JP5737193B2 - Processing crack sensitivity evaluation method - Google Patents

Processing crack sensitivity evaluation method Download PDF

Info

Publication number
JP5737193B2
JP5737193B2 JP2012001643A JP2012001643A JP5737193B2 JP 5737193 B2 JP5737193 B2 JP 5737193B2 JP 2012001643 A JP2012001643 A JP 2012001643A JP 2012001643 A JP2012001643 A JP 2012001643A JP 5737193 B2 JP5737193 B2 JP 5737193B2
Authority
JP
Japan
Prior art keywords
steel bar
test
hollow
specimen
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012001643A
Other languages
Japanese (ja)
Other versions
JP2013142559A (en
Inventor
加田 修
修 加田
戸田 正弘
正弘 戸田
洋輝 成宮
洋輝 成宮
慶 宮西
慶 宮西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012001643A priority Critical patent/JP5737193B2/en
Publication of JP2013142559A publication Critical patent/JP2013142559A/en
Application granted granted Critical
Publication of JP5737193B2 publication Critical patent/JP5737193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Forging (AREA)

Description

本発明は、棒鋼を所定の寸法に切断した円柱状被加工素材を冷間鍛造により歯車等の鍛造部品を製造する際の素材表面に生じる加工割れ感受性を評価する方法に関する。   The present invention relates to a method for evaluating the susceptibility to processing cracks generated on the surface of a material when a forged part such as a gear is manufactured by cold forging a cylindrical work material obtained by cutting a steel bar into a predetermined size.

自動車や産業機械に使用される歯車等の部品は、棒鋼を素材として所定の寸法に切断した円柱状被加工素材を熱間鍛造した後、切削加工して製造される。しかしながら、省工程、省エネルギーを目的に、冷間鍛造によって歯車等の部品を製造することがあり、今後、さらにこの工法が増加する傾向である。素材を冷間鍛造する際には、素材の加工限度が問題となり、加工限度はほとんどの場合、被加工材に生ずる加工割れによって規制される。従って材料の冷間鍛造時の割れに関しての優劣、すなわち加工性について適切な評価を下すことは、目的とする加工に対しての材料の選択または適否の判定のために、あるいは与えられた材料に対する妥当な加工度の算定または加工の成否の推定のために極めて必要なことである。   Parts such as gears used in automobiles and industrial machines are manufactured by hot forging a cylindrical workpiece cut into a predetermined size using a steel bar as a raw material and then cutting it. However, parts such as gears may be manufactured by cold forging for the purpose of saving process and energy, and this construction method tends to increase in the future. When a material is cold forged, the processing limit of the material becomes a problem, and the processing limit is almost always regulated by processing cracks generated in the workpiece. Therefore, superiority or inferiority in cracking during cold forging of a material, that is, making an appropriate assessment of workability, is a matter of selecting a material for the intended processing or determining suitability, or for a given material. This is extremely necessary for calculating a reasonable degree of processing or estimating the success or failure of processing.

そのため材料の冷間加工性を評価する方法として、幾つかの試験方法が提案されている。例えば、冷間据え込み性試験方法では、棒鋼素材から円柱試験体を切り出し、その円柱試験体を軸方向に圧縮し、割れ発生の有無を観察して、限界据え込み率を求めて素材の加工性を評価する方法である。割れ発生は、微細な割れ(長さ0.5〜1.0mm)が始めて観察されたときとし、試験体の高さを測定して、割れ発生高さ(hc)とする。そして、最初の試験体の高さをhとした時に、限界据え込み率εhc(%)は、εhc=(h−h)/h×100の式によって求めるものである(例えば、非特許文献1参照)。 For this reason, several test methods have been proposed as methods for evaluating the cold workability of materials. For example, in the cold upsetting test method, a cylindrical specimen is cut out from a steel bar material, the cylindrical specimen is compressed in the axial direction, the presence or absence of cracks is observed, the limit upsetting ratio is obtained, and the material is processed. This is a method for evaluating sex. Cracking occurs when a fine crack (0.5 to 1.0 mm in length) is observed for the first time, and the height of the specimen is measured to determine the cracking height (hc). Then, when the height of the first specimen is h 0 , the limit upsetting ratio ε hc (%) is obtained by the equation ε hc = (h 0 −h c ) / h 0 × 100 ( For example, refer nonpatent literature 1).

また、棒鋼は圧延時の微小なロール疵や皺等がある表面性状を呈していて、圧延したままの素材、あるいは圧延材を焼鈍やボンデ処理した素材、これら素材をピーリングしない状態で切断した円柱被加工素材の表面性状も同様である。このような被加工素材の表面性状は、加工割れに大きな影響を与えるものである。しかし、従来の据え込み性試験方法では、小径の円柱試験体を棒鋼素材から切り出した後、切削加工して製作することが多く、円柱試験体は棒鋼の表面性状を有しておらず、棒鋼を切断したままの円柱被加工素材の表面加工割れについての評価をすることができない。棒鋼素材を切断した円柱試験体を作製することも可能であるが、例えば55mmφ程度と大きい場合、棒鋼の強度によっては15000kNを超えるような荷重を要し、試験のために負荷能力の高いプレス装置を必要とするという問題がある。   In addition, steel bars have surface properties such as roll rolls and wrinkles at the time of rolling, and the rolled material, or the material obtained by annealing or bonding the rolled material, the cylinder cut without peeling these materials The same applies to the surface properties of the workpiece. Such surface properties of the material to be processed greatly affect the processing cracks. However, in conventional upsetting test methods, a small-diameter cylindrical specimen is often cut and manufactured from a steel bar material, and the cylindrical specimen does not have the surface properties of a steel bar. It is not possible to evaluate the surface processing cracks of the cylindrical workpiece that has been cut. Although it is possible to produce a cylindrical specimen cut from a steel bar material, for example, when it is as large as about 55 mmφ, depending on the strength of the steel bar, a load exceeding 15000 kN is required. There is a problem of needing.

また、他の試験方法として提案されている円筒工具試験法では、表面にV形の溝を格子状に付けた円筒工具の円筒面で円柱試験体をその軸方向に圧縮する方法(例えば、非特許文献2参照)がある。この方法は、試験体の高さと直径の比、圧縮した試験体に割れの発生した時の最小高さ部の高さ減少率で材料の冷間据え込み性を評価する。   In addition, in a cylindrical tool test method proposed as another test method, a cylindrical test body is compressed in the axial direction by a cylindrical surface of a cylindrical tool having a V-shaped groove formed in a lattice shape on the surface (for example, non- Patent Document 2). In this method, the cold upsetting property of a material is evaluated by the ratio of the height and diameter of the specimen and the rate of decrease in the height of the minimum height when a crack occurs in the compressed specimen.

この試験方法は、低荷重で可能な試験方法であるが、それでも冷間据え込み性試験方法の1/3程度の荷重が必要である。例えば、55mmφ試験体では5000kN超の負荷能力の試験機が必要となる。   This test method is a test method that is possible with a low load, but still requires a load that is about 1/3 of the cold upset test method. For example, a 55 mmφ test body requires a testing machine having a load capacity of over 5000 kN.

「塑性と加工」vol.22、No.241((1981−2)、139〜144頁“Plasticity and processing” vol. 22, no. 241 ((1981-2), 139-144) 「塑性と加工」vol.18、No.202((1977−11)、923〜929頁“Plasticity and processing” vol. 18, no. 202 ((1977-11), 923-929)

そこで、本発明は、このような問題点に鑑み、圧延したままの棒鋼素材を所定の寸法に切断して作製した円柱被加工棒鋼素材の冷間鍛造時の表面加工割れ感受性を、圧縮荷重の大きなプレス装置を用いなくても、適切に評価することができる棒鋼表面の加工割れ感受性評価方法を提供することを課題とするものである。 Therefore, in view of such problems, the present invention has the effect of compressive load on the surface processing cracking sensitivity during cold forging of a cylindrical steel bar material produced by cutting a rolled steel bar material into a predetermined dimension. It is an object of the present invention to provide a method for evaluating the sensitivity to processing cracks on the surface of a steel bar that can be appropriately evaluated without using a large pressing device.

本発明者らは、上記課題を解決すべく鋭意研究し、その結果、圧延したままの棒鋼素材を所定の寸法に切断し、中央部をくり貫いて中空試験体を作製し、中空試験体を直径方向にへん平させた際の外表層での割れ発生状況から、限界へん平率を求めることで、棒鋼素材を所定の寸法に切断した円柱被加工棒鋼素材を中心軸方向に圧縮(冷間鍛造)する際に発生する表面加工割れを適切に評価できる棒鋼表面の加工割れ感受性の評価方法を見出して本発明を完成した。 The inventors of the present invention have intensively studied to solve the above problems, and as a result, cut the rolled steel bar material into a predetermined size, cut through the center portion to produce a hollow specimen, By calculating the critical flatness ratio from the occurrence of cracks in the outer surface layer when flattened in the diameter direction, the cylindrical steel bar material cut into a predetermined size is compressed in the central axis direction (cold). The present invention has been completed by finding a method for evaluating the sensitivity of work cracks on the surface of steel bars that can appropriately evaluate the surface work cracks that occur during forging.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 圧延したままの棒鋼素材を切断し、中央部をくり貫いた中空試験体を作製し、該中空試験体を鉛直の直径方向にへん平させた際のへん平体のへん平率と、該へん平体の水平位置における外表層での割れ発生状況との関係から、下記式に規定する限界へん平率を求め、圧延したままの棒鋼素材を切断して作製した円柱被加工棒鋼素材の冷間鍛造時の表面加工割れ性を、前記限界へん平率に基づいて評価することを特徴とする棒鋼表面の加工割れ感受性評価方法。
限界へん平率εhi=(h0−hi)/h0×100(%)
ここで、h0は最初の中空試験体の高さ(外径)(mm)、hiは水平位置における外表層で割れが発生する時の高さ(mm)を意味する。
(1) Cut the rolled steel bar material, produce a hollow specimen that has been cut through the center, and flatten the flat specimen when the hollow specimen is flattened in the vertical diameter direction. From the relationship with the occurrence of cracks in the outer surface layer at the horizontal position of the flat body, the critical flatness specified in the following formula is obtained, and the cylindrical steel bar material produced by cutting the rolled steel bar material A method for evaluating the cracking susceptibility of a steel bar surface, characterized in that the surface cracking property during cold forging is evaluated based on the limit flatness ratio.
Limit Enough Tairaritsu ε hi = (h 0 -hi) / h 0 × 100 (%)
Here, h 0 means the height (outer diameter) (mm) of the first hollow specimen, and hi means the height (mm) when a crack occurs in the outer surface layer in the horizontal position.

(2) 前記中空試験体の外径D、内径dの関係が、d/D>0.5であることを特徴とする、上記(1)に記載の棒鋼表面の加工割れ感受性評価方法。 (2) The method of evaluating the cracking susceptibility of the steel bar surface according to (1) above, wherein the relationship between the outer diameter D and the inner diameter d of the hollow test body is d / D> 0.5.

(3) 前記中空試験体は外径D、長さLの圧延したままの棒鋼から、外径D、内径d、長さLの中空試験体に加工することを特徴とする、上記(1)または(2)に記載の棒鋼表面の加工割れ感受性評価方法。 (3) the hollow specimen is outer diameter from D, rolled left bars of length L, a outer diameter D, wherein the processing into a hollow specimen of internal diameter d, length L, a (1) Alternatively, the method for evaluating the sensitivity to processing cracks on the steel bar surface according to (2).

(4) 前記中空試験体は外径D、長さLの関係が、L/Dが0.5〜2であることを特徴とする、上記(1)〜(3)のいずれかに記載の棒鋼表面の加工割れ感受性評価方法。 (4) The hollow test body according to any one of (1) to (3) above, wherein the relationship between the outer diameter D and the length L is such that L / D is 0.5 to 2. Method for evaluating the susceptibility to machining cracks on the surface of steel bars .

本発明によれば、試験に要するプレスの所要荷重が冷間据込み性試験に比較して非常に低い荷重で実施することができ、さらに、圧延したままの太径棒鋼を切断して作製した円柱被加工素材の表面性状を含めて、冷間鍛造時の表面加工割れ感受性を評価できるという顕著な効果を奏することができる。   According to the present invention, the required load of the press required for the test can be carried out with a very low load compared to the cold upsetting test, and further, it was produced by cutting a large-diameter steel bar as rolled. Including the surface properties of the cylindrical workpiece, it is possible to achieve a remarkable effect that the surface processing crack sensitivity during cold forging can be evaluated.

従来の冷間据込み性試験を説明するための図で、(a)は試験体を軸方向に圧縮する前、(b)は圧縮した試験体に割れが生じた状態を説明するための図である。It is a figure for demonstrating the conventional cold upsetting test, (a) is before compressing a test body to an axial direction, (b) is a figure for demonstrating the state which the crack generate | occur | produced in the compressed test body. It is. 鉄鋼材料(S45C)の圧縮率(%)と鍛造荷重(kN)との関係を示す図である。It is a figure which shows the relationship between the compression rate (%) of a steel material (S45C), and a forge load (kN). 従来の冷間据込み性試験のための細径の試験体を作製することを示す図である。It is a figure which shows producing the thin diameter test body for the conventional cold upsetting test. (a)〜(d)は本発明の試験方法での中空試験体を鉛直方向(直径方向)にプレスで圧縮する状態を示す図である。(A)-(d) is a figure which shows the state which compresses the hollow test body by the test method of this invention to a perpendicular direction (diameter direction) with a press. へん平率と累積割れ率との関係を示す図である。It is a figure which shows the relationship between a flat rate and a cumulative crack rate.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

まず、鍛造業界で一般的に用いられている従来の冷間鍛造用鋼の加工限界評価方法である塑性加工学会冷鍛分科会推奨の冷間据込み性試験について述べる。この冷間据込み性試験は、図1(a)に示すように、試験体1を端面拘束冶具2で圧縮して、図1(b)に示すように圧縮された試験体3の側面に割れ4の発生する圧縮率を尺度として利用する方法である。   First, we will describe the cold upsetting test recommended by the Japan Society of Plasticity and Forging, which is a conventional method for evaluating the working limit of steel for cold forging, which is generally used in the forging industry. As shown in FIG. 1 (a), the cold upsetting test is performed by compressing the test body 1 with the end face restraining jig 2 and applying it to the side surface of the compressed test body 3 as shown in FIG. 1 (b). In this method, the compression ratio at which the crack 4 occurs is used as a scale.

ところが、最近の鉄鋼材料では、限界圧縮率が75%程度あるので、図2の鉄鋼材料(S45C)の圧縮率(%)と鍛造荷重(kN)との関係に示すように、割れの発生まで圧縮するためには負荷能力の高い試験機が必要である。例えば、太径の55mmφ円柱試験体では12000kN超の負荷能力の試験機が必要となる。このため、太径の棒鋼を切断した円柱試験体ままでの試験は困難である。したがって、通常は、図3に示すように、太径の55mmφ棒鋼5から14mmφ程度の細径の試験体1を切り出して冷間据込み性試験に供されている。   However, recent steel materials have a critical compressibility of about 75%, and as shown in the relationship between the compressibility (%) of steel material (S45C) and forging load (kN) in FIG. In order to compress, a testing machine with high load capacity is required. For example, a test machine having a load capacity exceeding 12000 kN is required for a large-diameter 55 mmφ cylindrical specimen. For this reason, it is difficult to perform a test using a cylindrical specimen obtained by cutting a large-diameter steel bar. Therefore, normally, as shown in FIG. 3, a test specimen 1 having a small diameter of about 14 mmφ is cut out from the large-diameter 55 mmφ bar steel 5 and used for a cold upsetting test.

この冷間据込み性試験では、負荷能力の高い試験機が必要であること、および被加工素材の表面性状を勘案した棒鋼表面の加工割れ感受性の評価ができないことに鑑み、本発明は負荷能力の高い試験機を用いずに、低荷重で圧延したままの太径素材の加工限界が評価でき、かつ被加工素材の表面性状を勘案した棒鋼表面の加工割れ感受性が評価できる方法について鋭意研究した。 In the cold upsetting test, in view of the necessity of a testing machine with a high load capacity and the inability to evaluate the cracking susceptibility of the steel bar surface considering the surface properties of the workpiece material, the present invention provides a load capacity. We have intensively researched a method that can evaluate the processing limit of large-diameter materials that are rolled at low load without using a high-strength testing machine, and can evaluate the cracking susceptibility of the steel bar surface considering the surface properties of the workpiece .

まず、低荷重で太径素材の表面加工割れ感受性を評価できる試験を可能とするために、中空試験体を用いることを着想し、中空試験体を軸方向に圧縮する試験を試みたが、この試験では中空試験体が中間で座屈(腰折れ)してしまい素材の加工割れの評価を可能とする試験にならなかった。   First, in order to enable tests that can evaluate the surface processing cracking susceptibility of large-diameter materials at low loads, we conceived of using a hollow specimen and tried to compress the hollow specimen in the axial direction. In the test, the hollow specimen was buckled (buckled) in the middle, and it was not possible to evaluate the processing crack of the material.

そこで、さらに研究を進め、中空試験体を直径方向に圧縮する試験を実施した。その結果、中空試験体を鉛直の直径方向に圧縮するへん平試験を実施したところ、太径素材を切断して作製した円柱被加工素材の表面加工割れ感受性を有効に評価できることを知見して本発明を完成した。   Therefore, further research was conducted, and a test was carried out to compress the hollow specimen in the diameter direction. As a result, we conducted a flattening test to compress the hollow specimen in the vertical diameter direction, and found that it was possible to effectively evaluate the surface processing cracking susceptibility of a cylindrical workpiece made by cutting a large diameter material. Completed the invention.

本発明は、圧延したままの太径の棒鋼素材を切断し、中央部をくり貫いた中空試験体を作製し、該中空試験体を鉛直の直径方向にへん平させた際のへん平体のへん平率と、該へん平体の水平位置における外表層での割れ発生状況との関係から、限界へん平率を求め、該限界へん平率に基づいて圧延したままの棒鋼素材を切断して作製した円柱被加工棒鋼素材の冷間鍛造時の表面加工割れ性を評価することに特徴がある。 The present invention cuts a large-diameter steel bar material that has been rolled, produces a hollow test body that has been cut through the center, and flattened the flat test body when the hollow test body is flattened in the vertical diameter direction. and flat rate, the relationship between the crack occurrence at the outer surface in the horizontal position of the flat body, seeking limit flat rate, by cutting the steel bar material-rolled based on該限boundary flat rate It is characterized by evaluating the surface work cracking property during cold forging of the fabricated cylindrical steel bar material.

以下、本発明に係わる圧延したままの太径の棒鋼素材を切断して作製した円柱被加工素材の表面加工割れ感受性を評価する試験方法について説明する。   Hereinafter, a test method for evaluating the surface processing cracking susceptibility of a cylindrical workpiece made by cutting a rolled steel bar material with a large diameter as rolled according to the present invention will be described.

本発明の方法は、素材の成分や熱処理の有無に関係なく、利用することができる。冷間鍛造品に一般的に用いられている鋼であるJIS S53C鋼(0.53%C、0.24%Si、0.77%Mn、0.018%P、0.005%S)の棒状素材を用いて、所定の減面率で圧延、球状化焼鈍(740℃×7hr−徐冷)して製造した45mmφ棒鋼を試験の供試材とした。   The method of the present invention can be used regardless of the composition of the material and the presence or absence of heat treatment. JIS S53C steel (0.53% C, 0.24% Si, 0.77% Mn, 0.018% P, 0.005% S), a steel generally used for cold forging A 45 mmφ bar steel manufactured by rolling and spheroidizing annealing (740 ° C. × 7 hr—slow cooling) at a predetermined area reduction rate using a bar-shaped material was used as a test specimen.

本発明では、この供試材から長さ50mm、内径36mm、外形45mm(内径/外径=0.80)の中空試験体を準備して、へん平試験を実施した。   In the present invention, a hollow test body having a length of 50 mm, an inner diameter of 36 mm, and an outer diameter of 45 mm (inner diameter / outer diameter = 0.80) was prepared from the test material, and a flat test was performed.

へん平試験では、中空試験体を鉛直の直径方向にプレスで、図4(a)〜(d)に示すように、へん平体に圧縮するへん平試験を行なった。ここで、始めの高さh(外径に相当する)、圧縮後の高さhとした時の(h−h)/h×100(%)をへん平率(%)とした。へん平率を種々変化させて、その時のへん平体の水平位置における外表層(側面)に生じた割れ発生状況を目視或いは10倍の拡大鏡で観察した。割れ発生は長さ0.5〜1.0mmの微細な割れが始めて観察された時を割れ発生時のへん平率とした。 In the flat test, a flat test was performed in which the hollow test body was compressed into a flat body as shown in FIGS. Here, the initial height h 0 (corresponding to the outer diameter) and the height h after compression (h 0 −h) / h 0 × 100 (%) were defined as the flatness ratio (%). . Various changes were made in the flatness ratio, and the occurrence of cracks in the outer surface layer (side surface) at the horizontal position of the flat body at that time was observed visually or with a 10-fold magnifier. The occurrence of cracks was defined as the flatness at the time of crack occurrence when a fine crack having a length of 0.5 to 1.0 mm was observed for the first time.

複数の中空試験体についてへん平試験を行い割れ発生状況を調査し、へん平率と累積割れ率との関係を求めた。その結果を図5に示した。図5に示すように、この試験ではへん平率66%の時に累積割れ率50%となっていて、このときのへん平率を限界へん平率として評価した。そして、このへん平率66%の時に要した所要荷重は約200kNであった。 A flat test was conducted on a plurality of hollow specimens to investigate the occurrence of cracks, and the relationship between the flat rate and the cumulative crack rate was determined. The results are shown in FIG. As shown in FIG. 5, in this test, the cumulative cracking rate was 50% when the flattening rate was 66%, and the flattening rate at this time was evaluated as the limiting flattening rate. The required load required when the flatness ratio was 66% was about 200 kN.

限界へん平率を求めるためには、へん平試験で中空試験体に割れの発生したことが始めて観察されたへん平率以上のへん平率で、少なくとも6個、好ましくは6〜30個の中空試験体についてへん平試験を実施して割れ個数を求める。図5に示した例では、中空試験体にへん平試験を実施し、へん平率64%で1個に割れが観察され、同じくへん平率66%で2個に割れが観察され、へん平率68%で2個に割れが観察され、そしてへん平率70%で1個に割れが観察された例を示している。そして、割れ個数が6個中で2+1個であるへん平率66%を累積割れ率50%と評価し、限界へん平率を66%とした。
In order to determine the limit flatness, at least 6 and preferably 6-30 hollows with a flatness greater than the flatness observed for the first time that a hollow specimen was cracked in a flat test. A flat test is performed on the specimen to determine the number of cracks. In the example shown in FIG. 5, a flat test was performed on a hollow specimen, and one crack was observed at a flat rate of 64%, and two cracks were observed at a flat rate of 66%. In this example, two cracks were observed at a rate of 68%, and one crack was observed at a flat rate of 70%. Then, the flatness ratio 66%, which is 2 + 1 among the number of cracks, was evaluated as a cumulative cracking ratio 50%, and the critical flatness ratio was 66%.

したがって、限界へん平率εhi(%)は、最初の中空試験体の高さ(外径)をhとし、累積割れ率が50%となる時の高さをhiとした時に、限界へん平率εhi=(h−hi)/h×100(%)の式によって求めることができる。 Therefore, the critical flattening ratio ε hi (%) is the critical flatness when the height (outer diameter) of the first hollow specimen is h 0 and the height when the cumulative cracking rate is 50% is hi. The average ratio ε hi = (h 0 −hi) / h 0 × 100 (%).

一方、比較例として、圧延したままの棒鋼を切断した外径45mmφで長さ67.5mmの円柱試験体を準備して、従来の冷間据込み性試験を行なった。その結果、限界据え込み率は72%で、所要荷重は6970kNを要した。また、前記棒鋼から外径25mmφで長さ37.5mmの円柱試験体を切り出して、従来の冷間据込み性試験を行なった。その結果、限界据え込み率は74%で、所要荷重は2200kNを要した。   On the other hand, as a comparative example, a cylindrical test body having an outer diameter of 45 mmφ and a length of 67.5 mm obtained by cutting a rolled steel bar was prepared, and a conventional cold upsetting test was performed. As a result, the limit upsetting rate was 72%, and the required load was 6970 kN. Further, a cylindrical test body having an outer diameter of 25 mmφ and a length of 37.5 mm was cut out from the steel bar, and a conventional cold upsetting test was performed. As a result, the limit upsetting rate was 74%, and the required load was 2200 kN.

後述する実施例に示すように、本発明に係わるへん平試験結果と従来の冷間据込み性試験結果とを比較すると、本発明での限界へん平率と従来の限界据え込み率とでは、被加工素材の加工割れ性の優劣については両者ほぼ同様な傾向を示していて、限界へん平率で被加工素材の加工割れ性を評価することが可能であることが確認できた。そして、本発明のへん平試験では試験に要する油圧プレスの所要荷重が冷間据込み性試験に比較して非常に低い荷重で実施することができ、さらに、加工割れに影響を与える棒鋼の表面性状を含めて被加工素材の加工割れ感受性を評価できる。   As shown in the examples to be described later, when comparing the flattening test results according to the present invention and the conventional cold upsetting test results, in the limiting flattening ratio in the present invention and the conventional limiting upsetting rate, The superiority and inferiority of the work cracking property of the workpiece material showed almost the same tendency, and it was confirmed that the work cracking property of the workpiece material could be evaluated by the limit flatness. In the flat test of the present invention, the required load of the hydraulic press required for the test can be carried out with a very low load compared to the cold uptake test, and the surface of the steel bar that affects the work cracking It is possible to evaluate the processing cracking susceptibility of work materials including properties.

また、へん平試験で、中空試験体を鉛直の直径方向に圧縮してのへん平体の水平位置における外表層で割れが検出できるのは、中空試験体の肉厚が大きく影響するので、中空試験体の肉厚(外径D、内径dの関係)を所定の範囲にすることが重要である。   Also, in the flat test, cracks can be detected in the outer surface layer in the horizontal position of the flat body after compressing the hollow test body in the vertical diameter direction because the thickness of the hollow test body has a large effect. It is important that the thickness of the specimen (the relationship between the outer diameter D and the inner diameter d) be within a predetermined range.

即ち、肉厚が厚すぎると中空部が早期に密着してへん平率60%弱までしかへん平加工ができなく、水平部よりも鉛直部の方が割れに対して厳しくなり、へん平試験が実施できなくなる。加工性の優れた素材の試験を可能とするためには、中空試験体の外径D、内径dの関係が、d/D>0.5であることが好ましい。また、d/Dの高い方が適用範囲は広くなるので、d/D=0.75〜0.85とすることがさらに好ましい。   In other words, if the wall thickness is too thick, the hollow part is brought into close contact early and flattening is only possible to a flatness ratio of less than 60%, and the vertical part is more severe with respect to cracking than the horizontal part. Cannot be implemented. In order to make it possible to test a material with excellent workability, the relationship between the outer diameter D and the inner diameter d of the hollow specimen is preferably d / D> 0.5. Further, since the range of application becomes wider when d / D is higher, it is more preferable to set d / D = 0.75 to 0.85.

また、中空試験体は、圧延したままの太径棒鋼(外径D)を切断して外径D、長さLの中実体とし、この中実体から、外径D、内径d、長さLの中空試験体に加工することによって製作される。ここで、長さLは特に限定する必要がないものであるが、L/D=0.5〜2の長さとすることが好ましい。L/Dが2を超えるとプレス装置を大きな設備とすることが必要になり好ましくない。また、L/Dが0.5未満であるとブレス時に安定して試験体を保持することが困難となる。   In addition, the hollow test body is obtained by cutting a rolled steel bar (outer diameter D) into a solid body of the outer diameter D and length L. From this solid body, the outer diameter D, inner diameter d, length L It is manufactured by processing into a hollow test body. Here, the length L is not particularly limited, but is preferably L / D = 0.5-2. When L / D exceeds 2, it is not preferable because it is necessary to make the press apparatus large. Further, when L / D is less than 0.5, it is difficult to stably hold the specimen during the breathing.

以下実施例に基づいて、本発明を具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated concretely.

本実施例の試験では、棒鋼素材の外表層の加工割れ感受性を評価するため、中空円筒試験体のへん平試験並びに棒鋼素材の据込試験を行った。   In the test of this example, in order to evaluate the work cracking susceptibility of the outer surface layer of the steel bar material, a flat test of the hollow cylindrical specimen and an upsetting test of the steel bar material were performed.

(素材)
素材にはJIS S45C(0.46%C、0.26%Si、0.76%Mn、0.020%P、0.010%S)の45mmφ圧延材を用いた。素材の外表面の影響を調べるために、外表層の表面性状を変化させた圧延材を作製した。圧延材は、仕上圧延ロールを、a)新品、b)交換直前、c)その中間、と変えた場合の圧延材を用意した。そして、この圧延材に、軟質化処理として球状化焼鈍処理(740℃×7hr−徐冷)を施したものを供試材として、以下の実験を行った。
(Material)
A 45 mmφ rolled material of JIS S45C (0.46% C, 0.26% Si, 0.76% Mn, 0.020% P, 0.010% S) was used as the material. In order to investigate the influence of the outer surface of the material, a rolled material was produced in which the surface properties of the outer surface layer were changed. As the rolled material, a rolled material was prepared when the finish rolling roll was changed to a) a new article, b) immediately before replacement, and c) an intermediate part thereof. Then, the following experiment was performed using a sample obtained by subjecting this rolled material to a spheroidizing annealing treatment (740 ° C. × 7 hr—slow cooling) as a softening treatment.

(試験体)
表1および表2の本発明例では、外表層は受け入れままで機械加工をせず、内径側及び長さ方向に機械加工を施し各種形状の中空試験体に加工した。
(Test specimen)
In the examples of the present invention shown in Tables 1 and 2, the outer surface layer was received and not machined, and machined in the inner diameter side and in the length direction to be processed into hollow test bodies of various shapes.

表2の比較例1〜3の45mmφ試験体は、45mmφ丸棒素材を切断して、円柱形状に切断した。比較例4〜6の14mmφ試験体は、45mmφ丸棒素材のr/2部(丸棒素材の表面からその直径の1/4内側の位置が試験体の中心になるように)から試験体を機械加工により採取した。そして、いずれの機械加工面の粗さも、JIS B0601(‘82)に準じた十点平均粗さRaが2〜3μmとなるようにした。   The 45 mmφ test specimens of Comparative Examples 1 to 3 in Table 2 were cut into a cylindrical shape by cutting a 45 mmφ round bar material. The 14 mmφ test specimens of Comparative Examples 4 to 6 are prepared from the r / 2 part of the 45 mmφ round bar material (so that the position inside 1/4 of the diameter from the surface of the round bar material is the center of the test specimen). Collected by machining. The roughness of any machined surface was such that the 10-point average roughness Ra according to JIS B0601 ('82) was 2 to 3 µm.

(鍛造装置)
試験には最大負荷能力10000kNの油圧式プレスを用いた。いずれの試験条件においても、治具の圧下速度は50mm/s一定とした。
(Forging equipment)
A hydraulic press with a maximum load capacity of 10,000 kN was used for the test. Under any of the test conditions, the reduction speed of the jig was constant at 50 mm / s.

治具として、へん平試験では平滑治具を、据込試験では同心円状の溝がついた拘束治具を用いた。そして、圧下毎の最大荷重(所要荷重)をロードセルにより測定した。   As a jig, a flat jig was used in the flat test, and a constraining jig with concentric grooves was used in the upsetting test. And the maximum load (required load) for every reduction was measured with the load cell.

(へん平試験)
本発明例のへん平試験方法は次の通り実施した。
(Simple flat test)
The flattening test method of the present invention example was carried out as follows.

まず、予備試験として、おおよその割れの出るへん平率を求めた。ここでは初回でへん平率40%まで圧下し、さらに割れが生じるまで、同じ試験体に対し2%ずつへん平率を加えた。   First, as a preliminary test, an average flattening ratio of cracks was obtained. Here, the flatness was reduced to 40% at the first time, and the flatness was added by 2% to the same specimen until further cracking occurred.

割れが発生するかどうかは、へん平後の試験体の水平部分を倍率10倍の拡大鏡により観察し、亀裂長さが0.5〜1.0mmになったものを割れと判定した。   Whether or not cracking occurred was observed with a magnifying glass having a magnification of 10 times. The horizontal portion of the test specimen after flattening was determined as a crack when the crack length was 0.5 to 1.0 mm.

表1に示すように、各へん平率での割れ発生有無を試験した実施例では、予備試験の「本発明例1−0」では、へん平率68%で割れが発生し、その際の所用荷重は220kNであった。そして、本試験は、n数を6として試験した。予備試験で求められたへん平率より15%程度低いへん平率52%を初回のへん平率とした。実施例では「本発明例1−1〜1−6」のように、へん平率52%から2%ずつへん平率を増やした。   As shown in Table 1, in the examples in which the presence / absence of crack occurrence at each flatness ratio was tested, in “Preliminary Example 1-0” of the preliminary test, cracking occurred at a flatness ratio of 68%. The required load was 220 kN. And this test tested n number as 6. The initial flatness was 52%, which was about 15% lower than the flatness determined in the preliminary test. In the examples, as in “Examples 1-1 to 1-6”, the flatness was increased by 2% from 52%.

割れの発生したへん平率は、64%で1個、66%で2個、68%で3個であり、へん平率66%でn/2(累積割れ率50%)である3/6個が割れた。したがって限界へん平率は66%である。   The flatness ratio at which cracking occurred was 1 at 64%, 2 at 66%, 3 at 68%, and n / 2 (cumulative cracking ratio 50%) at an average flatness of 66%. The piece broke. Therefore, the critical flat rate is 66%.

さらに、上記に述べた手順で、各種試験体の限界へん平率を求めた。その結果を表2に示した。   Further, the limit flatness of each specimen was obtained by the procedure described above. The results are shown in Table 2.

本発明例1〜3は、試験体の内径d/外径D=0.76において、外表層面粗さが変わった場合の結果で、表面粗さの粗くなるほど限界へん平率が低下する結果が得られた。これは実際に部品を鍛造した場合の割れ感受性の順番と同一であった。   Inventive Examples 1 to 3 are the results when the outer surface roughness was changed at the inner diameter d / outer diameter D = 0.76 of the test specimen, and the result that the critical flatness decreased as the surface roughness became rougher. Obtained. This was the same as the order of crack sensitivity when the parts were actually forged.

本発明例4〜6、7〜9は試験体形状(内径d)を変えた場合の結果で、本発明例1〜3と同様に、表面粗さの粗くなるほど限界へん平率が低下する結果が得られた。   Examples 4-6 and 7-9 of the present invention are the results when the shape of the specimen (inner diameter d) is changed. Similar to Examples 1-3 of the present invention, the limit flatness decreases as the surface roughness increases. was gotten.

本発明例での所要荷重は200kN以下で、小さな鍛造装置での割れ感受性評価が可能である。   The required load in the example of the present invention is 200 kN or less, and the crack sensitivity evaluation with a small forging device is possible.

比較例1〜3は、丸棒素材の外表層を残した状態での据込試験であり、表面粗さの粗くなるほど限界へん平率が低下する結果が得られた。これは実際に部品を鍛造した場合の割れ感受性の順番と同一であった。ただし所用荷重は7000kN近くに達しており、大きな鍛造装置が無ければ割れ感受性を評価することは出来ない。   Comparative Examples 1 to 3 were upsetting tests in a state where the outer surface layer of the round bar material was left, and the result that the critical flatness decreased as the surface roughness became rough was obtained. This was the same as the order of crack sensitivity when the parts were actually forged. However, the required load reaches close to 7000 kN, and crack sensitivity cannot be evaluated without a large forging device.

比較例4〜6はφ14に機械加工した場合の据込試験である。所要荷重は小さいが、丸棒素材の外表層を除去してしまったため、限界据込率は75〜76%とほぼ同じ割れ感受性を示し、実際に部品を鍛造した場合の割れ感受性と不一致であり、評価方法として不適である。   Comparative Examples 4 to 6 are upsetting tests when machined to φ14. Although the required load is small, the outer surface layer of the round bar material has been removed, so the limit upsetting ratio is almost the same crack sensitivity as 75 to 76%, which is inconsistent with the crack sensitivity when the parts are actually forged. It is not suitable as an evaluation method.

比較例7〜9は、へん平試験であるが、試験体の内径d/外径D=0.44と、本発明で規定する範囲を外れるものである。この場合、内径部が早期に潰れてしまうため割れが発生せず、限界へん平率を求めることが出来なかった例である。   Comparative Examples 7 to 9 are flattening tests, but are outside the range defined by the present invention, i.e., inner diameter d / outer diameter D = 0.44. In this case, since the inner diameter portion is crushed early, no crack is generated, and the limit flatness ratio cannot be obtained.

1試験体
2端面拘束冶具
3圧縮された試験体
4割れ
1 Specimen 2 End face restraint jig 3 Compressed specimen 4 crack

Claims (4)

圧延したままの棒鋼素材を切断し、中央部をくり貫いた中空試験体を作製し、該中空試験体を鉛直の直径方向にへん平させた際のへん平体のへん平率と、該へん平体の水平位置における外表層での割れ発生状況との関係から、下記式に規定する限界へん平率を求め、圧延したままの棒鋼素材を切断して作製した円柱被加工棒鋼素材の冷間鍛造時の表面加工割れ性を、前記限界へん平率に基づいて評価することを特徴とする棒鋼表面の加工割れ感受性評価方法。
限界へん平率εhi=(h0−hi)/h0×100(%)
ここで、h0は最初の中空試験体の高さ(外径)(mm)、hiは水平位置における外表層で割れが発生する時の高さ(mm)を意味する。
The rolled steel bar material is cut, a hollow test body is cut through the center, and the flatness of the flat body is flattened when the hollow test body is flattened in the vertical diameter direction. From the relationship with the occurrence of cracks in the outer surface layer in the horizontal position of the flat body, the critical flatness specified in the following formula is obtained, and the cold work of the cylindrical steel bar material produced by cutting the rolled steel bar material. the surface treatment cracking during forging, machining crack sensitivity evaluation method steel bar surface and evaluating, based on the limits strange Tairaritsu.
Limit Enough Tairaritsu ε hi = (h 0 -hi) / h 0 × 100 (%)
Here, h 0 means the height (outer diameter) (mm) of the first hollow specimen, and hi means the height (mm) when a crack occurs in the outer surface layer in the horizontal position.
前記中空試験体の外径D、内径dの関係が、d/D>0.5であることを特徴とする、請求項1に記載の棒鋼表面の加工割れ感受性評価方法。 2. The method for evaluating the cracking susceptibility of a steel bar surface according to claim 1, wherein the relationship between the outer diameter D and the inner diameter d of the hollow specimen is d / D> 0.5. 前記中空試験体は外径D、長さLの圧延したままの棒鋼から、外径D、内径d、長さLの中空試験体に加工することを特徴とする、請求項1または2に記載の棒鋼表面の加工割れ感受性評価方法。 The hollow test body outer diameter from D, rolled left bars of length L, a outer diameter D, an inside diameter d, characterized by machining a hollow specimen of length L, a claimed in claim 1 or 2 Of evaluating cracking susceptibility of steel bar surface . 前記中空試験体は外径D、長さLの関係が、L/Dが0.5〜2であることを特徴とする、請求項1〜3のいずれかに記載の棒鋼表面の加工割れ感受性評価方法。 The said hollow test body is the cracking sensitivity of the steel bar surface in any one of Claims 1-3 characterized by the relationship between outer diameter D and length L, L / D being 0.5-2. Evaluation method.
JP2012001643A 2012-01-06 2012-01-06 Processing crack sensitivity evaluation method Expired - Fee Related JP5737193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012001643A JP5737193B2 (en) 2012-01-06 2012-01-06 Processing crack sensitivity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012001643A JP5737193B2 (en) 2012-01-06 2012-01-06 Processing crack sensitivity evaluation method

Publications (2)

Publication Number Publication Date
JP2013142559A JP2013142559A (en) 2013-07-22
JP5737193B2 true JP5737193B2 (en) 2015-06-17

Family

ID=49039199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012001643A Expired - Fee Related JP5737193B2 (en) 2012-01-06 2012-01-06 Processing crack sensitivity evaluation method

Country Status (1)

Country Link
JP (1) JP5737193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672215B2 (en) * 2011-11-11 2015-02-18 新日鐵住金株式会社 Surface processing crack sensitivity evaluation method and apparatus
JP5672246B2 (en) * 2012-01-06 2015-02-18 新日鐵住金株式会社 Processing crack sensitivity evaluation method
CN111855952B (en) * 2020-07-31 2022-10-28 山西北方机械制造有限责任公司 Method and device for rapidly testing welding performance of 35# steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317054A (en) * 1997-03-14 1998-12-02 Nippon Seiko Kk Annular member
JP4706183B2 (en) * 2004-05-07 2011-06-22 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
JP5503170B2 (en) * 2009-03-23 2014-05-28 株式会社神戸製鋼所 Case-hardened steel with excellent maximum grain reduction characteristics

Also Published As

Publication number Publication date
JP2013142559A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
Tang et al. Mechanical anisotropy and deep drawing behaviors of AZ31 magnesium alloy sheets produced by unidirectional and cross rolling
Watts et al. On the basic yield stress curve for a metal
JP5737193B2 (en) Processing crack sensitivity evaluation method
Fakhar et al. Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion
Sahli et al. Modelling and numerical simulation of steel sheet fine blanking process
Wang et al. A novel backward extrusion process through rotating die and open punch
JP5672215B2 (en) Surface processing crack sensitivity evaluation method and apparatus
Wang et al. Tensile deformation behaviors of pure nickel fine wire with a few grains across diameter
Elshalakany et al. An experimental investigation of the formability of low carbon steel tailor-welded blanks of different thickness ratios
Bin et al. Flow stress and tribology size effects in scaled down cylinder compression
Pater et al. A new cross wedge rolling process for producing rail axles
JP5672246B2 (en) Processing crack sensitivity evaluation method
Trzepiecinski RESEARCH PAPER EFFECT OF THE PLASTIC STRAIN AND DRAWING QUALITY ON THE FRICTIONAL RESISTANCE OF STEEL SHEETS
RU2397475C1 (en) Procedure for evaluating efficiency of lubricating materials for sheet stamping
CN103103920A (en) Manufacturing method for tempering cable clip applied to suspension bridge
Liu et al. Enhancement on deformation uniformity of double curvature shell by hydroforming process and curved blank-holder surface
Kumari et al. Deformation behavior and characterization of copper alloy in extrusion process
Vaidyanathan et al. Deep Drawing of constrained groove pressed EDD steel sheets
Halaczek Analysis of manufacturing bimetallic tubes by the cold drawing process
Trzepieciński et al. Assessment of frictional performance of deep drawing quality steel sheets used in automotive industry
Karanjule et al. Determination of the optimal reduction ratio for least springback during cold drawing of seamless tubes
Abdel-Magied et al. An investigation into deep drawing process without blank holder
Miłek et al. The influence of relative rolling reduction of sheet metal on the changes of deep drawing forces in multi drawing steps for cylindrical drawpiece without collar made from EN AW-1050A aluminium
Karanjule et al. Investigating Springback Of Seamless Tubes Cold Drawing Process Using Design Of Experiments (Doe) And Microstructural Investigations
Nikhare Residual Formability of Single Point Incrementally Formed Part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees