JP5738208B2 - Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine - Google Patents

Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine Download PDF

Info

Publication number
JP5738208B2
JP5738208B2 JP2012015204A JP2012015204A JP5738208B2 JP 5738208 B2 JP5738208 B2 JP 5738208B2 JP 2012015204 A JP2012015204 A JP 2012015204A JP 2012015204 A JP2012015204 A JP 2012015204A JP 5738208 B2 JP5738208 B2 JP 5738208B2
Authority
JP
Japan
Prior art keywords
insulating film
iron core
core
joint
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012015204A
Other languages
Japanese (ja)
Other versions
JP2013158095A (en
Inventor
一利 山添
一利 山添
和彦 朴
和彦 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012015204A priority Critical patent/JP5738208B2/en
Publication of JP2013158095A publication Critical patent/JP2013158095A/en
Application granted granted Critical
Publication of JP5738208B2 publication Critical patent/JP5738208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

この発明は、回転電機のステータおよび回転電機のステータの製造方法に関するものである。   The present invention relates to a stator for a rotating electrical machine and a method for manufacturing a stator for a rotating electrical machine.

従来、回転電機のステータでは、鉄心に樹脂インシュレータを装着し、その上に巻線を施すことで、鉄心とコイル間の絶縁を形成している機種では、回転電機の性能向上を目的に樹脂インシュレータの肉厚を薄くすることで、コイルを配置するスロット断面積を拡大し、コイルの占積率を向上させてきた。   Conventionally, in a stator of a rotating electrical machine, in a model in which a resin insulator is attached to an iron core and a winding is provided thereon to form insulation between the iron core and the coil, the resin insulator is intended to improve the performance of the rotating electrical machine. By reducing the wall thickness of the coil, the slot cross-sectional area in which the coil is disposed has been expanded, and the space factor of the coil has been improved.

近年、電気機器の小型化、高出力化、省エネ化を目的にモータの高効率化競争が激化しており、高効率化の方策の一つとして、樹脂インシュレータの更なる薄肉化によるコイルの占積率向上が求められている。
しかし、熱可塑性樹脂の射出成形部品をインシュレータとして配置する構造では、射出成形部品の肉厚寸法(約0.3mmが限界肉厚)に制限され、薄肉化には限界があった。
そこで、樹脂インシュレータの巻線部の一部を絶縁フィルムに置き換える構造が提案されている。絶縁層を絶縁フィルムの肉厚(例えば0.1〜0.3mm)にまで薄肉化でき、モータの高効率化に寄与する技術である。
特許文献1では、鉄心軸方向端面に組み付けられた樹脂インシュレータと鉄心のティース両側面に配置された絶縁フィルムで絶縁され、両側面の絶縁フィルムを樹脂インシュレータが有する「突起形状部分」に組み付けて、ティースに固定する構造が提案されている。
この構造によりコイルを巻線する部位の絶縁層を薄肉化し、巻線スペースを増やしてコイルの占積率を向上する。
In recent years, competition for higher motor efficiency has intensified for the purpose of downsizing, higher output, and energy saving of electrical equipment. As one of the measures for higher efficiency, coil occupancy by further thinning resin insulators There is a need to improve the product ratio.
However, in a structure in which an injection molded part of a thermoplastic resin is arranged as an insulator, the thickness of the injection molded part is limited to the thickness dimension (about 0.3 mm is the limit thickness), and there is a limit to thinning.
Therefore, a structure in which a part of the winding portion of the resin insulator is replaced with an insulating film has been proposed. This is a technique that can reduce the thickness of the insulating layer to the thickness of the insulating film (e.g., 0.1 to 0.3 mm) and contribute to the high efficiency of the motor.
In Patent Document 1, the resin insulator assembled on the end surface in the axial direction of the iron core is insulated with insulating films disposed on both side surfaces of the core of the iron core, and the insulating films on both side surfaces are assembled to the “projection-shaped portion” of the resin insulator, Structures that are fixed to the teeth have been proposed.
With this structure, the insulating layer at the portion where the coil is wound is thinned, the winding space is increased, and the space factor of the coil is improved.

国際公開番号WO2011/013273 (第4頁、第5頁、 段落[0008]〜[0012]、図4)International Publication No. WO2011 / 013273 (page 4, page 5, paragraphs [0008] to [0012], FIG. 4)

ところで、積層鉄心は、鋼板の積層体であり、鋼板間には積層隙間が存在する。
特許文献1の構成では、コイル巻線工程において電線を引っ張る際の張力で鉄心の積層隙間が圧縮され、鉄心が積層方向に縮められて絶縁フィルムの余剰部分が皺になる。
この皺に電線が乗り上げることでコイルの巻き乱れが生じ、電線の被覆同士が擦れ、電線の被覆に傷が付くという問題があった。
また、絶縁フィルムの皺によりコイルと鉄心間の絶縁部に隙間が生じることで絶縁信頼性が低下する問題があった。
更に、鉄心と樹脂インシュレータの組み付け部に、鉄心と樹脂インシュレータの寸法差による段差が生じる。
コイル巻線工程において、電線を引っ張りながら鉄心に巻き付ける際、この段差により電線の被覆に傷が付き、絶縁信頼性が低下するという問題があった。
By the way, the laminated iron core is a laminate of steel plates, and there is a lamination gap between the steel plates.
In the configuration of Patent Document 1, the lamination gap of the iron core is compressed by the tension at the time of pulling the electric wire in the coil winding process, and the iron core is shrunk in the lamination direction so that the surplus portion of the insulating film becomes wrinkles.
When the electric wire rides on the saddle, the coil is disturbed, the electric wire coatings rub against each other, and the electric wire coating is damaged.
In addition, there is a problem in that the insulation reliability is lowered due to a gap in the insulating portion between the coil and the iron core due to the wrinkles of the insulating film.
Further, a step due to a dimensional difference between the iron core and the resin insulator occurs in the assembly portion of the iron core and the resin insulator.
In the coil winding process, there is a problem that when the wire is wound around the iron core while being pulled, the coating of the wire is damaged by this step, and the insulation reliability is lowered.

この発明は、このような課題を解決するためになされたものであり、鉄心にコイルを巻線する際の電線の張力による鉄心の圧縮による絶縁フィルムの皺の発生を防ぎ、絶縁性能が高く、且つ、高効率な回転電機のステータと回転電機のステータの製造方法の提供を目的とする。   This invention was made to solve such a problem, prevents the occurrence of wrinkles of the insulating film due to compression of the iron core due to the tension of the wire when winding the coil around the iron core, high insulation performance, Another object of the present invention is to provide a highly efficient rotating electrical machine stator and a method of manufacturing the rotating electrical machine stator.

この発明に係る回転電機のステータは、
バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
分割積層鉄心は、コイルが巻回されるコイル巻装部を有する回転電機のステータにおいて、
コイル巻装部に装着されて、コイルと分割積層鉄心とを絶縁する絶縁フィルムを備え、
絶縁フィルムは、分割積層鉄心の軸方向両端面部において、当該絶縁フィルムの圧着代が互いに接合された接合部を有し、
接合部を絶縁樹脂により封止する封止部を有し、分割積層鉄心の軸方向両端の鉄心片は凹部を備え、絶縁フィルムは、凹部に沿って接着され、封止部は、接合部を凹部内に封止するものである。
The stator of the rotating electrical machine according to the present invention is:
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
The split laminated iron core is a stator of a rotating electrical machine having a coil winding portion around which a coil is wound.
An insulating film is mounted on the coil winding portion to insulate the coil from the divided laminated core.
The insulating film has joint portions where the crimping allowances of the insulating film are joined to each other at both axial end surface portions of the divided laminated iron core,
The joint have a sealing portion for sealing with an insulating resin, provided with a core piece recess of the axial ends of the laminated core segment, insulating films are bonded along the recess, the sealing portion, the joint portion It seals in a recessed part .

この発明に係る回転電機のステータの製造方法は、
バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
コイルが巻回されるコイル巻装部を有する回転電機のステータの製造方法であって、
コイルと分割積層鉄心とを絶縁する絶縁フィルムを、コイル巻装部に装着する絶縁フィルム装着工程と、
分割積層鉄心を分割積層鉄心の軸方向に押圧する押圧工程と、
押圧工程を実施しながら、絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え
インシュレータ成形工程は、接合部を封止するための成形金型に設けた樹脂注入孔から絶縁樹脂を注入して、接合部を封止し、
分割積層鉄心の軸方向に貫通する分割積層鉄心の溝の開口部を、絶縁フィルム装着用の可動機構により閉塞して、分割積層鉄心の軸方向に貫通し且つ樹脂注入孔に連通するリブ穴を形成する溝開口部閉塞工程を有し、
インシュレータ成形工程において、リブ穴と接合部とを一体として絶縁樹脂で封止するものである。
この発明に係る回転電機のステータの製造方法は、
バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
コイルが巻回されるコイル巻装部を有する回転電機のステータの製造方法であって、
コイルと分割積層鉄心とを絶縁する絶縁フィルムを、コイル巻装部に装着する絶縁フィルム装着工程と、
分割積層鉄心を分割積層鉄心の軸方向に押圧する押圧工程と、
押圧工程を実施しながら、絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え、
インシュレータ成形工程は、接合部を封止するための成形金型に設けた樹脂注入孔から絶縁樹脂を注入して、接合部を封止し、
樹脂注入孔の位置は、接合部の位置から分割積層鉄心の周方向に対してオフセットを持って形成され、樹脂注入孔から注入された絶縁樹脂は、接合部を押し倒しながら接合部を封止するものである。
A method of manufacturing a stator for a rotating electrical machine according to the present invention includes:
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
A method of manufacturing a stator of a rotating electrical machine having a coil winding portion around which a coil is wound,
An insulating film mounting step of mounting an insulating film for insulating the coil and the split laminated iron core on the coil winding portion;
A pressing step of pressing the split laminated core in the axial direction of the split laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by crimping the crimping margin of the insulating film to each other;
An insulator molding step for sealing the joint with an insulating resin ,
The insulator molding step injects an insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The opening of the groove of the divided laminated core that penetrates in the axial direction of the divided laminated core is closed by a movable mechanism for mounting the insulating film, and a rib hole that penetrates in the axial direction of the divided laminated core and communicates with the resin injection hole is formed. Having a groove opening closing step to form,
In insulator forming process is also to sealing with an insulating resin and a rib hole and junction as a unit.
A method of manufacturing a stator for a rotating electrical machine according to the present invention includes:
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
A method of manufacturing a stator of a rotating electrical machine having a coil winding portion around which a coil is wound,
An insulating film mounting step of mounting an insulating film for insulating the coil and the split laminated iron core on the coil winding portion;
A pressing step of pressing the split laminated core in the axial direction of the split laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by crimping the crimping margin of the insulating film to each other;
An insulator molding step for sealing the joint with an insulating resin,
The insulator molding step injects an insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The position of the resin injection hole is formed with an offset from the position of the joint portion with respect to the circumferential direction of the divided laminated core, and the insulating resin injected from the resin injection hole seals the joint portion while pushing down the joint portion. Is.

この発明に係る回転電機のステータは、
コイル巻装部に装着されて、コイルと分割積層鉄心とを絶縁する絶縁フィルムを備え、
絶縁フィルムは、分割積層鉄心の軸方向両端面部において、当該絶縁フィルムの圧着代が互いに接合された接合部を有し、
接合部を絶縁樹脂により封止する封止部を有し、分割積層鉄心の軸方向両端の鉄心片は凹部を備え、絶縁フィルムは、凹部に沿って接着され、封止部は、接合部を凹部内に封止するものなので、硬化した成形樹脂によって分割積層鉄心の圧縮状態が保持され、その後のコイル巻線工程において、電線を引っ張る張力により分割積層鉄心が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルムによる皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できるものである。
The stator of the rotating electrical machine according to the present invention is:
An insulating film is mounted on the coil winding portion to insulate the coil from the divided laminated core.
The insulating film has joint portions where the crimping allowances of the insulating film are joined to each other at both axial end surface portions of the divided laminated iron core,
The joint have a sealing portion for sealing with an insulating resin, provided with a core piece recess of the axial ends of the laminated core segment, insulating films are bonded along the recess, the sealing portion, the joint portion Since it is sealed in the recess, the compressed state of the split laminated core is maintained by the cured molding resin, and in the subsequent coil winding process, the winding phenomenon that the split laminated core is compressed by the tension pulling the electric wire is prevented, It is possible to prevent the generation of wrinkles due to excess insulation film, the coil winding disturbance generated when the electric wire rides on the hook, the coil coating being scratched by the winding disturbance and the damage to the coil coating, and the deterioration of the insulation reliability can be prevented. is there.

この発明に係る回転電機のステータの製造方法は、
コイルと分割積層鉄心とを絶縁する絶縁フィルムを、コイル巻装部に装着する絶縁フィルム装着工程と、
分割積層鉄心を分割積層鉄心の軸方向に押圧する押圧工程と、
押圧工程を実施しながら、絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え
インシュレータ成形工程は、接合部を封止するための成形金型に設けた樹脂注入孔から絶縁樹脂を注入して、接合部を封止し、
分割積層鉄心の軸方向に貫通する分割積層鉄心の溝の開口部を、絶縁フィルム装着用の可動機構により閉塞して、分割積層鉄心の軸方向に貫通し且つ樹脂注入孔に連通するリブ穴を形成する溝開口部閉塞工程を有し、
インシュレータ成形工程において、リブ穴と接合部とを一体として絶縁樹脂で封止するものなので、
密着した絶縁フィルムによって分割積層鉄心の圧縮状態が保持され、コイル巻線工程で電線を引っ張る張力により分割積層鉄心が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルムによる皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できるものである。
この発明に係る回転電機のステータの製造方法は、
コイルと分割積層鉄心とを絶縁する絶縁フィルムを、コイル巻装部に装着する絶縁フィルム装着工程と、
分割積層鉄心を分割積層鉄心の軸方向に押圧する押圧工程と、
押圧工程を実施しながら、絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え、
インシュレータ成形工程は、接合部を封止するための成形金型に設けた樹脂注入孔から絶縁樹脂を注入して、接合部を封止し、
樹脂注入孔の位置は、接合部の位置から分割積層鉄心の周方向に対してオフセットを持って形成され、樹脂注入孔から注入された絶縁樹脂は、接合部を押し倒しながら接合部を封止するものなので、
密着した絶縁フィルムによって分割積層鉄心の圧縮状態が保持され、コイル巻線工程で電線を引っ張る張力により分割積層鉄心が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルムによる皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できるものである。
A method of manufacturing a stator for a rotating electrical machine according to the present invention includes:
An insulating film mounting step of mounting an insulating film for insulating the coil and the split laminated iron core on the coil winding portion;
A pressing step of pressing the split laminated core in the axial direction of the split laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by crimping the crimping margin of the insulating film to each other;
An insulator molding step for sealing the joint with an insulating resin ,
The insulator molding step injects an insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The opening of the groove of the divided laminated core that penetrates in the axial direction of the divided laminated core is closed by a movable mechanism for mounting the insulating film, and a rib hole that penetrates in the axial direction of the divided laminated core and communicates with the resin injection hole is formed. Having a groove opening closing step to form,
In insulator forming process, since the a is sealed with an insulating resin and a rib hole and junction integrally,
The compressed state of the split laminated iron core is maintained by the insulative insulating film, and the winding phenomenon that the split laminated iron core is compressed by the tension that pulls the electric wire in the coil winding process is prevented. It is possible to prevent the coil coating from being damaged when the coil rides on the coil, and to prevent the coil coating from being scratched due to the winding disturbance, thereby preventing the insulation reliability from being lowered.
A method of manufacturing a stator for a rotating electrical machine according to the present invention includes:
An insulating film mounting step of mounting an insulating film for insulating the coil and the split laminated iron core on the coil winding portion;
A pressing step of pressing the split laminated core in the axial direction of the split laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by crimping the crimping margin of the insulating film to each other;
An insulator molding step for sealing the joint with an insulating resin,
The insulator molding step injects an insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The position of the resin injection hole is formed with an offset from the position of the joint portion with respect to the circumferential direction of the divided laminated core, and the insulating resin injected from the resin injection hole seals the joint portion while pushing down the joint portion. Because it is a thing
The compressed state of the split laminated iron core is maintained by the insulative insulating film, and the winding phenomenon that the split laminated iron core is compressed by the tension that pulls the electric wire in the coil winding process is prevented. It is possible to prevent the coil coating from being damaged when the coil rides on the coil, and to prevent the coil coating from being scratched due to the winding disturbance, thereby preventing the insulation reliability from being lowered.

この発明の実施の形態1に係るステータの斜視図である。It is a perspective view of the stator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るコアの斜視図である。It is a perspective view of the core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心の斜視図である。It is a perspective view of the division | segmentation laminated | stacked iron core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心の断面図である。It is sectional drawing of the division | segmentation laminated | stacked iron core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る鉄心片の平面図である。It is a top view of the iron core piece which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るコアの側面図である。It is a side view of the core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心の斜視図である。It is a perspective view of the division | segmentation laminated | stacked iron core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る絶縁フィルムの分解構成図である。It is an exploded block diagram of the insulating film which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す側面図である。It is a side view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す概念図である。It is a conceptual diagram which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す断面図である。It is sectional drawing which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す平面図である。It is a top view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す断面図である。It is sectional drawing which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す断面図である。It is sectional drawing which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係るコアの一部断面側面図である。It is a partial cross section side view of the core which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 1 of this invention. この発明の実施の形態1に係る鉄心片の平面図である。It is a top view of the iron core piece which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る鉄心片の平面図である。It is a top view of the iron core piece which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る分割積層鉄心のティース先端突出部付近の斜視図である。It is a perspective view of teeth vicinity protrusion part vicinity of the division | segmentation laminated | stacked iron core which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る分割積層鉄心と製造装置とを示す斜視図である。It is a perspective view which shows the division | segmentation laminated | stacked iron core and manufacturing apparatus which concern on Embodiment 2 of this invention. この発明の実施の形態2に係るコアの一部断面側面図である。It is a partial cross section side view of the core which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る分割積層鉄心の斜視図である。It is a perspective view of the division | segmentation laminated | stacked iron core which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係るコアの一部断面側面図である。It is a partial cross section side view of the core which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る絶縁フィルムの接合部の例を示す図である。It is a figure which shows the example of the junction part of the insulating film which concerns on Embodiment 4 of this invention.

実施の形態1.
以下、この発明の実施の形態1を図を用いて説明する。
図1は、回転電機のステータ100の半周分6ティースを示す斜視図である。
図に示すように、ステータ100は、複数のコア2が円環状に配置され、互いに連結されて構成される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing six teeth for a half circumference of a stator 100 of a rotating electrical machine.
As shown in the figure, the stator 100 is configured by arranging a plurality of cores 2 in an annular shape and being connected to each other.

図2は、コア2の斜視図である。
図3は、分割積層鉄心50の斜視図である。
図4は、分割積層鉄心50の断面図である。
図5は、分割積層鉄心50を構成する鉄心片51の平面図である。
図4に示すように、鉄心片51はカシメ部6を有しており、カシメ部6を積層間で互いに圧入することで、各鉄心片51を連結して分割積層鉄心50を構成している。
図5に示すように、磁性鋼板から切り出される鉄心片51は、円弧状のバックヨーク52と、バックヨーク52の中央部からステータ100の中心方向に突出するティース54、ティース54の先端から周方向に突出するティース先端突出部53と、バックヨーク52のティース54への取付基端部に設けた溝55a及び、ティース先端突出部53の付け根に設けた溝55bとから構成される。
FIG. 2 is a perspective view of the core 2.
FIG. 3 is a perspective view of the divided laminated core 50.
FIG. 4 is a cross-sectional view of the divided laminated core 50.
FIG. 5 is a plan view of the iron core piece 51 constituting the divided laminated iron core 50.
As shown in FIG. 4, the iron core piece 51 has a crimped portion 6, and the divided iron cores 50 are configured by connecting the iron core pieces 51 by press-fitting the crimped portions 6 between the laminated layers. .
As shown in FIG. 5, the iron core piece 51 cut out from the magnetic steel plate includes an arcuate back yoke 52, a tooth 54 protruding from the center of the back yoke 52 toward the center of the stator 100, and a circumferential direction from the tip of the tooth 54. And a groove 55 a provided at the base end of the back yoke 52 attached to the tooth 54 and a groove 55 b provided at the base of the tooth tip protrusion 53.

コア2は、分割積層鉄心50のコイルが巻回されるコイル巻装部9に絶縁フィルム60を圧着し(以降、フィルム接着部と称す)、射出成形による樹脂インシュレータ40を成形したものである。
図6(a)は、コア2の側面図である。
図6(b)は、コア2を図6(a)のA−A線で切断し、矢印方向から見た図である。
図に示すように、樹脂インシュレータ40は、分割積層鉄心50のバックヨーク52の上下面から積層方向に張り出したヨーク鍔部41と、分割積層鉄心50のティース先端突出部53の内周面と外周面以外を取り囲んで封止するティース先端鍔部42と、分割積層鉄心50のティース54の積層方向の両端面を封止する封止部43と、積層方向に設けた溝55a及び、積層方向に設けた溝55b内に成形されたリブ44b、44aとが一体形成されたものである。
樹脂インシュレータ40は、PBT(ポリブチレンテレフタレート)、LCP(液晶ポリエステル)、POM(ポリアセタール)等の熱可塑性樹脂で構成される。
The core 2 is obtained by pressure-bonding an insulating film 60 to a coil winding portion 9 around which a coil of the divided laminated core 50 is wound (hereinafter referred to as a film bonding portion) and molding a resin insulator 40 by injection molding.
FIG. 6A is a side view of the core 2.
FIG. 6B is a view in which the core 2 is cut along the line AA in FIG.
As shown in the figure, the resin insulator 40 includes a yoke flange 41 projecting from the upper and lower surfaces of the back yoke 52 of the split laminated core 50 in the stacking direction, and an inner peripheral surface and an outer periphery of the tooth tip protrusion 53 of the split laminated core 50. Teeth tip flange portion 42 that surrounds and seals other than the surface, sealing portion 43 that seals both end surfaces of the teeth 54 of the laminated core 50 in the stacking direction, grooves 55a provided in the stacking direction, and in the stacking direction The ribs 44b and 44a formed in the provided groove 55b are integrally formed.
The resin insulator 40 is made of a thermoplastic resin such as PBT (polybutylene terephthalate), LCP (liquid crystal polyester), or POM (polyacetal).

分割積層鉄心50のバックヨーク52の内周面と、ティース先端突出部53の外周面
とティース54側面であって、樹脂インシュレータ40で覆われていない部分(絶縁フィルム装着部と称す)には、絶縁フィルム60が圧着されている。
The inner circumferential surface of the back yoke 52 of the split laminated core 50, the outer circumferential surface of the tooth tip protrusion 53, and the side surface of the tooth 54, which are not covered with the resin insulator 40 (referred to as an insulating film mounting portion), The insulating film 60 is pressure bonded.

図7は、分割積層鉄心50に絶縁フィルム60を装着した図である。
絶縁フィルム60は、熱可塑性樹脂(例えばポリエチレンテレフタレート、ポリフェニレンスルファイド等)からなる0.03〜0.30mm程度のフィルム状の絶縁体である。
図8は、装着済みの絶縁フィルム60の分解構成図である。
本来は、予め所定の形状にカットされた絶縁フィルムを使用して各製造工程を経て図7のような形状(特に圧着代61の形状)となるのであるが、説明の都合上図8のように示す。
FIG. 7 is a diagram in which the insulating film 60 is attached to the divided laminated core 50.
The insulating film 60 is a film-like insulator of about 0.03 to 0.30 mm made of a thermoplastic resin (for example, polyethylene terephthalate, polyphenylene sulfide, etc.).
FIG. 8 is an exploded configuration diagram of the mounted insulating film 60.
Originally, an insulating film that has been cut into a predetermined shape in advance is used to obtain the shape as shown in FIG. 7 (particularly the shape of the crimping allowance 61) through each manufacturing process, but for convenience of explanation, as shown in FIG. Shown in

図8に示すように、2枚の絶縁フィルム60を、分割積層鉄心50のティース54の周囲を両側面から取り囲むよう装着して、ティース54の積層方向の両端面中央部で、それぞれの絶縁フィルム60の端部の圧着代61の内面同士を圧着(接合)させて接合部62を形成する。   As shown in FIG. 8, two insulating films 60 are mounted so as to surround the periphery of the teeth 54 of the split laminated core 50 from both side surfaces, and the respective insulating films are formed at the center of both end surfaces in the stacking direction of the teeth 54. The inner surface of the crimping allowance 61 at the end of 60 is crimped (joined) to form the joint 62.

図6(a)、(b)に示すように、接合部62は、樹脂インシュレータ40の封止部43の中央に封止されて固定されている。
絶縁フィルム60の形状は、分割積層鉄心50の形状によって異なり、本発明の各実施の形態に図示する形状に限定しない。
また、熱可塑性樹脂製から成る絶縁フィルム60は、フィルム接合機構(後述)の熱により、曲げ、伸びといった塑性変形をして分割積層鉄心50に密着する効果を有するので、絶縁フィルム60の形状はこの塑性変形を考慮して設置すれば良く、圧着前の絶縁フィルム60の寸法を、絶縁フィルム60の装着部の寸法と完全に一致させる必要は無い。
As shown in FIGS. 6A and 6B, the joining portion 62 is sealed and fixed at the center of the sealing portion 43 of the resin insulator 40.
The shape of the insulating film 60 differs depending on the shape of the divided laminated iron core 50, and is not limited to the shape illustrated in each embodiment of the present invention.
In addition, the insulating film 60 made of a thermoplastic resin has an effect of being plastically deformed such as bending and stretching by the heat of a film bonding mechanism (described later) and closely contacting the divided laminated core 50. Therefore, the shape of the insulating film 60 is It is sufficient to install in consideration of the plastic deformation, and it is not necessary to make the dimension of the insulating film 60 before press bonding completely coincide with the dimension of the mounting portion of the insulating film 60.

コア2には、図示していないコイルが巻線されるが、分割積層鉄心50とコイル間は樹脂インシュレータ40および絶縁フィルム60によって電気的に絶縁されている。   A coil (not shown) is wound around the core 2, but the divided laminated core 50 and the coil are electrically insulated by a resin insulator 40 and an insulating film 60.

コア2の製造方法を図を用いて説明する。
最初に、コア2の製造工程の概要を説明する。
まず、押圧工程によって、分割積層鉄心50を分割積層鉄心50の積層方向にに押圧する。
次に、絶縁フィルム圧着工程によって、押圧されている分割積層鉄心50の絶縁フィルム装着部に絶縁フィルム60を圧着し、2枚の絶縁フィルム60の圧着代61を互いに圧着して接合部62を形成する。
次に、インシュレータ成形工程において、絶縁フィルム60を装着した分割積層鉄心50を成形金型に入れて、ヨーク鍔部41と、ティース先端鍔部42と、封止部43と、リブ44a、bとが一体成形された樹脂インシュレータ40を形成して、接合部62を成形樹脂で封止して固定する。
The manufacturing method of the core 2 is demonstrated using figures.
First, an outline of the manufacturing process of the core 2 will be described.
First, the divided laminated core 50 is pressed in the lamination direction of the divided laminated core 50 by a pressing step.
Next, in the insulating film crimping step, the insulating film 60 is pressure-bonded to the pressed insulating film mounting portion of the split laminated core 50, and the bonding margin 61 of the two insulating films 60 is pressure-bonded together to form the joint portion 62. To do.
Next, in the insulator molding step, the split laminated iron core 50 with the insulating film 60 attached is placed in a molding die, and the yoke collar 41, the teeth tip collar 42, the sealing part 43, and the ribs 44a, b Is formed integrally, and the joining portion 62 is sealed and fixed with a molding resin.

次に、各製造工程を図を用いて順に説明する。
まず、分割積層鉄心50の絶縁フィルム装着部に所定の形状に予め整形された絶縁フィルム60を装着して図示しない成形金型内に設置する。
この工程を、特許請求の範囲の絶縁フィルム装着工程と称す。
そして押圧工程を実施する。
図9は、成形金型内に設置した分割積層鉄心50とフィルム接合機構21と、鉄心押圧機構22との関係を示す断面図である。
図の簡素化の為に絶縁フィルム60は図示していない。
図10は、図9の状態における分割積層鉄心50の概念図である。
図の簡素化の為に絶縁フィルム60と鉄心押圧機構22は図示していない。
図に示すように、まず、分割積層鉄心50のバックヨーク52を積層方向両端面から、鉄心押圧機構22によって積層方向に押圧すると同時に、フィルム接合機構21によって、分割積層鉄心50のバックヨーク52の内周縁とティース先端突出部53とを、分割積層鉄心50の積層方向(図9、図10に矢印Y、矢印Y’として示す)に押圧する。
これにより分割積層鉄心50全体が積層方向に圧縮される。
Next, each manufacturing process will be described in order with reference to the drawings.
First, the insulating film 60 shaped in advance in a predetermined shape is mounted on the insulating film mounting portion of the split laminated iron core 50 and installed in a molding die (not shown).
This process is referred to as an insulating film mounting process in the claims.
And a press process is implemented.
FIG. 9 is a cross-sectional view showing the relationship among the divided laminated iron core 50, the film bonding mechanism 21, and the iron core pressing mechanism 22 installed in the molding die.
In order to simplify the drawing, the insulating film 60 is not shown.
FIG. 10 is a conceptual diagram of the divided laminated core 50 in the state of FIG.
In order to simplify the drawing, the insulating film 60 and the iron core pressing mechanism 22 are not shown.
As shown in the figure, first, the back yoke 52 of the divided laminated core 50 is pressed in the lamination direction by the iron core pressing mechanism 22 from both end surfaces in the lamination direction, and at the same time, the back yoke 52 of the divided laminated iron core 50 is pressed by the film bonding mechanism 21. The inner peripheral edge and the teeth tip protrusion 53 are pressed in the stacking direction of the split laminated core 50 (shown as arrows Y and Y ′ in FIGS. 9 and 10).
As a result, the entire divided laminated core 50 is compressed in the lamination direction.

分割積層鉄心50は、各鉄心片51が有するカシメ部6を互いに圧入して積層して形成されているため、鉄心片51間に積層隙間10を有する。
そのため、この鉄心押圧機構22による積層方向への押圧により、分割積層鉄心50の積層隙間10が圧縮されて、分割積層鉄心50が積層方向に収縮する。
以上、絶縁フィルム装着工程後に押圧工程を実施する実施例を挙げたが、押圧工程後に絶縁フィルム装着工程を実施しても問題はない。
The split laminated core 50 is formed by press-fitting the caulking portions 6 included in the respective core pieces 51 to each other, so that the laminated gap 10 is provided between the iron pieces 51.
Therefore, pressing in the stacking direction by the iron core pressing mechanism 22 compresses the stacking gap 10 of the split stacking iron core 50, and the split stacking iron core 50 contracts in the stacking direction.
As mentioned above, although the Example which implements a press process after an insulating film mounting process was given, even if it implements an insulating film mounting process after a press process, there is no problem.

次に、絶縁フィルム圧着工程を実施する。
図11は、分割積層鉄心50のティース54と、絶縁フィルム60と側面圧着機構20、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
図を簡素化するために、図3のB−B線とC−C線間におけるティース54およびその周辺の装置を切り出して示しており、バックヨーク52およびティース先端突出部53は省略している。
Next, an insulating film crimping process is performed.
FIG. 11 is a perspective view showing a part of the teeth 54 of the split laminated core 50, the insulating film 60, the side surface pressing mechanism 20, the film bonding mechanism 21, and the molding dies 25a and 25b.
In order to simplify the drawing, the tooth 54 and the peripheral device between the BB line and the CC line in FIG. 3 are shown cut out, and the back yoke 52 and the tooth tip protrusion 53 are omitted. .

鉄心押圧機構22とフィルム接合機構21による分割積層鉄心50の積層方向の押圧を保持したまま、側面圧着機構20によって、2枚の絶縁フィルム60が分割積層鉄心50のティース54の両側面に沿うように押圧する。   While the pressing in the stacking direction of the split laminated iron core 50 by the iron core pressing mechanism 22 and the film bonding mechanism 21 is maintained, the two insulating films 60 are arranged along the both side surfaces of the teeth 54 of the split laminated iron core 50 by the side pressing mechanism 20. Press on.

図12は、分割積層鉄心50のティース54と、絶縁フィルム60と側面圧着機構20
、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
次に、フィルム接合機構21は、積層方向への押圧力を保持したまま、図12に示すように分割積層鉄心50のティース54に向けて、図12の矢印Z、矢印Z’として示すように前進する。
この時、フィルム接合機構21の先端部は、他の金型部より高温、且つ絶縁フィルムの溶融温度付近に温度設定されている。
両絶縁フィルム60は、分割積層鉄心50の側面から軸方向両端面に、分割積層鉄心50に沿うように折り曲げられ、更にフィルム接合機構21の先端部によってそれぞれの絶縁フィルム60の端部の圧着代61の内面同士を圧着(接合)させて接合部62を形成する。
12 shows the teeth 54, the insulating film 60, and the side surface pressing mechanism 20 of the split laminated core 50. FIG.
FIG. 2 is a perspective view showing a part of a film bonding mechanism 21 and molding dies 25a and 25b.
Next, the film bonding mechanism 21 maintains the pressing force in the laminating direction, as shown by arrows Z and Z ′ in FIG. 12 toward the teeth 54 of the divided laminated iron core 50 as shown in FIG. Advance.
At this time, the tip of the film bonding mechanism 21 is set to a temperature higher than that of the other mold parts and near the melting temperature of the insulating film.
Both insulating films 60 are bent from the side surface of the split laminated iron core 50 to both axial end faces so as to be along the split laminated iron core 50, and further the crimping allowance of the end portions of the respective insulating films 60 by the distal end portion of the film bonding mechanism 21. The inner surfaces of 61 are pressure-bonded (joined) to form a joint portion 62.

分割積層鉄心50と絶縁フィルム60は隙間無く密着されているので、分割積層鉄心50と絶縁フィルム60間の隙間の発生を防止し、コイル占積率の向上効果が得られる。   Since the divided laminated iron core 50 and the insulating film 60 are in close contact with each other without any gap, the occurrence of a gap between the divided laminated iron core 50 and the insulating film 60 can be prevented, and an effect of improving the coil space factor can be obtained.

次に、インシュレータ成形工程を実施する。
図13は、分割積層鉄心50のティース54と、絶縁フィルム60と側面圧着機構20 、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
図14は、絶縁フィルム60を装着した分割積層鉄心50を、成形金型25a〜25dに入れて、絶縁樹脂を注入する直前の状態を示す図である。
この時、凹型の成形金型25a、25bの内壁と、分割積層鉄心50の両端面と、鉄心押圧機構22の側面と、樹脂注入孔26を有する成形金型25cとで、樹脂インシュレータ40を成形する密閉された金型キャビティ部27が形成される。
図15は、分割積層鉄心50と絶縁フィルム60と側面圧着機構20、成形金型25c、25dとの位置関係を示す平面図である。
図に示すように、分割積層鉄心50の積層方向に連続する溝55a、55bは、側面圧着機構20により側面の開口部が閉塞されて、分割積層鉄心50の積層方向に貫通する穴であるリブ穴66a、66bを形成する。
この工程を、特許請求の範囲の溝開口部閉塞工程と称す。
このリブ穴66a、66bは金型キャビティ部27を介して樹脂注入孔26に連通している。
Next, an insulator molding process is performed.
FIG. 13 is a perspective view showing a portion of the teeth 54 of the split laminated iron core 50, the insulating film 60, the side surface pressing mechanism 20, the film bonding mechanism 21, and the molding dies 25a and 25b.
FIG. 14 is a view showing a state immediately before injecting the insulating resin after putting the divided laminated iron core 50 with the insulating film 60 mounted into the molding dies 25a to 25d.
At this time, the resin insulator 40 is molded with the inner walls of the concave molds 25a and 25b, both end surfaces of the divided laminated core 50, the side surfaces of the core pressing mechanism 22, and the mold 25c having the resin injection hole 26. A closed mold cavity portion 27 is formed.
FIG. 15 is a plan view showing the positional relationship among the divided laminated iron core 50, the insulating film 60, the side pressure bonding mechanism 20, and the molding dies 25c and 25d.
As shown in the drawing, the grooves 55 a and 55 b that are continuous in the stacking direction of the split laminated core 50 are ribs that are holes that are closed by the side pressing mechanism 20 and penetrate in the stacking direction of the split stacked core 50. Holes 66a and 66b are formed.
This process is referred to as a groove opening closing process in the claims.
The rib holes 66 a and 66 b communicate with the resin injection hole 26 through the mold cavity portion 27.

図16は、分割積層鉄心50のティース54と、絶縁フィルム60と側面圧着機構20
、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
図17は、図14のD−D線における分割積層鉄心50と成形金型25a、bの断面図であって、成形金型25cの樹脂注入孔26から注入した成形樹脂の射出圧力が加わる方向を矢印で示している。
図18は、図14のF−F線における分割積層鉄心50と成形金型25a、25bと側面圧着機構20の断面図であって、金型キャビティ部27の中での断面F−F部分における成形樹脂の射出圧力が加わる方向を矢印で示している。
FIG. 16 shows the teeth 54 of the split laminated iron core 50, the insulating film 60, and the side surface pressing mechanism 20.
FIG. 2 is a perspective view showing a part of a film bonding mechanism 21 and molding dies 25a and 25b.
FIG. 17 is a cross-sectional view of the divided laminated core 50 and the molding dies 25a and 25b along the line DD in FIG. 14, and the direction in which the injection pressure of the molding resin injected from the resin injection hole 26 of the molding die 25c is applied. Is indicated by an arrow.
18 is a cross-sectional view of the divided laminated core 50, the molding dies 25a and 25b, and the side surface pressing mechanism 20 taken along the line FF in FIG. The direction in which the injection pressure of the molding resin is applied is indicated by arrows.

成形樹脂は、樹脂注入孔26から注入され、金型キャビティ部27内に充填される。
図に示すように、金型キャビティ部27を通じてリブ穴66a、66b内に成形樹脂を充填して、絶縁樹脂による補強柱であるリブ44a、44bが成形される。
金型キャビティ部27内とリブ穴66a、66b内を充填して硬化した成形樹脂は、樹脂インシュレータ40を一体形成する。
この樹脂インシュレータ40は上述したように、分割積層鉄心50のバックヨーク52の上下面から積層方向に張り出したヨーク鍔部41と、分割積層鉄心50のティース先端突出部53の内周面と外周面以外を取り囲んで封止するティース先端鍔部42と、分割積層鉄心50のティース54の積層方向の両端面を封止する封止部43と、バックヨーク52のティース54への取付基端部に積層方向に設けた溝55a及び、ティース先端突出部53の付け根に積層方向に設けた溝55bに成形されたリブ44a、44bとが成形樹脂で一体成形されたものとなる。
Molding resin is injected from the resin injection hole 26 and filled into the mold cavity 27.
As shown in the drawing, the rib holes 66a and 66b are filled with molding resin through the mold cavity 27, and the ribs 44a and 44b, which are reinforcing columns made of insulating resin, are molded.
The molded resin filled in the mold cavity 27 and the rib holes 66a and 66b and hardened forms the resin insulator 40 integrally.
As described above, the resin insulator 40 includes the yoke flange portion 41 projecting from the upper and lower surfaces of the back yoke 52 of the split laminated core 50 in the stacking direction, and the inner and outer peripheral surfaces of the teeth tip protrusion 53 of the split laminated core 50. A tooth distal end flange portion 42 that surrounds and seals, a sealing portion 43 that seals both end surfaces in the stacking direction of the teeth 54 of the split laminated core 50, and a base end portion of the back yoke 52 attached to the teeth 54. The groove 55a provided in the stacking direction and the ribs 44a and 44b formed in the groove 55b provided in the stacking direction at the base of the tooth tip protrusion 53 are integrally formed of a molding resin.

成形金型25cに設けられた樹脂注入孔26から成形樹脂を注入し、金型キャビティ部27内を充填することで、約20〜40MPaの射出圧力が分割積層鉄心50の軸方向両端面に均一に付加される。
この射出圧力により分割積層鉄心50の積層隙間10が圧縮されることで、分割積層鉄心50全体を積層方向に圧縮する効果を有する。
射出圧力が加えられた状態で成形樹脂が固化することにより、分割積層鉄心50は、圧縮された状態で固定される。
また、樹脂インシュレータ40は、分割積層鉄心50が元の状態に復元しようとする力に耐え得る保持力を発揮し、コイルの巻線工程前後においてコア2の圧縮状態の変動を抑制することができる。
By injecting molding resin from the resin injection hole 26 provided in the molding die 25 c and filling the mold cavity 27, an injection pressure of about 20 to 40 MPa is uniform on both end surfaces in the axial direction of the divided laminated core 50. To be added.
By compressing the lamination gap 10 of the divided laminated core 50 by this injection pressure, it has the effect of compressing the entire divided laminated core 50 in the lamination direction.
When the molding resin is solidified while the injection pressure is applied, the divided laminated core 50 is fixed in a compressed state.
In addition, the resin insulator 40 exhibits a holding force that can withstand the force with which the split laminated iron core 50 attempts to restore the original state, and can suppress fluctuations in the compression state of the core 2 before and after the coil winding process. .

以下、成形金型25cに設けられた樹脂注入孔26a、26b、26cの設置例について説明する。
図19(a)、(b)は、コア2の一部断面側面図である。
成形金型25c(成形金型25cは図示せず)の樹脂注入孔26a、26b、26cの数と、樹脂注入孔26a、26b、26cのコア2に対する位置関係を示している。
成形金型25c(図14参照)は、成形樹脂を注入するための樹脂注入孔26a、26bを2つ備えている。
図19(a)のように、各樹脂注入孔26a、26bは樹脂インシュレータ40により封止する絶縁フィルム60の接合部62の中心を挟んで等距離に設置されており、2点の樹脂注入孔26a、26bから接合部62に対して均等に注入される成形樹脂により、接合部62は樹脂インシュレータ40の中央に封止され、接合部62を安定的に成形樹脂の内部に封止できる配置となっている。
Hereinafter, installation examples of the resin injection holes 26a, 26b, and 26c provided in the molding die 25c will be described.
FIGS. 19A and 19B are partial cross-sectional side views of the core 2.
The number of resin injection holes 26a, 26b, 26c of the molding die 25c (molding die 25c is not shown) and the positional relationship of the resin injection holes 26a, 26b, 26c with respect to the core 2 are shown.
The molding die 25c (see FIG. 14) includes two resin injection holes 26a and 26b for injecting molding resin.
As shown in FIG. 19A, the resin injection holes 26a and 26b are installed at equal distances across the center of the joint portion 62 of the insulating film 60 to be sealed by the resin insulator 40. The joint 62 is sealed in the center of the resin insulator 40 by molding resin that is uniformly injected from the joints 26a and 26b to the joint 62, and the joint 62 can be stably sealed inside the mold resin. It has become.

樹脂注入孔26aと26bの2つを設置するスペースがない場合は、図19(b)の樹脂注入孔26cのように1つのみ設置しても良い。
この場合、樹脂インシュレータ40に1箇所設置された樹脂注入孔26cと樹脂注入孔26cの中心に対し、絶縁フィルム60の接合部62の中心が一致しないようにずらして配置することで(図でd1と示すオフセットを持たせる)、樹脂注入孔26cから注入された成形樹脂の圧力が、接合部62の一方の面にのみ加わる構造となり、接合部62が倒れる方向を一定の方向に安定化させ、接合部62が剥がれて樹脂インシュレータ40の表面に露出しないよう内部に封止することができる。
If there is no space for installing the two resin injection holes 26a and 26b, only one resin injection hole 26c in FIG. 19B may be installed.
In this case, the resin injection hole 26c provided at one place in the resin insulator 40 and the center of the resin injection hole 26c are shifted so that the center of the joint portion 62 of the insulating film 60 does not coincide (d1 in the drawing). The pressure of the molding resin injected from the resin injection hole 26c is applied only to one surface of the joint 62, and the direction in which the joint 62 falls is stabilized in a certain direction. It can be sealed inside so that the joint 62 is not peeled off and exposed to the surface of the resin insulator 40.

図20は、分割積層鉄心50のティース54と、絶縁フィルム60と側面圧着機構20 、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
樹脂インシュレータ40を成形後、成形金型25a〜25dを後退させ、鉄心押圧機構22による分割積層鉄心50の圧縮、固定を開放し、成形されたコア2を成形金型25a〜25dから取り出す。
この際、鉄心押圧機構22による分割積層鉄心50の圧縮が開放され、分割積層鉄心50には圧縮前の状態に戻ろうとする力が働くが、分割積層鉄心50の軸方向両端面に成形された封止部43とリブ44a、44bとが一体として形成する枠体の中に、圧縮された分割積層鉄心50が収容される状態であるために、分割積層鉄心50の圧縮状態を保持できる。
FIG. 20 is a perspective view showing a part of the teeth 54 of the split laminated iron core 50, the insulating film 60, the side surface pressing mechanism 20, the film bonding mechanism 21, and the molding dies 25a and 25b.
After molding the resin insulator 40, the molding dies 25a to 25d are retracted, the compression and fixing of the split laminated core 50 by the iron core pressing mechanism 22 are released, and the molded core 2 is taken out from the molding dies 25a to 25d.
At this time, the compression of the split laminated iron core 50 by the iron core pressing mechanism 22 is released, and a force is applied to the split laminated iron core 50 to return to the state before compression. Since the compressed divided laminated core 50 is housed in a frame formed integrally with the sealing portion 43 and the ribs 44a and 44b, the compressed state of the divided laminated core 50 can be maintained.

図21はこの発明の実施の形態1に係る鉄心片の形状の一例を示す平面図である。
図22はこの発明の実施の形態1に係る鉄心片の形状の他の一例を示す平面図である。 リブ44a、44bで保持力が不足である場合、またはリブ44a、44bが設置できない場合は、分割積層鉄心50の磁路減少による機能的影響がない範囲で、図に示すようにバックヨーク52またはティース先端突出部53に穴58a、58b、または溝55cを設置する。
そして、この穴58a、58b、または溝55c内に成形樹脂が充填されて、補強柱であるリブが成形され、金型キャビティ部27内の成形樹脂と一体形成されて、リブ44a、44bと同様の補強効果が得られる。
FIG. 21 is a plan view showing an example of the shape of the iron core piece according to Embodiment 1 of the present invention.
FIG. 22 is a plan view showing another example of the shape of the iron core piece according to Embodiment 1 of the present invention. When the holding force is insufficient with the ribs 44a and 44b, or when the ribs 44a and 44b cannot be installed, the back yoke 52 or as shown in the figure as long as there is no functional influence due to the decrease in the magnetic path of the divided laminated core 50 Holes 58a, 58b or grooves 55c are provided in the tooth tip protrusion 53.
Then, molding resin is filled into the holes 58a, 58b or the groove 55c, a rib as a reinforcing column is molded, and is integrally formed with the molding resin in the mold cavity 27, and is the same as the ribs 44a, 44b. The reinforcing effect is obtained.

次に、分割積層鉄心50のティース先端突出部53とバックヨーク52付近における、絶縁フィルム60の形状を補足説明する。
図23は、分割積層鉄心50のティース先端突出部53付近の絶縁フィルム60の形状を示す図である。
ティース先端突出部53に密着した絶縁フィルム曲げ部67は、樹脂注入孔26から充填される成形樹脂の流れ力を受けるが、接合部62と同様にフィルム接合機構21により押圧されており、その絶縁フィルム60の端部が分割積層鉄心50から剥離し、樹脂インシュレータ40の表面に露出することはない。
また、バックヨーク52に設置された絶縁フィルム曲げ部は接合部を備えていないが、樹脂注入孔26から充填される成形樹脂の流れは絶縁フィルム曲げ部をバックヨーク52に密着させる方向に働くため、その絶縁フィルム60の端部が剥離し、樹脂インシュレータ40の表面に露出することはない。
Next, the shape of the insulating film 60 in the vicinity of the teeth tip protrusion 53 and the back yoke 52 of the divided laminated core 50 will be supplementarily described.
FIG. 23 is a diagram illustrating the shape of the insulating film 60 in the vicinity of the tooth tip protrusion 53 of the split laminated core 50.
The insulating film bending portion 67 that is in close contact with the tooth tip protruding portion 53 receives the flow force of the molding resin filled from the resin injection hole 26, but is pressed by the film bonding mechanism 21 in the same manner as the bonding portion 62, and is insulated. The end portion of the film 60 is not peeled off from the divided laminated core 50 and is not exposed on the surface of the resin insulator 40.
Further, the insulating film bending portion installed in the back yoke 52 does not include a joint portion, but the flow of the molding resin filled from the resin injection hole 26 works in a direction in which the insulating film bending portion is brought into close contact with the back yoke 52. The end portion of the insulating film 60 is not peeled off and is not exposed on the surface of the resin insulator 40.

なお、本実施の形態では、リブ44a、44bを成形する構成を示したが、リブ44a、44bを省略しても、密着した絶縁フィルムだけでも分割積層鉄心50の圧縮状態をある程度保持できる。
また、分割積層鉄心のバックヨークの端部に連結部を設け、複数の分割積層鉄心をこの連結部で互いに連結した状態で、各分割積層鉄心に上述の加工を順送りに施して、コアを成形する方法でもよい。
In the present embodiment, the configuration in which the ribs 44a and 44b are formed is shown. However, even if the ribs 44a and 44b are omitted, the compressed state of the divided laminated core 50 can be maintained to some extent only by the closely attached insulating film.
In addition, a connecting part is provided at the end of the back yoke of the split laminated iron core, and a plurality of the divided laminated iron cores are connected to each other by this connecting part. It is also possible to do it.

本実施の形態の回転電機のステータ100は、鉄心押圧機構22により分割積層鉄心50の積層間を圧縮し、フィルム接合機構21により、絶縁フィルム60を分割積層鉄心50に密着して沿うように圧着したものなので、密着した絶縁フィルム60によって分割積層鉄心50の圧縮状態が保持され、コイル巻線工程で電線を引っ張る張力により分割積層鉄心50が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルム60による皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できる。
これにより、絶縁性能が高く、且つ、高効率な回転電機のステータを提供することができる。
The stator 100 of the rotating electrical machine according to the present embodiment compresses the stacked laminated cores 50 by the iron core pressing mechanism 22 and presses the insulating film 60 in close contact with the divided laminated core 50 by the film bonding mechanism 21. Therefore, the compressed state of the divided laminated iron core 50 is maintained by the insulating film 60 that is in close contact with each other, and a winding tightening phenomenon in which the divided laminated iron core 50 is compressed by the tension of pulling the electric wire in the coil winding process is prevented. It is possible to prevent the generation of wrinkles, the winding disturbance of the coils generated when the electric wire rides on the wrinkles, and the damage to the coil coating generated by rubbing the coils due to the winding disturbance, thereby preventing the deterioration of the insulation reliability.
Thereby, the stator of a rotary electric machine with high insulation performance and high efficiency can be provided.

また、本実施の形態の回転電機のステータ100は、分割積層鉄心50のバックヨーク52の両端面から積層方向に張り出したヨーク鍔部41と、分割積層鉄心50のティース先端突出部53の内周面と外周面以外を取り囲んで封止するティース先端鍔部42と、分割積層鉄心50のティース54の積層方向の両端面を封止する封止部43と、バックヨーク52のティース54への取付基端部に積層方向に設けた溝55a及び、ティース先端突出部53の付け根に積層方向に設けた溝55bに成形されたリブ44a、44bとが成形樹脂で一体成形された樹脂インシュレータ40を備えたものなので、硬化した成形樹脂によって分割積層鉄心50の圧縮状態が保持され、その後のコイル巻線工程において、電線を引っ張る張力により分割積層鉄心50が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルム60による皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できる。
これにより、絶縁性能が高く、且つ、高効率な回転電機のステータを提供することができる。
In addition, the stator 100 of the rotating electrical machine according to the present embodiment includes a yoke flange portion 41 projecting from both end surfaces of the back yoke 52 of the split laminated core 50 in the stacking direction, and an inner periphery of the tooth tip protrusion 53 of the split stacked core 50. Teeth tip flange 42 that surrounds and seals other than the outer peripheral surface, sealing portion 43 that seals both end surfaces in the stacking direction of the teeth 54 of the split laminated core 50, and attachment of the back yoke 52 to the teeth 54 A resin insulator 40 in which a groove 55a provided in the stacking direction at the base end portion and ribs 44a and 44b formed in a groove 55b provided in the stacking direction at the base of the tooth tip protrusion 53 are integrally formed of a molding resin is provided. Therefore, the compression state of the split laminated iron core 50 is maintained by the cured molding resin, and in the subsequent coil winding process, the split lamination is performed by the tension that pulls the electric wire. Winding phenomenon that the core 50 is compressed is prevented, generation of wrinkles due to excessive insulating film 60, coil winding disturbance generated when the electric wire rides on the hook, and scratches on the coil coating generated by rubbing the coils due to winding disturbance It is possible to prevent deterioration of insulation reliability.
Thereby, the stator of a rotary electric machine with high insulation performance and high efficiency can be provided.

また、樹脂インシュレータ40は成形後の樹脂収縮により樹脂形状の中心方向に縮もうとする寸法変化が生じるが、樹脂インシュレータ40と一体化したリブ44a、44bが、分割積層鉄心50を抱え込むように配置されているため、分割積層鉄心50が構造物の柱の役割を果たし、樹脂インシュレータ40の樹脂収縮が抑えられる。
これにより分割積層鉄心50と樹脂インシュレータ40の寸法差が生じないので、封止部43とティース54の積層方向両端面の角との境界に段差の発生を防ぐことができる。 これにより、コイル巻線工程の電線を引っ張る張力で、段差とコイルの接触による被覆の傷を防止することができ、絶縁信頼性を向上させ、モータの品質向上効果が得られる。
Further, the resin insulator 40 is sized so as to shrink in the center direction of the resin shape due to resin shrinkage after molding, but the ribs 44a and 44b integrated with the resin insulator 40 are arranged so as to hold the divided laminated core 50. Therefore, the split laminated iron core 50 serves as a pillar of the structure, and the resin shrinkage of the resin insulator 40 is suppressed.
As a result, there is no dimensional difference between the divided laminated iron core 50 and the resin insulator 40, so that it is possible to prevent the occurrence of a step at the boundary between the sealing portion 43 and the corners of both end surfaces of the teeth 54 in the lamination direction. Thereby, the tension | tensile_strength which pulls the electric wire of a coil winding process can prevent the damage | wound of the coating | cover by a level | step difference and a coil contact, improves insulation reliability, and obtains the quality improvement effect of a motor.

また、絶縁フィルム60の端部は、封止部43内部に封止された構造であるため、絶縁フィルム60の分割積層鉄心50からの剥離を防ぐことができる。
また、絶縁フィルム60を熱により融解させて、絶縁樹脂に接着させる方法ではないので、絶縁フィルム60の融解温度が、絶縁樹脂の融解温度より低くなるように材質を選定する必要がない。
これにより絶縁フィルム60と成形樹脂の材質を幅広く選定することができるため、熱可塑性樹脂だけでなく熱硬化性樹脂を採用することも可能になる。
Moreover, since the edge part of the insulating film 60 is the structure sealed inside the sealing part 43, the peeling from the division | segmentation laminated | stacked iron core 50 of the insulating film 60 can be prevented.
Further, since the insulating film 60 is not melted by heat and adhered to the insulating resin, it is not necessary to select a material so that the melting temperature of the insulating film 60 is lower than the melting temperature of the insulating resin.
Thereby, since the material of the insulating film 60 and molding resin can be selected widely, it becomes possible to employ | adopt not only a thermoplastic resin but a thermosetting resin.

本実施の形態の回転電機のステータの製造方法によれば、分割積層鉄心50を押圧した状態で絶縁フィルム60を装着して圧着するので、分割積層鉄心50の圧縮状態が保持され、その後のコイル巻線工程において、電線を引っ張る張力により分割積層鉄心50が圧縮される巻き締まり現象を防ぎ、余剰な絶縁フィルム60による皺の発生、皺に電線が乗り上げて発生するコイルの巻き乱れ、巻き乱れによりコイル同士が擦れて発生するコイル被覆への傷を防ぎ、絶縁信頼性の低下を防止できる。   According to the method for manufacturing a stator for a rotating electrical machine of the present embodiment, since the insulating film 60 is attached and crimped in a state where the split laminated core 50 is pressed, the compressed state of the split laminated core 50 is maintained, and the subsequent coil In the winding process, the phenomenon of winding tightening in which the split laminated core 50 is compressed by the tension of pulling the electric wire is prevented, and the generation of wrinkles due to excessive insulation film 60, the winding disturbance of the coils generated when the electric wires run on the wrinkles, It is possible to prevent damage to the coil coating that occurs when the coils rub against each other, and to prevent a decrease in insulation reliability.

実施の形態2.
以下、この発明の実施の形態2を、実施の形態1と異なる部分を中心に説明する。
図24は、分割積層鉄心50のティース54と、絶縁フィルム260と側面圧着機構20、フィルム接合機構21と、成形金型25a、25bの一部分を示す斜視図である。
実施の形態1では、絶縁フィルム60を2枚用いて、分割積層鉄心50の側面に絶縁フィルム60を装着したが、本実施の形態では1枚の絶縁フィルム260を用いる。
図25(a)、(b)は、コアの一部断面側面図である。
成形金型25c(成形金型25cは図示せず)の樹脂注入孔26a、26b、26cの数と、樹脂注入孔26a、26b、26cのコアに対する位置関係を示している。
図に示すように、絶縁フィルム260を分割積層鉄心50に装着すると、分割積層鉄心50の積層方向の一端面は、実施の形態1と同形状の2箇所の圧着代61を有する。
また、他端面は、絶縁フィルム260が折り返された形状の圧着代261となる。
この圧着代261を接合する方法は実施の形態1と同様であり、圧着代261が互いに結合されて接合部262が形成される。
Embodiment 2. FIG.
Hereinafter, the second embodiment of the present invention will be described with a focus on differences from the first embodiment.
FIG. 24 is a perspective view showing a part of the teeth 54 of the split laminated iron core 50, the insulating film 260, the side pressure bonding mechanism 20, the film bonding mechanism 21, and the molding dies 25a and 25b.
In the first embodiment, two insulating films 60 are used and the insulating film 60 is mounted on the side surface of the divided laminated core 50. However, in the present embodiment, one insulating film 260 is used.
25 (a) and 25 (b) are partial cross-sectional side views of the core.
The number of the resin injection holes 26a, 26b, 26c of the molding die 25c (the molding die 25c is not shown) and the positional relationship of the resin injection holes 26a, 26b, 26c with respect to the core are shown.
As shown in the figure, when the insulating film 260 is attached to the split laminated core 50, one end surface of the split laminated core 50 in the stacking direction has two crimping allowances 61 having the same shape as in the first embodiment.
Further, the other end surface is a crimping margin 261 having a shape in which the insulating film 260 is folded.
The method of joining the crimping margin 261 is the same as that of the first embodiment, and the crimping margins 261 are coupled to each other to form the joint portion 262.

実施の形態1と同様に、図25(a)のように樹脂注入孔26a、26bの2つを設置する場合は、絶縁フィルム60の接合部62を採用することで、封止状態を安定化することができる。
また、図25(b)のように樹脂注入孔26cを1つ設置する場合は、(図でd2と示すオフセットを持たせる)実施の形態1と同様に封止状態を安定化し、絶縁信頼性を向上させ、モータの品質向上効果が得られる。
本実施の形態の回転電機のステータによると、1枚の絶縁フィルム260を用いるので、部品点を数削減することができる。
As in the first embodiment, when two resin injection holes 26a and 26b are installed as shown in FIG. 25A, the sealing state is stabilized by adopting the joining portion 62 of the insulating film 60. can do.
In addition, when one resin injection hole 26c is installed as shown in FIG. 25B, the sealing state is stabilized and insulation reliability is ensured in the same manner as in the first embodiment (providing an offset indicated by d2 in the figure). Can improve the quality of the motor.
According to the stator of the rotating electrical machine of the present embodiment, since one insulating film 260 is used, the number of parts can be reduced.

実施の形態3.
以下、この発明の実施の形態3を、実施の形態1と異なる部分を中心に説明する。
図26は、この発明の実施の形態3に係る分割積層鉄心350の斜視図である。
図27(a)、(b)は、コア2の一部断面側面図である。
成形金型25c(成形金型25cは図示せず)の樹脂注入孔26a、26b、26dの数と、樹脂注入孔26a、26b、26dのコアに対する位置関係を示している。
分割積層鉄心350は、分割積層鉄心350の軸方向両端面に、凹部57を備える。
そして、実施の形態1と同様に絶縁フィルム360の圧着代が接合されて接合部362が形成され、接合部362は、樹脂注入孔26a、26b、26dから注入された絶縁樹脂の射出圧力により押し倒されながら、凹部57に埋め込まれて封止される。
樹脂注入孔26aと26bの2つを設置するスペースがない場合は、図27(b)の樹脂注入孔26dのように1つのみ設置し、樹脂注入孔26dと絶縁フィルム360の接合部362の中心が一致するように配置することで、絶縁樹脂の射出圧力により接合部362を凹部57内に確実に埋め込むことができる。
Embodiment 3 FIG.
In the following, the third embodiment of the present invention will be described focusing on the differences from the first embodiment.
FIG. 26 is a perspective view of a split laminated iron core 350 according to Embodiment 3 of the present invention.
27A and 27B are partial cross-sectional side views of the core 2.
The number of the resin injection holes 26a, 26b, and 26d of the molding die 25c (the molding die 25c is not shown) and the positional relationship of the resin injection holes 26a, 26b, and 26d with respect to the core are shown.
The divided laminated core 350 includes recesses 57 on both end surfaces in the axial direction of the divided laminated core 350.
Then, as in Embodiment 1, the crimping allowance of the insulating film 360 is joined to form a joined portion 362, and the joined portion 362 is pushed down by the injection pressure of the insulating resin injected from the resin injection holes 26a, 26b, and 26d. As a result, it is embedded in the recess 57 and sealed.
When there is no space for installing the two resin injection holes 26a and 26b, only one resin injection hole 26d as shown in FIG. 27B is installed, and the joint 362 between the resin injection hole 26d and the insulating film 360 is formed. By arrange | positioning so that a center may correspond, the junction part 362 can be reliably embedded in the recessed part 57 with the injection pressure of insulating resin.

成形樹脂が硬化した後、分割積層鉄心350の押圧を解除すると、圧縮された分割積層鉄心350が圧縮状態前に復元しようとする力により、接合部362に対して接合部362を剥離させる方向に引っ張り力が加わる。
しかし、本実施の形態の回転電機のステータによると、この力が働く方向に対し、接合部362が積層方向に折り曲げられ埋め込まれたことによって、剥離を防止する効果を有する。
これによりコイルと分割積層鉄心350との間の電気的絶縁不良を防止し絶縁信頼性を向上させ、モータの品質向上効果が得られる。
When the pressure of the split laminated core 350 is released after the molding resin is cured, the joint 362 is peeled from the joint 362 by the force that the compressed split laminated core 350 tries to restore before the compressed state. Tensile force is applied.
However, according to the stator of the rotating electrical machine of the present embodiment, the joining portion 362 is bent and embedded in the stacking direction with respect to the direction in which this force acts, and thus has an effect of preventing peeling.
As a result, an electrical insulation failure between the coil and the split laminated iron core 350 can be prevented to improve insulation reliability, and an effect of improving the quality of the motor can be obtained.

実施の形態4.
以下、この発明の実施の形態4を、実施の形態1と異なる部分を中心に説明する。
図28(a)、(b)は、絶縁フィルム460の接合部462の例を示す図である。
図28(a)に示すように、絶縁フィルム460の接合部462は、分割積層鉄心50の軸方向両端面に配置され向かい合わされた絶縁フィルム460が、フィルム接合機構の熱で延ばされて凹凸形状で接合された構造を有する。
本実施の形態の回転電機のステータによると、絶縁フィルム460を平面形状で接合するだけでなく、凹凸形状で接合された構造を有するので、格段に接合強度が向上する。
また、凸凹形状は、図28(b)に示す接合部462のような構成としても同様の効果を得ることができる。
Embodiment 4 FIG.
Hereinafter, the fourth embodiment of the present invention will be described with a focus on the differences from the first embodiment.
FIGS. 28A and 28B are diagrams illustrating an example of the joint portion 462 of the insulating film 460. FIG.
As shown in FIG. 28 (a), the joining portion 462 of the insulating film 460 is uneven by the insulating film 460 disposed on the both end surfaces in the axial direction of the divided laminated core 50 being extended by the heat of the film joining mechanism. It has a structure joined in shape.
According to the stator of the rotating electrical machine of the present embodiment, since the insulating film 460 is not only joined in a planar shape but also has a structure joined in a concavo-convex shape, the joining strength is remarkably improved.
In addition, the uneven shape can obtain the same effect even if it has a configuration like the joint portion 462 shown in FIG.

なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

20 側面圧着機構、21 フィルム接合機構、22 鉄心押圧機構、
25a,25b,25c,25d 成形金型、
26a,26b,26c,26d 樹脂注入孔、27 金型キャビティ部、
40 樹脂インシュレータ、41 ヨーク鍔部、42 ティース先端鍔部、
43,243 封止部、53,253 封止部、44a,44b リブ、
50,350 分割積層鉄心、51 鉄心片、52 バックヨーク、
53 ティース先端突出部、54 ティース、55a,55b,55c 溝、
57 凹部、60,260,360,460 絶縁フィルム、61,261 圧着代、
62,362,462 接合部、63 絶縁樹脂、66a,66b リブ穴、
67 曲げ部。
20 side pressure bonding mechanism, 21 film bonding mechanism, 22 iron core pressing mechanism,
25a, 25b, 25c, 25d mold,
26a, 26b, 26c, 26d Resin injection hole, 27 Mold cavity part,
40 Resin insulator, 41 Yoke collar, 42 Teeth tip collar,
43,243 sealing part, 53,253 sealing part, 44a, 44b rib,
50,350 split laminated iron core, 51 iron core pieces, 52 back yoke,
53 teeth tip protrusion, 54 teeth, 55a, 55b, 55c groove,
57 Recess, 60, 260, 360, 460 Insulating film, 61, 261 Crimping allowance,
62,362,462 joint, 63 insulating resin, 66a, 66b rib hole,
67 Bending part.

Claims (11)

バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
前記分割積層鉄心は、コイルが巻回されるコイル巻装部を有する回転電機のステータにおいて、
前記コイル巻装部に装着されて、前記コイルと前記分割積層鉄心とを絶縁する絶縁フィルムを備え、
前記絶縁フィルムは、前記分割積層鉄心の軸方向両端面部において、当該絶縁フィルムの圧着代が互いに接合された接合部を有し、
前記接合部を絶縁樹脂により封止する封止部を有し、
前記分割積層鉄心の軸方向両端の前記鉄心片は凹部を備え、
前記絶縁フィルムは、前記凹部に沿って接着され、
前記封止部は、前記接合部を前記凹部内に封止する回転電機のステータ。
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
In the stator of a rotating electric machine, the divided laminated iron core has a coil winding portion around which a coil is wound.
An insulating film that is attached to the coil winding portion and insulates the coil and the divided laminated iron core,
The insulating film has joint portions where the crimping allowances of the insulating film are joined to each other at both axial end surfaces of the divided laminated core;
The joint have a sealing portion for sealing with an insulating resin,
The core pieces at both axial ends of the divided laminated core are provided with recesses,
The insulating film is bonded along the recess,
The sealing portion is a stator of a rotating electrical machine that seals the joint portion in the recess .
前記分割積層鉄心は、前記分割積層鉄心の軸方向に貫通する溝または穴の少なくともいずれか一方に、前記絶縁樹脂が充填されて成形されたリブを備え、
前記リブと前記封止部とが一体として形成されている請求項1に記載の回転電機のステータ。
The split laminated iron core includes a rib formed by filling the insulating resin into at least one of a groove or a hole penetrating in the axial direction of the split laminated iron core,
The stator of the rotating electrical machine according to claim 1, wherein the rib and the sealing portion are integrally formed.
前記接合部は、凹凸形状である請求項1または請求項2に記載の回転電機のステータ。 The stator of the rotating electrical machine according to claim 1, wherein the joint portion has an uneven shape. 前記絶縁フィルムは、前記分割積層鉄心の軸方向両端面部で、前記分割積層鉄心に沿って折り曲げられた曲げ部を有する請求項1乃至請求項のいずれか一項に記載の回転電機のステータ。 The stator of the rotating electrical machine according to any one of claims 1 to 3 , wherein the insulating film has bent portions that are bent along the split laminated core at both axial end surfaces of the split laminated core. バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
コイルが巻回されるコイル巻装部を有する回転電機のステータの製造方法であって、
前記コイルと前記分割積層鉄心とを絶縁する絶縁フィルムを、前記コイル巻装部に装着する絶縁フィルム装着工程と、
前記分割積層鉄心を前記分割積層鉄心の軸方向に押圧する押圧工程と、
前記押圧工程を実施しながら、前記絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
前記接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え
前記インシュレータ成形工程は、前記接合部を封止するための成形金型に設けた樹脂注入孔から前記絶縁樹脂を注入して、前記接合部を封止し、
前記分割積層鉄心の軸方向に貫通する前記分割積層鉄心の溝の開口部を、前記絶縁フィルム装着用の可動機構により閉塞して、前記分割積層鉄心の軸方向に貫通し且つ前記樹脂注入孔に連通するリブ穴を形成する溝開口部閉塞工程を有し、
前記インシュレータ成形工程において、前記リブ穴と前記接合部とを一体として前記絶縁樹脂で封止する回転電機のステータの製造方法。
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
A method of manufacturing a stator of a rotating electrical machine having a coil winding portion around which a coil is wound,
An insulating film mounting step of mounting an insulating film that insulates the coil and the divided laminated iron core on the coil winding portion;
A pressing step of pressing the divided laminated core in the axial direction of the divided laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by mutually crimping the crimping margin of the insulating film;
An insulator molding step for sealing the joint with an insulating resin ,
The insulator molding step injects the insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The opening of the groove of the divided laminated core that penetrates in the axial direction of the divided laminated core is closed by the movable mechanism for mounting the insulating film, penetrates in the axial direction of the divided laminated core, and enters the resin injection hole. Having a groove opening closing step for forming a communicating rib hole;
A method of manufacturing a stator for a rotating electrical machine, wherein, in the insulator molding step, the rib hole and the joint are integrally sealed with the insulating resin .
前記絶縁フィルム圧着工程は、前記絶縁フィルムを、前記分割積層鉄心の軸方向両端面部で前記分割積層鉄心に沿って折り曲げた後に、前記接合部を形成する請求項に記載の回転電機のステータの製造方法。 The stator of the rotating electrical machine according to claim 5 , wherein the insulating film crimping step forms the joint portion after the insulating film is bent along the split laminated iron core at both axial end surfaces of the split laminated iron core. Production method. 前記インシュレータ成形工程において、前記分割積層鉄心の軸方向に貫通し、且つ前記樹脂注入孔に連通する前記分割積層鉄心の縦穴と前記接合部とを一体として前記絶縁樹脂で封止する請求項又は請求項に記載の回転電機のステータの製造方法。 In the insulator forming step, the divided penetrating in the axial direction of the laminated core, and the resin injection hole and vertical hole of the laminated core segments which communicates with the joint portion is sealed with the insulating resin as an integral claim 5 or The manufacturing method of the stator of the rotary electric machine of Claim 6 . 前記樹脂注入孔の位置は、前記接合部の位置から前記分割積層鉄心の周方向に対してオフセットを持って形成され、前記樹脂注入孔から注入された前記絶縁樹脂は、前記接合部を押し倒しながら前記接合部を封止する請求項乃至請求項のいずれか一項に記載の回転電機のステータの製造方法。 The position of the resin injection hole is formed with an offset from the position of the joint portion with respect to the circumferential direction of the split laminated iron core, and the insulating resin injected from the resin injection hole pushes down the joint portion. The method for manufacturing a stator for a rotating electrical machine according to any one of claims 5 to 7 , wherein the joint portion is sealed. バックヨーク部とティース部とからなる磁性鋼板の鉄心片を積層して形成される分割積層鉄心を、円環状に配置することで構成され、
コイルが巻回されるコイル巻装部を有する回転電機のステータの製造方法であって、
前記コイルと前記分割積層鉄心とを絶縁する絶縁フィルムを、前記コイル巻装部に装着する絶縁フィルム装着工程と、
前記分割積層鉄心を前記分割積層鉄心の軸方向に押圧する押圧工程と、
前記押圧工程を実施しながら、前記絶縁フィルムの圧着代を互いに圧着して接合部を形成する絶縁フィルム圧着工程と、
前記接合部を絶縁樹脂で封止するインシュレータ成形工程とを備え
前記インシュレータ成形工程は、前記接合部を封止するための成形金型に設けた樹脂注入孔から前記絶縁樹脂を注入して、前記接合部を封止し、
前記樹脂注入孔の位置は、前記接合部の位置から前記分割積層鉄心の周方向に対してオフセットを持って形成され、前記樹脂注入孔から注入された前記絶縁樹脂は、前記接合部を押し倒しながら前記接合部を封止する回転電機のステータの製造方法。
It is configured by arranging a split laminated iron core formed by laminating iron core pieces of a magnetic steel plate consisting of a back yoke part and a tooth part in an annular shape,
A method of manufacturing a stator of a rotating electrical machine having a coil winding portion around which a coil is wound,
An insulating film mounting step of mounting an insulating film that insulates the coil and the divided laminated iron core on the coil winding portion;
A pressing step of pressing the divided laminated core in the axial direction of the divided laminated core;
While performing the pressing step, an insulating film crimping step of forming a joint by mutually crimping the crimping margin of the insulating film;
An insulator molding step for sealing the joint with an insulating resin ,
The insulator molding step injects the insulating resin from a resin injection hole provided in a molding die for sealing the joint, and seals the joint.
The position of the resin injection hole is formed with an offset from the position of the joint portion with respect to the circumferential direction of the split laminated iron core, and the insulating resin injected from the resin injection hole pushes down the joint portion. A method of manufacturing a stator of a rotating electrical machine that seals the joint .
前記絶縁フィルム圧着工程は、前記絶縁フィルムを、前記分割積層鉄心の軸方向両端面部で前記分割積層鉄心に沿って折り曲げた後に、前記接合部を形成する請求項9に記載の回転電機のステータの製造方法。The stator of a rotating electrical machine according to claim 9, wherein the insulating film crimping step forms the joint portion after the insulating film is bent along the split laminated iron core at both axial end surfaces of the split laminated iron core. Production method. 前記インシュレータ成形工程において、前記分割積層鉄心の軸方向に貫通し、且つ前記樹脂注入孔に連通する前記分割積層鉄心の縦穴と前記接合部とを一体として前記絶縁樹脂で封止する請求項9又は請求項10に記載の回転電機のステータの製造方法。10. In the insulator molding step, the vertical hole of the divided laminated core that penetrates in the axial direction of the divided laminated core and communicates with the resin injection hole and the joint portion are integrally sealed with the insulating resin. The manufacturing method of the stator of the rotary electric machine of Claim 10.
JP2012015204A 2012-01-27 2012-01-27 Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine Expired - Fee Related JP5738208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015204A JP5738208B2 (en) 2012-01-27 2012-01-27 Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015204A JP5738208B2 (en) 2012-01-27 2012-01-27 Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2013158095A JP2013158095A (en) 2013-08-15
JP5738208B2 true JP5738208B2 (en) 2015-06-17

Family

ID=49052793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015204A Expired - Fee Related JP5738208B2 (en) 2012-01-27 2012-01-27 Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5738208B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533029B2 (en) * 2013-09-04 2019-06-19 デュポン帝人アドバンスドペーパー株式会社 Motor bobbin and method of manufacturing the same
JP6567188B2 (en) * 2016-07-12 2019-08-28 三菱電機株式会社 Winding device and coil winding method
JP6489183B2 (en) * 2016-09-30 2019-03-27 ダイキン工業株式会社 Stator, manufacturing method thereof, motor and compressor using the stator
JPWO2023162357A1 (en) * 2022-02-28 2023-08-31

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898473A (en) * 1994-09-21 1996-04-12 Copal Co Ltd Laminate structure for motor
JP2003111329A (en) * 2001-10-03 2003-04-11 Mitsubishi Electric Corp Stator for rotating electric machine
JP2004208475A (en) * 2002-12-26 2004-07-22 Aisin Aw Co Ltd Insulation structure of, and insulation method for stator core
JP2005086950A (en) * 2003-09-10 2005-03-31 Aisin Aw Co Ltd Stator core and its manufacturing method, and slot-insulating resin mold film and manufacturing method therefor

Also Published As

Publication number Publication date
JP2013158095A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
CN107683514B (en) Reactor and method for manufacturing reactor
JP4735529B2 (en) Motor stator
JP6384732B2 (en) Reactor
JP5505077B2 (en) Stator manufacturing method
US9184638B2 (en) Stator structure and stator manufacturing method
JP6044488B2 (en) Coil insulator fixing method and structure, stator, and rotating electric machine
JP5738208B2 (en) Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine
CN104836395A (en) Method of molding resin casing and motor
JP2009089456A (en) Stator structure
JP2009072055A (en) Split stator, motor, and split stator manufacturing method
JP2016116417A (en) Coil winding component, manufacturing method of the same, stator, and rotary electric machine
JP3882721B2 (en) Cooling structure for rotating electrical machine and method for manufacturing the same
JP2023073439A (en) Reactor
JP6814568B2 (en) Laminated iron core
KR20120117918A (en) Bobbin for electrical equipment and method for producing same
JP6090019B2 (en) Manufacturing method of rotating electrical machine stator
JP2008278684A (en) Integrally molding method
JP5151309B2 (en) Rotating electric machine
JP2011054612A (en) Method of manufacturing reactor structure, and reactor structure
JP4900294B2 (en) Split stator manufacturing method
JP6818900B2 (en) Manufacturing method of stator and stator of rotary electric machine
JP2019036613A (en) Coil unit and manufacturing method thereof
JP2015033192A (en) Method for manufacturing rotary electric machine stator and rotary electric machine stator
JP5991011B2 (en) Motor stator structure and manufacturing method thereof
CN115336142A (en) Stator of rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150421

R150 Certificate of patent or registration of utility model

Ref document number: 5738208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees