいときには、後輪スリップ率推定誤差、及び横加速度推定誤差が小さくなるように、後輪及び前輪の路面摩擦係数を補正する。
このように、前輪SAT検出値又は前輪SAT推定誤差に応じて、補正の重み付けを調整することで、後輪及び前輪の路面摩擦係数の推定精度を向上させることができる。
(8) When the absolute value of the detected value of the front wheel SAT is smaller than a predetermined threshold value near 0, or when the front wheel SAT estimation error is larger than the predetermined threshold value, the tire ground contact state estimating device The road surface friction coefficient of the rear wheels and the front wheels is corrected so that the estimation error and the lateral acceleration estimation error are reduced.
As described above, by adjusting the correction weighting according to the front wheel SAT detection value or the front wheel SAT estimation error, it is possible to improve the estimation accuracy of the road surface friction coefficient of the rear wheels and the front wheels.

(9)タイヤ接地状態推定装置は、横加速度検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は横加速度推定誤差が予め定められた閾値よりも大きいときには、前輪SAT推定誤差、及び後輪スリップ率推定誤差が小さくなるように、後輪及び前輪の路面摩擦係数を補正する。
このように、横加速度検出値又は横加速度推定誤差に応じて、補正の重み付けを調整することで、後輪及び前輪の路面摩擦係数の推定精度を向上させることができる。
(9) When the absolute value of the lateral acceleration detection value is smaller than a predetermined threshold value near 0, or when the lateral acceleration estimation error is larger than a predetermined threshold value, the tire ground contact state estimation device determines the front wheel SAT estimation error. Further, the road surface friction coefficient of the rear wheels and the front wheels is corrected so that the rear wheel slip ratio estimation error is reduced.
Thus, by adjusting the correction weighting according to the lateral acceleration detection value or the lateral acceleration estimation error, it is possible to improve the estimation accuracy of the road surface friction coefficient of the rear wheels and the front wheels.

《第二実施形態》
《構成》
第二実施形態では、前輪SAT推定値と、後輪車輪速推定値と、ヨーレート推定値とを出力し、これらの推定誤差に応じて、車体すべり角と、前輪路面摩擦係数と、後輪路面摩擦係数とを推定するものである。
図6は、第二実施形態のシステム構成図である。
本実施形態では、転舵角検出部110と、後輪制駆動トルク検出部111と、車速検出部120と、車両出力推定部130と、前輪路面摩擦係数推定部150と、後輪路面摩擦係数推定部160と、前輪SAT検出部170と、後輪車輪速検出部181と、ヨーレート検出部191と、推定誤差演算部200と、を備える。
<< Second Embodiment >>
"Constitution"
In the second embodiment, the front wheel SAT estimated value, the rear wheel wheel speed estimated value, and the yaw rate estimated value are output, and according to these estimation errors, the vehicle slip angle, the front wheel road surface friction coefficient, the rear wheel road surface The coefficient of friction is estimated.
FIG. 6 is a system configuration diagram of the second embodiment.
In the present embodiment, the turning angle detection unit 110, the rear wheel braking / driving torque detection unit 111, the vehicle speed detection unit 120, the vehicle output estimation unit 130, the front wheel road surface friction coefficient estimation unit 150, and the rear wheel road surface friction coefficient. An estimation unit 160, a front wheel SAT detection unit 170, a rear wheel speed detection unit 181, a yaw rate detection unit 191, and an estimation error calculation unit 200 are provided.

以上の構成要素について、第一実施形態と共通の要素についての説明を省き、本実施形態において変更があるブロックについて、詳細に説明する。
後輪車輪速検出部181では、後輪車輪速を検出する。
ヨーレート検出部191では、ヨーレートを検出する。例えば、既存の市販車の多くに搭載されている、車両横すべり防止装置に備えられたヨーレートセンサ検出値を参照することでヨーレートを検出してもよい。
推定誤差演算部200では、前輪SAT推定値と前輪SAT検出値の差、後輪車輪速推定値と後輪車輪速検出値の差、並びにヨーレート推定値とヨーレート検出値との差を演算する。すなわち、推定誤差ekを、次式により演算する。
With respect to the above components, the description of the elements common to the first embodiment will be omitted, and the blocks that are changed in the present embodiment will be described in detail.
The rear wheel speed detector 181 detects the rear wheel speed.
The yaw rate detector 191 detects the yaw rate. For example, the yaw rate may be detected by referring to a yaw rate sensor detection value provided in a vehicle side slip prevention device that is installed in many existing commercial vehicles.
The estimation error calculation unit 200 calculates the difference between the front wheel SAT estimated value and the front wheel SAT detected value, the difference between the rear wheel wheel speed estimated value and the rear wheel wheel speed detected value, and the difference between the yaw rate estimated value and the yaw rate detected value. That is, the estimation error ek is calculated by the following equation.

Figure 0005742253
Figure 0005742253

上付き添え字のTはベクトルの転置を示す。なお、第一実施形態と同様に、推定誤差ekは、車両出力推定部130において、車体すべり角とヨーレートの推定に用いられ、前輪路面摩擦係数推定部150と後輪路面摩擦係数推定部160において、前輪路面摩擦係数と後輪路面摩擦係数の推定に用いられる。 The superscript T indicates vector transposition. As in the first embodiment, the estimation error ek is used by the vehicle output estimation unit 130 to estimate the vehicle slip angle and the yaw rate, and the front wheel surface friction coefficient estimation unit 150 and the rear wheel surface friction coefficient estimation unit 160 are used. Is used to estimate the front wheel road surface friction coefficient and the rear wheel road surface friction coefficient.

図7は、第二実施形態を示す車両出力推定部のシステム構成図である。
車両出力推定部130は、転舵角検出値と、後輪制駆動トルク検出値と、車速検出値と、前輪路面摩擦係数検出値と、後輪路面摩擦係数検出値と、推定誤差とに基づいて、車体すべり角と、前輪SATと、後輪車輪速と、ヨーレートとを推定する。
ヨーレート推定部132は、前輪横力推定値と、後輪横力推定値と、後輪縦力推定値とに基づいてヨーレートを推定し、車両出力推定部130の出力となる。
タイヤ出力推定部133は、転舵角検出値と、後輪制駆動トルク検出値と、車体すべり角推定値と、ヨーレート推定値と、前輪路面摩擦係数推定値と、後輪路面摩擦係数推定値とに基づいて、前輪SAT推定値と、後輪車輪速推定値とを出力する。
FIG. 7 is a system configuration diagram of the vehicle output estimation unit showing the second embodiment.
The vehicle output estimation unit 130 is based on the turning angle detection value, the rear wheel braking / driving torque detection value, the vehicle speed detection value, the front wheel road surface friction coefficient detection value, the rear wheel road surface friction coefficient detection value, and the estimation error. Thus, the vehicle body slip angle, the front wheel SAT, the rear wheel speed, and the yaw rate are estimated.
The yaw rate estimation unit 132 estimates the yaw rate based on the front wheel lateral force estimated value, the rear wheel lateral force estimated value, and the rear wheel longitudinal force estimated value, and becomes an output of the vehicle output estimating unit 130.
The tire output estimating unit 133 is configured to detect a turning angle detection value, a rear wheel braking / driving torque detection value, a vehicle body slip angle estimation value, a yaw rate estimation value, a front wheel road surface friction coefficient estimation value, and a rear wheel road surface friction coefficient estimation value. Based on the above, the front wheel SAT estimated value and the rear wheel wheel speed estimated value are output.

なお、車体すべり角推定部131におけるすべり角の推定、ヨーレート推定部132におけるヨーレートの推定、タイヤ出力推定部133における後輪車輪速の推定、前輪路面摩擦係数推定部150における前輪路面摩擦係数の推定、後輪路面摩擦係数推定部160における後輪路面摩擦係数の推定は、第一実施形態で述べた原理で実施される。推定誤差に乗じるゲインは、次のようにして決定される。状態ベクトルxk=[βkk ωrk μfk μrkTを用いて、車体すべり角、ヨーレート、後輪車輪速、前輪摩擦係数、後輪摩擦係数の推定に用いた数をまとめて状態空間表現すると、次式のように表現できる。 The slip angle estimation unit 131 estimates the slip angle, the yaw rate estimation unit 132 estimates the yaw rate, the tire output estimation unit 133 estimates the rear wheel speed, and the front wheel road surface friction coefficient estimation unit 150 estimates the front wheel road surface friction coefficient. The estimation of the rear wheel road surface friction coefficient in the rear wheel road surface friction coefficient estimation unit 160 is performed according to the principle described in the first embodiment. The gain to be multiplied by the estimation error is determined as follows. Using the state vector x k = [β k r k ω rk μ fk μ rk ] T , the numbers used to estimate the body slip angle, yaw rate, rear wheel speed, front wheel friction coefficient, and rear wheel friction coefficient are summarized. State space can be expressed as the following equation.

Figure 0005742253
Figure 0005742253

ここで、入力はuk=[δkrk]であり、ゲインLは、Lk=[Lβkrk Lωk Lμfk LμrkTである。本式は、時間k+1の状態x^k+1が前離散時間kにおける状態x^kと入力uk、及び推定誤差ekによって、決定されることを示している。
またシステムの出力をyk=[Mzk ωkkTと定義する。出力ykは、状態ベクトルx^kに含まれる車体すべり角と、ヨーレートと、後輪車輪速と、前後輪路面摩擦係数、及び、車両入力ukによって代数的に演算されるので、次式で表現することができる。
Here, the input is u k = [δ k T rk ], and the gain L is L k = [Lβ k L rkkfkrk ] T. This formula shows that the time k + 1 in state x ^ k + 1 is the state x ^ k in the previous discrete time k input u k, and the estimated error e k, which is determined.
The system output is defined as y k = [M zk ω k r k ] T. The output y k is algebraically calculated by the vehicle slip angle, yaw rate, rear wheel speed, front and rear wheel road surface friction coefficient, and vehicle input u k included in the state vector x ^ k. Can be expressed as

Figure 0005742253
Figure 0005742253

上式に基づいて、システムのヤコビアンは次式のように計算される。   Based on the above equation, the Jacobian of the system is calculated as:

Figure 0005742253
Figure 0005742253

このヤコビアンに基づき、各計算ステップで、例えばカルマンフィルタアルゴリズムを用いると、適切なゲインを定めることができる。
《作用》
本実施形態の構成によると、ヨーレートの誤差に基づいて、各状態を推定するので、第一実施形態で必要な横加速の検出が困難な場合でも実施することができる。また、後輪スリップ状態は、第一実施形態で説明したようにスリップ率を検出してもよいし、本実施形態のように、車輪速を検出してもよい。
他の作用効果については、前述した第一実施形態と同様である。
Based on this Jacobian, an appropriate gain can be determined by using, for example, a Kalman filter algorithm at each calculation step.
<Action>
According to the configuration of the present embodiment, each state is estimated based on the yaw rate error. Therefore, even when it is difficult to detect the lateral acceleration required in the first embodiment, it can be performed. In the rear wheel slip state, the slip ratio may be detected as described in the first embodiment, or the wheel speed may be detected as in the present embodiment.
Other functions and effects are the same as those of the first embodiment described above.

《効果》
以上より、後輪車輪速検出部181が「非転舵輪スリップ状態検出手段」に対応し、ヨーレート検出部191が「旋回状態検出手段」に対応する。また、車両出力推定部130におけるタイヤ出力推定部133の車輪速推定部139、及び数25〜数27の演算が「非転舵輪スリップ状態推定手段」に対応し、車両出力推定部130におけるヨーレート推定部132、及び数6〜数8の演算が「旋回状態推定手段」に対応する。
以下に、本実施形態に特有の効果を記載するが、その他に第一実施形態と同一の構成を有する部分については第一実施形態と同様の作用効果が得られる。
"effect"
As described above, the rear wheel speed detection unit 181 corresponds to the “non-steered wheel slip state detection unit”, and the yaw rate detection unit 191 corresponds to the “turning state detection unit”. Further, the wheel speed estimation unit 139 of the tire output estimation unit 133 in the vehicle output estimation unit 130 and the calculations of Equations 25 to 27 correspond to the “non-steered wheel slip state estimation means”, and the yaw rate estimation in the vehicle output estimation unit 130 The unit 132 and the calculations of Equations 6 to 8 correspond to “turning state estimation means”.
In the following, effects unique to the present embodiment will be described. In addition, the same operational effects as those of the first embodiment can be obtained for portions having the same configuration as that of the first embodiment.

(1)タイヤ接地状態推定装置は、前輪及び後輪の路面摩擦係数を推定し、転舵角、車速、及び前輪の路面摩擦係数に基づいて、前輪SAT推定値を推定し、車速に基づいて、後輪車輪速推定値を推定し、転舵角、車速、及び前輪及び後輪の路面摩擦係数に基づいて、車両のヨーレート推定値を推定する。一方、前輪のセルフアライニングトルク検出値を検出し、後輪車輪速検出値を検出し、車両のヨーレート検出値を検出する。そして、前輪SATの推定値と検出値との差分で定義される前輪SAT推定誤差を演算し、後輪車輪速の推定値と検出値との差分で定義される後輪車輪速推定誤差を演算し、ヨーレートの推定値と検出値との差分で定義されるヨーレート推定誤差を演算する。そして、前輪SAT推定誤差、後輪車輪速推定誤差、ヨーレート推定誤差のうち、少なくとも一つに応じて、前輪及び後輪の路面摩擦係数を補正する。
このように、前輪SATと、後輪車輪速と、ヨーレートとの各推定誤差の少なくとも一つに応じて、前輪及び後輪の路面摩擦係数の推定値を更新することで、路面摩擦係数を含めたタイヤ接地状態の推定精度を向上させることができる。
(1) The tire ground contact state estimating device estimates the road surface friction coefficient of the front wheels and the rear wheels, estimates the front wheel SAT estimated value based on the turning angle, the vehicle speed, and the road surface friction coefficient of the front wheel, and based on the vehicle speed. The estimated wheel speed of the rear wheel is estimated, and the estimated yaw rate of the vehicle is estimated based on the turning angle, the vehicle speed, and the road surface friction coefficient of the front and rear wheels. On the other hand, a front wheel self-aligning torque detection value is detected, a rear wheel speed detection value is detected, and a vehicle yaw rate detection value is detected. Then, the front wheel SAT estimation error defined by the difference between the estimated value of the front wheel SAT and the detected value is calculated, and the rear wheel speed estimation error defined by the difference between the estimated value of the rear wheel speed and the detected value is calculated. Then, the yaw rate estimation error defined by the difference between the estimated value of the yaw rate and the detected value is calculated. Then, the road surface friction coefficient of the front wheels and the rear wheels is corrected according to at least one of the front wheel SAT estimation error, the rear wheel speed estimation error, and the yaw rate estimation error.
Thus, the road surface friction coefficient is included by updating the estimated value of the road surface friction coefficient of the front wheels and the rear wheels according to at least one of the estimation errors of the front wheel SAT, the rear wheel speed, and the yaw rate. In addition, the estimation accuracy of the tire contact state can be improved.

《第三実施形態》
《構成》
第三実施形態では、四輪に制動力が作用する場合におけるタイヤ接地状態推定装置について説明する。本実施形態には、第一実施形態と同一の要素が含まれるので、異なる要素について説明する。
図8は、第三実施形態を示す車両の概略構成図である。
本実施形態では、ブレーキ圧センサ141HL、141HRを夫々左後輪と右後輪に備える。
<< Third embodiment >>
"Constitution"
In the third embodiment, a tire ground contact state estimating device when braking force is applied to four wheels will be described. Since this embodiment includes the same elements as the first embodiment, different elements will be described.
FIG. 8 is a schematic configuration diagram of a vehicle showing the third embodiment.
In this embodiment, brake pressure sensors 141HL and 141HR are provided on the left rear wheel and the right rear wheel, respectively.

図9は、第三実施形態を示すタイヤ接地状態推定装置のシステム構成図である。
後輪制駆動トルク検出部111では、後輪制駆動トルクを検出する。後輪駆動モータの電流から、駆動モータのトルク係数を考慮して算出されるモータが発生する制駆動トルクに、例えば、ブレーキ圧から、予め実験的に取得したマップを介して算出される制動トルクを加えることで、後輪に作用する制駆動トルクを検出する。
FIG. 9 is a system configuration diagram of the tire ground contact state estimation device showing the third embodiment.
The rear wheel braking / driving torque detector 111 detects the rear wheel braking / driving torque. From the current of the rear wheel drive motor to the braking / driving torque generated by the motor calculated in consideration of the torque coefficient of the drive motor, for example, the braking torque calculated via the map obtained experimentally in advance from the brake pressure Is added to detect the braking / driving torque acting on the rear wheels.

前輪スリップ率検出部112では、制動時の前輪スリップ率を検出する。制動時には、全ての車輪に制動力が作用し、従動輪が存在しないため、従動輪から車体速の推定が困難である。そこで、例えば、センサで検出した前後加速度を積分することにより車速を算出して、前輪の車輪速の検出値と比較することで、前輪のスリップ率を検出する。
図10は、第三実施形態を示すタイヤ出力推定部のシステム構成図である。
The front wheel slip ratio detection unit 112 detects the front wheel slip ratio during braking. During braking, the braking force acts on all the wheels, and no driven wheels exist, so it is difficult to estimate the vehicle speed from the driven wheels. Therefore, for example, the vehicle speed is calculated by integrating the longitudinal acceleration detected by the sensor, and the slip ratio of the front wheels is detected by comparing with the detected value of the wheel speed of the front wheels.
FIG. 10 is a system configuration diagram of a tire output estimation unit showing the third embodiment.

タイヤ出力推定部133には、タイヤすべり角推定部134と、SAT推定部135と、横力推定部136と、横加速度推定部137と、縦力推定部138と、車輪速推定部139と、スリップ率推定部140と、を備える。本実施形態では、タイヤすべり角推定部134、横加速度推定部137、縦力推定部138、車輪速推定部139、スリップ率推定部140は、第一実施形態と同一である。
SAT推定部135は、制動力検出値と、前輪路面摩擦係数推定値と、前輪すべり角推定値とに基づいて、前輪SATを推定する。前輪SATは、予め取得したSAT特性Jf(,)を用いて求める。すなわち、次式で表現できる。
The tire output estimation unit 133 includes a tire slip angle estimation unit 134, a SAT estimation unit 135, a lateral force estimation unit 136, a lateral acceleration estimation unit 137, a longitudinal force estimation unit 138, a wheel speed estimation unit 139, A slip ratio estimation unit 140. In the present embodiment, the tire slip angle estimating unit 134, the lateral acceleration estimating unit 137, the longitudinal force estimating unit 138, the wheel speed estimating unit 139, and the slip rate estimating unit 140 are the same as those in the first embodiment.
The SAT estimation unit 135 estimates the front wheel SAT based on the braking force detection value, the front wheel road surface friction coefficient estimation value, and the front wheel slip angle estimation value. The front wheel SAT is obtained using a previously acquired SAT characteristic J f (,). That is, it can be expressed by the following equation.

Figure 0005742253
Figure 0005742253

fkは制動時に発生する前輪スリップ率の検出値である。例えば、SAT特性としてブラッシュモデルを用いると、前輪SATは、制動時には、次式によって算出される。 s fk is a detected value of the front wheel slip ratio generated during braking. For example, when a brush model is used as the SAT characteristic, the front wheel SAT is calculated by the following equation at the time of braking.

Figure 0005742253
Figure 0005742253

但し、ξ^kは次式とする。 However, ξ ^ k is as follows.

Figure 0005742253
Figure 0005742253

また、cosθ^kは次式とする。 Also, cos θ ^ k is as follows.

Figure 0005742253
Figure 0005742253

横力推定部136では、前輪すべり角推定値と、後輪すべり角推定値と、前輪路面摩擦係数推定値と、後輪摩擦係推定値と、転舵角検出値と、前輪スリップ率検出値と、後輪スリップ率推定値とに基づいて、前輪横力推定値と、後輪横力推定値とを演算する。
前輪横力推定値は、前輪すべり角推定値と前輪路面摩擦係数推定値と前輪スリップ率検出値とに応じて決定される。すなわち、次式によって算出される。
In the lateral force estimation unit 136, a front wheel slip angle estimated value, a rear wheel slip angle estimated value, a front wheel road surface friction coefficient estimated value, a rear wheel friction coefficient estimated value, a turning angle detected value, and a front wheel slip ratio detected value And a front wheel lateral force estimated value and a rear wheel lateral force estimated value are calculated based on the rear wheel slip ratio estimated value.
The front wheel lateral force estimated value is determined according to the front wheel slip angle estimated value, the front wheel road surface friction coefficient estimated value, and the front wheel slip ratio detected value. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

f(,)は前輪横力特性である。例えば、ブラッシュモデルを用いると、スリップ率発生時の横力を算出することができる。後輪横力推定値は、後輪すべり角推定値と後輪路面摩擦係数推定値と後輪スリップ率推定値によって決定される。すなわち、次式によって算出される。 h f (,) is a front wheel lateral force characteristic. For example, when a brush model is used, the lateral force when the slip ratio is generated can be calculated. The estimated rear wheel lateral force value is determined by the estimated rear wheel slip angle value, the estimated rear wheel road surface friction coefficient, and the estimated rear wheel slip ratio. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

後輪横力特性hr(,)には、前輪の場合と同様に、種々のモデルを用いることができる。
《作用》
本実施形態によれば、各輪に制動力が作用する場合においても、前輪SAT、前輪横力の算出において、制動により生じた前輪スリップ率に応じた補正を施すため、前輪路面摩擦係数、後輪路面摩擦係数を含む推定値を精度良く推定することができる。
他の作用効果については、前述した第一実施形態と同様である。
Various models can be used for the rear wheel lateral force characteristics h r (,) as in the case of the front wheels.
<Action>
According to this embodiment, even when a braking force is applied to each wheel, the front wheel SAT and the front wheel lateral force are calculated in accordance with the front wheel slip coefficient, It is possible to accurately estimate the estimated value including the road surface friction coefficient.
Other functions and effects are the same as those of the first embodiment described above.

《効果》
以上より、ブレーキ圧センサ141HL、141HR、及び後輪制駆動トルク検出部111が「制動状態検出手段」に対応し、前輪スリップ率検出部112が「前輪スリップ状態検出手段」に対応する。また、車両出力推定部130におけるタイヤ出力推定部133のSAT推定部135、及び数43、数44の演算が「転舵輪セルフアライニングトルク推定手段」に対応する。
以下に、本実施形態に特有の効果を記載するが、その他に第一実施形態と同一の構成を有する部分については第一実施形態と同様の作用効果が得られる。
"effect"
From the above, the brake pressure sensors 141HL and 141HR and the rear wheel braking / driving torque detection unit 111 correspond to the “braking state detection unit”, and the front wheel slip ratio detection unit 112 corresponds to the “front wheel slip state detection unit”. Further, the SAT estimation unit 135 of the tire output estimation unit 133 and the calculations of Equations 43 and 44 in the vehicle output estimation unit 130 correspond to “steered wheel self-aligning torque estimation means”.
In the following, effects unique to the present embodiment will be described. In addition, the same operational effects as those of the first embodiment can be obtained for portions having the same configuration as that of the first embodiment.

(1)タイヤ接地状態推定装置は、制動状態に応じて前輪スリップ率検出値を検出し、転舵角、車速、前輪の路面摩擦係数、及び前輪スリップ率検出値に基づいて、前輪SAT推定値を推定し、転舵角、車速、後輪及び前輪の路面摩擦係数、並びに前輪スリップ率検出値に基づいて、横加速度推定値を推定する。
このように、制動時の前輪スリップ率検出値を加味して前輪SATや横加速度を推定するので、四輪に制動力が作用する場合にも、精度良く、前輪SATや横加速度を推定することができる。したがって、この前輪SATや横加速度を用いて補正される前輪路面摩擦係数及び後輪路面摩擦係数の推定精度を向上させることができる。
(1) The tire ground contact state estimation device detects a front wheel slip ratio detection value according to a braking state, and based on the turning angle, the vehicle speed, the road surface friction coefficient of the front wheel, and the front wheel slip ratio detection value, the front wheel SAT estimation value The lateral acceleration estimated value is estimated based on the turning angle, the vehicle speed, the road surface friction coefficient of the rear wheels and the front wheels, and the detected value of the front wheel slip ratio.
Thus, since the front wheel SAT and lateral acceleration are estimated in consideration of the detected value of the front wheel slip ratio during braking, the front wheel SAT and lateral acceleration can be accurately estimated even when braking force acts on the four wheels. Can do. Accordingly, it is possible to improve the estimation accuracy of the front wheel road surface friction coefficient and the rear wheel road surface friction coefficient which are corrected using the front wheel SAT and the lateral acceleration.

《第四実施形態》
《構成》
第四実施形態では、後輪について左右輪独立にスリップ率と駆動トルクが検出できる場合において、左後輪路面摩擦係数と、右後輪路面摩擦係数とを、独立に推定するものである。
なお、第一実施形態と同一の構成要素については説明を省略し、異なる要素について説明する。
図11は、第四実施形態を示す車両の概略構成図である。
本実施形態の車両は、駆動力発生源としての駆動モータ107HL、107HRを備えており、駆動モータ出力軸は減速ギア106HL、106HRを介して、後輪104HRL、104HRRに連結されており、左右後輪を独立に駆動する。
<< 4th embodiment >>
"Constitution"
In the fourth embodiment, the left rear wheel road surface friction coefficient and the right rear wheel road surface friction coefficient are estimated independently when the slip ratio and the drive torque can be detected independently for the left and right wheels for the rear wheel.
In addition, description is abbreviate | omitted about the component same as 1st embodiment, and a different element is demonstrated.
FIG. 11 is a schematic configuration diagram of a vehicle showing the fourth embodiment.
The vehicle of the present embodiment includes drive motors 107HL and 107HR as drive force generation sources, and the drive motor output shaft is connected to the rear wheels 104HRL and 104HRR via the reduction gears 106HL and 106HR. Drive the wheels independently.

図12は、第四実施形態を示すタイヤ接地状態推定装置のシステム構成図である。
左後輪制駆動トルク検出部114では、左後輪制駆動トルクを検出する。例えば、左輪駆動モータの電流値を計測して、トルク係数を考慮することで、制駆動トルクを検出する。
右後輪制駆動トルク検出部113では、同様にして、右後輪制駆動トルクを検出する。
FIG. 12 is a system configuration diagram of the tire ground contact state estimation device showing the fourth embodiment.
The left rear wheel braking / driving torque detector 114 detects the left rear wheel braking / driving torque. For example, the braking / driving torque is detected by measuring the current value of the left wheel drive motor and considering the torque coefficient.
In the same manner, the right rear wheel braking / driving torque detecting unit 113 detects the right rear wheel braking / driving torque.

図13は、第四実施形態を示すタイヤ出力推定部のシステム構成図である。
タイヤ出力推定部133では、すべり角推定値と、ヨーレート推定値と、転舵角検出値と、左後輪制駆動トルク検出値と、右後輪制駆動トルク検出値と、前輪路面摩擦係数推定値と、左後輪路面摩擦係数推定値と、右後輪路面摩擦係数推定値と、推定誤差とに基づいて、前輪SAT推定値と、左後輪スリップ率推定値と、右後輪スリップ率推定値と、横加速度推定値と、前輪横力と、後輪横力と、後輪縦力とを推定する。
FIG. 13 is a system configuration diagram of a tire output estimation unit according to the fourth embodiment.
In the tire output estimation unit 133, a slip angle estimation value, a yaw rate estimation value, a turning angle detection value, a left rear wheel braking drive torque detection value, a right rear wheel braking drive torque detection value, and a front wheel road surface friction coefficient estimation Value, left rear wheel road surface friction coefficient estimated value, right rear wheel road surface friction coefficient estimated value, and estimation error, front wheel SAT estimated value, left rear wheel slip ratio estimated value, right rear wheel slip ratio The estimated value, lateral acceleration estimated value, front wheel lateral force, rear wheel lateral force, and rear wheel longitudinal force are estimated.

横力推定部136では、前輪路面摩擦係数推定値と、前輪すべり角推定値と、後輪すべり角推定値と、左後輪路面摩擦係数推定値と、右後輪路面摩擦係数推定値と、転舵角検出値と、左右後輪スリップ率推定値とに基づいて、前輪横力と、後輪横力とを推定する。
前輪横力推定値は、前輪すべり角推定値と前輪路面摩擦係数推定値に応じて決定される。すなわち、次式によって算出される。
In the lateral force estimation unit 136, a front wheel road surface friction coefficient estimated value, a front wheel slip angle estimated value, a rear wheel slip angle estimated value, a left rear wheel road surface friction coefficient estimated value, a right rear wheel road surface friction coefficient estimated value, The front wheel lateral force and the rear wheel lateral force are estimated based on the detected turning angle value and the left and right rear wheel slip ratio estimated value.
The front wheel lateral force estimated value is determined according to the front wheel slip angle estimated value and the front wheel road surface friction coefficient estimated value. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

f(,)は前輪横力特性である。例えば、横力特性として、例えば、第一実施形態に記載のように、フィアラモデルが用いられる。また、横力特性として、マジックフォーミュラや、実験的によって取得された数値的マップを用いてもよい。左右後輪横力推定値は、後輪すべり角推定値と後輪路面摩擦係数推定値と後輪スリップ率推定値によって決定される。すなわち、左後輪横力は次式で算出される。 h f (,) is a front wheel lateral force characteristic. For example, as a lateral force characteristic, for example, a filar model is used as described in the first embodiment. Further, as the lateral force characteristic, a magic formula or a numerical map obtained experimentally may be used. The left and right rear wheel lateral force estimated values are determined by the rear wheel slip angle estimated value, the rear wheel road surface friction coefficient estimated value, and the rear wheel slip ratio estimated value. That is, the left rear wheel lateral force is calculated by the following equation.

Figure 0005742253
Figure 0005742253

また、右後輪横力は次式で算出される。   The right rear wheel lateral force is calculated by the following equation.

Figure 0005742253
Figure 0005742253

後輪横力特性hr(,)には、前輪の場合と同様に、種々のモデルを用いることができる。
横加速度推定部137では、前輪横力推定値と、左右後輪横力推定値とに基づいて、次式を用いて、横加速度を計算する。
Various models can be used for the rear wheel lateral force characteristics h r (,) as in the case of the front wheels.
The lateral acceleration estimation unit 137 calculates the lateral acceleration using the following equation based on the front wheel lateral force estimated value and the left and right rear wheel lateral force estimated values.

Figure 0005742253
Figure 0005742253

縦力推定部138では、左後輪路面摩擦係数推定値と、右後輪路面摩擦係数推定値と、左右後輪スリップ率推定値とに基づいて、左右後輪縦力を推定する。左後輪横力は次式で算出される。   The longitudinal force estimation unit 138 estimates the left and right rear wheel longitudinal forces based on the left rear wheel road surface friction coefficient estimated value, the right rear wheel road surface friction coefficient estimated value, and the left and right rear wheel slip ratio estimated values. The left rear wheel lateral force is calculated by the following equation.

Figure 0005742253
Figure 0005742253

右後輪横力は、次式で算出される。   The right rear wheel lateral force is calculated by the following equation.

Figure 0005742253
Figure 0005742253

車輪速推定部139では、左右後輪制駆動トルク検出値と、左右後輪縦力推定値と、推定誤差演算部200で演算される推定誤差とに基づいて、左右車輪速推定値を推定する。
先ず、左後輪について、制駆動トルクが作用したときの車輪速のダイナミクスは、次式で与えられる。
The wheel speed estimation unit 139 estimates the left and right wheel speed estimation values based on the left and right rear wheel braking drive torque detection values, the left and right rear wheel longitudinal force estimation values, and the estimation error calculated by the estimation error calculation unit 200. .
First, the dynamics of the wheel speed when the braking / driving torque acts on the left rear wheel is given by the following equation.

Figure 0005742253
Figure 0005742253

本式を、例えば、オイラー法を用いて離散化すると、次式を得る。   When this equation is discretized using, for example, the Euler method, the following equation is obtained.

Figure 0005742253
Figure 0005742253

Δtはサンプル時間である。この離散時間ダイナミクスに基づいて、推定誤差に応じて後輪車輪速を演算する。すなわち、次式により後輪車輪速を演算する。   Δt is the sample time. Based on the discrete time dynamics, the rear wheel speed is calculated according to the estimation error. That is, the rear wheel speed is calculated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ekは推定誤差である。Lrlωkは左輪車輪速に関するゲインベクトルであり、後に決定方法を詳細に説明する。
一方、右後輪についても、同様に車輪速が演算される。すなわち、次式により演算される。
Here, e k is an estimation error. L rl ω k is a gain vector related to the left wheel speed, and the determination method will be described in detail later.
On the other hand, the wheel speed is similarly calculated for the right rear wheel. That is, it is calculated by the following equation.

Figure 0005742253
Figure 0005742253

スリップ率推定部140では、左右車輪速推定値と車速検出値とに基づいて、左右後輪スリップ率を演算する。先ず、左後輪スリップ率は、次式で算出される。   The slip ratio estimation unit 140 calculates the left and right rear wheel slip ratios based on the left and right wheel speed estimation values and the vehicle speed detection value. First, the left rear wheel slip ratio is calculated by the following equation.

Figure 0005742253
Figure 0005742253

同様に、右後輪スリップ率は、次式で算出される。   Similarly, the right rear wheel slip ratio is calculated by the following equation.

Figure 0005742253
Figure 0005742253

分母では、車体速と後輪車輪速を比較し、何れか大きい値が選択されるが、一般に、制動時には車体速が、駆動時には車輪速がより大きい値となる。
図12の左後輪路面摩擦係数推定部161では、推定誤差から、路面摩擦係数ダイナミクスモデルに基づいて、左後輪路面摩擦係数を推定する。路面摩擦係数が区分的に一定であると仮定すると、路面摩擦係数ダイナミクスモデルは次式のように定義される。
In the denominator, the vehicle body speed and the rear wheel speed are compared and a larger value is selected. In general, the vehicle speed is higher during braking and the wheel speed is higher during driving.
The left rear wheel road surface friction coefficient estimation unit 161 in FIG. 12 estimates the left rear wheel road surface friction coefficient from the estimation error based on the road surface friction coefficient dynamics model. Assuming that the road friction coefficient is piecewise constant, the road friction coefficient dynamics model is defined as:

Figure 0005742253
Figure 0005742253

本式を離散化した式に基づき、推定誤差に応じて左後輪路面摩擦係数を推定する。すなわち、次式により、前輪路面摩擦係数を推定する。   Based on an equation obtained by discretizing this equation, a left rear wheel road surface friction coefficient is estimated according to an estimation error. That is, the front wheel road surface friction coefficient is estimated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ゲインLμrlkの決定法は後に示す。
右後輪路面摩擦係数推定部162では、推定誤差から、路面摩擦係数ダイナミクスモデルに基づいて、右後輪路面摩擦係数を推定する。路面摩擦係数が区分的に一定であると仮定すると、路面摩擦係数ダイナミクスモデルは次式のように定義される。
Here, a method for determining the gain Lμ rlk will be described later.
The right rear wheel road surface friction coefficient estimation unit 162 estimates the right rear wheel road surface friction coefficient from the estimation error based on the road surface friction coefficient dynamics model. Assuming that the road friction coefficient is piecewise constant, the road friction coefficient dynamics model is defined as:

Figure 0005742253
Figure 0005742253

本式を離散化した式に基づき、推定誤差に応じて左後輪路面摩擦係数を推定する。すなわち、次式により、前輪路面摩擦係数を推定する。   Based on an equation obtained by discretizing this equation, a left rear wheel road surface friction coefficient is estimated according to an estimation error. That is, the front wheel road surface friction coefficient is estimated by the following equation.

Figure 0005742253
Figure 0005742253

ここで、ゲインLμrlkの決定法は後に示す。
推定誤差演算部200では、車両出力推定部130で推定された前輪SAT推定値と、前輪SAT検出部170で検出された前輪SAT検出値の差と、車両出力推定部130で推定された左後輪スリップ率推定値と、左後輪スリップ率検出部183で検出された左後輪スリップ率検出値の差と、車両出力推定部130で推定された右後輪スリップ率推定値と、右後輪スリップ率検出部182で検出された右後輪スリップ率検出値の差と、車両出力推定部130で推定された横加速度推定値と、後輪スリップ率検出部180で検出された横加速度検出値の差を、演算する。
すなわち、推定誤差ekを、次式により演算する。
Here, a method for determining the gain Lμ rlk will be described later.
In the estimation error calculator 200, the difference between the front wheel SAT estimated value estimated by the vehicle output estimator 130, the front wheel SAT detected value detected by the front wheel SAT detector 170, and the left rear estimated by the vehicle output estimator 130. The difference between the wheel slip ratio estimated value, the left rear wheel slip ratio detected value detected by the left rear wheel slip ratio detecting unit 183, the right rear wheel slip ratio estimated value estimated by the vehicle output estimating unit 130, and the right rear The difference between the right rear wheel slip ratio detection value detected by the wheel slip ratio detection unit 182, the lateral acceleration estimation value estimated by the vehicle output estimation unit 130, and the lateral acceleration detection detected by the rear wheel slip ratio detection unit 180 Calculate the difference in values.
That is, the estimation error ek is calculated by the following equation.

Figure 0005742253
Figure 0005742253

上付き添え字のTはベクトルの転置を示す。なお、推定誤差eyは、車両出力推定部において、車体すべり角とヨーレートの推定に用いられ、前輪路面摩擦係数推定部と後輪路面摩擦係数推定部において、前輪路面摩擦係数と後輪路面摩擦係数の推定に用いられる。
次に、各推定値の演算に用いるゲインの設定方法について説明する。
状態ベクトルxk=[βkk ωrlk ωrrk μfk μrlk μrrk]を用いて、車体すべり角、ヨーレート、左後輪車輪速、右後輪車輪速、前輪路面摩擦係数、左後輪路面摩擦係数、右後輪路面摩擦係数の推定に用いる式をまとめて表現すると、次式のように表現できる。
The superscript T indicates vector transposition. The estimation error e y is used in the vehicle output estimation unit to estimate the vehicle slip angle and the yaw rate. In the front wheel road surface friction coefficient estimation unit and the rear wheel road surface friction coefficient estimation unit, the front wheel road surface friction coefficient and the rear wheel surface friction coefficient are used. Used for coefficient estimation.
Next, a method for setting a gain used for calculating each estimated value will be described.
Using the state vector x k = [β k r k ω rlk ω rrk μ fk μ rlk μ rrk ], body slip angle, yaw rate, left rear wheel speed, right rear wheel speed, front wheel road friction coefficient, left rear When the expressions used for estimating the road surface friction coefficient and the right rear wheel road surface friction coefficient are collectively expressed, the following expression can be obtained.

Figure 0005742253
Figure 0005742253

ここで、入力はuk=[δkrlkrrk]であり、ゲインLkは、次式によって表される。 Here, the input is u k = [δ k T rlk T rrk ], and the gain L k is expressed by the following equation.

Figure 0005742253
Figure 0005742253

本式は、時間k+1の状態x^k+1が前離散時間kにおける状態x^kと入力uk、及び推定誤差ekによって、決定されることを示している。
またシステムの出力をyk=[MzkrlkrrkykTと定義する。出力ykは、状態ベクトルx^kに含まれる車体すべり角と、ヨーレートと、左右後輪車輪速と、前輪路面摩擦係数、左右後輪路面摩擦係数、及び、車両入力ukによって代数的に演算されるので、次式で表現することができる。
This formula shows that the time k + 1 in state x ^ k + 1 is the state x ^ k in the previous discrete time k input u k, and the estimated error e k, which is determined.
The system output is defined as y k = [M zk s rlk s rrk a yk ] T. The output y k algebraically depends on the vehicle slip angle, yaw rate, left and right rear wheel speed, front wheel road surface friction coefficient, left and right rear wheel road surface friction coefficient, and vehicle input u k included in the state vector x ^ k. Since it is calculated, it can be expressed by the following equation.

Figure 0005742253
Figure 0005742253

上式に基づいて、システムのヤコビアン行列は次式のように計算される。   Based on the above equation, the system Jacobian matrix is calculated as:

Figure 0005742253
Figure 0005742253

このヤコビアン行列を用いて、第一実施形態に記載の方法でゲインLkを決定する。
本実施形態では、左右独立に検出した後輪スリップ率に基づいて、左右後輪の路面摩擦係数を独立に推定する構成となっているので、左右輪で路面摩擦係数が異なる場合においても、各輪の路面摩擦係数を精度良く推定でき、車体すべり角の推定精度も併せて向上できる。
Using this Jacobian matrix, the gain L k is determined by the method described in the first embodiment.
In the present embodiment, since the road surface friction coefficient of the left and right rear wheels is independently estimated based on the rear wheel slip ratio detected independently on the left and right, each road friction coefficient is different between the left and right wheels. The road surface friction coefficient can be accurately estimated, and the estimation accuracy of the vehicle slip angle can also be improved.

《作用》
本実施形態では、左後輪スリップ率s^rlと右後輪スリップ率s^rrとを個別に推定し、左後輪路面摩擦係数μ^rlと右後輪路面摩擦係数μ^rrとを個別に推定し、左後輪スリップ率srlと右後輪スリップ率srrとを個別に検出し、左後輪スリップ率推定誤差と右後輪スリップ率推定誤差とを個別に推定することで、左右輪で路面摩擦係数が異なる場合においても、各輪の路面摩擦係数を精度良く推定でき、車体すべり角の推定精度も併せて向上できる。
その他の作用効果については、前述した第一実施形態と同様である。
<Action>
In this embodiment, the left rear wheel slip ratio s rl and the right rear wheel slip ratio s rr are estimated separately, and the left rear wheel road surface friction coefficient μ ^ rl and the right rear wheel road friction coefficient μ ^ rr are calculated . By estimating separately, the left rear wheel slip ratio s rl and the right rear wheel slip ratio s rr are individually detected, and the left rear wheel slip ratio estimation error and the right rear wheel slip ratio estimation error are estimated separately. Even when the road surface friction coefficient differs between the left and right wheels, the road surface friction coefficient of each wheel can be accurately estimated, and the estimation accuracy of the vehicle slip angle can also be improved.
Other functions and effects are the same as those of the first embodiment described above.

《効果》
以上より、車両出力推定部130におけるタイヤ出力推定部133のスリップ率推定部140、及び数59、数60の演算が「非転舵輪スリップ状態推定手段」に対応し、左後輪路面摩擦係数推定部161、右後輪路面摩擦係数推定部162、及び数62、数64が「路面摩擦係数推定手段」に対応し、左後輪スリップ率検出部183及び右後輪スリップ率検出部182が「非転舵輪スリップ状態検出手段」に対応し、推定誤差演算部200、及び数65の演算が「非転舵輪スリップ状態推定誤差演算手段」に対応する。
以下に、本実施形態に特有の効果を記載するが、その他に第一実施形態と同一の構成を有する部分については第一実施形態と同様の作用効果が得られる。
"effect"
From the above, the slip rate estimating unit 140 of the tire output estimating unit 133 and the calculations of Equations 59 and 60 in the vehicle output estimating unit 130 correspond to the “non-steered wheel slip state estimating means”, and the left rear wheel road surface friction coefficient estimation. 161, right rear wheel road surface friction coefficient estimating unit 162, and equations 62 and 64 correspond to “road surface friction coefficient estimating means”, and left rear wheel slip rate detecting unit 183 and right rear wheel slip rate detecting unit 182 Corresponding to “non-steered wheel slip state detecting means”, the estimation error calculating unit 200 and the calculation of Expression 65 correspond to “non-steered wheel slip state estimating error calculating means”.
In the following, effects unique to the present embodiment will be described. In addition, the same operational effects as those of the first embodiment can be obtained for portions having the same configuration as that of the first embodiment.

(1)タイヤ接地状態推定装置は、左後輪及び右後輪のスリップ率を個別に推定し、左後輪及び右後輪の路面摩擦係数を個別に推定し、左後輪及び右後輪のスリップ率を個別に検出し、左後輪及び右後輪のスリップ率推定誤差を個別に演算する。
このように、後輪のスリップ率や路面摩擦係数やスリップ率推定誤差を、左右輪で個別に演算することで、左右輪で値が異なる場合であっても、スリップ率や路面摩擦係数の推定精度、及びスリップ率推定誤差の演算精度を向上させることができる。したがって、このスリップ率や路面摩擦係数やスリップ率推定誤差を用いて推定されるタイヤ接地状態の推定精度を向上させることができる。
(1) The tire ground contact state estimating device estimates the slip ratio of the left rear wheel and the right rear wheel separately, estimates the road surface friction coefficient of the left rear wheel and the right rear wheel individually, and determines the left rear wheel and the right rear wheel. Are separately detected, and slip rate estimation errors of the left rear wheel and the right rear wheel are individually calculated.
In this way, by calculating the slip ratio, road friction coefficient, and slip ratio estimation error for the rear wheels separately for the left and right wheels, even if the values for the left and right wheels are different, the slip ratio and the road surface friction coefficient are estimated. The accuracy and the calculation accuracy of the slip ratio estimation error can be improved. Accordingly, it is possible to improve the estimation accuracy of the tire contact state estimated using the slip ratio, the road surface friction coefficient, and the slip ratio estimation error.

《第五実施形態》
《構成》
第一実施形態〜第四実施形態では、車体すべり角と前後輪路面摩擦係数とを同時に推定する構成を説明したが、第五実施形態では、これらを同時に推定せず、路面摩擦係数の推定に必要なすべり角を前計算ステップで算出した値を用いるものである。
本実施形態を実現するのに必要な車両構成は第一実施形態と同様であるので、説明を省略する。
<< 5th embodiment >>
"Constitution"
In the first embodiment to the fourth embodiment, the configuration in which the vehicle body slip angle and the front and rear wheel road surface friction coefficient are estimated at the same time has been described, but in the fifth embodiment, these are not estimated at the same time, and the road surface friction coefficient is estimated. A value obtained by calculating the necessary slip angle in the previous calculation step is used.
Since the vehicle configuration necessary to realize this embodiment is the same as that of the first embodiment, description thereof is omitted.

図15は、第五実施形態を示すタイヤ接地状態推定装置のシステム構成図である。
車両出力推定部130では、転舵角検出値と、車速検出値と、前輪路面摩擦係数推定値と、後輪路面摩擦係数推定値とに基づいて、前輪SAT推定値と、後輪スリップ率推定値と、横加速度推定値と、車体すべり角推定値とを推定する。
図16は、第五実施形態を示す車両出力推定部のシステム構成図である。
車体すべり角推定部131では、前輪横力推定値と、後輪横力推定値と、車速検出値とに基づいて、車体すべり角を推定する。第一実施形態に記載の車体すべり角のダイナミクスを離散化することで得られる、次式を用いて車体すべり角を推定する。
FIG. 15 is a system configuration diagram of the tire ground contact state estimation device showing the fifth embodiment.
The vehicle output estimator 130 estimates the front wheel SAT and the rear wheel slip ratio based on the detected steering angle value, the detected vehicle speed, the front wheel road surface friction coefficient estimated value, and the rear wheel road surface friction coefficient estimated value. Value, lateral acceleration estimated value, and vehicle slip angle estimated value are estimated.
FIG. 16 is a system configuration diagram of a vehicle output estimation unit according to the fifth embodiment.
The vehicle slip angle estimation unit 131 estimates the vehicle slip angle based on the front wheel lateral force estimated value, the rear wheel lateral force estimated value, and the vehicle speed detection value. The vehicle slip angle is estimated using the following equation obtained by discretizing the dynamics of the vehicle slip angle described in the first embodiment.

Figure 0005742253
Figure 0005742253

ヨーレート推定部132では、前輪横力推定値と、後輪横力推定値と、左右後輪縦力推定値とに基づいて、ヨーレートを推定する。第一実施形態に記載のヨーレートのダイナミクスを離散化することで得られる、次式を用いてヨーレートを推定する。すなわち、次式によって算出される。   The yaw rate estimation unit 132 estimates the yaw rate based on the front wheel lateral force estimated value, the rear wheel lateral force estimated value, and the left and right rear wheel longitudinal force estimated values. The yaw rate is estimated using the following equation obtained by discretizing the dynamics of the yaw rate described in the first embodiment. That is, it is calculated by the following formula.

Figure 0005742253
Figure 0005742253

タイヤ出力推定部133では、 車速検出値と、車体すべり角推定値と、ヨーレート推定値と、転舵角検出値と、後輪駆動トルク検出値と、前輪路面摩擦係数推定値と、後輪路面摩擦係数推定値とに基づいて、前輪SAT推定値と、後輪スリップ率推定値と、横加速度推定値と、車体すべり角推定部131、前輪横力推定値と、後輪横力推定値と、後輪縦力推定値と、前輪タイヤすべり角と、後輪縦力推定値と、後輪すべり角推定値と、を推定し出力する。
車輪速推定部139では、後輪縦力推定値と、後輪制駆動トルク検出値とに基づいて、車輪速推定値を推定する。
第一実施形態に記載した車輪速のダイナミクスを離散化した式を用いて、車輪速を推定する。すなわち、次式により後輪車輪速を演算する。
In the tire output estimation unit 133, a vehicle speed detection value, a vehicle slip angle estimation value, a yaw rate estimation value, a turning angle detection value, a rear wheel drive torque detection value, a front wheel road surface friction coefficient estimation value, and a rear wheel road surface Based on the friction coefficient estimated value, the front wheel SAT estimated value, the rear wheel slip rate estimated value, the lateral acceleration estimated value, the body slip angle estimating unit 131, the front wheel lateral force estimated value, and the rear wheel lateral force estimated value, The rear wheel longitudinal force estimated value, the front wheel tire slip angle, the rear wheel longitudinal force estimated value, and the rear wheel slip angle estimated value are estimated and output.
The wheel speed estimation unit 139 estimates the wheel speed estimation value based on the rear wheel longitudinal force estimation value and the rear wheel braking / driving torque detection value.
The wheel speed is estimated using an expression obtained by discretizing the dynamics of the wheel speed described in the first embodiment. That is, the rear wheel speed is calculated by the following equation.

Figure 0005742253
Figure 0005742253

タイヤ出力推定部133に含まれる、その他の構成要素については、第一実施形態と同様であるので説明を省略する。
前輪路面摩擦係数推定部150では、前輪タイヤすべり角と、前輪SAT推定値と、推定誤差とに基づいて、前輪路面摩擦係数を推定する。先ず、前輪SAT検出値を推定誤差ek=[Mzk−M^zkk−s^kyk−a^ykTの第一成分と、前輪SAT推定値とから算出する。すなわち、次式により計算する。
The other components included in the tire output estimating unit 133 are the same as those in the first embodiment, and thus the description thereof is omitted.
The front wheel road surface friction coefficient estimation unit 150 estimates the front wheel road surface friction coefficient based on the front wheel tire slip angle, the front wheel SAT estimated value, and the estimation error. First, a first component of the estimated wheel SAT detection value error e k = [M zk -M ^ zk s k -s ^ k a yk -a ^ yk] T, it is calculated from the front wheel SAT estimated value. That is, the following formula is used for calculation.

Figure 0005742253
Figure 0005742253

e(1)kは推定誤差の第一成分を表わす。
また、例えば、フィアラモデルによると、前輪SATは、次式によって算出される。
e (1) k represents the first component of the estimation error.
Further, for example, according to the filar model, the front wheel SAT is calculated by the following equation.

Figure 0005742253
Figure 0005742253

但し、φ^kは次式とする。 However, φ ^ k is as follows.

Figure 0005742253
Figure 0005742253

本式を前輪路面摩擦係数について解いた式を用いて、前輪路面摩擦係数を推定する。すなわち、次式を用いて推定する。   The front wheel road surface friction coefficient is estimated using an equation obtained by solving this formula for the front wheel road surface friction coefficient. That is, it estimates using the following formula.

Figure 0005742253
Figure 0005742253

本実施形態は、第一実施形態から第四実施形態までと異なり、路面摩擦係数にダイナミクスを定義しない。そこで、路面摩擦係数の計算時には、代数ループを回避するために、前輪路面摩擦係数推定部150の入力は前離散時間における値を用いる必要がある。
なお、本例ではフィアラモデルに基づいて路面摩擦係数を推定しているが、例えば、SATから路面摩擦係数への関係を実験的に取得したマップを用いて、推定してもよい。
後輪路面摩擦係数推定部160では、後輪タイヤすべり角と、後輪タイヤ横力推定値と、後輪タイヤ縦力推定値と、後輪スリップ率推定値と、推定誤差とから、後輪路面摩擦係数を推定する。
先ず、後輪スリップ率推定値を、推定誤差ek=[Mzk−M^zkrk−s^rkyk−a^ykTの第2成分と、スリップ率推定値とから算出する。すなわち、次式により計算する。
Unlike the first embodiment to the fourth embodiment, this embodiment does not define dynamics in the road surface friction coefficient. Therefore, when calculating the road surface friction coefficient, in order to avoid an algebraic loop, the input of the front wheel road surface friction coefficient estimation unit 150 needs to use a value in the previous discrete time.
In this example, the road surface friction coefficient is estimated based on the filar model. However, for example, the relationship from the SAT to the road surface friction coefficient may be estimated using a map obtained experimentally.
The rear wheel road surface friction coefficient estimating unit 160 determines the rear wheel tire slip angle, the rear wheel tire lateral force estimated value, the rear wheel tire longitudinal force estimated value, the rear wheel slip ratio estimated value, and the estimated error from the rear wheel. Estimate the road friction coefficient.
First, calculated from the rear wheel slip rate estimated value, and the second component of the estimated error e k = [M zk -M ^ zk s rk -s ^ rk a yk -a ^ yk] T, the slip rate estimated value . That is, the following formula is used for calculation.

Figure 0005742253
Figure 0005742253

e(2)kは推定誤差の第2成分を表わす。後輪タイヤ力特性が、例えば、ブラッシュモデルでモデル化できるとする。
路面摩擦係数を求めるために、先ず、次式で定義されるタイヤ力粘着比P^rkを計算する。
e (2) k represents the second component of the estimation error. Assume that the rear wheel tire force characteristics can be modeled by, for example, a brush model.
In order to obtain the road surface friction coefficient, first, the tire force adhesion ratio P ^ rk defined by the following equation is calculated.

Figure 0005742253
Figure 0005742253

但し、後輪縦力と後輪横力の合力である後輪タイヤ力Frk-1は、後輪縦力推定値と、後輪横力推定値とから、次式で計算される。 However, the rear wheel tire force F rk-1 , which is the resultant of the rear wheel longitudinal force and the rear wheel lateral force, is calculated from the rear wheel longitudinal force estimated value and the rear wheel lateral force estimated value by the following equation.

Figure 0005742253
Figure 0005742253

タイヤ力粘着比は、タイヤ粘着域長ξ^kと次の関係がある。 The tire force adhesion ratio has the following relationship with the tire adhesion area length ξ ^ k .

Figure 0005742253
Figure 0005742253

本式をξ^kについて解く。具体的には、例えば、ニュートン法等の数値計算アルゴリズムを用いることで、ξ^kを求めることができる。さらに、求められたξ^kから、次式に基づいて、路面摩擦係数が算出される。 Solve this equation for ξ ^ k . Specifically, for example, ξ ^ k can be obtained by using a numerical calculation algorithm such as Newton's method. Further, a road surface friction coefficient is calculated from the obtained ξ ^ k based on the following equation.

Figure 0005742253
Figure 0005742253

《作用》
本実施形態におけるタイヤ接地状態推定装置では、SATから前輪路面摩擦係数、スリップ率から後輪路面摩擦係数の関係を、各々タイヤモデルから導出し、これらを用いてSATとスリップ率から直接的に前後輪の路面摩擦係数を算出する構成であるので、第一実施形態から第四実施形態において必要であったゲインを設定するためのヤコビアン行列の計算が不要であり、より計算量を低減できる。
<Action>
In the tire ground contact state estimation device according to the present embodiment, the relationship between the SAT and the front wheel road surface friction coefficient and the slip ratio from the rear wheel road surface friction coefficient are derived from the tire models, respectively, and using these, the SAT and the slip ratio are directly back and forth. Since it is the structure which calculates the road surface friction coefficient of a wheel, the calculation of the Jacobian matrix for setting the gain which was required in 1st embodiment to 4th embodiment is unnecessary, and can reduce calculation amount more.

《効果》
以上より、前輪路面摩擦係数推定部150、後輪路面摩擦係数推定部160、及び数76、数81の演算が「路面摩擦係数推定手段」、「路面摩擦係数補正手段」に対応する。
以下に、本実施形態に特有の効果を記載するが、その他に第一実施形態と同一の構成を有する部分については第一実施形態と同様の作用効果が得られる。
"effect"
From the above, the front wheel road surface friction coefficient estimation unit 150, the rear wheel road surface friction coefficient estimation unit 160, and the calculations of Equations 76 and 81 correspond to the “road surface friction coefficient estimation unit” and the “road surface friction coefficient correction unit”.
In the following, effects unique to the present embodiment will be described. In addition, the same operational effects as those of the first embodiment can be obtained for portions having the same configuration as that of the first embodiment.

(1)タイヤ接地状態推定装置は、後輪及び前輪の路面摩擦係数を推定し、転舵角、車速、及び前輪の路面摩擦係数に基づいて、前輪SAT推定値を推定し、車速に基づいて、後輪スリップ率推定値を推定し、転舵角、車速、及び後輪及び前輪の路面摩擦係数に基づいて、車両の横加速度推定値を推定する。一方、前輪のSAT検出値を検出し、後輪スリップ率検出値を検出し、車両の横加速度検出値を検出する。そして、前輪SATの推定値と検出値との差分で定義される前輪SAT推定誤差を演算し、後輪スリップ率の推定値と検出値との差分で定義される後輪スリップ率推定誤差を演算し、横加速度の推定値と検出値との差分で定義される横加速度推定誤差を演算する。そして、前輪SAT推定誤差、後輪スリップ率推定誤差、横加速度推定誤差のうち、少なくとも一つに応じて、後輪及び前輪の路面摩擦係数を補正する。 (1) The tire ground contact state estimating device estimates the road surface friction coefficient of the rear wheel and the front wheel, estimates the front wheel SAT estimated value based on the turning angle, the vehicle speed, and the road surface friction coefficient of the front wheel, and based on the vehicle speed. Then, the estimated rear wheel slip ratio is estimated, and the estimated lateral acceleration of the vehicle is estimated based on the turning angle, the vehicle speed, and the road surface friction coefficient of the rear and front wheels. On the other hand, the front wheel SAT detection value is detected, the rear wheel slip ratio detection value is detected, and the vehicle lateral acceleration detection value is detected. Then, the front wheel SAT estimation error defined by the difference between the estimated value of the front wheel SAT and the detected value is calculated, and the rear wheel slip ratio estimated error defined by the difference between the estimated value of the rear wheel slip ratio and the detected value is calculated. The lateral acceleration estimation error defined by the difference between the lateral acceleration estimated value and the detected value is calculated. Then, the road surface friction coefficient of the rear wheels and the front wheels is corrected according to at least one of the front wheel SAT estimation error, the rear wheel slip ratio estimation error, and the lateral acceleration estimation error.

このように、前輪SATと、後輪スリップ率と、横加速度との各推定誤差の少なくとも一つに応じて、後輪及び前輪の路面摩擦係数の推定値を更新することで、路面摩擦係数を含めたタイヤ接地状態の推定精度を向上させることができる。特に、前輪SATから前輪路面摩擦係数をタイヤモデルから導出すると共に、後輪スリップ率から後輪路面摩擦係数をタイヤモデルから導出する、つまり前輪SATと後輪スリップ率から直接的に前後輪の路面摩擦係数を算出する構成であるので、計算負荷の増大を抑制することができる。   Thus, the road surface friction coefficient is updated by updating the estimated value of the road surface friction coefficient of the rear wheels and the front wheels according to at least one of the estimation errors of the front wheel SAT, the rear wheel slip ratio, and the lateral acceleration. It is possible to improve the estimation accuracy of the ground contact state of the tire. In particular, the front wheel road surface friction coefficient is derived from the tire model from the front wheel SAT, and the rear wheel road surface friction coefficient is derived from the tire model from the rear wheel slip ratio, that is, the road surface of the front and rear wheels directly from the front wheel SAT and the rear wheel slip ratio. Since the friction coefficient is calculated, an increase in calculation load can be suppressed.

102H 駆動回路
103H リチウムイオンバッテリ
104HFL 左前輪
104HFR 右前輪
104HRL 左後輪
104HRL 右後輪
105HFL 左前輪車輪速センサ
105HFR 右前輪車輪速センサ
106H 減速ギア
106HL 左後輪減速ギア
106HR 右後輪減速ギア
107H 駆動モータ
107HL 左後輪駆動モータ
107HR 右後輪駆動モータ
108H 横加速度センサ
109H ヨーレートセンサ
111H ステアリングホイール
112H 補助操舵用モータ
114H ステアリングギア
115H トルクセンサ
121H 操舵角センサ
130H 統合コントローラ
141HL ブレーキ圧センサ
110 転舵角検出部
111 後輪制駆動トルク検出部
112 前輪スリップ率検出部
113 右後輪制駆動トルク検出部
114 左後輪制駆動トルク検出部
120 車速検出部
130 車両出力推定部
131 車体すべり角推定部
132 ヨーレート推定部
133 タイヤ出力推定部
134 角推定部
135 推定部
136 横力推定部
137 横加速度推定部
138 縦力推定部
139 車輪速推定部
140 スリップ率推定部
150 前輪路面摩擦係数推定部
160 後輪路面摩擦係数推定部
161 左後輪路面摩擦係数推定部
162 右後輪路面摩擦係数推定部
170 前輪SAT検出部
180 後輪スリップ率検出部
181 後輪車輪速検出部
182 右後輪スリップ率検出部
183 左後輪スリップ率検出部
190 横加速度検出部
191 ヨーレート検出部
200 推定誤差演算部
102H Drive circuit 103H Lithium ion battery 104HFL Left front wheel 104HFR Right front wheel 104HRL Left rear wheel 104HRL Right rear wheel 105HFL Left front wheel speed sensor 105HFR Right front wheel speed sensor 106H Reduction gear 106HL Left rear wheel reduction gear 106HR Right rear wheel reduction gear 107H Drive Motor 107HL Left rear wheel drive motor 107HR Right rear wheel drive motor 108H Lateral acceleration sensor 109H Yaw rate sensor 111H Steering wheel 112H Auxiliary steering motor 114H Steering gear 115H Torque sensor 121H Steering angle sensor 130H Integrated controller 141HL Brake pressure sensor 110 Steering angle detection Unit 111 rear wheel braking / driving torque detecting unit 112 front wheel slip ratio detecting unit 113 right rear wheel braking / driving torque detecting unit 114 left rear wheel braking / driving torque Detection unit 120 vehicle speed detection unit 130 vehicle output estimation unit 131 vehicle slip angle estimation unit 132 yaw rate estimation unit 133 tire output estimation unit 134 angle estimation unit 135 estimation unit 136 lateral force estimation unit 137 lateral acceleration estimation unit 138 longitudinal force estimation unit 139 Wheel speed estimation unit 140 Slip rate estimation unit 150 Front wheel road surface friction coefficient estimation unit 160 Rear wheel road surface friction coefficient estimation unit 161 Left rear wheel road surface friction coefficient estimation unit 162 Right rear wheel road surface friction coefficient estimation unit 170 Front wheel SAT detection unit 180 Rear wheel Slip rate detection unit 181 Rear wheel speed detection unit 182 Right rear wheel slip rate detection unit 183 Left rear wheel slip rate detection unit 190 Lateral acceleration detection unit 191 Yaw rate detection unit 200 Estimated error calculation unit

Claims (10)

転舵輪の転舵角を検出する転舵角検出手段と、
車速を検出する車速検出手段と、
転舵輪及び非転舵輪の路面摩擦係数を推定する路面摩擦係数推定手段と、
車体すべり角を推定する車体すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、前記転舵角検出手段で検出した転舵角、及び前記車速検出手段で検出した車速に基づいて、転舵輪すべり角を推定する転舵輪すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、及び前記車速検出手段で検出した車速に基づいて、非転舵輪すべり角を推定する非転舵輪すべり角推定手段と、
前記転舵輪すべり角推定手段で推定した転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した転舵輪の路面摩擦係数に基づいて、転舵輪セルフアライニングトルク推定値を推定する転舵輪セルフアライニングトルク推定手段と、
前記非転舵輪すべり角推定手段で推定した非転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した非転舵輪の路面摩擦係数に基づいて、非転舵輪車輪速を推定する非転舵輪車輪速推定手段と、
前記非転舵輪車輪速推定手段で推定した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態推定値を推定する非転舵輪スリップ状態推定手段と、
前記転舵角検出手段で検出した転舵角、前記車速検出手段で検出した車速、及び前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数に基づいて、車両の旋回状態推定値を推定する旋回状態推定手段と、
操舵トルクを検出する操舵トルク検出手段と、
前記操舵トルク検出手段で検出した操舵トルク、前記転舵角検出手段で検出した転舵輪の転舵角に基づいて、転舵輪のセルフアライニングトルク検出値を検出する転舵輪セルフアライニングトルク検出手段と、
非転舵輪車輪速を検出する非転舵輪車輪速検出手段と、
前記非転舵輪車輪速検出手段で検出した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態検出値を検出する非転舵輪スリップ状態検出手段と、
前記車両の旋回状態検出値を検出する旋回状態検出手段と、
前記転舵輪セルフアライニングトルク推定手段で推定した転舵輪セルフアライニングトルク推定値、及び前記転舵輪セルフアライニングトルク検出手段で検出した転舵輪セルフアライニングトルク検出値の差分で定義される転舵輪セルフアライニングトルク推定誤差を演算する転舵輪セルフアライニングトルク推定誤差演算手段と、
前記非転舵輪スリップ状態推定手段で推定した非転舵輪スリップ状態推定値、及び前記非転舵輪スリップ状態検出手段で検出した非転舵輪スリップ状態検出値の差分で定義される非転舵輪スリップ状態推定誤差を演算する非転舵輪スリップ状態推定誤差演算手段と、
前記旋回状態推定手段で推定した車両の旋回状態推定値、及び前記旋回状態検出手段で検出した車両の旋回状態検出値の差分で定義される旋回状態推定誤差を演算する旋回状態推定誤差演算手段と、
前記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のうち、少なくとも一つに応じて、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正する路面摩擦係数補正手段と、を備え
前記路面摩擦係数補正手段は、
前記スリップ状態検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は前記スリップ状態推定誤差が予め定められた閾値よりも大きいときには、前記転舵輪セルフアライニングトルク推定誤差、及び前記旋回状態推定誤差が小さくなるように、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正することを特徴とするタイヤ接地状態推定装置。
A turning angle detecting means for detecting a turning angle of the turning wheel;
Vehicle speed detection means for detecting the vehicle speed;
Road surface friction coefficient estimating means for estimating road surface friction coefficients of steered wheels and non-steered wheels;
Vehicle slip angle estimating means for estimating the vehicle slip angle;
Vehicle slip angle estimated by the vehicle body slip angle estimating means, steering angle detected by the steering angle detecting means, and based on the vehicle speed detected by the vehicle speed detecting means, steered wheel slip angle estimating the steered wheels slip angle An estimation means;
Non-steered wheel slip angle estimating means for estimating a non-steered wheel slip angle based on the vehicle slip angle estimated by the vehicle body slip angle estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the steered wheel slip angle estimated by the steered wheel slip angle estimating means and the road surface friction coefficient of the steered wheel estimated by the road surface friction coefficient estimating means, the steered wheel self aligning torque estimated value is estimated. Lining torque estimation means;
A non-steered wheel wheel that estimates a non-steered wheel speed based on a non-steered wheel slip angle estimated by the non-steered wheel slip angle estimating unit and a road surface friction coefficient of the non-steered wheel estimated by the road surface friction coefficient estimating unit Speed estimation means;
Non -steered wheel slip state estimating means for estimating a non-steered wheel slip state estimated value based on the non -steered wheel speed estimated by the non-steered wheel speed estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the turning angle detected by the turning angle detection means, the vehicle speed detected by the vehicle speed detection means, and the road surface friction coefficient of the steered wheels and non-steered wheels estimated by the road surface friction coefficient estimation means, the turning state of the vehicle A turning state estimating means for estimating an estimated value;
Steering torque detection means for detecting steering torque;
A steered wheel self-aligning torque detecting means for detecting a self-aligning torque detection value of the steered wheel based on the steering torque detected by the steering torque detecting means and the steered angle of the steered wheel detected by the steered angle detecting means. When,
Non-steering wheel speed detecting means for detecting non-steering wheel speed;
Non -steered wheel slip state detection means for detecting a non-steered wheel slip state detection value based on the non -steered wheel speed detected by the non-steered wheel speed detection means and the vehicle speed detected by the vehicle speed detection means;
A turning state detecting means for detecting a turning state detection value of the vehicle;
A steered wheel defined by the difference between the steered wheel self-aligning torque estimated value estimated by the steered wheel self-aligning torque estimating means and the steered wheel self-aligning torque detected value detected by the steered wheel self-aligning torque detecting means. Steered wheel self-aligning torque estimation error calculating means for calculating self-aligning torque estimation error;
Non-steering wheel slip state estimation value defined by the difference between the non-steering wheel slip state estimation value estimated by the non-steering wheel slip state estimation unit and the non-steering wheel slip state detection value detected by the non-steering wheel slip state detection unit Non-steered wheel slip state estimation error calculating means for calculating an error;
A turning state estimation error calculating means for calculating a turning state estimation error defined by a difference between the vehicle turning state estimation value estimated by the turning state estimation means and the vehicle turning state detection value detected by the turning state detection means; ,
The steered wheel self-aligning torque estimation error computed by the steered wheel self-aligning torque estimation error computing means, the non-steered wheel slip state estimated error computed by the non-steered wheel slip state estimation error computing means, and the turning state estimated error computation Road surface friction coefficient correction means for correcting the road surface friction coefficient of the steered wheel and the non-steered wheel estimated by the road surface friction coefficient estimation means according to at least one of the turning state estimation errors calculated by the means ,
The road surface friction coefficient correction means is
When the absolute value of the slip state detection value is smaller than a predetermined threshold value near 0, or when the slip state estimation error is larger than a predetermined threshold value, the steered wheel self-aligning torque estimation error, and A tire ground contact state estimation device , wherein the road surface friction coefficient of the steered wheel and the non-steered wheel estimated by the road surface friction coefficient estimation means is corrected so that a turning state estimation error is reduced .
転舵輪の転舵角を検出する転舵角検出手段と、
車速を検出する車速検出手段と、
転舵輪及び非転舵輪の路面摩擦係数を推定する路面摩擦係数推定手段と、
車体すべり角を推定する車体すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、前記転舵角検出手段で検出した転舵角、及び前記車速検出手段で検出した車速に基づいて、転舵輪すべり角を推定する転舵輪すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、及び前記車速検出手段で検出した車速に基づいて、非転舵輪すべり角を推定する非転舵輪すべり角推定手段と、
前記転舵輪すべり角推定手段で推定した転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した転舵輪の路面摩擦係数に基づいて、転舵輪セルフアライニングトルク推定値を推定する転舵輪セルフアライニングトルク推定手段と、
前記非転舵輪すべり角推定手段で推定した非転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した非転舵輪の路面摩擦係数に基づいて、非転舵輪車輪速を推定する非転舵輪車輪速推定手段と、
前記非転舵輪車輪速推定手段で推定した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態推定値を推定する非転舵輪スリップ状態推定手段と、
前記転舵角検出手段で検出した転舵角、前記車速検出手段で検出した車速、及び前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数に基づいて、車両の旋回状態推定値を推定する旋回状態推定手段と、
操舵トルクを検出する操舵トルク検出手段と、
前記操舵トルク検出手段で検出した操舵トルク、前記転舵角検出手段で検出した転舵輪の転舵角に基づいて、転舵輪のセルフアライニングトルク検出値を検出する転舵輪セルフアライニングトルク検出手段と、
非転舵輪車輪速を検出する非転舵輪車輪速検出手段と、
前記非転舵輪車輪速検出手段で検出した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態検出値を検出する非転舵輪スリップ状態検出手段と、
前記車両の旋回状態検出値を検出する旋回状態検出手段と、
前記転舵輪セルフアライニングトルク推定手段で推定した転舵輪セルフアライニングトルク推定値、及び前記転舵輪セルフアライニングトルク検出手段で検出した転舵輪セルフアライニングトルク検出値の差分で定義される転舵輪セルフアライニングトルク推定誤差を演算する転舵輪セルフアライニングトルク推定誤差演算手段と、
前記非転舵輪スリップ状態推定手段で推定した非転舵輪スリップ状態推定値、及び前記非転舵輪スリップ状態検出手段で検出した非転舵輪スリップ状態検出値の差分で定義される非転舵輪スリップ状態推定誤差を演算する非転舵輪スリップ状態推定誤差演算手段と、
前記旋回状態推定手段で推定した車両の旋回状態推定値、及び前記旋回状態検出手段で検出した車両の旋回状態検出値の差分で定義される旋回状態推定誤差を演算する旋回状態推定誤差演算手段と、
前記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のうち、少なくとも一つに応じて、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正する路面摩擦係数補正手段と、を備え
前記路面摩擦係数補正手段は、
前記転舵輪セルフアライニングトルク検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は前記転舵輪セルフアライニングトルク推定誤差が予め定められた閾値よりも大きいときには、前記非転舵輪スリップ状態推定誤差、及び前記旋回状態推定誤差が小さくなるように、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正することを特徴とするタイヤ接地状態推定装置。
A turning angle detecting means for detecting a turning angle of the turning wheel;
Vehicle speed detection means for detecting the vehicle speed;
Road surface friction coefficient estimating means for estimating road surface friction coefficients of steered wheels and non-steered wheels;
Vehicle slip angle estimating means for estimating the vehicle slip angle;
Vehicle slip angle estimated by the vehicle body slip angle estimating means, steering angle detected by the steering angle detecting means, and based on the vehicle speed detected by the vehicle speed detecting means, steered wheel slip angle estimating the steered wheels slip angle An estimation means;
Non-steered wheel slip angle estimating means for estimating a non-steered wheel slip angle based on the vehicle slip angle estimated by the vehicle body slip angle estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the steered wheel slip angle estimated by the steered wheel slip angle estimating means and the road surface friction coefficient of the steered wheel estimated by the road surface friction coefficient estimating means, the steered wheel self aligning torque estimated value is estimated. Lining torque estimation means;
A non-steered wheel wheel that estimates a non-steered wheel speed based on a non-steered wheel slip angle estimated by the non-steered wheel slip angle estimating unit and a road surface friction coefficient of the non-steered wheel estimated by the road surface friction coefficient estimating unit Speed estimation means;
Non -steered wheel slip state estimating means for estimating a non-steered wheel slip state estimated value based on the non -steered wheel speed estimated by the non-steered wheel speed estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the turning angle detected by the turning angle detection means, the vehicle speed detected by the vehicle speed detection means, and the road surface friction coefficient of the steered wheels and non-steered wheels estimated by the road surface friction coefficient estimation means, the turning state of the vehicle A turning state estimating means for estimating an estimated value;
Steering torque detection means for detecting steering torque;
A steered wheel self-aligning torque detecting means for detecting a self-aligning torque detection value of the steered wheel based on the steering torque detected by the steering torque detecting means and the steered angle of the steered wheel detected by the steered angle detecting means. When,
Non-steering wheel speed detecting means for detecting non-steering wheel speed;
Non -steered wheel slip state detection means for detecting a non-steered wheel slip state detection value based on the non -steered wheel speed detected by the non-steered wheel speed detection means and the vehicle speed detected by the vehicle speed detection means;
A turning state detecting means for detecting a turning state detection value of the vehicle;
A steered wheel defined by the difference between the steered wheel self-aligning torque estimated value estimated by the steered wheel self-aligning torque estimating means and the steered wheel self-aligning torque detected value detected by the steered wheel self-aligning torque detecting means. Steered wheel self-aligning torque estimation error calculating means for calculating self-aligning torque estimation error;
Non-steering wheel slip state estimation value defined by the difference between the non-steering wheel slip state estimation value estimated by the non-steering wheel slip state estimation unit and the non-steering wheel slip state detection value detected by the non-steering wheel slip state detection unit Non-steered wheel slip state estimation error calculating means for calculating an error;
A turning state estimation error calculating means for calculating a turning state estimation error defined by a difference between the vehicle turning state estimation value estimated by the turning state estimation means and the vehicle turning state detection value detected by the turning state detection means; ,
The steered wheel self-aligning torque estimation error computed by the steered wheel self-aligning torque estimation error computing means, the non-steered wheel slip state estimated error computed by the non-steered wheel slip state estimation error computing means, and the turning state estimated error computation Road surface friction coefficient correction means for correcting the road surface friction coefficient of the steered wheel and the non-steered wheel estimated by the road surface friction coefficient estimation means according to at least one of the turning state estimation errors calculated by the means ,
The road surface friction coefficient correction means is
When the absolute value of the detected value of the steered wheel self-aligning torque is smaller than a predetermined threshold value near zero, or when the estimated error value of the steered wheel self-aligning torque is larger than a predetermined threshold value, the non-steered wheel A tire ground contact state estimation device , wherein the road surface friction coefficient of the steered wheel and the non-steered wheel estimated by the road surface friction coefficient estimation unit is corrected so that the slip state estimation error and the turning state estimation error are reduced .
転舵輪の転舵角を検出する転舵角検出手段と、
車速を検出する車速検出手段と、
転舵輪及び非転舵輪の路面摩擦係数を推定する路面摩擦係数推定手段と、
車体すべり角を推定する車体すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、前記転舵角検出手段で検出した転舵角、及び前記車速検出手段で検出した車速に基づいて、転舵輪すべり角を推定する転舵輪すべり角推定手段と、
前記車体すべり角推定手段で推定した車体すべり角、及び前記車速検出手段で検出した車速に基づいて、非転舵輪すべり角を推定する非転舵輪すべり角推定手段と、
前記転舵輪すべり角推定手段で推定した転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した転舵輪の路面摩擦係数に基づいて、転舵輪セルフアライニングトルク推定値を推定する転舵輪セルフアライニングトルク推定手段と、
前記非転舵輪すべり角推定手段で推定した非転舵輪すべり角、及び前記路面摩擦係数推定手段で推定した非転舵輪の路面摩擦係数に基づいて、非転舵輪車輪速を推定する非転舵輪車輪速推定手段と、
前記非転舵輪車輪速推定手段で推定した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態推定値を推定する非転舵輪スリップ状態推定手段と、
前記転舵角検出手段で検出した転舵角、前記車速検出手段で検出した車速、及び前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数に基づいて、車両の旋回状態推定値を推定する旋回状態推定手段と、
操舵トルクを検出する操舵トルク検出手段と、
前記操舵トルク検出手段で検出した操舵トルク、前記転舵角検出手段で検出した転舵輪の転舵角に基づいて、転舵輪のセルフアライニングトルク検出値を検出する転舵輪セルフアライニングトルク検出手段と、
非転舵輪車輪速を検出する非転舵輪車輪速検出手段と、
前記非転舵輪車輪速検出手段で検出した非転舵輪車輪速、及び前記車速検出手段で検出した車速に基づいて、非転舵輪スリップ状態検出値を検出する非転舵輪スリップ状態検出手段と、
前記車両の旋回状態検出値を検出する旋回状態検出手段と、
前記転舵輪セルフアライニングトルク推定手段で推定した転舵輪セルフアライニングトルク推定値、及び前記転舵輪セルフアライニングトルク検出手段で検出した転舵輪セルフアライニングトルク検出値の差分で定義される転舵輪セルフアライニングトルク推定誤差を演算する転舵輪セルフアライニングトルク推定誤差演算手段と、
前記非転舵輪スリップ状態推定手段で推定した非転舵輪スリップ状態推定値、及び前記非転舵輪スリップ状態検出手段で検出した非転舵輪スリップ状態検出値の差分で定義される非転舵輪スリップ状態推定誤差を演算する非転舵輪スリップ状態推定誤差演算手段と、
前記旋回状態推定手段で推定した車両の旋回状態推定値、及び前記旋回状態検出手段で検出した車両の旋回状態検出値の差分で定義される旋回状態推定誤差を演算する旋回状態推定誤差演算手段と、
前記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のうち、少なくとも一つに応じて、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正する路面摩擦係数補正手段と、を備え
前記路面摩擦係数補正手段は、
前記旋回状態検出値の絶対値が0近傍の予め定められた閾値より小さいとき、又は前記旋回状態推定誤差が予め定められた閾値よりも大きいときには、前記転舵輪セルフアライニングトルク推定誤差、及び前記非転舵輪スリップ状態推定誤差が小さくなるように、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数を補正することを特徴とするタイヤ接地状態推定装置。
A turning angle detecting means for detecting a turning angle of the turning wheel;
Vehicle speed detection means for detecting the vehicle speed;
Road surface friction coefficient estimating means for estimating road surface friction coefficients of steered wheels and non-steered wheels;
Vehicle slip angle estimating means for estimating the vehicle slip angle;
Vehicle slip angle estimated by the vehicle body slip angle estimating means, steering angle detected by the steering angle detecting means, and based on the vehicle speed detected by the vehicle speed detecting means, steered wheel slip angle estimating the steered wheels slip angle An estimation means;
Non-steered wheel slip angle estimating means for estimating a non-steered wheel slip angle based on the vehicle slip angle estimated by the vehicle body slip angle estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the steered wheel slip angle estimated by the steered wheel slip angle estimating means and the road surface friction coefficient of the steered wheel estimated by the road surface friction coefficient estimating means, the steered wheel self aligning torque estimated value is estimated. Lining torque estimation means;
A non-steered wheel wheel that estimates a non-steered wheel speed based on a non-steered wheel slip angle estimated by the non-steered wheel slip angle estimating unit and a road surface friction coefficient of the non-steered wheel estimated by the road surface friction coefficient estimating unit Speed estimation means;
Non -steered wheel slip state estimating means for estimating a non-steered wheel slip state estimated value based on the non -steered wheel speed estimated by the non-steered wheel speed estimating means and the vehicle speed detected by the vehicle speed detecting means;
Based on the turning angle detected by the turning angle detection means, the vehicle speed detected by the vehicle speed detection means, and the road surface friction coefficient of the steered wheels and non-steered wheels estimated by the road surface friction coefficient estimation means, the turning state of the vehicle A turning state estimating means for estimating an estimated value;
Steering torque detection means for detecting steering torque;
A steered wheel self-aligning torque detecting means for detecting a self-aligning torque detection value of the steered wheel based on the steering torque detected by the steering torque detecting means and the steered angle of the steered wheel detected by the steered angle detecting means. When,
Non-steering wheel speed detecting means for detecting non-steering wheel speed;
Non -steered wheel slip state detection means for detecting a non-steered wheel slip state detection value based on the non -steered wheel speed detected by the non-steered wheel speed detection means and the vehicle speed detected by the vehicle speed detection means;
A turning state detecting means for detecting a turning state detection value of the vehicle;
A steered wheel defined by the difference between the steered wheel self-aligning torque estimated value estimated by the steered wheel self-aligning torque estimating means and the steered wheel self-aligning torque detected value detected by the steered wheel self-aligning torque detecting means. Steered wheel self-aligning torque estimation error calculating means for calculating self-aligning torque estimation error;
Non-steering wheel slip state estimation value defined by the difference between the non-steering wheel slip state estimation value estimated by the non-steering wheel slip state estimation unit and the non-steering wheel slip state detection value detected by the non-steering wheel slip state detection unit Non-steered wheel slip state estimation error calculating means for calculating an error;
A turning state estimation error calculating means for calculating a turning state estimation error defined by a difference between the vehicle turning state estimation value estimated by the turning state estimation means and the vehicle turning state detection value detected by the turning state detection means; ,
The steered wheel self-aligning torque estimation error computed by the steered wheel self-aligning torque estimation error computing means, the non-steered wheel slip state estimated error computed by the non-steered wheel slip state estimation error computing means, and the turning state estimated error computation Road surface friction coefficient correction means for correcting the road surface friction coefficient of the steered wheel and the non-steered wheel estimated by the road surface friction coefficient estimation means according to at least one of the turning state estimation errors calculated by the means ,
The road surface friction coefficient correction means is
When the absolute value of the turning state detection value is smaller than a predetermined threshold value near 0, or when the turning state estimation error is larger than a predetermined threshold value, the steered wheel self-aligning torque estimation error, and A tire ground contact state estimation device for correcting a road surface friction coefficient of a steered wheel and a non-steered wheel estimated by the road surface friction coefficient estimating means so that a non-steered wheel slip state estimation error is reduced .
記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のうち、少なくとも一つに応じて、前記車体すべり角推定手段で推定した車体すべり角を補正する車体すべり角補正手段と、を備えることを特徴とする請求項1〜3の何れか一項に記載のタイヤ接地状態推定装置。 Before SL steered wheel aligning torque estimated error calculating unit steerable wheels calculated in the self-aligning torque estimation error, the non-steered wheel slip condition estimation error non steered wheel slip state estimation error calculated by the calculating means, the turning state estimation error The vehicle slip angle correcting means for correcting the vehicle slip angle estimated by the vehicle slip angle estimating means according to at least one of the turning state estimation errors calculated by the calculating means. The tire ground contact state estimation device according to any one of 1 to 3 . 前記路面摩擦係数推定手段による路面摩擦係数の推定と、前記車体すべり角推定手段による車体すべり角の推定とは、同一の演算周期で実行されることを特徴とする請求項1〜4の何れか一項に記載のタイヤ接地状態推定装置。 The estimation of the road surface friction coefficient by the road surface friction coefficient estimation unit and the estimation of the vehicle body slip angle by the vehicle body slip angle estimation unit are performed in the same calculation cycle . The tire ground contact state estimation device according to one item . ヨーレートを推定するヨーレート推定手段と、
前記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のう
ち、少なくとも一つに応じて、前記ヨーレート推定手段で推定したヨーレートを補正するヨーレート補正手段と、を備えることを特徴とする請求項1〜の何れか一項に記載のタイヤ接地状態推定装置。
A yaw rate estimating means for estimating the yaw rate;
The steered wheel self-aligning torque estimation error computed by the steered wheel self-aligning torque estimation error computing means, the non-steered wheel slip state estimated error computed by the non-steered wheel slip state estimation error computing means, and the turning state estimated error computation 6. A yaw rate correction unit that corrects the yaw rate estimated by the yaw rate estimation unit according to at least one of the turning state estimation errors calculated by the unit. 6. The tire ground contact state estimation device according to Item.
駆動輪の車輪速を推定する駆動輪車輪速推定手段と、
前記転舵輪セルフアライニングトルク推定誤差演算手段で演算した転舵輪セルフアライニングトルク推定誤差、前記非転舵輪スリップ状態推定誤差演算手段で演算した非転舵輪スリップ状態推定誤差、前記旋回状態推定誤差演算手段で演算した旋回状態推定誤差のうち、少なくとも一つに応じて、前記駆動輪車輪速推定手段で推定した駆動輪車輪速を補正する非転舵輪車輪速補正手段と、を備えることを特徴とする請求項1〜の何れか一項に記載のタイヤ接地状態推定装置。
Driving wheel wheel speed estimating means for estimating the wheel speed of the driving wheel;
The steered wheel self-aligning torque estimation error computed by the steered wheel self-aligning torque estimation error computing means, the non-steered wheel slip state estimated error computed by the non-steered wheel slip state estimation error computing means, and the turning state estimated error computation Non-steering wheel speed correcting means for correcting the driving wheel speed estimated by the driving wheel speed estimation means according to at least one of the turning state estimation errors calculated by the means, The tire ground contact state estimation device according to any one of claims 1 to 6 .
前記路面摩擦係数推定手段は、時間による一階微分を0と定義した動特性モデルを有することを特徴とする請求項1〜の何れか一項に記載のタイヤ接地状態推定装置。 The tire ground contact state estimation device according to any one of claims 1 to 7 , wherein the road surface friction coefficient estimation means includes a dynamic characteristic model in which a first-order derivative with respect to time is defined as zero. 制動状態を検出する制動状態検出手段と、
該制動状態検出手段で検出した制動状態に応じて転舵輪スリップ状態検出値を検出する転舵輪スリップ状態検出手段と、を備え、
前記転舵輪セルフアライニングトルク推定手段は、
前記転舵角検出手段で検出した転舵角、前記車速検出手段で検出した車速、前記路面摩擦係数推定手段で推定した転舵輪の路面摩擦係数、及び転舵輪スリップ状態検出手段で検出した転舵輪スリップ状態検出値に基づいて、転舵輪セルフアライニングトルク推定値を推定し、
前記旋回状態推定手段は、
前記転舵角検出手段で検出した転舵角、前記車速検出手段で検出した車速、前記路面摩擦係数推定手段で推定した転舵輪及び非転舵輪の路面摩擦係数、並びに転舵輪スリップ状態検出手段で検出した転舵輪スリップ状態検出値に基づいて、車両の旋回状態推定値を推定することを特徴とする請求項1〜の何れか一項に記載のタイヤ接地状態推定装置。
Braking state detecting means for detecting a braking state;
A steered wheel slip state detection unit that detects a steered wheel slip state detection value according to the braking state detected by the braking state detection unit,
The steered wheel self-aligning torque estimating means is
The turning angle detected by the turning angle detection means, the vehicle speed detected by the vehicle speed detection means, the road surface friction coefficient of the turning wheel estimated by the road surface friction coefficient estimation means, and the turning wheel detected by the turning wheel slip state detection means Based on the slip state detection value, estimate the steered wheel self-aligning torque estimated value,
The turning state estimating means includes
The turning angle detected by the turning angle detection means, the vehicle speed detected by the vehicle speed detection means, the road surface friction coefficient of the steered wheels and non-steering wheels estimated by the road surface friction coefficient estimation means, and the steered wheel slip state detection means The tire ground contact state estimation device according to any one of claims 1 to 8 , wherein the estimated turning state estimated value of the vehicle is estimated based on the detected detected value of the steered wheel slip state.
前記非転舵輪スリップ状態推定手段は、左非転舵輪及び右非転舵輪のスリップ状態を個別に推定し、
前記路面摩擦係数推定手段は、左非転舵輪及び右非転舵輪の路面摩擦係数を個別に推定し、
前記非転舵輪スリップ状態検出手段は、左非転舵輪及び右非転舵輪のスリップ状態を個別に検出し、
前記非転舵輪スリップ状態推定誤差演算手段は、左非転舵輪及び右非転舵輪のスリップ状態推定誤差を個別に演算することを特徴とする請求項1〜の何れか一項に記載のタイヤ接地状態推定装置。
The non-steered wheel slip state estimating means individually estimates the slip state of the left non-steered wheel and the right non-steered wheel,
The road surface friction coefficient estimating means individually estimates the road surface friction coefficient of the left non-steered wheel and the right non-steered wheel,
The non-steered wheel slip state detecting means individually detects the slip state of the left non-steered wheel and the right non-steered wheel,
The tire according to any one of claims 1 to 9 , wherein the non-steered wheel slip state estimation error calculating means individually calculates a slip state estimation error of the left non-steered wheel and the right non-steered wheel. Ground state estimation device.
JP2011015208A 2011-01-27 2011-01-27 Tire contact state estimation device Expired - Fee Related JP5742253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015208A JP5742253B2 (en) 2011-01-27 2011-01-27 Tire contact state estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015208A JP5742253B2 (en) 2011-01-27 2011-01-27 Tire contact state estimation device

Publications (2)

Publication Number Publication Date
JP2012153290A JP2012153290A (en) 2012-08-16
JP5742253B2 true JP5742253B2 (en) 2015-07-01

Family

ID=46835480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015208A Expired - Fee Related JP5742253B2 (en) 2011-01-27 2011-01-27 Tire contact state estimation device

Country Status (1)

Country Link
JP (1) JP5742253B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993804B2 (en) 2013-06-12 2016-09-14 株式会社ブリヂストン Tire contact state estimation method
JP2016082698A (en) * 2014-10-16 2016-05-16 三菱電機株式会社 Motor temperature estimation device and motor overheat protection method
KR102125754B1 (en) * 2015-12-18 2020-06-23 니라 다이나믹스 에이비 Tire stiffness estimation and road friction estimation
JP7047466B2 (en) * 2018-03-02 2022-04-05 株式会社Soken Road surface condition determination device
JP7413895B2 (en) * 2020-03-31 2024-01-16 株式会社ジェイテクト Road surface μ estimation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885125B2 (en) * 1995-03-30 1999-04-19 トヨタ自動車株式会社 Estimation method of motion state quantity changing with turning of vehicle
JP3060923B2 (en) * 1995-11-24 2000-07-10 トヨタ自動車株式会社 Vehicle state estimation device
JP3617309B2 (en) * 1998-05-27 2005-02-02 日産自動車株式会社 Road friction coefficient estimation device
JP5326562B2 (en) * 2008-12-26 2013-10-30 日産自動車株式会社 Turning behavior detection device, turning behavior detection method, and yaw rate estimation method

Also Published As

Publication number Publication date
JP2012153290A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
CN107140012B (en) Steer-by-wire system based on Kalman filter capable of restraining divergence and control method
JP3860518B2 (en) Road friction estimation device
CN108688719B (en) System and method for estimating steering torque
JP5011866B2 (en) Side slip angle estimation device, automobile, and side slip angle estimation method
US7416264B2 (en) Vehicle steering apparatus and vehicle steering method
JP2002012160A (en) Vehicular road surface friction coefficient estimating device
JP5880927B2 (en) Attitude control device for vehicle
KR101225876B1 (en) Tyre lateral force determination in electrical steering systems
JP5029442B2 (en) Vehicle attitude angle estimation device and program
JP5799578B2 (en) Vehicle steering apparatus and steering control method
JP2001519285A (en) How to determine the state variables of a car
CN109941342B (en) Method and device for estimating steering torque, method for lateral control of vehicle
JP4127062B2 (en) Lateral acceleration sensor drift amount estimation device, lateral acceleration sensor output correction device, and road surface friction state estimation device
JP5742253B2 (en) Tire contact state estimation device
US20050182548A1 (en) Method and device for detecting parameters characterizing the driving behavior of a vehicle
CN111055911A (en) Motor torque control device for vehicle steering system
JP2023509317A (en) On-board road friction estimation
JP5540641B2 (en) Tire condition estimation device
JP4071529B2 (en) Self-aligning torque estimation device and lateral grip degree estimation device
JP2003081119A (en) Motor-driven power steering device for automobile
JP2007240392A (en) Ground load estimation device
US20080167777A1 (en) Method for Controlling the Steering Orientation of a Vehicle
WO2013182257A1 (en) Sensory feedback when driving near a vehicle&#39;s handling limits
JP5231923B2 (en) Road friction coefficient estimation device
JP5326562B2 (en) Turning behavior detection device, turning behavior detection method, and yaw rate estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees