JP5742005B2 - Injection molding method for resin molded products - Google Patents

Injection molding method for resin molded products Download PDF

Info

Publication number
JP5742005B2
JP5742005B2 JP2011031166A JP2011031166A JP5742005B2 JP 5742005 B2 JP5742005 B2 JP 5742005B2 JP 2011031166 A JP2011031166 A JP 2011031166A JP 2011031166 A JP2011031166 A JP 2011031166A JP 5742005 B2 JP5742005 B2 JP 5742005B2
Authority
JP
Japan
Prior art keywords
mold
clamping force
molded product
resin molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011031166A
Other languages
Japanese (ja)
Other versions
JP2012166517A (en
Inventor
岡本 昭男
昭男 岡本
宮本 和明
和明 宮本
利和 岩本
利和 岩本
忠 品田
忠 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2011031166A priority Critical patent/JP5742005B2/en
Publication of JP2012166517A publication Critical patent/JP2012166517A/en
Application granted granted Critical
Publication of JP5742005B2 publication Critical patent/JP5742005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法に関する。   The present invention relates to an injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method.

射出成形方法によって成形される樹脂成形品は、冷却固化の過程で歪みや変形が発生することが一般的である。これら樹脂成形品の歪みや変形は、樹脂内圧力(残留応力)の分布、樹脂温度分布、樹脂流動時のせん断力(樹脂配行)、溶融層とスキン層の比率分布、あるいは結晶化度の分布(結晶性樹脂の場合)等、更には、型締め時の金型の弾性変形等に起因するが、特に樹脂内圧力(残留応力)の影響が大きいとされている。その中でも、型開閉方向の金型キャビティ厚みに対して、金型投影面積の大きな金型キャビティで成形される樹脂成形品では、その金型投影面積が大きいほど、樹脂が金型キャビティへ充填されるゲート部から金型キャビティ末端までの樹脂流動長が長くなり、あるいは、その厚みが薄いほど、射出充填時の流動抵抗が増大し、冷却固化の進行の速さがその流動抵抗の増大を加速するため、これら樹脂成形品内の残留応力が大きくなると共にその不均等分布も顕著になり、その結果としてもたらされる樹脂成形品の歪み量や変形量も大きくなる。   In general, a resin molded product molded by an injection molding method is distorted or deformed during cooling and solidification. The distortion and deformation of these resin molded products are caused by the distribution of internal pressure (residual stress), resin temperature distribution, shear force during resin flow (resin distribution), ratio distribution of melt layer and skin layer, or crystallinity. This is caused by the distribution (in the case of crystalline resin) and the like, and further by the elastic deformation of the mold at the time of clamping, but the influence of the internal pressure (residual stress) is particularly large. Among them, in a resin molded product molded with a mold cavity having a large mold projection area relative to the mold cavity thickness in the mold opening / closing direction, the larger the mold projection area, the more resin is filled into the mold cavity. The longer the resin flow length from the gate section to the mold cavity end, or the thinner the thickness, the greater the flow resistance during injection filling, and the speed of cooling and solidification accelerates the increase in flow resistance. Therefore, the residual stress in these resin molded products increases, and the uneven distribution becomes significant, and the resulting strain and deformation of the resin molded product also increase.

このような、樹脂内残留応力に起因する樹脂成形品の歪みや変形を抑制させる手段として、溶融樹脂内圧力の均等化及び樹脂内残留応力緩和を目的に、射出圧縮成形方法や射出プレス成形方法が用いられることが多い。図5を参照しながら、射出圧縮成形方法又は射出プレス成形方法による射出成形品の射出成形方法を説明する。図5は射出圧縮成形方法又は射出プレス成形方法による平板形状の射出成形品の射出成形方法を示す金型の概略断面側面図であり、成形対象となる樹脂成形品の形状は説明を簡単にするため平板形状とする。   As a means for suppressing such distortion and deformation of the resin molded product due to the residual stress in the resin, an injection compression molding method and an injection press molding method are aimed at equalizing the pressure in the molten resin and alleviating the residual stress in the resin. Is often used. With reference to FIG. 5, an injection molding method of an injection molded product by an injection compression molding method or an injection press molding method will be described. FIG. 5 is a schematic cross-sectional side view of a mold showing an injection molding method of a flat plate-shaped injection molded product by an injection compression molding method or an injection press molding method, and the shape of a resin molded product to be molded is simplified for explanation. Therefore, a flat plate shape is used.

図5(a)は射出充填工程を示す。固定金型7と可動金型8とが組み合わされて形成される金型キャビティ10aに、固定金型7に配置された樹脂流路7aを介して射出ユニット9から溶融樹脂10bが射出充填される。ここで、射出圧縮成形方法においては、弱い型締力で型締めされた金型キャビティに射出充填して、充填された溶融樹脂圧力により金型を距離Sだけ微小型開きさせる。一方、射出プレス成形方法においては、予め、金型を距離Sだけ微小型開きさせた状態で射出充填を行う。両射出成形方法において、射出充填時に金型を微小型開きさせる方法は相違するが、微小型開きにより型開閉方向に容積が拡大された金型キャビティへ射出充填することで、金型キャビティ内の溶融樹脂の流動抵抗を低下させ、溶融樹脂内残留応力を低下させると共に、その残留応力分布の不均等化を防止し、樹脂内残留応力を緩和させるという目的は共通である。   FIG. 5A shows an injection filling process. The molten resin 10b is injected and filled from the injection unit 9 into the mold cavity 10a formed by combining the fixed mold 7 and the movable mold 8 through the resin flow path 7a disposed in the fixed mold 7. . Here, in the injection compression molding method, the mold cavity that has been clamped with a weak mold clamping force is injected and filled, and the mold is opened by a distance S by the filled molten resin pressure. On the other hand, in the injection press molding method, injection filling is performed in a state where a mold is opened by a distance S in advance. In both injection molding methods, the method of micro-opening the mold at the time of injection filling is different, but by injection filling into the mold cavity whose volume is expanded in the mold opening and closing direction by micro-mold opening, The purpose of reducing the flow resistance of the molten resin, reducing the residual stress in the molten resin, preventing the uneven distribution of the residual stress, and relaxing the residual stress in the resin are common.

図5(b)は図5(a)の射出充填工程の途中又は完了後に行われる圧縮工程の開始時を示す。図示しない型締装置により可動金型8が固定金型7側へ型閉じされ、金型厚みLの型合わせ状態になり、金型キャビティ10aも正規の金型キャビティ厚みl(エル)として形成される。この時、金型には型締力はまだ付与されていない。金型キャビティ10a内の溶融樹脂10bは、射出充填圧力によってではなく、この圧縮工程開始時の型締装置による可動金型8の固定金型7側への型閉じ動作によって、金型キャビティ10aの末端まで充填されるため、射出ユニット9の射出充填圧力による充填と比較して、溶融樹脂内圧力分布の不均等化を抑えた状態で圧縮工程へと移行させることができる。   FIG.5 (b) shows the time of the start of the compression process performed in the middle of the injection filling process of Fig.5 (a) or after completion. The movable mold 8 is closed to the fixed mold 7 side by a mold clamping device (not shown), and is brought into a mold-matching state with a mold thickness L, and the mold cavity 10a is also formed as a regular mold cavity thickness l (el). The At this time, the mold clamping force is not yet applied to the mold. The molten resin 10b in the mold cavity 10a is not caused by the injection filling pressure but by the mold closing operation of the movable mold 8 toward the fixed mold 7 by the mold clamping device at the start of the compression process. Since it is filled to the end, it can be shifted to the compression step in a state where unevenness of the pressure distribution in the molten resin is suppressed as compared with the filling by the injection filling pressure of the injection unit 9.

図5(c)は図5(b)に引き続き行われる圧縮工程及び保圧工程を示す。図5(b)に示す型合わせ状態からそのまま金型に型締力を付与させ型締状態にさせると、図5(c)に示すように、金型は型開閉方向に圧縮され弾性変形し、樹脂成形品の賦形に必要な所定の型締力Fが付与された状態で金型厚みはLからL’(L>L’)になり、金型キャビティ10aの金型キャビティ厚みもlからl’(l>l’)になる。一般的な射出圧縮成形方法及び射出プレス成形方法においては、この図5(c)に示す圧縮工程をそのまま維持して保圧工程となし、樹脂成形品を冷却固化させる。   FIG.5 (c) shows the compression process and pressure holding process performed following FIG.5 (b). When a mold clamping force is applied to the mold as it is from the mold alignment state shown in FIG. 5 (b) and the mold is clamped, the mold is compressed in the mold opening / closing direction and elastically deformed as shown in FIG. 5 (c). The mold thickness is changed from L to L ′ (L> L ′) in a state where a predetermined mold clamping force F necessary for shaping the resin molded product is applied, and the mold cavity thickness of the mold cavity 10a is also l. To l ′ (l> l ′). In a general injection compression molding method and injection press molding method, the compression step shown in FIG. 5C is maintained as it is to perform a pressure holding step, and the resin molded product is cooled and solidified.

図5(d)は、後述する特許文献等で、図5(c)の圧縮工程に引き続いて行われる保圧工程であって、一般的な射出圧縮成形方法及び射出プレス成形方法で行われる工程ではないが先行して説明する。本保圧工程においては、溶融樹脂内圧力を低下させ、樹脂内残留応力を緩和させるという目的のため、圧縮工程における型締力Fを型締力f(F>f)まで減圧させる型締力緩和制御を行う。この型締力緩和制御により金型キャビティ内の溶融樹脂内圧力が低下し、スキン層内部のまだ流動性を有する溶融樹脂が移動可能となり、樹脂内残留応力を緩和することができる。また、この型締力緩和制御によって金型厚みはL’からL”(L”>L’)になり、金型キャビティ10aの金型キャビティ厚みもl’からl”(l”>l’)になる。   FIG.5 (d) is a pressure holding process performed subsequent to the compression process of FIG.5 (c) by the patent document etc. which are mentioned later, Comprising: The process performed by the general injection compression molding method and the injection press molding method However, it will be explained in advance. In this pressure holding process, a mold clamping force for reducing the mold clamping force F in the compression process to a mold clamping force f (F> f) for the purpose of reducing the internal pressure of the molten resin and alleviating the residual stress in the resin. Mitigation control is performed. By this mold clamping force relaxation control, the molten resin internal pressure in the mold cavity is lowered, and the molten resin still having fluidity inside the skin layer can be moved, and the residual stress in the resin can be relaxed. The mold thickness is changed from L ′ to L ″ (L ″> L ′) by the mold clamping force relaxation control, and the mold cavity thickness of the mold cavity 10a is also changed from l ′ to l ″ (l ″> l ′). become.

図5(e)は図5(c)(又は図5(d))の保圧工程後、平板形状の樹脂成形品10が可動金型8に保持されて型開きされる製品取出工程を示す。平板形状の樹脂成形品10の厚みは略lである。型開き後、平板形状の樹脂成形品10は可動金型8に配置された図示しない製品押出手段により可動金型8より押し出され、図示しない製品取出手段により金型外へ搬出される。   FIG. 5E shows a product take-out process in which the flat resin molded product 10 is held by the movable mold 8 and opened after the pressure-holding process of FIG. 5C (or FIG. 5D). . The thickness of the flat resin molded product 10 is approximately l. After the mold opening, the plate-shaped resin molded product 10 is pushed out of the movable mold 8 by a product push-out means (not shown) disposed on the movable mold 8 and is carried out of the mold by a product take-out means (not shown).

しかしながら、このような射出圧縮成形方法又は射出プレス成形方法によって射出充填による溶融樹脂内残留応力を低下させ、その残留応力分布の不均等化を防止し樹脂内残留応力が緩和されたとしても、その後、樹脂成形品の賦形に必要な所定の型締力Fが溶融樹脂に付与されるため、先に説明したような溶融樹脂内残留応力分布の不均等状態が完全にあるいは問題ない程度まで均等化される訳ではない。ここで、図5(d)に示すように、圧縮工程後の保圧工程において、先に説明したような型締力(圧縮力)を緩和させる制御を行うことで溶融樹脂内残留応力分布の不均等状態が更に緩和され、樹脂内残留応力緩和効果が向上することが見出され、特に、高い平滑性・低屈折率性等が要求されるCD、DVD等の光ディスク基盤等の成形や、歪み量や変形量を抑制することが難しい大型パネル状成形品等の成形に関して、射出圧縮成形法や射出プレス成形法に採用される様々な型締力緩和制御方法が提案されている。   However, even if the residual stress in the molten resin is reduced by such injection compression molding method or injection press molding method, the residual stress distribution in the molten resin is reduced by preventing the uneven distribution of the residual stress distribution. Since the predetermined clamping force F necessary for shaping the resin molded product is applied to the molten resin, the uneven state of the residual stress distribution in the molten resin as described above is completely or evenly uniform. It is not necessarily converted. Here, as shown in FIG. 5 (d), the residual stress distribution in the molten resin is controlled by controlling the mold clamping force (compression force) as described above in the pressure-holding step after the compression step. It has been found that the uneven state is further relaxed and the residual stress relaxation effect in the resin is improved, and in particular, molding of optical disk substrates such as CD and DVD that require high smoothness and low refractive index properties, Various mold clamping force relaxation control methods that are employed in the injection compression molding method and the injection press molding method have been proposed for molding large panel-shaped molded products and the like for which it is difficult to suppress the amount of distortion and deformation.

特許文献1には、DVDなどの薄型の光ディスク基盤を射出成形法又は射出圧縮成形法によって成形する成形方法であって、最大型締め圧力又は最大圧縮力(P1)から圧力(P2)まで急激に低下させ、当該圧力(P2)を保持しつつ冷却を行う成形方法において、冷却工程が完了して型開動作が開始する直前の短い時間中に、上記圧力を急激に低圧(P3)に低下させる圧力変動操作を行う光ディスク基盤成形法が開示されている。   Patent Document 1 discloses a molding method in which a thin optical disk substrate such as a DVD is molded by an injection molding method or an injection compression molding method, and rapidly increases from a maximum clamping pressure or a maximum compression force (P1) to a pressure (P2). In the molding method in which cooling is performed while maintaining the pressure (P2), the pressure is rapidly reduced to a low pressure (P3) during a short period of time just before the cooling step is completed and the mold opening operation starts. An optical disk substrate forming method for performing pressure fluctuation operation is disclosed.

特許文献2には、射出圧縮成形によって形成される、直径80mmΦ以上150mmΦ未満、厚み1.0mm以上1.5mm以下の光学的記録媒体用のポリカーボネート樹脂基板の製造法であって、溶融樹脂を金型内に充填する第1過程と、圧縮してスタンパ上の微細パターンを転写する第2過程と、金型内に樹脂を保持して冷却する第3過程と、金型を開いて成形品を取り出す第4過程とからなり、金型温度を樹脂のガラス転移点Tgに対して10から40℃低い温度に保持し、第1過程において基板の単位面積あたりに印加する圧力P1を0≦P1<220kgf/cmとし、第2過程の圧力P2を220≦P2<430kgf/cmとし、第3過程において圧力を2段階に制御し、その圧力P3、P4をP4+60≦P3<P2−40kgf/cm、かつ、80≦P3<220kgf/cm、0≦P4<80kgf/cmとなるように設定し、かつ、上記第1過程及び第2過程に要する時間、すなわち、射出充填開始から圧力P2の印加を終了し、圧力P3の印加開始までの時間を3秒未満とし、圧力P3から圧力P4へ圧力を変化させるタイミングを樹脂充填より3秒以上経過し、かつ5秒は経過しない時間とする光学的情報記録媒体用樹脂基板の製造方法が開示されている。 Patent Document 2 discloses a method for producing a polycarbonate resin substrate for an optical recording medium, which is formed by injection compression molding and has a diameter of 80 mmΦ to less than 150 mmΦ and a thickness of 1.0 mm to 1.5 mm. A first process of filling the mold, a second process of compressing and transferring a fine pattern on the stamper, a third process of holding and cooling the resin in the mold, and opening the mold to And a mold temperature is maintained at a temperature 10 to 40 ° C. lower than the glass transition point Tg of the resin, and the pressure P1 applied per unit area of the substrate in the first process is 0 ≦ P1 <. and 220 kgf / cm 2, the pressure P2 of the second step and 220 ≦ P2 <430kgf / cm 2 , by controlling the pressure in two stages in the third process, the pressure P3, P4 P4 + 60 ≦ P3 <P2- 0 kgf / cm 2 and,, 80 ≦ P3 <220kgf / cm 2, 0 ≦ P4 < set so that 80 kgf / cm 2, and the time required for the first step and second step, i.e., the start injection filling The time from application of pressure P2 to the end of application of pressure P3 is set to less than 3 seconds, and the timing for changing the pressure from pressure P3 to pressure P4 is 3 seconds or more after resin filling, and 5 seconds does not pass A method for manufacturing a resin substrate for an optical information recording medium is disclosed.

特許文献3には、自動車用バックパネル等の大型パネル状合成樹脂成形品の製造に適する射出成形方法であって、金型キャビティ内に合成樹脂を射出充填し、型内樹脂圧力により該キャビティを厚さ方向にわずかに開放せしめたのち、前記金型のゲートを機械的にまたは冷却してシール後、圧縮状態を経て保圧または冷却状態で更に型締力低下させ圧縮成形することを特徴とする合成樹脂成形品の射出成形方法が開示されている。   Patent Document 3 discloses an injection molding method suitable for manufacturing a large-sized panel-shaped synthetic resin molded product such as an automobile back panel, in which a synthetic resin is injected and filled into a mold cavity, and the cavity is formed by resin pressure in the mold. After the mold gate is slightly opened in the thickness direction, the mold gate is mechanically or cooled and sealed, and then compression-molded by further reducing the clamping force in the holding pressure or cooling state through the compression state. An injection molding method for a synthetic resin molded product is disclosed.

特許文献4には、内部ひずみにより光の透過率が変化すると不良品になる光学系の部品の射出圧縮成形に適した型締圧力制御方法であって、射出圧縮成形に使用する金型の型締圧力を型締シリンダ内の油圧調節により制御する型締圧力制御バルブの開閉量をバルブ開閉量を指示する電気信号により制御し、樹脂温度を樹脂温度センサで検出して変換した電気信号とあらかじめ設定した一連の圧力切替温度設定値にそれぞれ対応する一連の電気信号の1つとが比較演算の結果一致する度に順次1回ずつ圧力切替信号を出力し、圧力切替信号が入力する度にあらかじめ設定した一連の圧力設定値にそれぞれ対応するバルブ開閉量を指示する一連の電気信号を1つずつ順次出力して型締圧力制御バルブの開閉量を変え型締圧力を変化させることを特徴とする射出圧縮成形の型締圧力制御方法が開示されている。   Patent Document 4 discloses a mold clamping pressure control method suitable for injection compression molding of an optical system component that becomes a defective product when the light transmittance changes due to internal strain, and is a mold die used for injection compression molding. The opening / closing amount of the mold clamping pressure control valve, which controls the clamping pressure by adjusting the hydraulic pressure in the clamping cylinder, is controlled by an electrical signal indicating the valve opening / closing amount, and the resin temperature is detected by the resin temperature sensor and converted in advance. Whenever one of a series of electrical signals corresponding to a set of pressure switching temperature set values matches as a result of the comparison operation, a pressure switching signal is sequentially output once, and preset each time a pressure switching signal is input A series of electrical signals instructing the valve opening / closing amount corresponding to each of the set pressure values are sequentially output one by one to change the opening / closing amount of the mold clamping pressure control valve and to change the mold clamping pressure. Clamping pressure control method of the injection compression molding which is disclosed as.

特開2002−113754号公報JP 2002-113754 A 特開平8−192450号公報JP-A-8-192450 特開平5−031774号公報JP-A-5-031774 特開平1−146720号公報Japanese Patent Laid-Open No. 1-146720

近年、地球環境問題により、軽量化のために自動車等の金属製外装パネルやサンルーフ等のガラス製部品を樹脂製外装パネルやガラス樹脂代替品等へと樹脂成形品化する動きが活発化している。これら外装パネルやサンルーフ等の樹脂成形品は、意匠面・機能面の両面から、低歪みで部品寸法精度が高く、高い平滑性や透光性が要求される。そのため、これら樹脂成形品の成形方法として、射出圧縮成形方法や射出プレス成形方法が選択されることが多い。更に、これら樹脂成形品の平滑性や透光性向上のため、前述した特許文献1から特許文献4のような、保圧工程において、成形中の型締力(圧縮力)を緩和させる様々な型締力緩和制御方法の採用が期待されるところである。しかしながら、これら外装パネルやサンルーフ等の、型開閉方向の金型キャビティ厚みに対して金型投影面積の大きな金型キャビティで成形されるサイズの大きな樹脂成形品については、前述したような金型キャビティ内の溶融樹脂に生じる残留応力やその不均等分布に加えて、それら樹脂成形品の歪みや変形の要因が新たに発生する。それは、CD、DVD等の光ディスク基盤等の成形とは異なり、より大きな金型を使用することに起因するもので、型締め時に金型が型開閉方向に圧縮され変形する弾性変形である。この弾性変形下においては、金型キャビティ形状も変形するため、その内で成形される樹脂成形品も所望する形状とは相違する変形した金型キャビティ形状で成形されてしまう。   In recent years, due to global environmental problems, there has been an active movement to reduce the weight of glass parts such as metal exterior panels for automobiles and sunroofs to resin-molded products such as resin exterior panels and glass resin substitutes. . Resin molded products such as exterior panels and sunroofs are required to have low distortion, high component dimensional accuracy, and high smoothness and translucency from both the design and functional aspects. Therefore, an injection compression molding method or an injection press molding method is often selected as a molding method for these resin molded products. Furthermore, in order to improve the smoothness and translucency of these resin molded products, various methods for relaxing the clamping force (compression force) during molding in the pressure-holding process as in Patent Document 1 to Patent Document 4 described above. Adoption of a mold clamping force relaxation control method is expected. However, for resin molded products having a large size that are molded with a mold cavity having a large mold projection area with respect to the thickness of the mold cavity in the mold opening / closing direction, such as exterior panels and sunroofs, the mold cavity as described above is used. In addition to the residual stress generated in the molten resin and the uneven distribution thereof, new factors of distortion and deformation of the resin molded product are generated. This is due to the use of a larger mold, unlike the molding of an optical disk substrate such as a CD or DVD, and is an elastic deformation in which the mold is compressed and deformed in the mold opening and closing direction when the mold is clamped. Under this elastic deformation, the mold cavity shape is also deformed, so that the resin molded product molded therein is also molded with a deformed mold cavity shape different from the desired shape.

射出成形機メーカーでもあり、実験機により実際に射出成形を行う開発部門を有する出願人の知見から一般的なデータを取りまとめた図6のグラフに示すように、樹脂成形品の成形に使用する金型体積(縦軸)は、その金型で成形される樹脂成形品の製品投影面積(横軸)に比例して大きくなる。前述したような自動車等の外装パネルやサンルーフ等の樹脂成形品は、製品投影面積がCD、DVD等の光ディスク基盤等(直径12cmで144cm/枚)より大きく、500cmを超えるものが多い。例えば、製品投影面積7000cmの自動車のサンルーフ樹脂化部品を例として、金型を無垢の金属製立方体と想定して、一般的な前提条件の下で金型の型締め時の型開閉方向の弾性変形量(圧縮量)を概算したものを以下に示す。
・透明樹脂素材:PC(ポリカーボネート)
(熱収縮率=5/1000、弾性率=2300N/mm
・サイズ :1000mm×700mm×5mmt(製品投影面積7000cm
・金型サイズ :1500mm×1200×1800mmt
(固定型+可動型/金型体積:3.24x10cm
・金型鋼材 :SKD相当(金型用合金工具鋼、弾性率206000N/mm
・型締力 :28000KNTon(成形樹脂圧=40MPa)
この場合、
・金型の弾性変形量(型開閉方向への圧縮量)≒13.6mm
・金型キャビティ厚みの変形量に換算 =13.6mm×(5/1800mmt) ≒0.04mm
以上のように、本来、厚みが5mmの金型キャビティが、型締め時に金型キャビティ全面に渡って均等に、型開閉方向に0.04mm圧縮される。これは型開閉方向に金型キャビティ厚みが0.8%圧縮されることを意味する。この型開閉方向への圧縮率0.8%は、割合としては十分小さく、そのサンルーフ樹脂化部品の厚みの許容誤差範囲内となる場合もある。しかしながら、実際の成形においては、以下に説明するようにこの0.8%が大きくなることはあっても、小さくなることはない。
As shown in the graph of Fig. 6 which gathered general data from the knowledge of the applicant who is also an injection molding machine manufacturer and has a development department that actually performs injection molding by experimental machines, the gold used for molding resin molded products The mold volume (vertical axis) increases in proportion to the product projection area (horizontal axis) of the resin molded product molded by the mold. As described above, resin molded products such as exterior panels and sunroofs for automobiles and the like have a product projection area larger than that of optical disks such as CD and DVD (144 cm 2 / sheet with a diameter of 12 cm) and more than 500 cm 2 . For example, taking a sunroof resin part of an automobile with a product projection area of 7000 cm 2 as an example, assuming that the mold is a solid metal cube, the mold opening / closing direction during mold clamping under general preconditions The approximate amount of elastic deformation (compression amount) is shown below.
-Transparent resin material: PC (polycarbonate)
(Heat shrinkage rate = 5/1000, elastic modulus = 2300 N / mm 2 )
-Size: 1000 mm x 700 mm x 5 mmt (product projected area 7000 cm 2 )
・ Mold size: 1500mm x 1200 x 1800mmt
(Fixed mold + movable mold / mold volume: 3.24 × 10 6 cm 3 )
-Mold steel: SKD equivalent (alloy tool steel for mold, elastic modulus 206000 N / mm 2 )
-Clamping force: 28000K NTon (molding resin pressure = 40 MPa)
in this case,
-Elastic deformation of the mold (compression amount in the mold opening and closing direction) ≒ 13.6mm
-Converted into deformation amount of mold cavity thickness = 13.6mm x (5 / 1800mmt) ≒ 0.04mm
As described above, the mold cavity originally having a thickness of 5 mm is compressed 0.04 mm uniformly in the mold opening and closing direction over the entire mold cavity when the mold is clamped. This means that the mold cavity thickness is compressed by 0.8% in the mold opening and closing direction. The compression ratio 0.8% in the mold opening / closing direction is sufficiently small as a ratio, and may be within an allowable error range of the thickness of the sunroof resin-molded part. However, in actual molding, as described below, the 0.8% may be increased, but not decreased.

上記概算は、図5(c)に示すように、型締力が金型分割面と平行な面に対して均等に付与され、金型及び樹脂成形品の厚み方向の弾性変形量が金型分割面と平行な面において均等に分布すると想定して計算したものであるが、実際には、この金型に掛かる型締力と型開閉方向の弾性変形量の分布は、金型分割面と平行な面全体で均等ではない。すなわち、図5(c)に示す金型厚みL’、樹脂成形品厚みl’となる圧縮工程は、図7に示すように、一般的なトグル式型締装置を備えた射出成形機1において、固定金型7及び可動金型8が、射出成形機1の固定盤2及び可動盤3に取り付けられてトグル式型締装置4により型締めされるため、型締力により固定盤2及び可動盤3がそれぞれ破線で示す固定盤2’及び可動盤3’のようにタイバー5の貫通部において湾曲するように弾性変形する。そのため、図7の金型キャビティ10a内の樹脂成形品10も図8に示すように湾曲するように弾性変形する。その結果、弾性変形後の樹脂成形品10の厚みは、タイバー5からの距離により、l’、l’、l’、l’(l’>l’>l’>l’)と不均等になり、それぞれの厚み部分の弾性変形量も不均等になる。図7及び図8は側面(断面)図であるが、平面(断面)図においても、タイバー5間の金型、金型キャビティ10a及び樹脂成形品10が湾曲するように弾性変形すると考えて良い。 As shown in FIG. 5 (c), the rough estimation is that the mold clamping force is evenly applied to the plane parallel to the mold dividing surface, and the elastic deformation amount in the thickness direction of the mold and the resin molded product is the mold. Although it was calculated on the assumption that the surface is evenly distributed in the plane parallel to the dividing surface, in reality, the distribution of the mold clamping force applied to the mold and the amount of elastic deformation in the mold opening and closing direction is the same as the mold dividing surface. Not even across the parallel surfaces. That is, the compression process to obtain the mold thickness L ′ and the resin molded product thickness l ′ shown in FIG. 5C is performed in an injection molding machine 1 equipped with a general toggle type mold clamping device as shown in FIG. The fixed mold 7 and the movable mold 8 are attached to the fixed plate 2 and the movable plate 3 of the injection molding machine 1 and clamped by the toggle type mold clamping device 4, so that the fixed plate 2 and the movable mold 8 are moved by the mold clamping force. The board 3 is elastically deformed so as to be bent at the penetrating portion of the tie bar 5 like a fixed board 2 ′ and a movable board 3 ′ indicated by broken lines. Therefore, the resin molded product 10 in the mold cavity 10a of FIG. 7 is also elastically deformed so as to be curved as shown in FIG. As a result, the thickness of the resin molded product 10 after elastic deformation is l ′, l 1 ′, l 2 ′, l 3 ′ (l ′> l 1 ′> l 2 ′> l 3 depending on the distance from the tie bar 5. '), And the amount of elastic deformation of each thickness portion is also uneven. 7 and 8 are side (cross-sectional) views, but even in a plan (cross-sectional) view, it may be considered that the mold between the tie bars 5, the mold cavity 10a, and the resin molded product 10 are elastically deformed so as to be curved. .

このように、金型分割面と平行な面における型締力分布は、一般的なトグル式型締装置を備えた射出成形機においては、固定盤及び可動盤を貫通するタイバーに最も近い部分が最も大きく、タイバーから離れる程小さくなり、そして中央部が最も小さいという分布になる。また、直圧式の型締装置を備えた射出成形機であれば金型中央部の型締力はトグル式型締装置よりも大きい。更に、実際の金型は先の概算で想定したような無垢の金属製立方体ではなく、様々な形状の金型キャビティや内蔵する製品押出機構等、その内部に様々な空間部が不均等に配置された金属製立方体であり、その金型に型締力を付与する射出成形機の型締装置も機械的に完全な精度を有するものではないため、金型分割面における型締力分布は不均等になり金型の弾性変形量分布も不均等になる。そのため、金型キャビティの形状も不均等に弾性変形し、その中で成形される樹脂成形品の形状が、所望する樹脂成形品の仕様形状と相違する。これらを鑑みて、CD、DVD等の光ディスク基盤成形用金型より、より大きな金型を使用する自動車等の外装パネルやサンルーフ等の樹脂成形品を射出圧縮成形方法又は射出プレス成形方法で成形するためには、型締め時の金型キャビティの弾性変形量を低下させて金型キャビティ形状の変形を抑制し、樹脂成形品の仕様形状に近付ける必要がある。   As described above, the distribution of the clamping force in the plane parallel to the mold dividing surface is such that the portion closest to the tie bar that penetrates the fixed plate and the movable plate in an injection molding machine equipped with a general toggle type clamping device. The distribution is the largest, the smaller the distance from the tie bar, and the smallest in the center. Further, in the case of an injection molding machine equipped with a direct pressure type mold clamping device, the mold clamping force at the center of the mold is larger than that of the toggle type mold clamping device. In addition, the actual mold is not a solid metal cube as assumed in the previous estimation, but various spaces are unevenly arranged inside the mold cavity of various shapes and the built-in product extrusion mechanism. Since the mold clamping device of the injection molding machine that applies the mold clamping force to the mold is not mechanically accurate, the distribution of the mold clamping force on the mold dividing surface is not good. It becomes uniform and the elastic deformation distribution of the mold becomes uneven. Therefore, the shape of the mold cavity is also elastically deformed unevenly, and the shape of the resin molded product molded therein is different from the desired shape of the resin molded product. In view of these, resin molded products such as exterior panels and sunroofs for automobiles that use larger molds than those for optical disk substrate molding such as CD and DVD are molded by an injection compression molding method or an injection press molding method. For this purpose, it is necessary to reduce the amount of elastic deformation of the mold cavity at the time of clamping to suppress the deformation of the mold cavity shape, and to approach the specification shape of the resin molded product.

ここで、特許文献1から特許文献4においては、金型キャビティに射出充填された溶融樹脂内の残留応力を緩和させるために、保圧工程において型締力(圧縮力)を減圧させる様々な制御方法が開示されているものの、前述したような型締め時の金型キャビティの弾性変形量を低下させ、金型キャビティ形状の変形を抑制することについては何も言及されていない。特許文献1及び特許文献2においては、対象とする樹脂成形品が光ディスク基板や光学的情報記録媒体用樹脂基板(共に、CDやDVD等の基板)であり、金型が小さいため、型締め時の金型キャビティの弾性変形が樹脂成形品の形状に及ぼす影響が少ないと推定される。特許文献3においては、対象とする樹脂成形品が自動車用バックパネル等の大型のパネル状合成樹脂成形品であるが、その樹脂成形品の形状ゆえに発生しやすいコーナー部分や端部の内側周辺のヒケやクラックを低減させる方法であって、型締め時の金型キャビティの弾性変形量を低下させ、金型キャビティ形状の変形を抑制することについては何も言及されていない。特許文献4においては、対象とする樹脂成形品が特に特定されておらず、光学系の部品の射出圧縮成形に適した型締圧力制御方法であるとされているが、他の特許文献と同様に型締め時の金型キャビティの弾性変形量を低下させ、金型キャビティ形状の変形を抑制することについては何も言及されていない。   Here, in Patent Document 1 to Patent Document 4, various controls for reducing the mold clamping force (compression force) in the pressure-holding process in order to relieve the residual stress in the molten resin injected and filled into the mold cavity. Although a method is disclosed, nothing is mentioned about reducing the amount of elastic deformation of the mold cavity during mold clamping as described above and suppressing deformation of the mold cavity shape. In Patent Document 1 and Patent Document 2, the target resin molded product is an optical disk substrate or a resin substrate for an optical information recording medium (both substrates such as a CD or a DVD), and the mold is small. It is estimated that the elastic deformation of the mold cavity has little influence on the shape of the resin molded product. In Patent Document 3, the target resin molded product is a large-sized panel-shaped synthetic resin molded product such as a back panel for automobiles, but the corner portion and the inner periphery of the end portion that easily occur due to the shape of the resin molded product. There is no mention of a method for reducing sink marks and cracks, which reduces the amount of elastic deformation of the mold cavity during mold clamping and suppresses the deformation of the mold cavity shape. In Patent Document 4, the target resin molded product is not particularly specified, and it is said that it is a mold clamping pressure control method suitable for injection compression molding of optical system parts. Furthermore, nothing is mentioned about reducing the amount of elastic deformation of the mold cavity during mold clamping and suppressing the deformation of the mold cavity shape.

本発明は、上記したような問題点に鑑みてなされたもので、具体的には、樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法において、型締め時の金型キャビティの弾性変形量を低下させて金型キャビティ形状の変形を抑制し、金型キャビティ形状の変形をその金型キャビティで成形される樹脂成形品の許容変形量以下にすることにより、低歪みで部品寸法精度が高く、高い平滑性や透光性を備えた樹脂成形品を成形する射出成形方法を提供することを目的としている。   The present invention has been made in view of the above-described problems. Specifically, in an injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method, a mold at the time of clamping By reducing the amount of elastic deformation of the cavity to suppress the deformation of the mold cavity shape, and by making the deformation of the mold cavity shape less than the allowable deformation amount of the resin molded product molded in the mold cavity, low distortion An object of the present invention is to provide an injection molding method for molding a resin molded product having high dimensional accuracy and having high smoothness and translucency.

本発明の上記目的は、請求項1に示すように、樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法において、
1組の金型が組み合わされて形成される金型キャビティヘ、前記樹脂成形品に基づき予め算出された冷却固化収縮量が加算された樹脂量が射出充填される射出充填工程と、
前記射出充填工程の途中又は完了後、前記樹脂成形品の賦形に必要な第1型締力で前記金型が型締めされる圧縮工程と、
前記圧縮工程に引き続いて、予め、解析によって求められた、型締力による固定盤及び可動盤の弾性変形に対する前記金型キャビティの弾性変形量の関係に基づき、前記金型キャビティの前記弾性変形量が前記樹脂成形品の許容変形量以下になる第2型締力まで、前記第1型締力が減圧される型締力緩和制御が行われる保圧工程と、
を有することを特徴とする射出成形方法によって達成される。
The above object of the present invention is, as shown in claim 1, in an injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method.
An injection filling process in which a resin amount obtained by adding a cooling solidification shrinkage amount calculated in advance based on the resin molded product is injected and filled into a mold cavity formed by combining a set of molds;
A compression step in which the mold is clamped with a first mold clamping force necessary for shaping the resin molded product during or after the injection filling step,
Following the compression step, the amount of elastic deformation of the mold cavity based on the relationship of the amount of elastic deformation of the mold cavity with respect to the elastic deformation of the stationary platen and the movable platen due to the mold clamping force obtained in advance by analysis. A pressure holding step in which mold clamping force relaxation control is performed in which the first mold clamping force is reduced to a second mold clamping force that is equal to or less than an allowable deformation amount of the resin molded product;
It is achieved by an injection molding method characterized by comprising:

すなわち、射出圧縮成形方法又は射出プレス成形方法において、成形する樹脂成形品に基づき予め算出された冷却固化収縮量が加算された樹脂量が射出充填される射出充填工程により、金型キャビティ内の樹脂の冷却固化が進行し樹脂容積が収縮しても、圧縮工程から保圧工程を経て型開きされるまで、金型キャビティが隙間なく樹脂で満たされ、金型を介して金型キャビティ内の樹脂に均等に型締力(圧縮力)を付与させることができるため、樹脂成形品と金型キャビティ内面との密着性が向上し、樹脂成形品の冷却固化収縮の進行に係らず、金型を介して樹脂成形品を安定して冷却させることができる。また、樹脂成形品の賦形に必要な第1型締力で金型を型締めする圧縮工程に引き続いて、第2型締力まで第1型締力が減圧される型締力緩和制御が行われる保圧工程により金型キャビティ内の溶融樹脂内圧力が低下し、スキン層内部のまだ流動性を有する溶融樹脂が移動可能となり、樹脂内残留応力を緩和することができる。更に、この第2型締力が、予め、解析よって求められた、型締力による固定盤及び可動盤の弾性変形に対する金型キャビティの弾性変形量の関係に基づき、金型キャビティの弾性変形量が樹脂成形品の許容変形率以下になる型締力なので、型締力が第2型締力まで減圧された保圧工程の最終段階では、金型キャビティの弾性変形量が、その金型キャビティ内で成形される樹脂成形品の許容変形量以下になるので、樹脂成形品の歪み量や変形量を、その許容変形量以下にすることができる。また、金型には、型開きまで第2型締力が付与されるので、金型キャビティの弾性変形量がその中で成形させる樹脂成形品の許容変形量以下の状態で、金型キャビティ内で予め算出された冷却固化収縮量が加算された樹脂量で成形された樹脂成形品と金型キャビティ内面との密着性と均等な型締力付与状態とが維持されて、樹脂成形品の冷却固化収縮の進行に係らず、型開きまで金型を介した樹脂成形品の安定した冷却を継続させることができる。
That is, in the injection compression molding method or the injection press molding method, the resin in the mold cavity is injected by an injection filling process in which a resin amount obtained by adding a cooling solidification shrinkage calculated in advance based on a resin molded product to be molded is injected and filled. Even if the cooling and solidification of the resin progresses and the resin volume shrinks, the mold cavity is filled with the resin without any gap until the mold is opened through the compression process and the pressure holding process, and the resin in the mold cavity passes through the mold. Since the mold clamping force (compression force) can be applied evenly, the adhesion between the resin molded product and the inner surface of the mold cavity is improved, and the mold can be mounted regardless of the progress of cooling and solidification shrinkage of the resin molded product. Therefore, the resin molded product can be cooled stably. In addition, following the compression process in which the mold is clamped with the first mold clamping force necessary for shaping the resin molded product, mold clamping force relaxation control is performed in which the first mold clamping force is reduced to the second mold clamping force. The pressure in the molten resin in the mold cavity is reduced by the pressure-holding step performed, and the molten resin still having fluidity inside the skin layer can be moved, and the residual stress in the resin can be relaxed. Further, the second mold clamping force is determined based on the relationship between the elastic deformation amount of the mold cavity and the elastic deformation amount of the mold cavity with respect to the elastic deformation of the fixed platen and the movable platen obtained by the analysis in advance. Since the mold clamping force is less than the allowable deformation rate of the resin molded product, the amount of elastic deformation of the mold cavity is the mold cavity at the final stage of the pressure holding process where the mold clamping force is reduced to the second mold clamping force. Therefore, the amount of distortion and deformation of the resin molded product can be reduced to the allowable deformation amount or less. In addition, since the second mold clamping force is applied to the mold until the mold opens, the mold cavity has an elastic deformation amount equal to or less than an allowable deformation amount of the resin molded product to be molded therein. The resin molded product molded with the amount of resin added with the amount of cooling solidification shrinkage calculated in advance and the adhesion between the mold cavity inner surface and the uniform clamping force application state are maintained, and the resin molded product is cooled. Regardless of the progress of solidification shrinkage, stable cooling of the resin molded product through the mold can be continued until the mold is opened.

更に、請求項2に示すように、前記金型キャビティ内のある1点の金型キャビティ厚みTが、型締力が付与される前の前記金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と並行な平面から前記ある1点を通って、前記平面と対向する金型キャビティ面までの型開閉方向の距離であって、
前記金型キャビティの前記弾性変形量が、前記金型キャビティ厚みTが、ある型締力が付与されて前記金型が弾性変形してT’になったとき、T’−Tで表される前記ある1点における金型キャビティ厚みの変位量THのうち最も大きな変位量THMAXで定義され、
前記樹脂成形品のある1点の仕様厚みtが、前記樹脂成形品が成形される前記金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と並行な平面から前記ある1点を通って、前記平面と対向する樹脂成形品表面又は該表面の対面までの前記平面に垂直な方向の距離であって、
前記樹脂成形品の許容変形量が、前記樹脂成形品の仕様厚みtが、成形後の前記樹脂成形品でt’であったとき、t’−tで表される前記ある1点における樹脂成形品の厚み誤差thのうち、許容される最も大きな厚み誤差thMAXで定義されることを特徴とする請求項1に記載の射出成形方法であることが好ましい。
Further, according to a second aspect of the present invention, a mold cavity thickness T at one point in the mold cavity is one end of the mold cavity in the mold opening / closing direction before the mold clamping force is applied. A distance in the mold opening and closing direction from the plane parallel to the mold dividing surface and passing through the certain point to the mold cavity surface facing the plane,
The amount of elastic deformation of the mold cavity is expressed as T′−T when the mold cavity thickness T is T ′ when the mold is elastically deformed by applying a certain clamping force. It is defined by the largest displacement TH MAX among the displacement TH of the mold cavity thickness at the certain point,
The specified thickness t at one point of the resin molded product is a plane that is in contact with one of the end portions in the mold opening / closing direction of the mold cavity where the resin molded product is molded, and is parallel to the mold dividing surface. A distance in a direction perpendicular to the plane through the certain point to the surface of the resin molded product facing the plane or to the opposite side of the surface;
When the allowable deformation amount of the resin molded product is t ′ in the resin molded product after molding when the specified thickness t of the resin molded product is t′−t, the resin molding at the certain point represented by t′−t The injection molding method according to claim 1, wherein the injection molding method is defined by the largest allowable thickness error th MAX among the thickness error th of the product.

本来であれば、様々な形状の金型キャビティ形状及びその金型キャビティ内で成形される樹脂成形品の変形は3次元で定義されるべきである。しかしながら、これらの変形を3次元で定義すれば、樹脂成形品の許容変形量において品質管理値の1つとしてこれを規定すること自体が複雑な作業となる。よって、金型キャビティの変形量を表す弾性変形量と、その金型キャビティ内で成形される樹脂成形品の許容しうる変形量を表す許容変形量とが、主としてそれぞれの厚み方向の変形であることに着目して、形状内のある1点における、共通基準面からその1点を通る共通基準面と対向する形状面までの変形前後の厚み方向の距離の相違量の最大値で定義されれば、それぞれの変形が同一の簡略な1次元の数値で定義されるので、樹脂成形品の許容変形量において品質管理値の1つとしてこれを規定することが容易であり、それぞれの変形をこの定義により求められた1次元の数値で直接比較することができる。   Originally, various shapes of mold cavity shapes and deformation of resin molded products molded in the mold cavities should be defined in three dimensions. However, if these deformations are defined three-dimensionally, defining this as one of the quality control values in the allowable deformation amount of the resin molded product itself is a complicated operation. Therefore, the elastic deformation amount representing the deformation amount of the mold cavity and the allowable deformation amount representing the allowable deformation amount of the resin molded product molded in the mold cavity are mainly deformations in the thickness direction. Paying attention to this, it is defined by the maximum value of the difference in the distance in the thickness direction before and after deformation from a common reference plane to the shape facing the common reference plane passing through that point at one point in the shape. For example, since each deformation is defined by the same simple one-dimensional numerical value, it is easy to specify this as one of quality control values in the allowable deformation amount of the resin molded product. Direct comparison can be made with one-dimensional numerical values obtained by definition.

また、請求項3に示すように、前記保圧工程が、非晶性樹脂の場合はガラス転移点温度に到達する前に、結晶性樹脂の場合は結晶化温度に到達する前に開始され、ASTM D648で規定される熱変形温度に到達後、所定時間経過して完了されることを特徴とする請求項1から請求項2のいずれか1項に記載の射出成形方法であることが好ましい。   In addition, as shown in claim 3, the pressure holding step is started before reaching the glass transition temperature in the case of an amorphous resin, and before reaching the crystallization temperature in the case of a crystalline resin, It is preferable that the injection molding method according to any one of claims 1 to 2, wherein the injection molding method is completed after a predetermined time has elapsed after reaching the heat deformation temperature defined by ASTM D648.

型締力を第1型締力から第2型締力まで減圧させる型締力緩和制御が行われる保圧工程は、金型キャビティ内の溶融樹脂内圧力を低下させ、スキン層内部のまだ流動性を有する溶融樹脂を移動させ樹脂内残留応力を緩和し、冷却固化進行に伴い凝固収縮する樹脂成形品の各部位に流動可能な樹脂を供給するために、また、金型に型締力を付与させることにより金型キャビティ内の樹脂成形品と金型キャビティ内面との密着性を維持させて、金型を介した樹脂成形品の冷却を進行させ成形サイクルタイムを短縮させるために、非晶性樹脂の場合はガラス転移点温度以上の状態、結晶性樹脂の場合は結晶化温度以上の状態で開始させる必要がある。また、ASTM D648等で規定される熱変形温度に到達した後、所定時間経過してから保圧工程を完了させることで、金型キャビティの弾性変形量が樹脂成形品の許容変形量以下に固定された状態で製品取り出しを行うことができる。   The pressure holding process in which mold clamping force relaxation control is performed to reduce the mold clamping force from the first mold clamping force to the second mold clamping force reduces the pressure inside the molten resin in the mold cavity and still flows inside the skin layer. In order to relieve the residual stress in the resin by moving the molten resin and supply the flowable resin to each part of the resin molded product that solidifies and shrinks as the cooling solidification progresses, In order to maintain the adhesion between the resin molded product in the mold cavity and the inner surface of the mold cavity by applying, the cooling of the resin molded product through the mold proceeds and the molding cycle time is shortened. In the case of a crystalline resin, it is necessary to start at a temperature above the glass transition temperature, and in the case of a crystalline resin, it must be started at a temperature above the crystallization temperature. In addition, the elastic deformation amount of the mold cavity is fixed below the allowable deformation amount of the resin molded product by completing the pressure holding process after a predetermined time has elapsed after reaching the heat deformation temperature defined by ASTM D648 or the like. In this state, the product can be taken out.

また、請求項4に示すように、前記保圧工程が、前記第1型締力から前記第2型締力まで、複数のステップ状に減圧され、前記ステップの数、前記各ステップの型締力及び継続時間を任意で設定・変更・管理可能な型締力緩和制御が行なわれることを特徴とする請求項1から請求項3のいずれか1項に記載の射出成形方法であっても良い。   According to a fourth aspect of the present invention, in the pressure holding step, the pressure is reduced in a plurality of steps from the first mold clamping force to the second mold clamping force, and the number of steps and the mold clamping in each step are determined. The injection molding method according to any one of claims 1 to 3, wherein mold clamping force relaxation control capable of arbitrarily setting, changing, and managing the force and the duration is performed. .

第1型締力から第2型締力まで線形で減圧される型締力緩和制御が行われる保圧工程であれば、第1型締力及び第2型締力以外には、第1型締力から第2型締力までの時間しか設定できない。しかしながら、型締力緩和制御がこのように構成されれば、第1型締力から第2型締力まで複数のステップ状に減圧される保圧工程パターンを、ステップ数、各ステップでの型締力及び継続時間で任意に数値設定、変更、管理ができるため、成形品毎に歪みや変形がより少なくなる型締力緩和制御パターンを詳細に設定し、変更し、管理することができる。   If the pressure-holding process is such that mold clamping force relaxation control is performed in which the pressure is linearly reduced from the first mold clamping force to the second mold clamping force, the first mold is in addition to the first mold clamping force and the second mold clamping force. Only the time from the clamping force to the second mold clamping force can be set. However, if the mold clamping force relaxation control is configured in this way, the pressure holding process pattern in which the pressure is reduced in a plurality of steps from the first mold clamping force to the second mold clamping force is changed to the number of steps and the mold at each step. Since numerical values can be arbitrarily set, changed, and managed by the tightening force and the duration, it is possible to set, change, and manage a mold clamping force relaxation control pattern that reduces distortion and deformation for each molded product in detail.

次に、請求項5に示すように、前記型締力緩和制御が、前記第1型締力から前記第2型締力まで減圧後、微小型開きが行われることを特徴とする請求項1から請求項4のいずれか1項に記載の射出成形方法であっても良い。   Next, as shown in claim 5, the mold clamping force relaxation control is performed such that a minute mold opening is performed after the pressure is reduced from the first mold clamping force to the second mold clamping force. The injection molding method according to any one of claims 1 to 4 may be used.

保圧工程の最終段階で、型開きする直前に微小型開きを行うことにより、樹脂成形品にかかる型締力(圧縮力)を完全に開放させ、金型キャビティの弾性変形量をゼロにすると共に、樹脂成形品の残留応力を最小にすることができる。また、微小型開きにより、金型キャビティ内面と樹脂成形品との間に微小隙間が形成されるので、該微小隙間が断熱層として機能し、樹脂成形品の熱量の金型キャビティ内面への移動抑制、すなわち、樹脂成形品の冷却速度を低下させるため、樹脂成形品にアニール処理(応力除去のための熱処理)と同様の効果が得られ、更なる樹脂内残留応力緩和効果を得ることができる。   At the final stage of the pressure-holding process, by performing micro mold opening just before mold opening, the mold clamping force (compression force) applied to the resin molded product is completely released, and the elastic deformation amount of the mold cavity is made zero. At the same time, the residual stress of the resin molded product can be minimized. In addition, a minute gap is formed between the inner surface of the mold cavity and the resin molded product by opening the micro mold, so that the minute gap functions as a heat insulating layer, and the amount of heat of the resin molded product moves to the inner surface of the mold cavity. In order to suppress, that is, to reduce the cooling rate of the resin molded product, the resin molded product has the same effect as the annealing treatment (heat treatment for removing stress), and can further obtain a residual stress relaxation effect in the resin. .

次に、請求項6に示すように、前記型締力緩和制御が、前記第1型締力から前記第2型締力まで減圧される前記型締力緩和制御により実成形して得られた前記樹脂成形品の任意の点における前記厚み誤差thと、前記実成形と同じ成形条件で解析によって求められた前記任意の点における厚み誤差th’とを比較して所定量以上相違する場合に、th=th’となるように前記第1型締力、前記第2型締力、前記ステップの数、前記各ステップの型締力及び継続時間の少なくとも1つが補正されることを特徴とする請求項4から請求項5のいずれか1項に記載の射出成形方法であっても良い。   Next, as shown in claim 6, the mold clamping force relaxation control is obtained by actual molding by the mold clamping force relaxation control in which the pressure is reduced from the first mold clamping force to the second mold clamping force. When the thickness error th at an arbitrary point of the resin molded product and the thickness error th ′ at the arbitrary point obtained by analysis under the same molding conditions as the actual molding are different by a predetermined amount or more, The at least one of the first mold clamping force, the second mold clamping force, the number of steps, the mold clamping force of each step, and the duration is corrected so that th = th ′. The injection molding method according to any one of Items 4 to 5 may be used.

型締力に対する金型キャビティの弾性変形量の関係は、予め、市販の解析ソフトウエア等とコンピュータ等を使用した解析によって求めるため、実際の成形による結果と解析による結果とが相違する場合も考えられる。その相違が問題にならない程度のわずかな相違であれば、解析結果は実際の成形をほぼ正確にシミュレートしたものと考えられる。しかしながら、その相違が所定量以上で、樹脂成形品の変形量がその許容変形量を超えて問題となるような場合、その相違の要因を明確にするのは非常に困難で時間がかかる場合が多い。そのため、このような解析結果と実成形の結果とを比較する項目と補正する項目を予め規定しておけば、そのような相違が発生した場合でも、その要因追求に時間や費用を掛けることなく、補正内容を明確にした状態で本発明を実施することができる。   The relationship between the mold cavity's elastic deformation and the amount of elastic deformation of the mold cavity is obtained in advance by analysis using commercially available analysis software and a computer, etc., so the actual molding result may differ from the analysis result. It is done. If the difference is a slight difference that does not cause a problem, the analysis result is considered to have simulated the actual molding almost accurately. However, when the difference is more than a predetermined amount and the deformation amount of the resin molded product exceeds the allowable deformation amount, there is a case where it is very difficult and time consuming to clarify the cause of the difference. Many. Therefore, if the items to be compared with the items to be compared and the items to be corrected are specified in advance, even if such a difference occurs, it will not take time or cost to pursue the factors. The present invention can be carried out in a state where the correction contents are clarified.

次に、請求項7に示すように、コア金型と第1キャビティ金型が組み合わされて形成される第1キャビティに射出充填して1次成形体が成形される1次成形工程と、
前記1次成形体が保持された前記コア金型と組み合わされて第2キャビティが形成される第2キャビティ金型と前記第1キャビティ金型とが前記コア金型に対して相対的に切り替えられて、前記第2キャビティに射出充填して、前記1次成形体表面の少なくとも1部に2次成形体を積層成形する2次成形工程とを有する2層成形品を成形する射出成形方法において、
前記1次成形工程及び前記2次成形工程の少なくとも1つの工程において、請求項1から請求項6のいずれか1項に記載の射出成形方法が行われることを特徴とする2層成形品を成形する射出成形方法であっても良い。
Next, as shown in claim 7, a primary molding step in which a primary molded body is molded by injection filling a first cavity formed by combining a core mold and a first cavity mold,
The second cavity mold in which the second cavity is formed in combination with the core mold holding the primary molded body and the first cavity mold are switched relative to the core mold. In the injection molding method for molding a two-layer molded product, which has a secondary molding step of injection-filling the second cavity and laminating a secondary molded body on at least a part of the surface of the primary molded body,
The injection molding method according to any one of claims 1 to 6 is performed in at least one of the primary molding step and the secondary molding step, and a two-layer molded product is molded. It may be an injection molding method.

射出圧縮成形方法や射出プレス成形方法で成形される自動車等の外装パネルやサンルーフ等の樹脂成形品は、補強用のリブ構造部や組立用の取付部等が樹脂成形品の意匠面の裏面や周縁部に設けられることが多い。予め成形された自動車等の外装パネルやサンルーフ等の樹脂成形品を別の射出成形機の金型にインサートして、これら樹脂成形品の表面や周縁部に補強用のリブ構造部や組立用の取付部等を積層成形させる場合もあるが、1次成形用と2次成形用の金型を型締装置内において様々な方法で切り替えて、それら積層成形を1台の射出成形機で行う積層成形専用射出成形機も実用化されており、これらの積層成形専用射出成形機で積層成形させる場合も多い。本発明の射出成形方法は、特殊な機構や装置等を金型や射出成形機側に設ける必要がないため、これらの積層成形専用射出成形機における1次成形工程及び2次成形工程の少なくとも1つの工程で行われる射出圧縮成形方法や射出プレス成形方法に採用することができる。   Resin molded products such as automobile exterior panels and sunroofs that are molded by the injection compression molding method or injection press molding method, the rib structure portion for reinforcement, the mounting portion for assembly, etc. Often provided at the periphery. Insert molded resin parts such as automobile exterior panels and sunroofs into molds of other injection molding machines, and use them for reinforcing rib structures and assembly parts on the surface and periphery of these resin molded parts. In some cases, the mounting part and the like are laminated, and the mold for primary molding and secondary molding is switched by various methods in the mold clamping device, and the lamination is performed by a single injection molding machine. Molding-only injection molding machines have been put into practical use, and in many cases, these molding-specific injection molding machines are laminated. Since the injection molding method of the present invention does not require a special mechanism or device to be provided on the mold or the injection molding machine side, at least one of the primary molding process and the secondary molding process in these injection molding machines dedicated to lamination molding. It can be employed in an injection compression molding method or injection press molding method performed in one step.

本発明に係る射出成形方法は、樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法において、
1組の金型が組み合わされて形成される金型キャビティヘ、前記樹脂成形品に基づき予め算出された冷却固化収縮量が加算された樹脂量が射出充填される射出充填工程と、
前記射出充填工程の途中又は完了後、前記樹脂成形品の賦形に必要な第1型締力で前記金型が型締めされる圧縮工程と、
前記圧縮工程に引き続いて、予め、解析によって求められた、型締力による固定盤及び可動盤の弾性変形に対する前記金型キャビティの弾性変形量の関係に基づき、前記金型キャビティの前記弾性変形量が前記樹脂成形品の許容変形量以下になる第2型締力まで、前記第1型締力が減圧される型締力緩和制御が行われる保圧工程と、
を有するので、樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法において、型締め時の金型キャビティの弾性変形量を低下させて金型キャビティ形状の変形を抑制し、金型キャビティ形状の変形をその金型キャビティで成形される樹脂成形品の許容変形量以下にすることにより、低歪みで部品寸法精度が高く、高い平滑性や透光性を備えた樹脂成形品を成形することができる。
The injection molding method according to the present invention is an injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method.
An injection filling process in which a resin amount obtained by adding a cooling solidification shrinkage amount calculated in advance based on the resin molded product is injected and filled into a mold cavity formed by combining a set of molds;
A compression step in which the mold is clamped with a first mold clamping force necessary for shaping the resin molded product during or after the injection filling step,
Following the compression step, the amount of elastic deformation of the mold cavity based on the relationship of the amount of elastic deformation of the mold cavity with respect to the elastic deformation of the stationary platen and the movable platen due to the mold clamping force obtained in advance by analysis. A pressure holding step in which mold clamping force relaxation control is performed in which the first mold clamping force is reduced to a second mold clamping force that is equal to or less than an allowable deformation amount of the resin molded product;
In the injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method, the amount of elastic deformation of the mold cavity during mold clamping is reduced to suppress the deformation of the mold cavity shape, Resin molded product with low distortion, high part dimensional accuracy, high smoothness and translucency by reducing deformation of mold cavity shape below allowable deformation amount of resin molded product molded in mold cavity Can be molded.

本発明の実施例1に係る樹脂成形品が平板形状の場合の金型キャビティと樹脂成形品との型締め時の弾性変形を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the elastic deformation at the time of the mold clamping of the mold cavity and resin molded product in case the resin molded product which concerns on Example 1 of this invention is flat form. 本発明の実施例1に係る樹脂成形品が凸形状(凹形状)の場合の金型キャビティと樹脂成形品との型締め時の弾性変形を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the elastic deformation at the time of the mold clamping of a metal mold cavity and a resin molded product in case the resin molded product which concerns on Example 1 of this invention is convex shape (concave shape). 本発明の実施例1に係る射出成形方法の型締力及び型開量の制御系の動作説明図である。It is operation | movement explanatory drawing of the control system of the mold clamping force and mold | die opening amount of the injection molding method which concerns on Example 1 of this invention. 本発明の実施例2に係る射出成形方法の型締力及び型開量の制御系の動作説明図である。It is operation | movement explanatory drawing of the control system of the mold clamping force and mold | die opening amount of the injection molding method which concerns on Example 2 of this invention. 射出圧縮成形方法又は射出プレス成形方法による平板形状の射出成形品の射出成形方法を示す金型の概略断面側面図である。It is a general | schematic cross-section side view of the metal mold | die which shows the injection molding method of the flat plate-shaped injection molded product by the injection compression molding method or the injection press molding method. 樹脂成形品の製品投影面積と金型体積の関係を示すグラフである。It is a graph which shows the relationship between the product projection area of a resin molded product, and die volume. 型締め時に金型が型開閉方向に均等に弾性変形しない状態を示す射出成形機の概略側面図である。It is a schematic side view of an injection molding machine showing a state where the mold does not elastically deform evenly in the mold opening and closing direction during mold clamping. 図7における金型キャビティ内の樹脂成形品の弾性変形状態を示す概略断面側面図である。It is a schematic sectional side view which shows the elastic deformation state of the resin molded product in the metal mold cavity in FIG.

以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1から図3を参照しながら本発明の実施例1を説明する。図1は本発明の実施例1に係る樹脂成形品が平板形状の場合の金型キャビティと樹脂成形品との型締め時の弾性変形を示す概略縦断面図である。図1(a)左側が、固定金型と可動金型とが型合わせされた型締力が付与される前の状態の金型キャビティで、図1(a)右側が型締力により弾性変形している金型キャビティを示す。図1(b)左側が、図1(a)の金型キャビティで成形される平板形状の樹脂成形品の仕様形状で、右側が実際に成形される平板形状の樹脂成形品の形状を示す。図2は本発明の実施例1に係る樹脂成形品が凸形状(凹形状)の場合の金型キャビティと樹脂成形品との型締め時の弾性変形を示す概略縦断面図である。図2(a)左側が、固定金型と可動金型とが型合わせされた型締力が付与される前の状態の金型キャビティで、図2(a)右側が型締力により弾性変形している金型キャビティを示す。図2(b)左側が、図1(a)の金型キャビティで成形される凸形状(凹形状)の樹脂成形品の仕様形状で、右側が実際に成形される凸形状(凹形状)の樹脂成形品の形状を示す。図3は本発明の実施例1に係る射出成形方法の型締力及び型開量の制御系の動作説明図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic longitudinal sectional view showing elastic deformation at the time of clamping a mold cavity and a resin molded product when the resin molded product according to Example 1 of the present invention has a flat plate shape. The left side of FIG. 1 (a) is a mold cavity in a state before a mold clamping force in which a fixed mold and a movable mold are combined, and the right side of FIG. 1 (a) is elastically deformed by the mold clamping force. The mold cavity is shown. The left side of FIG. 1 (b) shows the specification shape of the flat plate-shaped resin molded product molded in the mold cavity of FIG. 1 (a), and the right side shows the shape of the flat plate-shaped resin molded product actually molded. FIG. 2 is a schematic longitudinal sectional view showing elastic deformation at the time of clamping the mold cavity and the resin molded product when the resin molded product according to Example 1 of the present invention has a convex shape (concave shape). The left side of FIG. 2 (a) is a mold cavity in a state before the mold clamping force in which the fixed mold and the movable mold are combined, and the right side of FIG. 2 (a) is elastically deformed by the mold clamping force. The mold cavity is shown. The left side of FIG. 2 (b) is the specification shape of a convex (concave) resin molded product molded in the mold cavity of FIG. 1 (a), and the right side is the convex shape (concave shape) actually molded. The shape of a resin molded product is shown. FIG. 3 is an operation explanatory view of a mold clamping force and mold opening amount control system of the injection molding method according to Embodiment 1 of the present invention.

最初に、図1を参照しながら、樹脂成形品が平板形状の場合の型締力に対する金型キャビティの弾性変形量及び樹脂成形品の許容変形量について説明する。図1(a)左側に示すように、固定金型7と可動金型8とが型合わせされて、平板形状の樹脂成形品10を成形するための金型キャビティ10aが形成されている。これは、金型に型締力が付与されておらず、金型が型合わせされただけで弾性変形していない状態を示す。この状態において、金型キャビティ10a内のある1点20における金型キャビティ厚みは、金型キャビティ10aの型開閉方向の最端部の一方に接する平面でかつ金型分割面に平行な平面20aから、ある1点20を通って、平面20aと対向する金型キャビティ面20bまでの型開閉方向の距離T(矢印)で表す。平板形状の樹脂成形品を成形する金型キャビティなのでその型開閉方向の金型キャビティ厚みは一定であり、金型キャビティ10a内のどの点においても金型キャビティ厚みはTである。これを前提に型締力に対する金型キャビティの弾性変形量について説明する。   First, the elastic deformation amount of the mold cavity and the allowable deformation amount of the resin molded product with respect to the mold clamping force when the resin molded product has a flat plate shape will be described with reference to FIG. As shown on the left side of FIG. 1 (a), a fixed mold 7 and a movable mold 8 are combined with each other to form a mold cavity 10a for molding a flat resin molded product 10. This shows a state in which the mold clamping force is not applied to the mold, and the mold is not just elastically deformed just by matching the mold. In this state, the mold cavity thickness at one point 20 in the mold cavity 10a is from a plane 20a that is in contact with one end of the mold cavity 10a in the mold opening / closing direction and parallel to the mold dividing surface. The distance T (arrow) in the mold opening / closing direction passes through a certain point 20 to the mold cavity surface 20b facing the flat surface 20a. Since it is a mold cavity for molding a flat resin molded product, the mold cavity thickness in the mold opening / closing direction is constant, and the mold cavity thickness is T at any point in the mold cavity 10a. Based on this assumption, the elastic deformation amount of the mold cavity with respect to the mold clamping force will be described.

実施例1において、射出成形機の型締装置はトグル式型締装置とする。型合わせされた金型にある型締力が付与されると、金型及び金型取付盤は先に説明したようにタイバー間で湾曲するように弾性変形するので、金型キャビティ10aも図1(a)右側に示すように弾性変形する。この状態における金型キャビティ10a内のある1点20における金型キャビティ厚みを、金型キャビティ10aの型開閉方向の最端部の一方に接する平面でかつ金型分割面に平行な平面20aから、ある1点20を通って、平面20aと対向する金型キャビティ面20bまでの型開閉方向の距離T’(矢印)で表す。先に説明したように型開閉方向の弾性変形量は金型キャビティ10a内で均等でないため、例えば違う点20’の金型キャビティ厚みはT’(矢印)となる。ここで、ある1点20における金型キャビティ10aの金型キャビティ厚みの変位量THをT’−Tとする。型締力が付与される前の金型キャビティ厚みTは一定であるが、型締め後の金型キャビティ厚みT’はT’、T’と様々な数値になるため、金型キャビティ厚みの変位量THも様々な値になる。変位量THの数値は型開閉方向の弾性変形量の大きな金型キャビティ10aのタイバー近傍部分や金型の剛性が低い部分で大きくなる。よって、本発明においては、ある型締力に対する金型キャビティ形状の変形をこの弾性変形による金型キャビティ厚みの変位量THのうち最も大きな変位量THMAXで定義し、ある型締力に対する金型キャビティの弾性変形量と呼称する。よって、型締力に対する金型キャビティの弾性変形量の関係とは、型締力を変化させた場合のそれら型締力に対する金型キャビティの弾性変形量の変化を意味する。 In the first embodiment, the mold clamping device of the injection molding machine is a toggle type mold clamping device. When a mold clamping force is applied to the matched mold, the mold and the mold mounting plate are elastically deformed so as to bend between the tie bars as described above, so that the mold cavity 10a is also shown in FIG. (A) It is elastically deformed as shown on the right side. In this state, the mold cavity thickness at a certain point 20 in the mold cavity 10a is determined from a plane 20a that is in contact with one end of the mold cavity 10a in the mold opening / closing direction and parallel to the mold dividing surface. It is represented by a distance T 1 ′ (arrow) in the mold opening / closing direction from a certain point 20 to the mold cavity surface 20b facing the plane 20a. As described above, since the amount of elastic deformation in the mold opening / closing direction is not uniform within the mold cavity 10a, for example, the mold cavity thickness at a different point 20 ′ is T 2 ′ (arrow). Here, the displacement TH of the mold cavity thickness of the mold cavity 10a at a certain point 20 is defined as T 1 '-T. The mold cavity thickness T before the mold clamping force is applied is constant, but the mold cavity thickness T ′ after mold clamping is various values such as T 1 ′ and T 2 ′. The amount of displacement TH also has various values. The numerical value of the displacement TH is large in the vicinity of the tie bar of the mold cavity 10a where the amount of elastic deformation in the mold opening / closing direction is large and in the portion where the rigidity of the mold is low. Therefore, in the present invention, the deformation of the mold cavity shape with respect to a certain clamping force is defined by the largest displacement amount TH MAX among the displacement amount TH of the mold cavity thickness due to this elastic deformation, and the mold with respect to a certain clamping force is defined. This is called the amount of elastic deformation of the cavity. Therefore, the relationship of the amount of elastic deformation of the mold cavity with respect to the mold clamping force means a change in the amount of elastic deformation of the mold cavity with respect to the mold clamping force when the mold clamping force is changed.

ある型締力が付与された場合の金型キャビティの弾性変形による変形は3次元で定義された方がより正確にその変形を定義することができる。しかしながら、これらの変形を3次元で定義すれば、樹脂成形品の許容変形量において品質管理値の1つとしてこれを規定すること自体が複雑な作業となることは先に説明したとおりである。よって、金型キャビティの変形量を表す弾性変形量が、主として型開閉方向の変形であることに着目して、金型キャビティの変形が金型キャビティの弾性変形量として、上記のような弾性変形による金型キャビティ厚みの変位量THのうち最も大きな変位量THMAXで定義されれば、簡略な1次元の数値で定義されるので、樹脂成形品の許容変形量において品質管理値の1つとしてこれを規定することが容易であり、それぞれの変形をこの定義により求められた1次元の数値で直接比較することができる。また、金型キャビティ10a内のある1点20における金型キャビティ厚みを、単純にそのある点20における型開閉方向の距離とせず、すべての点において一方のみ共通する基準面(20a)としたのは、樹脂成形品の許容変形量との相関性を鑑みたものであり、詳細は後述する。 The deformation due to the elastic deformation of the mold cavity when a certain clamping force is applied can be more accurately defined when defined in three dimensions. However, if these deformations are defined in three dimensions, as described above, it is a complicated task to define this as one of the quality control values in the allowable deformation amount of the resin molded product. Therefore, paying attention to the fact that the amount of elastic deformation representing the amount of deformation of the mold cavity is mainly the deformation in the mold opening and closing direction, the deformation of the mold cavity is the amount of elastic deformation of the mold cavity, and the elastic deformation as described above. If it is defined by the largest displacement amount TH MAX among the displacement amount TH of the mold cavity thickness due to, it is defined by a simple one-dimensional numerical value, so as one of the quality control values in the allowable deformation amount of the resin molded product It is easy to specify this, and each deformation can be directly compared with a one-dimensional numerical value obtained by this definition. In addition, the mold cavity thickness at a certain point 20 in the mold cavity 10a is not simply the distance in the mold opening / closing direction at the certain point 20, but is a reference plane (20a) that is common to only one point at all points. Is considered in view of the correlation with the allowable deformation amount of the resin molded product, and will be described in detail later.

続いて、樹脂成形品の許容変形量について説明する。図1(b)左側は、平板形状の樹脂成形品10の仕様形状である。この状態において、樹脂成形品10内のある1点30における樹脂成形品10の厚みは、樹脂成形品10が成形される金型キャビティ10aの型開閉方向の最端部の一方に接する平面でかつ金型分割面に平行な平面30aから、ある1点30を通って、平面30aと対向する樹脂成形品表面30bまでの平面30aに垂直な方向の距離t(矢印)で表す。これを仕様厚みと呼称する。平板形状の樹脂成形品なのでその仕様厚みは一定であり、樹脂成形品10内のどの点であっても樹脂成形品厚みは仕様厚みtである。本樹脂成形品10と本樹脂成形品10が成形される金型キャビティ10aとの関係は、金型設計時に考慮されるべき冷却固化収縮等の樹脂成形品仕様からの変更点を除けば、形状及び寸法は同一と考えて良い。(すなわちT=t)これを前提に樹脂成形品の許容変形量について説明する。   Next, the allowable deformation amount of the resin molded product will be described. The left side of FIG. 1B is a specification shape of a flat resin molded product 10. In this state, the thickness of the resin molded product 10 at a certain point 30 in the resin molded product 10 is a plane that is in contact with one end of the mold opening / closing direction of the mold cavity 10a in which the resin molded product 10 is molded, and It is represented by a distance t (arrow) in a direction perpendicular to the plane 30a from the plane 30a parallel to the mold dividing surface, through a certain point 30, to the resin molded product surface 30b facing the plane 30a. This is called the specification thickness. Since it is a flat plate-shaped resin molded product, its specification thickness is constant, and the resin molded product thickness is the specified thickness t at any point in the resin molded product 10. The relationship between the resin molded product 10 and the mold cavity 10a in which the resin molded product 10 is molded is a shape except for changes from the resin molded product specifications such as cooling and solidification shrinkage that should be considered when designing the mold. And the dimensions may be considered the same. (T = t) The allowable deformation amount of the resin molded product will be described on the assumption of this.

金型にある型締力が付与されて、金型キャビティ10aが図1(a)右側に示すように弾性変形すると、その変形した金型キャビティ10a内で成形される樹脂成形品10も図1(b)左側に示す仕様形状ではなく、図1(a)右側に示す弾性変形した金型キャビティ10aの形状と同じ図1(b)右側に示す形状で成形される。図1(b)右側の2点鎖線は樹脂成形品10の仕様形状を示す。この状態における樹脂成形品10内のある1点30における樹脂成形品厚みも、樹脂成形品10が成形される金型キャビティ10aの型開閉方向の最端部の一方に接する平面でかつ金型分割面に平行な平面30aから、ある1点30を通って、平面30aと対向する樹脂成形品表面30bまでの平面30aに垂直な方向の距離t’(矢印)で表す。先に説明したように、型開閉方向の弾性変形量と同様に、樹脂成形品厚みも樹脂成形品10内で均等でないため、例えば違う点30’の樹脂成形品厚みはt’(矢印)となる。ここで、ある1点30における樹脂成形品10の厚みと仕様厚みtとの厚み誤差thをt’−tとする、樹脂成形品の仕様厚みtは一定であるが、型締め後のt’はt’、t’と様々な数値になるため、樹脂成形品10の厚み誤差thも様々な値になる。よって、本発明においては、樹脂成形品に許容される変形をこの厚み誤差thのうち最も大きな厚み誤差thMAXで定義し、樹脂成形品の許容変形量と呼称する。この樹脂成形品の変形の定義は、樹脂成形品の製造業者において樹脂成形品の品質管理項目の1つとして一般的である。 When a mold clamping force is applied to the mold and the mold cavity 10a is elastically deformed as shown on the right side of FIG. 1A, the resin molded product 10 molded in the deformed mold cavity 10a is also shown in FIG. (B) Not the specification shape shown on the left side, but the shape shown on the right side of FIG. 1 (b), which is the same as the shape of the elastically deformed mold cavity 10a shown on the right side of FIG. 1 (a). A two-dot chain line on the right side of FIG. 1 (b) shows the specification shape of the resin molded product 10. The thickness of the resin molded product at a certain point 30 in the resin molded product 10 in this state is also a plane that is in contact with one of the end portions in the mold opening / closing direction of the mold cavity 10a in which the resin molded product 10 is molded, and the mold is divided. A distance t 1 ′ (arrow) in a direction perpendicular to the plane 30a from the plane 30a parallel to the plane to a resin molded product surface 30b facing the plane 30a through a certain point 30 is represented. As described above, since the thickness of the resin molded product is not uniform within the resin molded product 10 in the same way as the amount of elastic deformation in the mold opening / closing direction, for example, the thickness of the resin molded product at a different point 30 ′ is t 2 ′ (arrow). It becomes. Here, a thickness error th between the thickness of the resin molded product 10 and a specified thickness t at a certain point 30 is t 1 ′ −t, and the specified thickness t of the resin molded product is constant. Since 'has various values such as t 1 ' and t 2 ', the thickness error th of the resin molded product 10 also has various values. Therefore, in the present invention, the deformation allowed for the resin molded product is defined by the largest thickness error th MAX among the thickness errors th and is referred to as the allowable deformation amount of the resin molded product. The definition of the deformation of the resin molded product is common as one of quality control items of the resin molded product in the manufacturer of the resin molded product.

樹脂成形品の変形も3次元で定義された方がより正確にその変形を定義することができる。しかしながら、先に説明した金型キャビティの弾性変形による変形と同様に、樹脂成形品に許容される変形が、樹脂成形品の許容変形量として上記のような樹脂成形品の仕様厚みに対する実成形品の厚み誤差thのうち最も大きな厚み誤差thMAXで定義されれば、簡略な1次元の数値での定義なので、品質管理値の1つとしてこれを規定することが容易である。また、金型キャビティ10a内のある1点20における金型キャビティ厚みを、単純にそのある点20における金型厚み方向の距離とせず、すべての点において一方のみ共通する基準面(20a)としたのは、金型キャビティの変形の定義を、樹脂成形品の製造業者において樹脂成形品の品質管理項目の1つとして一般的な、先に説明した樹脂成形品の変形の定義と実質的に同一にするためであり、それぞれの変形をこの定義により求められた1次元の数値で直接比較することができるからである。 The deformation of the resin molded product can be more accurately defined if it is defined in three dimensions. However, similar to the deformation caused by the elastic deformation of the mold cavity described above, the deformation allowed for the resin molded product is the actual molded product with respect to the specified thickness of the resin molded product as the allowable deformation amount of the resin molded product. If it is defined by the largest thickness error th MAX among the thickness errors th, it is easy to define this as one of quality control values because it is a simple one-dimensional numerical definition. In addition, the mold cavity thickness at a certain point 20 in the mold cavity 10a is not simply set as the distance in the mold thickness direction at the certain point 20, but is a reference plane (20a) that is common to only one point at all points. The definition of the deformation of the mold cavity is substantially the same as the above-described definition of the deformation of the resin molded product, which is one of the quality control items of the resin molded product in the resin molded product manufacturer. This is because each deformation can be directly compared with a one-dimensional numerical value obtained by this definition.

次に、図2を参照しながら、樹脂成形品が凸形状(凹形状)の場合の型締力に対する金型キャビティの弾性変形量及び樹脂成形品の許容変形量について説明する。”凸形状(凹形状)”と表記したのは、意匠面が凸側、凹側のいずれであるかにより、いずれの形状としても定義できるためである。基本的に樹脂成形品が平板形状の場合の型締力に対する金型キャビティの弾性変形量及び樹脂成形品の許容変形量とそれぞれの定義は同じなので、相違点のみ説明する。図2(a)左側に示すように、固定金型7’と可動金型8’とが型合わせされて、凸形状(凹形状)の樹脂成形品10’を成形するための金型キャビティ10a’が形成されている。この状態において、平板形状の樹脂成形品10の場合は、金型キャビティ10a内のすべての点で金型キャビティ10aの型開閉方向の距離Tは同じであるが、凸形状(凹形状)の樹脂成形品の場合は、金型キャビティ10a’型開閉方向の最端部の一方に接する平面でかつ金型分割面に平行な平面40aから、ある1点40を通って、平面40aと対向する金型キャビティ面40bまでの型開閉方向の距離T(矢印)が、別の点40’においては距離T(矢印)となるように一定ではない。実際の樹脂成形品においては、先に説明したような理想的な平板形状の樹脂成形品はほとんどなく、このように基準となる平面40aからの型開閉方向の距離が一定でない形状の樹脂成形品がほとんどである。この図2(a)左側で示す状態から、金型にある型締力が付与されて、金型キャビティ10a’が弾性変形すると図2(a)右側に示す状態になる。(T→T’、T→T’)この金型キャビティ10a’の弾性変形により、凸形状(凹形状)の樹脂成形品10’も図2(b)左側に示す仕様形状ではなく図2(b)右側に示す形状で成形される。ある1点における金型キャビティの金型キャビティ厚み、この金型キャビティ厚みの金型の弾性変形前後の変位量TH、ある型締力に対する金型キャビティ形状の変形をこの変位量THのうち最も大きな変位量THMAXで定義し、ある型締力に対する金型キャビティの弾性変形量と呼称すること等、金型キャビティの変形に係る内容については先に説明したとおりなので説明は割愛する。 Next, the elastic deformation amount of the mold cavity and the allowable deformation amount of the resin molded product with respect to the clamping force when the resin molded product has a convex shape (concave shape) will be described with reference to FIG. The expression “convex shape (concave shape)” is because it can be defined as any shape depending on whether the design surface is the convex side or the concave side. Since the definition of the elastic deformation amount of the mold cavity and the allowable deformation amount of the resin molded product with respect to the clamping force when the resin molded product is a flat plate shape is basically the same, only the differences will be described. As shown on the left side of FIG. 2 (a), a mold cavity 10a for molding a convex-shaped (concave-shaped) resin molded product 10 'by aligning a fixed mold 7' and a movable mold 8 '. 'Is formed. In this state, in the case of the plate-shaped resin molded product 10, the distance T in the mold opening / closing direction of the mold cavity 10a is the same at all points in the mold cavity 10a, but a convex (concave) resin. In the case of a molded product, the mold cavity 10a ′ is a plane that is in contact with one end of the mold in the mold opening / closing direction and is parallel to the mold dividing surface, and passes through a certain point 40 to face the plane 40a. The distance T 1 (arrow) in the mold opening / closing direction to the mold cavity surface 40b is not constant so as to be the distance T 2 (arrow) at another point 40 ′. In an actual resin molded product, there is almost no ideal flat plate-shaped resin molded product as described above. Thus, the resin molded product having a shape in which the distance in the mold opening / closing direction from the reference flat surface 40a is not constant. Is almost. From the state shown on the left side of FIG. 2A, when a mold clamping force is applied to the mold and the mold cavity 10a ′ is elastically deformed, the state shown on the right side of FIG. 2A is obtained. (T 1 → T 1 ′, T 2 → T 2 ′) Due to the elastic deformation of the mold cavity 10 a ′, the convex (concave) resin molded product 10 ′ also has the specification shape shown on the left side of FIG. The shape shown in the right side of FIG. The mold cavity thickness of the mold cavity at a certain point, the displacement TH of the mold cavity before and after elastic deformation of the mold, and the deformation of the mold cavity shape with respect to a certain clamping force is the largest of the displacement TH The contents related to the deformation of the mold cavity, such as the amount of elastic deformation of the mold cavity defined by the displacement amount TH MAX and referred to as the amount of elastic deformation of the mold cavity with respect to a certain clamping force, are as described above, and will not be described.

凸形状(凹形状)の樹脂成形品の場合も、それを成形する金型キャビティ10a’と同様に仕様厚みt(t、t)は一定ではない。ある1点における樹脂成形品10の仕様厚み、この仕様厚みtとの厚み誤差th、樹脂成形品に許容される変形をこの厚み誤差thのうち最も大きな厚み誤差thMAXで定義し、樹脂成形品の許容変形量と呼称すること等、樹脂成形品の変形に係る内容についても先に説明したとおりなので割愛する。 In the case of a convex (concave) resin molded product, the specification thickness t (t 1 , t 2 ) is not constant as in the mold cavity 10a ′ for molding the resin molded product. The specified thickness of the resin molded product 10 at a certain point, the thickness error th with the specified thickness t, and the deformation allowed for the resin molded product are defined by the largest thickness error th MAX of the thickness error th, and the resin molded product The contents relating to the deformation of the resin molded product, such as the allowable deformation amount, are also omitted as described above.

以上説明したように、樹脂成形品の形状によらず、金型キャビティ及び樹脂成形品のそれぞれの変形が、形状内のある1点における、共通基準面からその1点を通る共通基準面と対向する形状面までの変形前後の厚み方向の距離の相違量の最大値で定義されれば、それぞれの変形が同一の簡略な1次元の数値で定義されるので、それぞれの変形をこの定義により求められた1次元の数値で直接比較することができる。   As described above, regardless of the shape of the resin molded product, each deformation of the mold cavity and the resin molded product is opposed to a common reference surface passing through the common reference surface at one point in the shape. If the maximum amount of difference in the thickness direction distance before and after deformation to the shape surface to be defined is defined, each deformation is defined by the same simple one-dimensional numerical value. Direct comparison can be made with the obtained one-dimensional numerical values.

次に、図3他を参照しながら本発明の実施例1に係る射出成形方法を説明する。まず、射出成形の準備工程について図7を参照しながら説明する。成形対象は、平板形状の樹脂成形品10とする。成形する平板形状の射出成形品10、射出成形品10の許容変形率を含む各種品質管理許容値、固定金型7及び可動金型8とからなる成形用金型及び使用する射出成形機1が決定された後、最初に、使用する樹脂、射出成形品10、成形用金型及び射出成形機1の仕様等から、樹脂成形品10の冷却固化収縮量を算出する。次に、市販の射出成形用シュミレーションソフト等を活用し、これら仕様から得られる成形条件を入力し、型締力を変えながら金型キャビティの弾性変形を解析し、金型キャビティに係る型締力に対する弾性変形量の関係を求める。このとき、金型キャビティ及び樹脂成形品の共通するある点における金型キャビティの型開閉方向の弾性変形量と樹脂成形品の厚み方向の変形量も同時に解析しておけば、後述する補正において有効に活用できる。求められた金型キャビティに係る型締力に対する弾性変形量の関係は、射出成形機の制御装置に記憶させ、射出成形機の制御プログラムで使用可能な状態にさせておく。この解析において、後述する保圧工程における型締力緩和制御は考慮する必要はない。   Next, an injection molding method according to Embodiment 1 of the present invention will be described with reference to FIG. First, an injection molding preparation process will be described with reference to FIG. The molding object is a flat resin molded product 10. A flat plate-shaped injection-molded product 10 to be molded, various quality control tolerance values including allowable deformation ratio of the injection-molded product 10, a molding die including a fixed die 7 and a movable die 8, and an injection molding machine 1 to be used. After the determination, first, the cooling solidification shrinkage amount of the resin molded product 10 is calculated from the resin to be used, the injection molded product 10, the mold for molding, the specifications of the injection molding machine 1, and the like. Next, using commercially available simulation software for injection molding, etc., input the molding conditions obtained from these specifications, analyze the elastic deformation of the mold cavity while changing the mold clamping force, and mold clamping force related to the mold cavity The relationship of the amount of elastic deformation to is obtained. At this time, if the amount of elastic deformation in the mold opening / closing direction of the mold cavity and the amount of deformation in the thickness direction of the resin molded product at the same point in common with the mold cavity and the resin molded product are analyzed at the same time, it is effective for the correction described later. Can be used for The obtained relationship of the elastic deformation amount to the mold clamping force related to the mold cavity is stored in the control device of the injection molding machine and is made available for use by the control program of the injection molding machine. In this analysis, it is not necessary to consider mold clamping force relaxation control in the pressure holding process described later.

次に、図3及び図5を参照しながら、実際の射出成形方法について説明する。図3は本発明の実施例1に係る射出成形方法の型締力及び型開量の制御系の動作説明図である。図5(a)に示すように、固定金型7と可動金型8とが組み合わされて形成される金型キャビティ10aに、固定金型7に配置された樹脂流路7aを介して射出ユニット9から溶融樹脂10bが射出充填される射出充填工程が行われる。型締力0〜Fの間で設定される型締力F‘で型閉じされている金型キャビティに射出充填して、充填樹脂圧力と型締力F’のバランスによって金型を距離Sだけ微小型開きさせる射出圧縮成形方法の射出充填工程が図3に示すB‘−B1−B2−Cのラインである。また、予め距離Sだけ微小型開きさせた金型に射出充填する射出プレス成形方法の射出充填工程が図3に示すA’−A−Cのラインである。それぞれの成形方法の実際の射出充填開始点は、前者がB1、後者がAである。なお本実施例では射出圧縮成形方法と射出プレス成形方法における微小型開量Sは、便宜的に両者同じとした。本発明の射出充填工程においては、成形する樹脂成形品に基づき予め算出された冷却固化収縮量が加算された樹脂量が射出充填されるので、金型キャビティ内の樹脂の冷却固化が進行し樹脂容積が収縮しても、圧縮工程から保圧工程を経て型開きされるまで、金型キャビティが隙間なく樹脂で満たされるため、金型を介して金型キャビティ内の樹脂に均等に型締力(圧縮力)を付与させることができることは先に説明したとおりである。尚、射出圧縮成形方法及び射出プレス成形方法は、射出充填時に金型を距離Sだけ微小型開きさせる方法が相違するがその目的は同じあることについても先に説明したとおりであり、詳細な説明は割愛する。   Next, an actual injection molding method will be described with reference to FIGS. FIG. 3 is an operation explanatory view of a mold clamping force and mold opening amount control system of the injection molding method according to Embodiment 1 of the present invention. As shown in FIG. 5A, an injection unit is inserted into a mold cavity 10a formed by combining a fixed mold 7 and a movable mold 8 via a resin flow path 7a arranged in the fixed mold 7. 9, an injection filling process in which the molten resin 10b is injected and filled is performed. The mold cavity is injected and filled with a mold clamping force F ′ set between mold clamping forces 0 to F, and the mold is moved by a distance S by the balance between the filling resin pressure and the mold clamping force F ′. The injection filling process of the injection compression molding method for micro-opening is the line B′-B1-B2-C shown in FIG. Further, the injection filling process of the injection press molding method in which the mold is previously opened by a distance S by a distance S is the line A'-A-C shown in FIG. The actual injection filling start point of each molding method is B1 for the former and A for the latter. In the present embodiment, the micro mold opening S in the injection compression molding method and the injection press molding method is the same for convenience. In the injection filling process of the present invention, since the resin amount obtained by adding the cooling solidification shrinkage amount calculated in advance based on the resin molded product to be molded is injection filled, the cooling solidification of the resin in the mold cavity proceeds and the resin Even if the volume shrinks, the mold cavity is filled with resin without gaps until it is opened from the compression process to the pressure holding process, so the mold clamping force is evenly applied to the resin in the mold cavity via the mold. (Compressive force) can be applied as described above. The injection compression molding method and the injection press molding method are different from each other in that the mold is opened by a distance S during injection filling, but the purpose is the same as described above. Will be omitted.

次に、図3のC−Kのラインで示すように、射出充填工程の途中から圧縮工程が開始される。(射出充填工程が完了してから開始される場合もある。)図5(b)に示すように、距離Sだけ微小型開きされた状態から、図示しない型締装置により可動金型8が固定金型7側へ型閉じされ、金型厚みLの型合わせ状態になり、金型キャビティ10aも正規の金型キャビティ厚みl(エル)として形成される。これは、図3の圧縮工程中の成形時間軸との交点Kで表され、金型に型締力はまだ付与されていない。金型キャビティ10a内の溶融樹脂10bは、充填樹脂圧力によってではなく、この圧縮工程開始時の型締装置による可動金型8の固定金型7側への型閉じ動作による金型キャビティの容積減少によって、金型キャビティ10a内に充填されるため、射出ユニット9の射出充填圧力による充填と比較して、金型キャビティ内の溶融樹脂の流動抵抗を低下させることができ、溶融樹脂内圧力分布の不均等化を抑制した状態で圧縮工程へと移行させることができることは先に説明したとおりである。   Next, as shown by the line CK in FIG. 3, the compression process is started in the middle of the injection filling process. (It may be started after the injection filling process is completed.) As shown in FIG. 5B, the movable mold 8 is fixed by a mold clamping device (not shown) from a state where the mold is opened by a distance S. The mold is closed to the mold 7 side so that the mold is aligned with the mold thickness L, and the mold cavity 10a is also formed as a normal mold cavity thickness l (el). This is represented by the intersection K with the molding time axis in the compression step of FIG. 3, and the mold clamping force is not yet applied to the mold. The molten resin 10b in the mold cavity 10a is not due to the filling resin pressure, but the volume of the mold cavity is reduced by the mold closing operation of the movable mold 8 toward the fixed mold 7 by the mold clamping device at the start of the compression process. Therefore, the flow resistance of the molten resin in the mold cavity can be reduced as compared with the filling by the injection filling pressure of the injection unit 9, and the pressure distribution of the molten resin in the pressure distribution of the molten resin can be reduced. As described above, it is possible to shift to the compression process in a state where unevenness is suppressed.

圧縮工程は、図3のC−KのラインからK−D−Eのラインで示すように継続される。図5(b)に示す型合わせ状態(図3のK点)からそのまま金型に型締力を付与させ型締状態にさせると金型に付与される型締力は大きくなり、図5(c)に示すように、最終的に樹脂成形品10の賦形に必要な第1型締力Fに到達し(図3のD点)圧縮工程中維持される。(図3のE点)また、型締力の付与に伴い金型は型開閉方向に圧縮され弾性変形し、型締力が第1型締力Fに到達した時点で、金型厚みはLからL’(L>L’)となり、金型キャビティ10aの金型キャビティ厚みもlからl’(l>l’)となる。実際には、樹脂成形品10及び金型キャビティ10aは、図5(c)のように型開閉方向に均等に圧縮され弾性変形するのではなく、図1、図2、図7、図8に示すようにタイバー間で湾曲するように弾性変形することは先に説明したとおりである。この圧縮工程の第1型締力Fの大きさは、樹脂成形品10及び成形用金型等の仕様及び成形条件等により適宜、好適なものが選択されればよい。   The compression process is continued as indicated by the line K-D-E from the line C-K in FIG. When the mold clamping force is applied to the mold as it is from the mold alignment state (point K in FIG. 3) shown in FIG. 5B and the mold is clamped, the mold clamping force applied to the mold increases, and FIG. As shown in c), the first mold clamping force F necessary for shaping the resin molded product 10 is finally reached (point D in FIG. 3) and maintained during the compression process. (Point E in FIG. 3) When the mold clamping force is applied, the mold is compressed and elastically deformed in the mold opening and closing direction, and when the mold clamping force reaches the first mold clamping force F, the mold thickness is L. To L ′ (L> L ′), and the mold cavity thickness of the mold cavity 10a also changes from l to l ′ (l> l ′). Actually, the resin molded product 10 and the mold cavity 10a are not evenly compressed and elastically deformed in the mold opening / closing direction as shown in FIG. 5 (c), but in FIG. 1, FIG. 2, FIG. 7, and FIG. As described above, the elastic deformation so as to bend between the tie bars is as described above. As the magnitude of the first mold clamping force F in this compression step, a suitable one may be selected as appropriate depending on the specifications and molding conditions of the resin molded product 10 and the molding die.

次に、図3のE−F−Gのラインで示すように、圧縮工程に引き続いて保圧工程が行われる。一般的な射出圧縮成形方法及び射出プレス成形方法においては、図3のE−g−iのライン(破線)で示すように、圧縮工程(第1型締力F)をそのまま継続し保圧工程となし樹脂成形品10を冷却固化させることは先に説明したとおりである。本発明においては、特許文献1から特許文献4のような、成形中の型締力(圧縮力)を緩和させる様々な型締力緩和制御方法に対して、保圧工程中に、樹脂成形品10の賦形に必要な第1型締力Fが所定の第2型締力fまで減圧される型締力緩和制御が行われる。この、所定の第2型締力fまで減圧される型締力緩和制御によって、特許文献1から特許文献4のような樹脂内残留応力緩和効果の向上に加えて、この第2型締力fが、予め解析によって求められた、型締力に対する金型キャビティの弾性変形量の関係に基づき、型締め時の金型の弾性変形量が樹脂成形品の許容変形率以下になる型締力なので、図3のF−Gで示す保圧工程の最終段階では、金型キャビティの弾性変形量、すなわち金型キャビティの変形量が樹脂成形品の許容変形量以下になり、その金型キャビティ内で成形される樹脂成形品の歪み量や変形量をその許容変形量以下にすることができる。   Next, as shown by the line E-F-G in FIG. 3, a pressure holding step is performed following the compression step. In a general injection compression molding method and injection press molding method, as shown by the E-g-i line (broken line) in FIG. 3, the compression step (first clamping force F) is continued as it is and the pressure holding step. As described above, the resin molded product 10 is cooled and solidified. In the present invention, in contrast to various mold clamping force relaxation control methods for relaxing the mold clamping force (compression force) during molding, such as Patent Document 1 to Patent Document 4, during the pressure holding process, a resin molded product is used. The mold clamping force relaxation control is performed in which the first mold clamping force F necessary for the 10 shaping is reduced to a predetermined second mold clamping force f. By this mold clamping force relaxation control for reducing the pressure to a predetermined second mold clamping force f, in addition to the improvement of the residual stress relaxation effect in the resin as in Patent Document 1 to Patent Document 4, this second mold clamping force f However, based on the relationship of the amount of elastic deformation of the mold cavity to the mold clamping force obtained in advance, the mold clamping force is such that the amount of elastic deformation of the mold during mold clamping is less than the allowable deformation rate of the resin molded product. 3, in the final stage of the pressure holding process indicated by FG in FIG. 3, the elastic deformation amount of the mold cavity, that is, the deformation amount of the mold cavity is equal to or less than the allowable deformation amount of the resin molded product. The distortion amount and deformation amount of the resin molded product to be molded can be made equal to or less than the allowable deformation amount.

この圧縮工程から保圧工程への切り替えは、金型キャビティ内の溶融樹脂内圧力を低下させ、スキン層内部のまだ流動性を有する溶融樹脂を移動させ樹脂内残留応力を緩和し、冷却固化進行に伴い凝固収縮する樹脂成形品の各部位に流動可能な樹脂を供給するために、また、金型に型締力を付与させることにより金型キャビティ内の樹脂成形品と金型キャビティ内面との密着性を維持させて、金型を介した樹脂成形品の冷却を進行させ成形サイクルタイムを短縮させるために、樹脂成形品10の樹脂が非晶性樹脂の場合はガラス転移点温度以上の状態、結晶性樹脂の場合は結晶化温度以上の状態で開始させる必要がある。また、ASTM D648等で樹脂毎に規定される熱変形温度に到達した後、所定時間経過してから保圧工程を完了させることで、金型キャビティの弾性変形量が樹脂成形品の許容変形量以下に固定された状態で製品取り出しを行うことができる。ここで、保圧工程の完了タイミング、すなわち、熱変形温度に到達した後の所定時間は、型締力緩和制御の効果と製品を取り出した後の製品自重などによる変形防止及び成形サイクルタイムのバランスを鑑みて、適時、好適な時間が選択される。   Switching from the compression process to the pressure-holding process reduces the internal pressure of the molten resin in the mold cavity, moves the molten resin that is still fluid inside the skin layer, relieves residual stress in the resin, and proceeds with cooling and solidification. In order to supply a flowable resin to each part of the resin molded product that coagulates and shrinks along with, and by applying a clamping force to the mold, the resin molded product in the mold cavity and the inner surface of the mold cavity When the resin of the resin molded product 10 is an amorphous resin in order to maintain the adhesiveness and advance the cooling of the resin molded product through the mold to shorten the molding cycle time, the state is equal to or higher than the glass transition temperature. In the case of a crystalline resin, it is necessary to start at a temperature higher than the crystallization temperature. Also, after reaching the heat deformation temperature specified for each resin by ASTM D648 etc., the pressure holding process is completed after a predetermined time has elapsed, so that the elastic deformation amount of the mold cavity is the allowable deformation amount of the resin molded product. The product can be taken out in a fixed state as follows. Here, the completion timing of the pressure holding process, that is, the predetermined time after reaching the heat deformation temperature, is a balance between the effect of mold clamping force relaxation control and deformation prevention due to the product's own weight after taking out the product and the molding cycle time. In view of the above, a suitable time is selected in a timely manner.

本発明は使用される樹脂について特に指定はなく、射出圧縮成形方法や射出プレス成形方法に使用可能であれば、成形される樹脂成形品の用途、形状、コスト等の仕様を満たす好適な樹脂が適宜選択されれば良い。具体的には、非晶性樹脂としては、PC(ポリカーボネート)、PMMA(ポリメタクリル酸メチル(アクリル)樹脂)、ABS(アクリロニトリル/ブタジエン/スチレン樹脂)等があり、結晶性樹脂としては、POM(ポリオキシメチレン(アセタール)),PET(ポリエチレンテレフタレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PA(ポリアミド)等がある。   The present invention is not particularly specified for the resin to be used, and if it can be used for an injection compression molding method or an injection press molding method, a suitable resin that satisfies specifications such as the use, shape, cost, etc. of the resin molded product to be molded. What is necessary is just to select suitably. Specifically, the amorphous resin includes PC (polycarbonate), PMMA (polymethyl methacrylate (acrylic) resin), ABS (acrylonitrile / butadiene / styrene resin), and the crystalline resin includes POM ( Polyoxymethylene (acetal)), PET (polyethylene terephthalate), PE (polyethylene), PP (polypropylene), PA (polyamide), and the like.

次に、図3のG−Hラインで示すように、保圧工程に引き続いて、平板形状の樹脂成形品10が可動金型8に保持されて型開きされる型開き/製品取出工程を示す。その図5(e)に示すように、型開き後、可動金型8に配置された図示しない製品押出手段により、可動金型8より押し出され、図示しない製品取出手段により金型外へ搬出されることは先に説明したとおりである。   Next, as shown by the GH line in FIG. 3, following the pressure holding process, a mold opening / product taking process in which the flat resin molded product 10 is held by the movable mold 8 and opened is shown. . As shown in FIG. 5 (e), after the mold is opened, it is pushed out from the movable mold 8 by a product pushing means (not shown) arranged in the movable mold 8, and is carried out of the mold by a product taking-out means (not shown). This is as described above.

図4を参照しながら本発明の実施例2を説明する。図4は本発明の実施例2に係る射出成形方法の型締力及び型開量の制御系の動作説明図である。実施例2における実施例1との相違点は、実施例1における図3のE−F−Gのラインで示す保圧工程の内、E−Fのラインで示す線形で減圧するのではなく、図4のE−e1〜e4−Fのラインで示す3段のステップ状に減圧する点と、図3のF−Gのライン間で図4のh1−h2−h3のラインで示す微小型開きが行われる点の2点である。それ以外の構成要件や射出成形方法は実施例1と基本的に同じため、図4中の射出充填工程等、C点以前のラインの表示は省略し、実施例1との相違点についてのみ説明する。   Embodiment 2 of the present invention will be described with reference to FIG. FIG. 4 is an operation explanatory diagram of the control system for the mold clamping force and the mold opening amount of the injection molding method according to the second embodiment of the present invention. The difference between Example 2 and Example 1 is that, in the pressure holding process indicated by the line E-F-G in FIG. 3 in Example 1, the pressure is not reduced linearly as indicated by the line E-F. A micro mold opening indicated by the line h1-h2-h3 in FIG. 4 between the point where pressure is reduced in three steps indicated by the lines E-e1 to e4-F in FIG. 4 and the line FG in FIG. There are two points that are performed. Since other structural requirements and injection molding methods are basically the same as those in the first embodiment, the display of lines before point C such as the injection filling process in FIG. 4 is omitted, and only differences from the first embodiment are described. To do.

図4のC−K−D−Eのラインで示す圧縮工程に引き続いて保圧工程が行われる。実施例2では、最終的に減圧される第2型締力fは実施例1と同じであるが、保圧工程を、型締力F1(F>F1)まで減圧させる保圧1(E−e1−e2)、型締力F2(F1>F2)まで減圧させる保圧2(e2−e3−e4)、第2型締力f(F2>f)まで減圧させる保圧3(e4−F−h1)のように、減圧を3段のステップ状としている。ここで、保圧工程において行われる型締力緩和制御の減圧を複数のステップ状とすること自体に大きな意味はない。減圧を複数のステップ状とすることにより、第1型締力Fから第2型締力fまでの減圧を単なる線形での直線的な減圧ではなく、各ステップの減圧値、到達タイミング、維持時間等を詳細に設定することによって、2次曲線のような曲線状に近似される減圧工程を選択することができることに意味がある。例えば、図4に示すような減圧が3段のステップ状であっても、各型締力F1〜F3を均等ではなく、F1まで大きめに減圧して型締力F2から型締力F3を小さめに減圧することにより2次曲線のような減圧が可能になる。また、各ステップのe1、e3、f1のタイミングも不均等にして、各型締力の保持時間e1−e2、e3−e4、F−f1も不均等にすれば、更に2次曲線に近い減圧が可能になる。このように、第1型締力Fから第2型締力fまでの減圧を複数のステップ状とすることにより、最適な型締力緩和制御が、冷却固化に進行に伴い刻々と変化する複雑な減圧であっても、各ステップ数及びそれぞれの変位点(開始点及び終了点)を任意に設定することで、より最適な曲線状の型締力緩和制御に近付けることができる。また、複雑な型締力緩和制御であっても、それを各ステップの変位点等(開始点及び終了点)で設定されれば、型締力緩和制御の設定・変更・管理が容易でかつ他の射出成形機や複数の射出成形機でも再現できる。   A pressure holding process is performed following the compression process indicated by the line C-K-D-E in FIG. In the second embodiment, the second mold clamping force f that is finally reduced in pressure is the same as that in the first embodiment, but the holding pressure 1 (E−) in which the pressure holding process is reduced to the mold clamping force F1 (F> F1). e1-e2), holding pressure 2 (e2-e3-e4) for reducing the pressure to mold clamping force F2 (F1> F2), holding pressure 3 (e4-F-) for reducing the pressure to second clamping force f (F2> f) As in h1), the decompression is performed in three steps. Here, there is no significant meaning in making the pressure reduction of the mold clamping force relaxation control performed in the pressure holding process into a plurality of steps. By making the pressure reduction into a plurality of steps, the pressure reduction from the first mold clamping force F to the second mold clamping force f is not a simple linear linear pressure reduction, but the pressure reduction value, arrival timing, and maintenance time of each step. It is meaningful that the decompression process approximated to a curve shape such as a quadratic curve can be selected by setting the details and the like in detail. For example, even if the pressure reduction as shown in FIG. 4 is performed in three steps, the mold clamping forces F1 to F3 are not equal, but the pressure is increased to F1 to reduce the mold clamping force F3 from the mold clamping force F2. It is possible to reduce the pressure as a quadratic curve. Further, if the timings of e1, e3, and f1 in each step are made unequal, and the holding times e1-e2, e3-e4, and F-f1 of each mold clamping force are made unequal, the pressure is further reduced to a quadratic curve. Is possible. As described above, by reducing the pressure from the first mold clamping force F to the second mold clamping force f into a plurality of steps, the optimal mold clamping force relaxation control changes with the progress of cooling and solidification. Even if the pressure is reduced, by setting the number of steps and the respective displacement points (start point and end point) arbitrarily, it is possible to approach more optimal curved mold clamping force relaxation control. Moreover, even if complex mold clamping force relaxation control is set at the displacement point of each step (start point and end point), it is easy to set, change, and manage mold clamping force relaxation control. It can be reproduced with other injection molding machines and multiple injection molding machines.

次に、保圧工程の最終段階で、図4のh1−h2−h3のラインで示すように、金型を距離S’だけ型開きさせる微小型開きが行われる。通常、型締状態で金型キャビティ内が樹脂で満たされ、その樹脂に小さくても所定の型締力が付与されていれば、金型キャビティ内の樹脂成形品と金型キャビティ内面との密着性と均等な型締力付与状態とが維持されて、金型を介した樹脂成形品の冷却が型開きまで継続される。この冷却が継続されている途中で図5(e)に示すように、樹脂成形品10が可動金型8に保持された状態で型開き限まで型開きを行うと、樹脂成形品の固定金型7側のみが一気に常温下で大気放冷される。この型開きの時点において、金型キャビティ内の樹脂成形品は冷却固化がほぼ完了しているとは言え比較的高い温度を維持している。そのため、可動金型8に保持された樹脂成形品10内には、金型を介して冷却されている可動金型8側と、型開きにより一気に常温下で大気放冷される固定金型7側とで型開閉方向に急激な温度勾配が発生することになる。樹脂成形品10の型開閉方向の厚みや金型に対する製品投影面積によっては、この発生した型開閉方向の温度勾配が、成形後の歪みや変形を誘引する可能性もある。   Next, at the final stage of the pressure holding process, as shown by the line h1-h2-h3 in FIG. Normally, if the mold cavity is filled with resin in the mold-clamped state and a predetermined mold clamping force is applied to the resin even if it is small, the resin molded product in the mold cavity and the inner surface of the mold cavity are in close contact. And a uniform clamping force application state are maintained, and cooling of the resin molded product through the mold is continued until the mold is opened. While the cooling is continued, as shown in FIG. 5 (e), when the mold opening is performed to the mold opening limit while the resin molded product 10 is held by the movable mold 8, a fixed mold for the resin molded product is obtained. Only the mold 7 side is cooled to the atmosphere at room temperature. At the time of the mold opening, the resin molded product in the mold cavity is maintained at a relatively high temperature although cooling and solidification is almost completed. Therefore, in the resin molded product 10 held by the movable mold 8, the movable mold 8 side cooled through the mold and the fixed mold 7 that is allowed to cool to the atmosphere at room temperature at once by opening the mold. A sudden temperature gradient occurs in the mold opening and closing direction. Depending on the thickness of the resin molded product 10 in the mold opening / closing direction and the projected area of the product on the mold, the generated temperature gradient in the mold opening / closing direction may induce distortion and deformation after molding.

そこで、保圧工程の最終段階で、型開きする直前に図4のh1−h2−h3のラインで示すような、金型を距離S’だけ型開きさせる微小型開きが行われると、以下に示すような型締力緩和制御の2つの波及効果を得ることができる。1つは、樹脂成形品にかかる型締力(圧縮力)を完全に開放することによって、金型キャビティの弾性変形量を完全にゼロにして、該弾性変形による樹脂成形品の残留応力を最小にすることができる。もう1つは、微小型開きにより樹脂成形品と金型キャビティとの間に微小隙間を形成させ、(ただし金型キャビティは密閉状態を維持している状態)この微小隙間を空気層として樹脂成形品と金型キャビティと間の伝熱を遮断させるとともに、樹脂成形品の熱量により該空気層が高い温度で維持されることにより、樹脂成形品は金型キャビティ内でアニール処理(応力除去のための熱処理)されて、その残留応力の多くを除去することができる。ここで、微小型開きさせるタイミングと微小型開き量とによってアニール処理効果の程度が決まる。例えば、保圧工程の早いタイミングで微小型開きさせると、樹脂成形品の熱量が大きいのでアニール処理効果も大きいが、樹脂成形品の冷却保持時間も長く設定することが必要になるので、アニール処理効果と成形サイクルタイムのバランスを鑑みて、微小型開きのタイミングと微小型開き量S’は適宜好適なものが選択されることは言うまでもない。   Therefore, in the final stage of the pressure holding process, when a minute mold opening is performed to open the mold by the distance S ′ as shown by the line h1-h2-h3 in FIG. 4 immediately before the mold opening, Two ripple effects of the mold clamping force relaxation control as shown can be obtained. One is to completely release the mold clamping force (compression force) applied to the resin molded product, thereby completely reducing the amount of elastic deformation of the mold cavity and minimizing the residual stress of the resin molded product due to the elastic deformation. Can be. The other is to form a minute gap between the resin molded product and the mold cavity by opening the mold (however, the mold cavity is kept in a sealed state). The heat transfer between the product and the mold cavity is interrupted, and the air layer is maintained at a high temperature by the heat quantity of the resin molded product, so that the resin molded product is annealed in the mold cavity (for stress relief) Most of the residual stress can be removed. Here, the degree of the annealing treatment effect is determined by the timing of opening the micro mold and the amount of micro mold opening. For example, if the mold is opened at an early timing of the pressure holding process, the heat treatment effect is great because the amount of heat of the resin molded product is large, but it is necessary to set a long cooling holding time for the resin molded product. In view of the balance between the effect and the molding cycle time, it is needless to say that a suitable one is selected as appropriate for the timing of micro mold opening and the micro mold opening amount S ′.

本発明は、上記の実施の形態に限定されることなく色々な形で実施できる。実施例1及び実施例2において、型締力に対する金型キャビティの弾性変形量を、市販の射出成形用シュミレーションソフト等を活用し、これら仕様から得られる成形条件を入力し、型締力を変えながら金型キャビティの弾性変形を解析し、金型キャビティに係る型締力に対する弾性変形量の関係を求めるとしたが、樹脂成形品及びその樹脂成形品が成形される金型キャビティの形状が単純な場合や、樹脂成形品が比較的小さく、型締め時の金型キャビティの変形が樹脂成形品の変形に及ぼす影響が少ない場合等においては、型締力に対する金型キャビティの弾性変形量の関係を、解析によってではなく、先に説明したように金型を無垢の金属製立方体と想定して計算により概算で求めたり、金型キャビティの形状を実際の形状より簡略化して解析の負荷を小さくした上で求めたりして、その関係に基づき本発明が実施されても良い。更に、型締力に対する金型キャビティの弾性変形量の関係を求める簡易的な方法として、タイバー全てに、その型締力(延び量)を検出するセンサを配置させ、ダミーブロック等を使用して全てのタイバーに掛かる型締力(延び量)が均一になるよう調整した上で、実際の金型を型締力Fで型締めした際の全てのタイバーで検出される延び量の相違をその金型の金型分割面における型開閉方向の弾性変形量分布の相違とみなし、この相違の割合が樹脂成形品の仕様厚みと許容厚みとの割合以下となる型締力をfとして、型締力をFからfに減圧する型締力緩和制御を行っても良い。   The present invention is not limited to the above embodiment and can be implemented in various forms. In Example 1 and Example 2, the amount of elastic deformation of the mold cavity with respect to the mold clamping force was utilized using commercially available injection molding simulation software, etc., and the molding conditions obtained from these specifications were input to change the mold clamping force. While analyzing the elastic deformation of the mold cavity and determining the relationship between the amount of elastic deformation and the mold clamping force related to the mold cavity, the shape of the resin mold and the mold cavity where the resin mold is molded is simple. If the resin molded product is relatively small and the deformation of the mold cavity during mold clamping has little effect on the deformation of the resin molded product, the relationship between the amount of elastic deformation of the mold cavity and the mold clamping force As described above, rather than through analysis, the mold is assumed to be a solid metal cube and is calculated roughly, or the mold cavity shape is simplified from the actual shape. And or calculated in terms of the reduced load of the analysis, the present invention based on the relationship may be implemented. Furthermore, as a simple method for determining the relationship between the mold cavity's elastic deformation amount and mold clamping force, sensors for detecting the mold clamping force (extension amount) are arranged on all tie bars, and a dummy block or the like is used. After adjusting the mold clamping force (elongation amount) applied to all tie bars to be uniform, the difference in the extension amount detected by all tie bars when the actual mold is clamped with the mold clamping force F The mold clamping surface is regarded as a difference in elastic deformation distribution in the mold opening and closing direction on the mold splitting surface, and the mold clamping force is set so that the ratio is less than the ratio between the specification thickness and the allowable thickness of the resin molded product. Mold clamping force relaxation control for reducing the force from F to f may be performed.

また、実施例1及び実施例2において、型締力に対する金型キャビティの弾性変形量の関係は、予め、コンピュータや市販の解析ソフトウエア等を使用した解析によって求めるため、実際の成形による結果と解析による結果とが相違する場合も考えられる。そのため、その相違が所定量以上で、樹脂成形品の変形量がその許容変形量を超えて問題となるような場合に備えて、解析時に金型キャビティ及び樹脂成形品の共通するある点における金型キャビティの型開閉方向の弾性変形量と樹脂成形品の厚み方向の変形量も同時に解析しておけば、ある点における解析によって求められた樹脂成形品の厚み誤差thと、実際の射出成形によって成形された樹脂成形品の同じある点における厚み誤差実測値th’とを比較することができる。この比較を定期的に行えば、解析の信頼性を維持することができる。また、この比較の結果、その相違が所定量以上で、樹脂成形品の変形量がその許容変形量を超えて問題となるような場合、th=th’となるように、補正する項目を予め規定しておけば、そのような相違の要因追求に時間や費用を掛けることなく、補正内容を明確にした状態で本発明を実施することができる。この補正する項目は、型締力に対する金型キャビティの弾性変形量の関係を求める解析においては考慮していない、保圧工程で行われる型締力緩和制御に係る項目の少なくとも1つとすることが望ましい。   In Example 1 and Example 2, since the relationship between the amount of elastic deformation of the mold cavity and the mold clamping force is obtained in advance by analysis using a computer, commercially available analysis software, etc., There may be cases where the results of the analysis differ. Therefore, in preparation for the case where the difference is more than a predetermined amount and the deformation amount of the resin molded product exceeds the allowable deformation amount and becomes a problem, the mold cavity and the resin molded product at a certain point in common at the time of analysis If the amount of elastic deformation in the mold opening / closing direction of the mold cavity and the amount of deformation in the thickness direction of the resin molded product are also analyzed at the same time, the thickness error th of the resin molded product obtained by analysis at a certain point and the actual injection molding It is possible to compare the thickness error measured value th ′ at the same point of the molded resin molded product. If this comparison is performed periodically, the reliability of the analysis can be maintained. In addition, if the difference is equal to or greater than a predetermined amount as a result of this comparison and the deformation amount of the resin molded product exceeds the allowable deformation amount, there is a problem that th = th ′. If defined, the present invention can be carried out in a state where the correction contents are clarified without spending time and expense in pursuing the cause of such difference. The item to be corrected may be at least one of items related to mold clamping force relaxation control performed in the pressure holding process, which is not considered in the analysis for obtaining the relationship between the mold clamping force and the elastic deformation amount of the mold cavity. desirable.

更に、本発明に係る射出成形方法は積層成形にも採用できる。射出圧縮成形方法や射出プレス成形方法で成形される自動車等の外装パネルやサンルーフ等の樹脂成形品は、補強用のリブ構造部や組立用の取付部等が樹脂成形品の意匠面の裏面や周縁部に設けられることが多い。予め成形された自動車等の外装パネルやサンルーフ等の樹脂成形品を別の射出成形機の金型にインサートして、これら樹脂成形品の表面や周縁部に補強用のリブ構造部や組立用の取付部等を積層成形させる場合もあるが、1次成形用と2次成形用の金型を型締装置内において様々な方法で切り替えて、それら積層成形を1台の射出成形機で行う積層成形専用射出成形機も様々な形態が提案・実用化されており、これらの積層成形専用射出成形機で積層成形させる場合も多い。本発明は、特殊な機構や装置等を金型や射出成形機側に設ける必要がないため、これらの積層成形専用射出成形機における1次成形工程及び2次成形工程の少なくとも1つの工程で行われる射出圧縮成形方法や射出プレス成形方法に採用することができ、本発明に係る射出成形方法を採用することで、低歪みで部品寸法精度が高く、高い平滑性や透光性を備えた積層樹脂成形品を成形することができる。   Furthermore, the injection molding method according to the present invention can also be adopted for laminate molding. Resin molded products such as automobile exterior panels and sunroofs that are molded by the injection compression molding method or injection press molding method, the rib structure portion for reinforcement, the mounting portion for assembly, etc. Often provided at the periphery. Insert molded resin parts such as automobile exterior panels and sunroofs into molds of other injection molding machines, and use them for reinforcing rib structures and assembly parts on the surface and periphery of these resin molded parts. In some cases, the mounting part and the like are laminated, and the mold for primary molding and secondary molding is switched by various methods in the mold clamping device, and the lamination is performed by a single injection molding machine. Various types of injection molding machines dedicated to molding have been proposed and put into practical use. In many cases, these molding machines are used for lamination molding. In the present invention, since it is not necessary to provide a special mechanism or apparatus on the mold or the injection molding machine side, at least one of the primary molding process and the secondary molding process in these lamination molding injection molding machines is performed. It can be used for injection compression molding methods and injection press molding methods, and by adopting the injection molding method according to the present invention, it is a laminate with low distortion, high component dimensional accuracy, and high smoothness and translucency. A resin molded product can be molded.

7 固定金型
8 可動金型
10 平板形状の樹脂成形品
10a 金型キャビティ
20 金型キャビティ内のある1点
20a 金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と平行な平面
20b 20aと対向する金型キャビティ面
T ある1点の金型キャビティ厚み
T’ 金型が弾性変形したときのT
TH 金型キャビティの変位量(T’−T)
THMAX 金型キャビティの弾性変形量(最大変位量)
30 樹脂成形品内のある1点
30a 平板形状の樹脂成形品10が成形される金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と平行な平面
30b 30aと対向する樹脂成形品表面
t 樹脂成形品内のある1点の仕様厚み
t’ 成形された樹脂成形品のt
th 樹脂成形品の厚み誤差(t’−t)
th’ t’が解析で求められたth
thMAX 樹脂成形品の許容変形量(最大許容厚み誤差)
7 Fixed mold 8 Movable mold 10 Flat-shaped resin molded product 10a Mold cavity 20 One point 20a in the mold cavity A plane that is in contact with one end of the mold cavity in the mold opening / closing direction and divided into molds Mold cavity surface T facing the plane 20b 20a parallel to the surface T One mold cavity thickness T 'T when the mold is elastically deformed
TH Displacement of mold cavity (T'-T)
Elastic deformation of TH MAX mold cavity (maximum displacement)
30 One point 30a in the resin molded product A plane 30b 30a that is in contact with one end of the mold opening / closing direction of the mold cavity in which the flat resin molded product 10 is molded and parallel to the mold dividing surface Opposite surface of the resin molded product t One specified thickness t ′ in the resin molded product t ′ of the molded resin molded product t
th Thickness error of resin molded product (t'-t)
th't 'was obtained by analysis
th MAX resin molding allowable deformation (maximum allowable thickness error)

Claims (7)

樹脂成形品を射出圧縮成形方法又は射出プレス成形方法によって成形する射出成形方法において、
1組の金型が組み合わされて形成される金型キャビティヘ、前記樹脂成形品に基づき予め算出された冷却固化収縮量が加算された樹脂量が射出充填される射出充填工程と、
前記射出充填工程の途中又は完了後、前記樹脂成形品の賦形に必要な第1型締力で前記金型が型締めされる圧縮工程と、
前記圧縮工程に引き続いて、予め、解析によって求められた、型締力による固定盤及び可動盤の弾性変形に対する前記金型キャビティの弾性変形量の関係に基づき、前記金型キャビティの前記弾性変形量が前記樹脂成形品の許容変形量以下になる第2型締力まで、前記第1型締力が減圧される型締力緩和制御が行われる保圧工程と、
を有することを特徴とする射出成形方法。
In an injection molding method for molding a resin molded product by an injection compression molding method or an injection press molding method,
An injection filling process in which a resin amount obtained by adding a cooling solidification shrinkage amount calculated in advance based on the resin molded product is injected and filled into a mold cavity formed by combining a set of molds;
A compression step in which the mold is clamped with a first mold clamping force necessary for shaping the resin molded product during or after the injection filling step,
Following the compression step, the amount of elastic deformation of the mold cavity based on the relationship of the amount of elastic deformation of the mold cavity with respect to the elastic deformation of the stationary platen and the movable platen due to the mold clamping force obtained in advance by analysis. A pressure holding step in which mold clamping force relaxation control is performed in which the first mold clamping force is reduced to a second mold clamping force that is equal to or less than an allowable deformation amount of the resin molded product;
An injection molding method characterized by comprising:
前記金型キャビティ内のある1点の金型キャビティ厚みTが、型締力が付与される前の前記金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と並行な平面から前記ある1点を通って、前記平面と対向する金型キャビティ面までの型開閉方向の距離であって、
前記金型キャビティの前記弾性変形量が、前記金型キャビティ厚みTが、ある型締力が付与されて前記金型が弾性変形してT’になったとき、T’−Tで表される前記ある1点における金型キャビティ厚みの変位量THのうち最も大きな変位量THMAXで定義され、
前記樹脂成形品のある1点の仕様厚みtが、前記樹脂成形品が成形される前記金型キャビティの型開閉方向の最端部の一方に接する平面でかつ金型分割面と並行な平面から前記ある1点を通って、前記平面と対向する樹脂成形品表面又は該表面の対面までの前記平面に垂直な方向の距離であって、
前記樹脂成形品の許容変形量が、前記樹脂成形品の仕様厚みtが、成形後の前記樹脂成形品でt’であったとき、t’−tで表される前記ある1点における樹脂成形品の厚み誤差thのうち、許容される最も大きな厚み誤差thMAXで定義されることを特徴とする請求項1に記載の射出成形方法。
A mold cavity thickness T at a certain point in the mold cavity is a plane in contact with one of the end portions in the mold opening / closing direction of the mold cavity before the mold clamping force is applied, and the mold dividing surface The distance in the mold opening / closing direction from a parallel plane through the certain point to the mold cavity surface facing the plane,
The amount of elastic deformation of the mold cavity is expressed as T′−T when the mold cavity thickness T is T ′ when the mold is elastically deformed by applying a certain clamping force. It is defined by the largest displacement TH MAX among the displacement TH of the mold cavity thickness at the certain point,
The specified thickness t at one point of the resin molded product is a plane that is in contact with one of the end portions in the mold opening / closing direction of the mold cavity where the resin molded product is molded, and is parallel to the mold dividing surface. A distance in a direction perpendicular to the plane through the certain point to the surface of the resin molded product facing the plane or to the opposite side of the surface;
When the allowable deformation amount of the resin molded product is t ′ in the resin molded product after molding when the specified thickness t of the resin molded product is t′−t, the resin molding at the certain point represented by t′−t 2. The injection molding method according to claim 1, wherein the thickness error th is defined as a maximum allowable thickness error th MAX of the product thickness error th.
前記保圧工程が、非晶性樹脂の場合はガラス転移点温度に到達する前に、結晶性樹脂の場合は結晶化温度に到達する前に開始され、ASTM D648で規定される熱変形温度に到達後、所定時間経過して完了されることを特徴とする請求項1から請求項2のいずれか1項に記載の射出成形方法。   The pressure holding step is started before reaching the glass transition temperature in the case of an amorphous resin, and before reaching the crystallization temperature in the case of a crystalline resin, and reaches the heat deformation temperature specified by ASTM D648. The injection molding method according to claim 1, wherein the injection molding method is completed after a predetermined time has elapsed. 前記保圧工程が、前記第1型締力から前記第2型締力まで、複数のステップ状に減圧され、前記ステップの数、前記各ステップの型締力及び継続時間を任意で設定・変更・管理可能な型締力緩和制御が行なわれることを特徴とする請求項1から請求項3のいずれか1項に記載の射出成形方法。   The pressure holding step is reduced in a plurality of steps from the first mold clamping force to the second mold clamping force, and the number of steps, the mold clamping force and the duration of each step are arbitrarily set / changed 4. The injection molding method according to claim 1, wherein controllable mold clamping force relaxation control is performed. 前記型締力緩和制御が、前記第1型締力から前記第2型締力まで減圧後、微小型開きが行われることを特徴とする請求項1から請求項4のいずれか1項に記載の射出成形方法。   5. The micro mold opening is performed after the mold clamping force relaxation control is performed after the pressure is reduced from the first mold clamping force to the second mold clamping force. 6. Injection molding method. 前記型締力緩和制御が、前記第1型締力から前記第2型締力まで減圧される前記型締力緩和制御により実成形して得られた前記樹脂成形品の任意の点における前記厚み誤差thと、前記実成形と同じ成形条件で解析によって求められた前記任意の点における厚み誤差th’とを比較して所定量以上相違する場合に、th=th’となるように前記第1型締力、前記第2型締力、前記ステップの数、前記各ステップの型締力及び継続時間の少なくとも1つが補正されることを特徴とする請求項4から請求項5のいずれか1項に記載の射出成形方法。   The thickness at an arbitrary point of the resin molded product obtained by actual molding by the mold clamping force relaxation control in which the mold clamping force relaxation control is depressurized from the first mold clamping force to the second mold clamping force. When the error th and the thickness error th ′ at the arbitrary point obtained by analysis under the same molding conditions as the actual molding are compared with each other by a predetermined amount or more, the first so that th = th ′ is satisfied. 6. The method according to claim 4, wherein at least one of a mold clamping force, the second mold clamping force, the number of the steps, a mold clamping force of each step, and a duration time is corrected. The injection molding method described in 1. コア金型と第1キャビティ金型が組み合わされて形成される第1キャビティに射出充填して1次成形体が成形される1次成形工程と、
前記1次成形体が保持された前記コア金型と組み合わされて第2キャビティが形成される第2キャビティ金型と前記第1キャビティ金型とが前記コア金型に対して相対的に切り替えられて、前記第2キャビティに射出充填して、前記1次成形体表面の少なくとも1部に2次成形体を積層成形する2次成形工程とを有する2層成形品を成形する射出成形方法において、
前記1次成形工程及び前記2次成形工程の少なくとも1つの工程において、請求項1から請求項6のいずれか1項に記載の射出成形方法が行われることを特徴とする2層成形品を成形する射出成形方法。
A primary molding step in which a primary molded body is molded by injection filling a first cavity formed by combining a core mold and a first cavity mold;
The second cavity mold in which the second cavity is formed in combination with the core mold holding the primary molded body and the first cavity mold are switched relative to the core mold. In the injection molding method for molding a two-layer molded product, which has a secondary molding step of injection-filling the second cavity and laminating a secondary molded body on at least a part of the surface of the primary molded body,
The injection molding method according to any one of claims 1 to 6 is performed in at least one of the primary molding step and the secondary molding step, and a two-layer molded product is molded. Injection molding method.
JP2011031166A 2011-02-16 2011-02-16 Injection molding method for resin molded products Active JP5742005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011031166A JP5742005B2 (en) 2011-02-16 2011-02-16 Injection molding method for resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011031166A JP5742005B2 (en) 2011-02-16 2011-02-16 Injection molding method for resin molded products

Publications (2)

Publication Number Publication Date
JP2012166517A JP2012166517A (en) 2012-09-06
JP5742005B2 true JP5742005B2 (en) 2015-07-01

Family

ID=46971143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011031166A Active JP5742005B2 (en) 2011-02-16 2011-02-16 Injection molding method for resin molded products

Country Status (1)

Country Link
JP (1) JP5742005B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6514994B2 (en) * 2015-08-31 2019-05-15 株式会社クラレ Method of manufacturing in-mold molded body
CN108621394B (en) * 2018-04-02 2020-05-19 滁州晨润工贸有限公司 Parameter monitoring method in injection molding process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293425B2 (en) * 1995-09-26 2002-06-17 宇部興産株式会社 Injection low pressure molding method and apparatus
JP5349859B2 (en) * 2008-07-31 2013-11-20 キヤノン株式会社 Molded product shape prediction method, molded product manufacturing method, molded product shape prediction program and storage medium thereof

Also Published As

Publication number Publication date
JP2012166517A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
KR102089845B1 (en) Method and apparatus for producing a multilayer injection moulding with interstage cooling
CN104870123B (en) Metal alloy injection shaped projection
Nian et al. Warpage control of headlight lampshades fabricated using external gas-assisted injection molding
US7837915B2 (en) Injection molding process, resin molded product and mold
CN104903026A (en) Metal alloy injection molding overflows
EP2908972B1 (en) Metal alloy injection molding
JP2015178273A (en) Method of injection molding of plastic material
JP5742005B2 (en) Injection molding method for resin molded products
JP2010173074A (en) Stack mold of transparent thin resin plate
CA2774385A1 (en) A mould for the injection moulding of elements with undercuts made of plastic material, with an integrated ejection system
JP2012250508A (en) Injection molding method, injection-molded article, and injection mold
CN100491107C (en) Injection molding machine and injection molding method
JP2001277315A (en) Method for injection compression molding and injection compression molding apparatus for executing the method
JP2000301583A (en) Method for injection-compression molding of member of complicated shape precisely, and injection/compression molding device for practicing the method
JP3252146B1 (en) Plastic lens manufacturing method
JP3350581B2 (en) In-mold vibration processing method and apparatus
JP2014151449A (en) Injection molding die and injection molding method
JP2510441B2 (en) Injection molding method for synthetic resin moldings
JP4880045B2 (en) Clamping device for composite molding and molding method of composite molded product
JP4804334B2 (en) Manufacturing method of injection molded products
JP2010173120A (en) Mold for molding thin plate moldings, injection molding machine, and injection molding method
Huang et al. An effective approach to measuring real-time mold deflection during injection molding
KR101206303B1 (en) Apparatus and method for injection compression moulding
JP2002166453A (en) Injection compression molding method for disk-shaped molding, information recording medium, and injection compression molding apparatus
CN108472848B (en) Injection molding apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5742005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250