JP5737020B2 - Intake system exhaust introduction structure - Google Patents

Intake system exhaust introduction structure Download PDF

Info

Publication number
JP5737020B2
JP5737020B2 JP2011153093A JP2011153093A JP5737020B2 JP 5737020 B2 JP5737020 B2 JP 5737020B2 JP 2011153093 A JP2011153093 A JP 2011153093A JP 2011153093 A JP2011153093 A JP 2011153093A JP 5737020 B2 JP5737020 B2 JP 5737020B2
Authority
JP
Japan
Prior art keywords
exhaust
intake system
distribution path
arrangement direction
introduction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011153093A
Other languages
Japanese (ja)
Other versions
JP2013019315A (en
Inventor
康 岩田
康 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011153093A priority Critical patent/JP5737020B2/en
Publication of JP2013019315A publication Critical patent/JP2013019315A/en
Application granted granted Critical
Publication of JP5737020B2 publication Critical patent/JP5737020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、複数気筒の内燃機関の吸気系に配置したチャンバー内に内燃機関の排気を導入し、このチャンバーに配列して開口する気筒毎の排気分配路から、吸気マニホールドに気筒毎に設けられた吸気分岐経路に排気を導入する吸気系排気導入構造に関する。   The present invention introduces exhaust gas from an internal combustion engine into a chamber disposed in an intake system of a multi-cylinder internal combustion engine, and is provided in an intake manifold for each cylinder from an exhaust distribution path for each cylinder arranged and opened in the chamber. The present invention relates to an intake system exhaust introduction structure that introduces exhaust into an intake branch path.

内燃機関の排気再循環(EGR)装置では、排気をサージタンクや吸気枝管(吸気分岐経路)に供給することで、吸気中に排気を混合させている(例えば特許文献1,2参照)。   In an exhaust gas recirculation (EGR) device of an internal combustion engine, exhaust gas is mixed into intake air by supplying the exhaust gas to a surge tank or an intake branch pipe (intake branch path) (see, for example, Patent Documents 1 and 2).

特許文献1では吸気マニホールドにEGRチャンバーを併設し、EGRチャンバーの排気分配路から、各吸気分岐経路に排気を分配していた。この排気分配路は、排気中の水蒸気が凝縮した凝縮水の排出が促進されるように、排気分配路の底面両側では湾曲壁面との間に角度を有して接続した構成とされている。   In Patent Document 1, an EGR chamber is provided in the intake manifold, and exhaust is distributed from the exhaust distribution path of the EGR chamber to each intake branch path. The exhaust distribution path is configured to be connected with an angle with a curved wall surface on both sides of the bottom surface of the exhaust distribution path so as to facilitate the discharge of condensed water condensed with water vapor in the exhaust.

特許文献2については吸気分岐経路間の空間にEGR用排気通路を通過させて、排気を分配していた。凝縮水については特に考慮されていない。   In Patent Document 2, the exhaust gas is distributed by passing the EGR exhaust passage through the space between the intake branch paths. Condensed water is not particularly considered.

特開2009−209855号公報(第10〜13頁、図4〜6)JP 2009-209855 A (pages 10-13, FIGS. 4-6) 特開2009−133264号公報(第6〜9頁、図1〜3)JP 2009-133264 A (6th to 9th pages, FIGS. 1 to 3)

内燃機関の排気中には水蒸気が含まれ、EGR装置内で冷却されることにより凝縮水が発生する。この凝縮水は最初は水滴となってチャンバー内壁面に付着するが、重力加速度や内燃機関が搭載された車両などの加減速に応じて流れてEGRチャンバー内にて集合する。このことにより特定の気筒の排気分配路に偏る可能性がある。このような偏りが生じると、特定の1つの気筒の失火が顕著となる。   Water vapor is contained in the exhaust gas of the internal combustion engine, and condensed water is generated by being cooled in the EGR device. The condensed water initially becomes water droplets and adheres to the inner wall surface of the chamber. However, the condensed water flows according to acceleration of gravity and acceleration / deceleration of a vehicle equipped with an internal combustion engine, and collects in the EGR chamber. As a result, there is a possibility of being biased toward an exhaust distribution path of a specific cylinder. When such a bias occurs, misfiring of a specific one cylinder becomes remarkable.

このように複数気筒、例えば4気筒ある内燃機関の気筒において1つのみ失火が顕著となり出力低下を生じると、全体が同一の失火状態である場合と異なり、低周波数の振動を生じる。この低周波数振動は、内燃機関が適用されている用途によっては、例えば車両用内燃機関では、トランスアクスルなどの共振を引き起こし、ドライバーにとって違和感を生じさせるおそれがある。   In this way, when only one misfire occurs in a plurality of cylinders, for example, four cylinders of an internal combustion engine, and the output is reduced, a low-frequency vibration is generated unlike the case where the whole is in the same misfire state. Depending on the application to which the internal combustion engine is applied, this low frequency vibration may cause resonance of a transaxle or the like in a vehicle internal combustion engine, which may cause a driver to feel uncomfortable.

特許文献1では、排気分配路からの凝縮水の早期排出が目的であり、気筒間での凝縮水の偏りを防止するものではない。特許文献2でも気筒間での排気の均一分配が目的であり、凝縮水の偏りについては防止できない。   Patent Document 1 aims at early discharge of condensed water from the exhaust distribution passage, and does not prevent uneven condensation of the cylinders. Patent Document 2 also aims at uniform distribution of exhaust gas among the cylinders, and cannot prevent the bias of condensed water.

本発明は、複数気筒の内燃機関の吸気系においてEGR装置からの凝縮水が特定気筒に偏るのを防止することを目的とするものである。   An object of the present invention is to prevent the condensed water from the EGR device from being biased to a specific cylinder in an intake system of a multi-cylinder internal combustion engine.

以下、上記目的を達成するための手段及びその作用・効果について記載する。
請求項1に記載の吸気系排気導入構造は、複数気筒の内燃機関の吸気系に配置したチャンバー内に内燃機関の排気を導入し、このチャンバーに配列して開口する気筒毎の排気分配路から、吸気マニホールドに気筒毎に設けられた吸気分岐経路に排気を導入する吸気系排気導入構造であって、前記内燃機関が車両に搭載された際に前記チャンバーにおける前記排気分配路の配列方向と直交する断面において鉛直方向下方に位置する床面から上方に向かって連続して設けられる内壁面には、前記排気分配路の配列方向において最も端に位置する排気分配路と隣接する排気分配路との間の部位と前記排気分配路の配列方向における同じ部位に、前記内壁面に直交するように同内壁面に立設して前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる移動抵抗部が形成されていることを特徴とする。
In the following, means for achieving the above-mentioned purpose, and its operation and effect are described.
The intake system exhaust introduction structure according to claim 1 introduces the exhaust of the internal combustion engine into a chamber disposed in the intake system of the multi-cylinder internal combustion engine, and is arranged from the exhaust distribution path for each cylinder arranged and opened in the chamber. An intake system exhaust introduction structure that introduces exhaust into an intake branch path provided for each cylinder in the intake manifold, and orthogonal to an arrangement direction of the exhaust distribution path in the chamber when the internal combustion engine is mounted on a vehicle An inner wall surface continuously provided upward from a floor surface positioned vertically downward in a cross section of the exhaust gas distribution path includes an exhaust distribution path positioned at the end in the arrangement direction of the exhaust distribution paths and an adjacent exhaust distribution path. the site and the same site in the array direction of the exhaust distribution path between the resistance at the time of condensed water in the direction of arrangement of the exhaust distribution passage provided upright on the inner wall surface so as to be perpendicular to the inner wall surface is moved Wherein the transfer resistance portion is formed comprising.

排気に含まれる水蒸気が凝縮して凝縮水としてチャンバー内壁に水滴として付着した場合、内燃機関に対して何らかの加速度が加わると、チャンバー内壁に付着していた水滴は、加速度に対応して内壁面を流れる。このことによりチャンバーの床面から上方の内壁面に水滴が集合する。このように集合すると凝縮水の集合体として内壁面にて更に移動しやすくなる。そしてこのような凝縮水の集合体が、加速度により排気分配路の配列方向に移動すると、特定の気筒の排気分配路に集中して流れ込むおそれがある。   When water vapor contained in the exhaust is condensed and adheres to the inner wall of the chamber as condensed water as water droplets, if some acceleration is applied to the internal combustion engine, the water droplets that have adhered to the inner wall of the chamber will move to the inner wall surface corresponding to the acceleration. Flowing. As a result, water droplets collect from the floor surface of the chamber to the upper inner wall surface. If it collects in this way, it will become easier to move on the inner wall surface as an aggregate of condensed water. If such a condensed water aggregate moves in the arrangement direction of the exhaust distribution path due to acceleration, there is a possibility that it will flow into the exhaust distribution path of a specific cylinder in a concentrated manner.

しかしその内壁面には移動抵抗部が存在することから、凝縮水は、内壁面上を排気分配路の配列方向へ流れようとしても、その移動が困難となる。このためEGR装置からの凝縮水が特定の気筒に偏るのを防止できる。   However, since the movement resistance portion exists on the inner wall surface, the condensed water is difficult to move even if it flows on the inner wall surface in the arrangement direction of the exhaust distribution path. For this reason, it is possible to prevent the condensed water from the EGR device from being biased toward a specific cylinder.

この点、移動抵抗部は、床面から上方に連続して設けられる内壁面において、隣接する排気分配路の間に相当する位置に形成されていることにより、凝縮水は、排気分配路間での移動が困難となり、特定気筒に集中しにくくなる。 In this regard, the movement resistance portion is formed at a position corresponding to the space between the adjacent exhaust distribution paths on the inner wall surface provided continuously upward from the floor surface. Movement becomes difficult, and it becomes difficult to concentrate on a specific cylinder.

例え、排気分配路が3つあるいは4つなどの3つ以上の配列であっても、排気分配路の間に相当する位置に移動抵抗部を配置することにより、特定の気筒に凝縮水が偏るのを防止できる。 Even exhaust distribution passage is a 3 or more sequences, such as three or four, by disposing the movement resistance portion at a position corresponding to between the exhaust distribution channels, the condensed water to a specific cylinder Unbiased can be prevented.

請求項2に記載の吸気系排気導入構造では、請求項1に記載の吸気系排気導入構造において、前記内壁面には、全ての隣接する前記排気分配路間の部位と前記排気分配路の配列方向における同じ部位に、前記移動抵抗部が形成されていることを特徴とする。
また、請求項3に記載の吸気系排気導入構造では、複数気筒の内燃機関の吸気系に配置したチャンバー内に内燃機関の排気を導入し、このチャンバーに配列して開口する気筒毎の排気分配路から、吸気マニホールドに気筒毎に設けられた吸気分岐経路に排気を導入する吸気系排気導入構造であって、前記内燃機関が車両に搭載された際に前記チャンバーにおける前記排気分配路の配列方向と直交する断面において鉛直方向下方に位置する床面から上方に向かって連続して設けられる内壁面には、隣接する前記排気分配路間の部位と前記排気分配路の配列方向における同じ部位に、前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる移動抵抗部が形成されるとともに、前記排気分配路の配列方向にて、前記移動抵抗部に対して間隔を置いて、前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる副移動抵抗部が形成されていることを特徴とする。
このように移動抵抗部に対して、更に副移動抵抗部を、排気分配路の配列方向にて間隔を置いて形成しても良い。このことにより凝縮水は排気分配路の配列方向での移動が一層困難となり、特定気筒に凝縮水が偏るのを効果的に防止できる。
請求項4に記載の吸気系排気導入構造では、請求項3に記載の吸気系排気導入構造において、前記チャンバーの床面には、前記内壁面に前記副移動抵抗部が設けられる部位と前記排気分配路の配列方向における同じ部位に、前記副移動抵抗部が前記内壁面から連続して形成されていることを特徴とする。
このようにチャンバーの床面にも前述した副移動抵抗部を設けることにより、床面においても凝縮水が、排気分配路の配列方向で移動するのを阻止できる。このため特定気筒に凝縮水が偏るのを、より確実に防止できる。
請求項に記載の吸気系排気導入構造では、請求項1〜4のいずれか一項に記載の吸気系排気導入構造において、前記移動抵抗部は、前記排気分配路の配列方向に対して交叉する方向に形成された突条であることを特徴とする。
The intake system exhaust introduction structure according to claim 2, wherein in the intake system exhaust introduction structure according to claim 1, the inner wall surface includes portions between all adjacent exhaust distribution paths and an arrangement of the exhaust distribution paths. The said movement resistance part is formed in the same site | part in a direction, It is characterized by the above-mentioned.
Further, in the intake system exhaust introduction structure according to claim 3, exhaust of the internal combustion engine is introduced into a chamber disposed in the intake system of the multi-cylinder internal combustion engine, and exhaust distribution is performed for each cylinder arranged and opened in the chamber. An intake system exhaust introduction structure for introducing exhaust gas from a road to an intake branch path provided for each cylinder in an intake manifold, wherein the exhaust distribution path is arranged in the chamber when the internal combustion engine is mounted on a vehicle In the inner wall surface continuously provided upward from the floor surface located below in the vertical direction in the cross section orthogonal to the region between the adjacent exhaust distribution passages and the same portion in the arrangement direction of the exhaust distribution passages, A movement resistance portion serving as a resistance when the condensed water moves in the arrangement direction of the exhaust distribution path is formed, and an interval from the movement resistance portion is formed in the arrangement direction of the exhaust distribution path. There are, condensed water in the direction of arrangement of the exhaust distribution channels, characterized in that the secondary transfer resistance portion serving as a resistance when the moving is formed.
In this way, a sub movement resistance part may be formed at an interval in the arrangement direction of the exhaust distribution path with respect to the movement resistance part. This makes it more difficult for the condensed water to move in the arrangement direction of the exhaust distribution path, and can effectively prevent the condensed water from being biased toward the specific cylinder.
The intake system exhaust introduction structure according to claim 4 is the intake system exhaust introduction structure according to claim 3, wherein a portion of the floor surface of the chamber where the auxiliary movement resistance portion is provided on the inner wall surface and the exhaust The secondary movement resistance portion is formed continuously from the inner wall surface at the same portion in the arrangement direction of the distribution path.
Thus, by providing the above-mentioned auxiliary movement resistance part also on the floor surface of the chamber, it is possible to prevent the condensed water from moving on the floor surface in the arrangement direction of the exhaust distribution path. For this reason, it can prevent more reliably that condensed water is biased to a specific cylinder.
In the intake system exhaust introduction structure according to claim 5 , in the intake system exhaust introduction structure according to any one of claims 1 to 4 , the movement resistance portion crosses the arrangement direction of the exhaust distribution path. It is the protrusion formed in the direction to do.

排気分配路の配列方向に対して交叉する方向に形成された突条を設けることにより、排気分配路の配列方向にて凝縮水が移動する際の抵抗となり、凝縮水は排気分配路間を移動しにくくなる。このことから凝縮水が特定の気筒に偏るのを防止できる。   By providing a protrusion formed in the direction intersecting with the arrangement direction of the exhaust distribution path, it becomes a resistance when the condensed water moves in the arrangement direction of the exhaust distribution path, and the condensed water moves between the exhaust distribution paths. It becomes difficult to do. Thus, it is possible to prevent the condensed water from being biased toward a specific cylinder.

請求項に記載の吸気系排気導入構造では、請求項に記載の吸気系排気導入構造において、前記移動抵抗部は、前記排気分配路の配列方向に対して直交方向に形成された突条であることを特徴とする。 The intake system exhaust introduction structure according to claim 6 is the intake system exhaust introduction structure according to claim 5 , wherein the movement resistance portion is a protrusion formed in a direction orthogonal to the arrangement direction of the exhaust distribution path. It is characterized by being.

特に排気分配路の配列方向に対して直交方向に形成された突条は、排気分配路間での凝縮水の移動を困難にする。このことから凝縮水が特定の気筒に偏るのを効果的に防止できる。   In particular, the protrusions formed in the direction perpendicular to the arrangement direction of the exhaust distribution paths make it difficult to move the condensed water between the exhaust distribution paths. This effectively prevents the condensed water from being biased toward a specific cylinder.

請求項に記載の吸気系排気導入構造では、請求項1〜4のいずれか一項に記載の吸気系排気導入構造において、前記移動抵抗部は、複数の突起であることを特徴とする。
移動抵抗部として突起が内壁の壁面に形成されていても、凝縮水は移動が困難となり、凝縮水が特定の気筒に偏るのを防止できる。
In the intake system exhaust introduction structure according to claim 7 , in the intake system exhaust introduction structure according to any one of claims 1 to 4 , the movement resistance portion is a plurality of protrusions.
Even if the protrusion is formed on the wall surface of the inner wall as the movement resistance portion, the condensed water is difficult to move, and the condensed water can be prevented from being biased to a specific cylinder.

請求項に記載の吸気系排気導入構造では、請求項3又は4に記載の吸気系排気導入構造において、前記移動抵抗部は前記排気分配路の配列方向に対して交叉する方向に形成された突条であり、前記副移動抵抗部は前記移動抵抗部に平行な突条であることを特徴とする。 The intake system exhaust introduction structure according to claim 8 is the intake system exhaust introduction structure according to claim 3 or 4 , wherein the movement resistance portion is formed in a direction crossing the arrangement direction of the exhaust distribution path. It is a protrusion, The sub movement resistance part is a protrusion parallel to the movement resistance part, It is characterized by the above-mentioned.

このように突条の移動抵抗部に突条の副移動抵抗部を組み合わせることにより、より確実に排気分配路の配列方向での凝縮水の移動を阻止でき、特定気筒に凝縮水が偏るのを効果的に防止できる。   Thus, by combining the sub-movement resistance portion of the ridge with the movement resistance portion of the ridge, the movement of the condensed water in the arrangement direction of the exhaust distribution path can be more reliably prevented, and the condensed water is biased to the specific cylinder. It can be effectively prevented.

請求項に記載の吸気系排気導入構造では、請求項3又は4に記載の吸気系排気導入構造において、前記移動抵抗部は前記排気分配路の配列方向に対して交叉する方向に形成された突条であり、前記副移動抵抗部は突起であることを特徴とする。 The intake system exhaust introduction structure according to claim 9 is the intake system exhaust introduction structure according to claim 3 or 4 , wherein the movement resistance portion is formed in a direction intersecting with an arrangement direction of the exhaust distribution path. It is a protrusion, The sub movement resistance part is a protrusion, It is characterized by the above-mentioned.

このように突条の移動抵抗部に突起の副移動抵抗部を組み合わせることにより、より確実に排気分配路の配列方向での凝縮水の移動を阻止でき、特定気筒に凝縮水が偏るのを効果的に防止できる。   In this way, by combining the sub-movement resistance portion of the protrusion with the movement resistance portion of the protrusion, it is possible to more reliably prevent the movement of the condensed water in the direction of arrangement of the exhaust distribution path, and to prevent the condensed water from being biased to a specific cylinder. Can be prevented.

請求項10に記載の吸気系排気導入構造では、請求項1〜9のいずれか一項に記載の吸気系排気導入構造において、前記チャンバーの床面には、前記内壁面に前記移動抵抗部が設けられる部位と前記排気分配路の配列方向における同じ部位に、前記移動抵抗部が前記内壁面から連続して形成されていることを特徴とする。 The intake system exhaust introducing structure according to claim 10, in the intake system exhaust introducing structure according to any one of claims 1 to 9, the floor of the front Symbol chamber, the movement resistance section to the inner wall surface The movement resistance portion is continuously formed from the inner wall surface at the same portion in the arrangement direction of the exhaust distribution path and the portion provided with the exhaust distribution path .

このようにチャンバーの床面にも移動抵抗部を設けることにより、床面においても凝縮水が、排気分配路の配列方向で移動するのを阻止できる。このため特定気筒に凝縮水が偏るのを、より確実に防止できる。   By providing the movement resistance portion on the floor surface of the chamber in this way, it is possible to prevent the condensed water from moving on the floor surface in the arrangement direction of the exhaust distribution paths. For this reason, it can prevent more reliably that condensed water is biased to a specific cylinder.

請求項11に記載の吸気系排気導入構造では、請求項1〜10のいずれか一項に記載の吸気系排気導入構造において、前記壁面は、前記床面と対向する前記チャンバーの天井面を含むことを特徴とする。 In the intake system exhaust introduction structure according to claim 11, in the intake system exhaust introduction structure according to any one of claims 1 to 10, the inner wall surface is a ceiling surface of the chamber facing the floor surface. It is characterized by including.

このようにチャンバーの天井面にも前述した移動抵抗部や、更に前述した副移動抵抗部を設けることにより、天井面においても排気分配路の配列方向での凝縮水の移動を阻止できる。このため特定気筒に凝縮水が偏るのを、より確実に防止できる。   In this way, by providing the above-described movement resistance portion and the above-described sub movement resistance portion also on the ceiling surface of the chamber, it is possible to prevent the movement of the condensed water in the arrangement direction of the exhaust distribution path also on the ceiling surface. For this reason, it can prevent more reliably that condensed water is biased to a specific cylinder.

請求項12に記載の吸気系排気導入構造では、請求項1〜11のいずれか一項に記載の吸気系排気導入構造において、前記排気分配路の配列方向は、車両の左右方向であることを特徴とする。 It The intake system exhaust introducing structure according to claim 12, in the intake system exhaust introducing structure according to any one of claims 1 to 11, the arrangement direction of the front Symbol exhaust distribution path is a left-right direction of the vehicle It is characterized by.

このような内燃機関に設けられた吸気系排気導入構造においては、車両の加減速によりチャンバーの内壁面に凝縮水が集中するおそれがあるが、前述したごとく移動抵抗部や副移動抵抗部により排気分配路の配列方向での凝縮水の移動は困難となっているため、凝縮水が特定の気筒に偏るのを防止できる。   In the intake system exhaust introduction structure provided in such an internal combustion engine, condensed water may concentrate on the inner wall surface of the chamber due to the acceleration / deceleration of the vehicle. As described above, the exhaust gas is exhausted by the movement resistance section and the sub movement resistance section. Since it is difficult to move the condensed water in the arrangement direction of the distribution path, it is possible to prevent the condensed water from being biased toward a specific cylinder.

このことから、特定の気筒のみに失火が顕著に生じることはなくなり、低周波数の振動を防止できる。したがって車両の共振を防止でき、車両ドライバーに違和感を生じさせることがない。   For this reason, misfire does not occur remarkably only in a specific cylinder, and low-frequency vibration can be prevented. Therefore, the resonance of the vehicle can be prevented and the vehicle driver does not feel uncomfortable.

実施の形態1の内燃機関の吸気マニホールドの要部構成を示す正面図。FIG. 2 is a front view showing the configuration of the main part of the intake manifold of the internal combustion engine of the first embodiment. 同じく背面図。Similarly rear view. 同じく左側面図。Similarly left side view. 同じく斜視図。Similarly perspective view. 図1におけるX−X線断面図。XX sectional drawing in FIG. 実施の形態1の第3ピースの内部を示す斜視図。FIG. 4 is a perspective view showing the inside of a third piece according to the first embodiment. 実施の形態2の第3ピースの内部を示す斜視図。FIG. 6 is a perspective view showing the inside of a third piece according to the second embodiment. 実施の形態3の第3ピースの内部を示す斜視図。FIG. 6 is a perspective view showing the inside of a third piece of Embodiment 3.

[実施の形態1]
〈構成〉図1〜4は、上述した吸気系排気導入構造が適用された内燃機関の吸気マニホールド2の要部構成を表す。この内燃機関は、車両走行用として車両に搭載されている。
[Embodiment 1]
<Structure> FIGS. 1 to 4 show a structure of a main part of an intake manifold 2 of an internal combustion engine to which the intake system exhaust introduction structure described above is applied. This internal combustion engine is mounted on a vehicle for vehicle travel.

吸気マニホールド2はサージタンク4を備え、このサージタンク4を介してスロットルバルブから吸気を導入している。そしてサージタンク4の下流側には吸気枝管集合部6を備えている。これらサージタンク4と吸気枝管集合部6とは樹脂にて一体成形されている。尚、吸気温センサ等を設置する貫通孔、吸気マニホールド2自身を支持するための各種係合部などを外周面に設けることができる。   The intake manifold 2 includes a surge tank 4 through which intake air is introduced from the throttle valve. An intake branch pipe assembly 6 is provided downstream of the surge tank 4. The surge tank 4 and the intake branch pipe assembly 6 are integrally formed of resin. Incidentally, a through-hole for installing an intake air temperature sensor and the like, various engaging portions for supporting the intake manifold 2 itself, and the like can be provided on the outer peripheral surface.

ここで内燃機関は4気筒であり、吸気枝管集合部6は、吸気分岐経路として4本の吸気枝管6a,6b,6c,6dを備えている。尚、内燃機関は他の気筒数でも良く、この場合には、吸気マニホールド2は気筒数分の吸気枝管を備えることになる。又、V型エンジンなどの複数バンクの内燃機関である場合には、バンク毎に吸気マニホールド2が設けられて、各吸気マニホールド2には同一バンクにおける気筒数分の吸気枝管が設けられることになる。   Here, the internal combustion engine has four cylinders, and the intake branch pipe assembly 6 includes four intake branch pipes 6a, 6b, 6c, and 6d as intake branch paths. The internal combustion engine may have another number of cylinders. In this case, the intake manifold 2 is provided with intake branch pipes corresponding to the number of cylinders. In the case of a multi-bank internal combustion engine such as a V-type engine, an intake manifold 2 is provided for each bank, and each intake manifold 2 is provided with intake branch pipes corresponding to the number of cylinders in the same bank. Become.

吸気マニホールド2は、いくつかのピースを振動溶着などにより接合して一体化したものである。ここでは図5の縦断面構成に示すごとく、3つのピース2a,2b,2cを振動溶着して一体化したものである。この3つのピース2a,2b,2cの一体化により、吸気枝管集合部6の下側にはEGRチャンバー8が形成されている。   The intake manifold 2 is formed by joining several pieces together by vibration welding or the like. Here, as shown in the longitudinal cross-sectional configuration of FIG. 5, three pieces 2a, 2b, 2c are integrated by vibration welding. By integrating the three pieces 2a, 2b, and 2c, an EGR chamber 8 is formed below the intake branch pipe assembly 6.

このEGRチャンバー8内には、排気再循環実行時に、EGR装置に備えられたEGR弁を介して、吸気枝管集合部6の一方側に形成された排気供給部8aから排気が供給される。EGRチャンバー8からは、排気分配路10,12,14,16を介して各吸気枝管6a〜6dへ排気が分配される。   Exhaust gas is supplied into the EGR chamber 8 from an exhaust gas supply unit 8a formed on one side of the intake branch pipe assembly 6 via an EGR valve provided in the EGR device when exhaust gas recirculation is executed. From the EGR chamber 8, the exhaust is distributed to the intake branch pipes 6 a to 6 d via the exhaust distribution paths 10, 12, 14, and 16.

EGRチャンバー8内において、第3ピース2cが形成している内壁面には、3つのリブ20(移動抵抗部に相当)が設けられている。これらのリブ20は、図6に示すごとく、第3ピース2cの内壁面において、隣接する排気分配路10〜16の間に相当する位置に形成され、かつ排気分配路10〜16の配列方向に対して直交方向の突条として形成されている。   In the EGR chamber 8, three ribs 20 (corresponding to a movement resistance portion) are provided on the inner wall surface formed by the third piece 2c. As shown in FIG. 6, these ribs 20 are formed on the inner wall surface of the third piece 2 c at positions corresponding to between the adjacent exhaust distribution paths 10 to 16, and in the arrangement direction of the exhaust distribution paths 10 to 16. On the other hand, it is formed as a protrusion in the orthogonal direction.

更にEGRチャンバー8内において、床部8bの上面である床面8cには、各リブ20に連続して、隣接する排気分配路10〜16の間の壁部まで伸びる3つのリブ22(移動抵抗部に相当)が形成されている。
〈作用〉排気供給部8aからEGRチャンバー8内に導入された排気は、EGRチャンバー8の内部空間を排気分配路10〜16の配列方向に流れ、各気筒の排気分配路10〜16に分配される。この排気の分配時には、第3ピース2cのリブ20及び床部8bのリブ22のいずれも、EGRチャンバー8の内部空間においては高くなく、各気筒に対する排気の均等分配の障害とはならない。
Further, in the EGR chamber 8, the floor surface 8c, which is the upper surface of the floor portion 8b, has three ribs 22 (movement resistance) extending to the wall portions between the adjacent exhaust distribution paths 10 to 16 continuously to the ribs 20. Equivalent to the portion).
<Operation> Exhaust gas introduced into the EGR chamber 8 from the exhaust gas supply unit 8a flows in the internal space of the EGR chamber 8 in the direction of arrangement of the exhaust gas distribution paths 10 to 16, and is distributed to the exhaust gas distribution paths 10 to 16 of each cylinder. The During the distribution of the exhaust gas, neither the rib 20 of the third piece 2c nor the rib 22 of the floor portion 8b is high in the internal space of the EGR chamber 8, and does not hinder the even distribution of exhaust gas to each cylinder.

例えば、内燃機関が冷間状態であって、排気がEGRチャンバー8内で露点以下に冷却された場合には、EGRチャンバー8内で凝縮水が生じ、EGRチャンバー8の内壁面に水滴として付着する。   For example, when the internal combustion engine is in a cold state and the exhaust gas is cooled below the dew point in the EGR chamber 8, condensed water is generated in the EGR chamber 8 and adheres to the inner wall surface of the EGR chamber 8 as water droplets. .

この内壁面に付着した水滴には、特に内燃機関が車両に搭載されているため、発進・停止や加減速により、前後方向の加速度が加えられ、更に旋回時は左右方向の加速度が加えられる。このような加速度や走行時の振動をEGRチャンバー8の内壁面に付着した水滴が受けることにより、水滴が集合すると共にその集合体が加速度に応じて移動する。   In particular, since the internal combustion engine is mounted on the vehicle, the water droplets adhering to the inner wall surface are subjected to acceleration in the front-rear direction by starting / stopping or accelerating / decelerating, and also in the lateral direction during turning. When the water droplets attached to the inner wall surface of the EGR chamber 8 receive such acceleration and vibration during traveling, the water droplets collect and the aggregate moves according to the acceleration.

例えば図6で示すごとくEGRチャンバー8の内壁面全体に付着していた水滴は、車両減速や停止により、EGRチャンバー8内において前方へ移動して図示破線のハッチングで示すごとく、第3ピース2cの内壁面で、多量の凝縮水からなる水集合体Dwとなる。このままならば、水集合体Dwは排気と共に各気筒に導入される。したがって内燃機関に失火が生じたとしても、全気筒に均等な失火である。したがって失火による振動は周波数が高い。   For example, as shown in FIG. 6, the water droplets adhering to the entire inner wall surface of the EGR chamber 8 move forward in the EGR chamber 8 due to vehicle deceleration or stop, and as shown by the hatching of the broken line in the figure, On the inner wall surface, a water aggregate Dw composed of a large amount of condensed water is formed. If this is the case, the water aggregate Dw is introduced into each cylinder together with the exhaust. Therefore, even if misfire occurs in the internal combustion engine, the misfire is uniform in all cylinders. Therefore, the vibration due to misfire has a high frequency.

図6に示した状態で、更に減速と同時に車両旋回により左右方向の横加速度が生じた場合、例えば車両が左方向に旋回することにより、右方向に水集合体Dwに遠心力が働くと、水集合体Dwは、右端の#1気筒用の排気分配路10側へ移動しようとする。   In the state shown in FIG. 6, when lateral acceleration in the left-right direction occurs due to vehicle turning at the same time as deceleration, for example, when the vehicle turns leftward, centrifugal force acts on the water aggregate Dw in the right direction. The water aggregate Dw tends to move to the exhaust distribution path 10 side for the # 1 cylinder at the right end.

しかし第3ピース2cの内壁面では、隣接する排気分配路10〜16間に相当する位置に、排気分配路10〜16の配列方向に対して直交方向に形成された突条として、リブ20が形成されている。   However, on the inner wall surface of the third piece 2c, the rib 20 is formed as a protrusion formed in a direction orthogonal to the arrangement direction of the exhaust distribution passages 10-16 at a position corresponding to between the adjacent exhaust distribution passages 10-16. Is formed.

このため水集合体Dwは、右方向へ移動することが阻止され、#1気筒の排気分配路10に相当する位置に、他の3つの気筒の排気分配路12〜16に相当する位置の水集合体Dwが集中することが防止される。   For this reason, the water aggregate Dw is prevented from moving in the right direction, and the water in the position corresponding to the exhaust distribution paths 12 to 16 of the other three cylinders is positioned at the position corresponding to the exhaust distribution path 10 of the # 1 cylinder. Concentration of the aggregate Dw is prevented.

したがってこのように横加速度が生じても、水集合体Dwを各気筒の排気分配路10〜16に相当する位置に止めて、特定気筒、ここでは#1気筒に凝縮水が集中して他の3つの気筒にはほとんど凝縮水が流れ込まない状態が阻止できる。尚、横加速度が逆方向であれば、#4気筒の排気分配路16に、他の気筒の排気分配路10〜14の水集合体Dwが移動しようとするが、この場合も、#4気筒に凝縮水が集中して、他の3つの気筒にはほとんど凝縮水が流れ込まない状態が阻止できる。したがって内燃機関に失火が生じたとしても全気筒に均等な失火であり、失火による振動周波数は高い。   Therefore, even if lateral acceleration occurs in this way, the water aggregate Dw is stopped at a position corresponding to the exhaust distribution passages 10 to 16 of each cylinder, and condensed water concentrates on a specific cylinder, here, the # 1 cylinder. The state where almost no condensed water flows into the three cylinders can be prevented. If the lateral acceleration is in the reverse direction, the water aggregate Dw of the exhaust distribution passages 10 to 14 of the other cylinders tries to move to the exhaust distribution passage 16 of the # 4 cylinder. Condensed water is concentrated on the other three cylinders, so that almost no condensed water flows into the other three cylinders. Therefore, even if misfire occurs in the internal combustion engine, all cylinders are misfired uniformly, and the vibration frequency due to misfire is high.

尚、床部8bの床面8cにも第3ピース2cのリブ20に連続してリブ22が同様に各気筒の排気分配路10〜16間に相当する位置に形成されている。したがって、床部8bの床面8cに凝縮水が集合したとしても、横方向(排気分配路10〜16の配列方向)への移動を阻止できる。このため床部8bの床面8cのみでの凝縮水の集合により内燃機関に失火が生じたとしても全気筒に均等な失火であり、失火による振動は周波数が高い。
〈効果〉(1)排気に含まれる水蒸気が凝縮して凝縮水としてEGRチャンバー8の内壁面に水滴として付着した場合、前述したごとく、車両の加減速や旋回により内燃機関に対する加速度が生じると、EGRチャンバー8内の水滴は内壁面を流れて床部8bから上方にある第3ピース2cの内壁面に集合する。
In addition, the rib 22 is similarly formed in the floor surface 8c of the floor part 8b in the position corresponded between the exhaust distribution paths 10-16 of each cylinder continuously with the rib 20 of the 3rd piece 2c. Therefore, even if condensed water collects on the floor surface 8c of the floor portion 8b, the movement in the lateral direction (the arrangement direction of the exhaust distribution paths 10 to 16) can be prevented. For this reason, even if misfiring occurs in the internal combustion engine due to the condensation of the condensed water only on the floor surface 8c of the floor portion 8b, the misfiring is uniform in all the cylinders, and the vibration due to misfiring has a high frequency.
<Effects> (1) When the water vapor contained in the exhaust gas condenses and adheres to the inner wall surface of the EGR chamber 8 as condensed water as water droplets, as described above, when acceleration to the internal combustion engine occurs due to vehicle acceleration / deceleration or turning, Water droplets in the EGR chamber 8 flow on the inner wall surface and gather on the inner wall surface of the third piece 2c located above the floor portion 8b.

しかしEGRチャンバー8の内壁面には移動抵抗部としてのリブ20が、隣接する排気分配路10〜16間に相当する位置に配置されていることにより、凝縮水は、排気分配路10〜16の配列方向での移動が困難となる。したがってEGR装置からの凝縮水が特定の気筒に偏るのを防止できる。   However, the rib 20 as the movement resistance portion is disposed on the inner wall surface of the EGR chamber 8 at a position corresponding to the space between the adjacent exhaust distribution passages 10 to 16, so that the condensed water is discharged from the exhaust distribution passages 10 to 16. Movement in the arrangement direction becomes difficult. Therefore, it is possible to prevent the condensed water from the EGR device from being biased toward a specific cylinder.

このことから、特定の気筒のみに顕著な失火状態が生じることはなく、低周波数の振動を防止できる。したがってトランスアクスルなどでの車両共振を防止でき、車両ドライバーに違和感を生じさせることがない。   Thus, a remarkable misfire state does not occur only in a specific cylinder, and low-frequency vibration can be prevented. Therefore, vehicle resonance at a transaxle or the like can be prevented, and the vehicle driver does not feel uncomfortable.

(2)更に床部8bの床面8cにも、第3ピース2c側のリブ20に連続してリブ22が形成されているので、床面8cにおいても凝縮水が、排気分配路10〜16の配列方向で移動するのを阻止できる。このため特定気筒に凝縮水が偏るのを、より確実に防止できる。   (2) Further, since the rib 22 is formed continuously on the floor surface 8c of the floor portion 8b on the rib 20 on the third piece 2c side, the condensed water is also discharged on the floor surface 8c. Can be prevented from moving in the direction of arrangement. For this reason, it can prevent more reliably that condensed water is biased to a specific cylinder.

[実施の形態2]
〈構成〉図7に本実施の形態の第3ピース102cを示す。この第3ピース102cが前記実施の形態1の第3ピースの構造とは異なっており、他のピースについては前記実施の形態1と同じである。
[Embodiment 2]
<Configuration> FIG. 7 shows a third piece 102c of the present embodiment. The third piece 102c is different from the structure of the third piece of the first embodiment, and the other pieces are the same as those of the first embodiment.

この第3ピース102cでは、#1気筒の排気分配路と#2気筒の排気分配路との間に相当する位置に1つの主リブ120が設けられ、#3気筒の排気分配路と#4気筒の排気分配路との間に相当する位置にもう1つの主リブ122が設けられている。   In the third piece 102c, one main rib 120 is provided at a position corresponding to between the exhaust distribution path of the # 1 cylinder and the exhaust distribution path of the # 2 cylinder, and the exhaust distribution path of the # 3 cylinder and the # 4 cylinder Another main rib 122 is provided at a position corresponding to the exhaust distribution path.

そして、それぞれの主リブ120,122に対して、排気分配路の配列方向に間隔を置いて、主リブ120,122に平行な突条として、副リブ120a,120b,122a,122bが、前後4本ずつ設けられている。副リブ120a,120b,122a,122bは副移動抵抗部に相当する。   Then, the auxiliary ribs 120a, 120b, 122a, 122b are arranged in the front-rear direction as protrusions parallel to the main ribs 120, 122 at intervals with respect to the main ribs 120, 122 in the arrangement direction of the exhaust distribution passages. Each book is provided. The sub ribs 120a, 120b, 122a, 122b correspond to sub movement resistance portions.

そして#2気筒の排気分配路と#3気筒の排気分配路との間に相当する位置にはリブは存在しない。
尚、EGRチャンバーの床面については、前記実施の形態1と同じリブを配置しても良く、あるいは、図7に示した主リブ120,122と副リブ120a,120b,122a,122bとに対応したリブを連続して形成しても良い。
〈作用〉EGRチャンバー内で排気が冷却されて内壁面全体に付着した水滴が、車両減速時に前方に移動すると、前記実施の形態1の図6に示したごとく、ピース102cの内壁面に多量の凝縮水からなる水集合体となる。図7の構成でも、前記実施の形態1にて説明したごとく、このままでは、水集合体は排気と共に各気筒に導入されるので、内燃機関に失火が生じたとしても、全気筒に均等な失火であることから、失火による振動は周波数が高い。
There is no rib at a position corresponding to between the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder.
Incidentally, the floor of the EGR chamber may be provided with the same rib as in the first embodiment, or corresponds to the main rib 120, 122 and the sub rib 120a, 120b, 122a, 122b shown in FIG. The ribs may be formed continuously.
<Operation> When the water droplets adhered to the entire inner wall surface after the exhaust gas is cooled in the EGR chamber move forward during vehicle deceleration, a large amount of water is applied to the inner wall surface of the piece 102c as shown in FIG. 6 of the first embodiment. It becomes a water aggregate consisting of condensed water. Even in the configuration of FIG. 7, as described in the first embodiment, the water aggregate is introduced into each cylinder together with the exhaust gas as it is. Therefore, even if misfiring occurs in the internal combustion engine, the misfiring is evenly performed in all cylinders. Therefore, the vibration due to misfire has a high frequency.

そして減速と同時に車両旋回により左右方向の横加速度が生じた場合、例えば車両が左旋回することにより、右方向に水集合体に遠心力が働くと、水集合体は右側の#1気筒側に移動しようとする。   And if lateral acceleration in the left-right direction occurs due to vehicle turning at the same time as deceleration, for example, if the vehicle turns left and centrifugal force acts on the water assembly in the right direction, the water assembly moves to the right # 1 cylinder side. Try to move.

しかしピース102cの内壁面には、排気分配路の配列方向とは直交する方向の突条として主リブ120,122、及び副リブ120a,120b,122a,122bが形成されている。このため水集合体が右方向へ移動するのが阻止されて、#1気筒の排気分配路に相当する位置に、他の3つの気筒の排気分配路に相当する位置の水集合体が集中することが防止される。   However, on the inner wall surface of the piece 102c, main ribs 120, 122 and sub-ribs 120a, 120b, 122a, 122b are formed as protrusions in a direction perpendicular to the arrangement direction of the exhaust distribution passages. Therefore, the water aggregate is prevented from moving in the right direction, and the water aggregate at the position corresponding to the exhaust distribution path of the other three cylinders is concentrated at the position corresponding to the exhaust distribution path of the # 1 cylinder. It is prevented.

本実施の形態では、#2気筒の排気分配路と#3気筒の排気分配路との間に相当する位置にはリブは存在しない。このため左旋回時には#3気筒の排気分配路に相当する位置から#2気筒の排気分配路に相当する位置へ水集合体が移動する。このことから左旋回では#3気筒では失火が生じにくくなり、#2気筒では失火が生じやすくなり、#1気筒及び#4気筒については中間の失火発生程度となる。   In the present embodiment, there is no rib at a position corresponding to between the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder. For this reason, when turning left, the water aggregate moves from a position corresponding to the exhaust distribution path of the # 3 cylinder to a position corresponding to the exhaust distribution path of the # 2 cylinder. For this reason, in a left turn, misfire is less likely to occur in the # 3 cylinder, misfire is likely to occur in the # 2 cylinder, and an intermediate misfire occurs in the # 1 and # 4 cylinders.

このように失火の発生程度に差が生じるが、従来のごとく#1気筒における失火が顕著となり他の#2〜#4気筒は失火が生じにくくなるということはないことから、失火による振動周波数は共振が問題となるような低下は生じない。   In this way, there is a difference in the degree of misfire occurrence, but as in the past, misfire in the # 1 cylinder is significant, and other # 2 to # 4 cylinders are not likely to be misfired. There will be no reduction where resonance becomes a problem.

尚、床部(8b:図5)にも、前記実施の形態1のごとくのリブが形成されているので、床部の床面に凝縮水が集合したとしても、横方向(排気分配路の配列方向)への移動を阻止できる。床部に、ピース102cの主リブ120,122及び副リブ120a,120b,122a,122bに連続してリブが形成されている場合にも同様である。このことにより床部のみでの凝縮水の集合により内燃機関に失火が生じたとしても、全気筒にてほぼ均等な失火であり、失火による振動周波数は高い。
〈効果〉(1)ピース102cにおいて、#1気筒の排気分配路と#2気筒の排気分配路との間、及び#3気筒の排気分配路と#4気筒の排気分配路との間に相当する位置に、主リブ120,122と副リブ120a,120b,122a,122bとが形成されている。このため、#2気筒と#3気筒との間にリブが存在しなくても、より確実に凝縮水が1つの気筒に集中するのを防止できる。
Since the rib (8b: FIG. 5) is also formed in the floor portion (8b: FIG. 5), even if condensed water collects on the floor surface of the floor portion, (Movement in the direction of arrangement) can be prevented. The same applies to the case where ribs are continuously formed on the floor portion of the main ribs 120, 122 and the sub ribs 120a, 120b, 122a, 122b of the piece 102c. As a result, even if misfire occurs in the internal combustion engine due to the condensation of condensed water only at the floor, misfire is almost uniform in all cylinders, and the vibration frequency due to misfire is high.
<Effect> (1) In the piece 102c, it corresponds between the exhaust distribution path of the # 1 cylinder and the exhaust distribution path of the # 2 cylinder, and between the exhaust distribution path of the # 3 cylinder and the exhaust distribution path of the # 4 cylinder. The main ribs 120 and 122 and the sub-ribs 120a, 120b, 122a, and 122b are formed at the positions. For this reason, even if there is no rib between the # 2 cylinder and the # 3 cylinder, the condensed water can be more reliably prevented from concentrating on one cylinder.

このことにより前記実施の形態1と同様な効果を生じる。
[実施の形態3]
〈構成〉図8に本実施の形態の第3ピース202cを示す。この第3ピース202cが前記実施の形態1の第3ピースの構造とは異なっており、他のピースについては前記実施の形態1と同じである。
This produces the same effect as in the first embodiment.
[Embodiment 3]
<Configuration> FIG. 8 shows a third piece 202c of the present embodiment. The third piece 202c is different from the structure of the third piece of the first embodiment, and the other pieces are the same as those of the first embodiment.

この第3ピース202cでは、#1気筒の排気分配路と#2気筒の排気分配路との間に相当する位置に1つのリブ220が設けられ、#3気筒の排気分配路と#4気筒の排気分配路との間に相当する位置に、もう1つのリブ222が設けられている。   In the third piece 202c, one rib 220 is provided at a position corresponding to between the exhaust distribution path of the # 1 cylinder and the exhaust distribution path of the # 2 cylinder, and the exhaust distribution path of the # 3 cylinder and the # 4 cylinder Another rib 222 is provided at a position corresponding to the exhaust distribution path.

そして、それぞれのリブ220,222に対して、排気分配路の配列方向に間隔を置いて、移動抵抗部として、突起220a,220b,222a,222bが、前後4個ずつ設けられている。すなわち突起220a,220b,222a,222bは副移動抵抗部に相当する。   Further, four protrusions 220a, 220b, 222a, and 222b are provided in the front and rear as movement resistance portions at intervals with respect to the ribs 220 and 222 in the arrangement direction of the exhaust distribution path. That is, the protrusions 220a, 220b, 222a, and 222b correspond to the sub movement resistance portion.

更に、#2気筒の排気分配路と#3気筒の排気分配路との間に相当する位置には、設計上、内部空間が狭いことからリブは存在しないが、合計8個の突起224が、移動抵抗部として排気分配路の配列方向に1列に配列して設けられている。   Furthermore, there is no rib at the position corresponding to the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder because the internal space is narrow by design, but a total of eight protrusions 224 are provided. The movement resistance portions are arranged in a line in the arrangement direction of the exhaust distribution paths.

尚、EGRチャンバーの床面については、前記実施の形態1と同じリブを配置しても良く、あるいは、図7に示した主リブ120,122と副リブ120a,120b,122a,122bとに対応したリブを形成しても良い。あるいは図8のリブ220,222に対応したリブを配置しても良く、更に突起220a,220b,222a,222b,224に対応した位置にリブあるいは突起を配置しても良い。突起の場合には、一列のみでなく平行に複数列配置する。
〈作用〉EGRチャンバー内で排気が冷却されて内壁面全体に付着した水滴が、車両減速時に前方に移動すると、前記実施の形態1の図6に示したごとく、ピース202cの内壁面に多量の凝縮水からなる水集合体となる。図8の構成でも、前記実施の形態1にて説明したごとく、このままでは、水集合体は排気と共に各気筒に導入されるので、内燃機関に失火が生じたとしても、全気筒に均等な失火であることから、失火による振動は周波数が高い。
Incidentally, the floor of the EGR chamber may be provided with the same rib as in the first embodiment, or corresponds to the main rib 120, 122 and the sub rib 120a, 120b, 122a, 122b shown in FIG. Ribbed ribs may be formed. Alternatively, ribs corresponding to the ribs 220 and 222 in FIG. 8 may be disposed, and ribs or protrusions may be disposed at positions corresponding to the protrusions 220a, 220b, 222a, 222b, and 224. In the case of protrusions, a plurality of rows are arranged in parallel as well as one row.
<Operation> When the water droplets adhered to the entire inner wall surface after the exhaust gas is cooled in the EGR chamber move forward during vehicle deceleration, a large amount of water is applied to the inner wall surface of the piece 202c as shown in FIG. 6 of the first embodiment. It becomes a water aggregate consisting of condensed water. In the configuration of FIG. 8 as well, as described in the first embodiment, the water aggregate is introduced into each cylinder together with the exhaust gas as it is. Therefore, even if misfiring occurs in the internal combustion engine, the misfire is evenly applied to all cylinders. Therefore, the vibration due to misfire has a high frequency.

そして減速と同時に車両旋回により左右方向の横加速度が生じた場合、例えば車両が左旋回することにより、右方向に水集合体に遠心力が働くと、水集合体は右側の#1気筒側に移動しようとする。   And if lateral acceleration in the left-right direction occurs due to vehicle turning at the same time as deceleration, for example, if the vehicle turns left and centrifugal force acts on the water assembly in the right direction, the water assembly moves to the right # 1 cylinder side. Try to move.

しかしピース202cの内壁面には、排気分配路の配列方向とは直交する方向の突条としてリブ220,222が形成され、更に突起220a,220b,222a,222b,224も形成されている。このため水集合体が右方向へ移動するのが阻止されて、#1気筒の排気分配路に相当する位置に、他の3つの気筒の排気分配路に相当する位置の水集合体が集中することが防止される。   However, ribs 220 and 222 are formed on the inner wall surface of the piece 202c as protrusions in a direction perpendicular to the arrangement direction of the exhaust distribution passages, and further, protrusions 220a, 220b, 222a, 222b, and 224 are formed. Therefore, the water aggregate is prevented from moving in the right direction, and the water aggregate at the position corresponding to the exhaust distribution path of the other three cylinders is concentrated at the position corresponding to the exhaust distribution path of the # 1 cylinder. It is prevented.

本実施の形態では、#2気筒の排気分配路と#3気筒の排気分配路との間に相当する位置にはリブは存在しないが、突起224が存在する。このため#3気筒の排気分配路に相当する位置から#2気筒の排気分配路に相当する位置へも水集合体が移動しにくく、移動が阻害される。このことから#2気筒と#3気筒での失火の程度に差が付くのが抑制される。   In the present embodiment, ribs do not exist at positions corresponding to the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder, but the protrusion 224 exists. Therefore, the water aggregate is difficult to move from the position corresponding to the exhaust distribution path of the # 3 cylinder to the position corresponding to the exhaust distribution path of the # 2 cylinder, and the movement is inhibited. This suppresses the difference in the degree of misfire between the # 2 cylinder and the # 3 cylinder.

したがって従来のごとく#1気筒での失火が顕著となり他の#2〜#4気筒については失火が生じにくくなるということはなく、失火による振動周波数は高い。
尚、床部(8b:図5)にも前記実施の形態1のごとくのリブが形成されたり、あるいは前記実施の形態2のピース102cや本実施の形態のピース202cのリブや突起に連続したリブや突起が形成されるので、床部の床面に凝縮水が集合したとしても、横方向(排気分配路の配列方向)への移動を阻止できる。したがって床部のみでの凝縮水の集合により内燃機関に失火が生じたとしても全気筒に均等な失火であり、失火による振動周波数は高い。
〈効果〉(1)ピース202cにおいて、#1気筒の排気分配路と#2気筒の排気分配路との間、及び#3気筒の排気分配路と#4気筒の排気分配路との間に相当する位置に、リブ220,222と複数の突起220a,220b,222a,222bとが形成されている。更に#2気筒の排気分配路と#3気筒の排気分配路との間に相当する位置には、複数の突起224が形成されている。このため、#2気筒の排気分配路と#3気筒の排気分配路との間にリブが存在しなくても、より確実に凝縮水が1つの気筒に集中するのを防止できる。
Therefore, as in the past, misfire in the # 1 cylinder becomes remarkable, and the other # 2 to # 4 cylinders are not likely to misfire, and the vibration frequency due to misfire is high.
In addition, ribs as in the first embodiment are formed on the floor (8b: FIG. 5), or continuous with the ribs and protrusions of the piece 102c in the second embodiment and the piece 202c in the second embodiment. Since ribs and protrusions are formed, even if condensed water collects on the floor surface of the floor, movement in the lateral direction (arrangement direction of the exhaust distribution path) can be prevented. Therefore, even if misfire occurs in the internal combustion engine due to the condensation of condensed water only at the floor, the misfire is even in all cylinders, and the vibration frequency due to misfire is high.
<Effect> (1) In the piece 202c, it corresponds between the exhaust distribution path of the # 1 cylinder and the exhaust distribution path of the # 2 cylinder, and between the exhaust distribution path of the # 3 cylinder and the exhaust distribution path of the # 4 cylinder. Ribs 220 and 222 and a plurality of protrusions 220a, 220b, 222a, and 222b are formed at the positions where they are formed. Further, a plurality of protrusions 224 are formed at positions corresponding to the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder. For this reason, even if there is no rib between the exhaust distribution path of the # 2 cylinder and the exhaust distribution path of the # 3 cylinder, the condensed water can be more reliably prevented from concentrating on one cylinder.

このことにより前記実施の形態1と同様な効果を生じる。
[その他の実施の形態]
・前記各実施の形態において、リブや突起は、第3ピースの内壁面に加えて、EGRチャンバーの床面にも形成した例を示したが、床面以外に、前記図5に示すEGRチャンバー8の天井面8dにも、第3ピース側のリブや突起の位置に対応させて、リブや突起を形成しても良い。
This produces the same effect as in the first embodiment.
[Other embodiments]
In each of the above embodiments, the ribs and protrusions are formed on the floor surface of the EGR chamber in addition to the inner wall surface of the third piece. However, in addition to the floor surface, the EGR chamber shown in FIG. Ribs and protrusions may be formed on the ceiling surface 8d of 8 corresponding to the positions of the ribs and protrusions on the third piece side.

・前記各実施の形態において、リブは排気分配路の配列方向に対して直交方向に形成された突条であったが、直交でなく、排気分配路の配列方向に対して交叉する方向としても良い。このことによっても凝縮水の移動抵抗となり、凝縮水が特定気筒に偏るのを防止できる。   In each of the above embodiments, the ribs are protrusions formed in a direction perpendicular to the arrangement direction of the exhaust distribution passages. However, the ribs are not orthogonal but may be crossed with respect to the arrangement direction of the exhaust distribution passages. good. This also serves as resistance to the movement of the condensed water, and prevents the condensed water from being biased toward the specific cylinder.

・EGRチャンバーの内壁面にて水滴として付着した凝縮水が、特に車両の加減速により床面から立ち上がっている第3ピースの内壁面に移動して集合し、その後、遠心力などの横加速度により特定の気筒に集中すると、内燃機関の出力変動が車両共振振動を引き起こすことになる。このため床面や天井面にリブや突起を設けなくても、図5〜8のごとくのリブ20,120,120a,120b,122,122a,122b,220,222や突起220a,220b,222a,222b,224のみを備えたEGRチャンバーでも凝縮水が特定気筒に偏るのを防止できる。このことにより特定の気筒での失火状態が顕著とならず、低周波数の振動を防止できることから、車両の共振を防止でき、車両ドライバーに違和感を生じさせることがない。   -Condensed water adhering as water droplets on the inner wall surface of the EGR chamber moves and gathers on the inner wall surface of the third piece that stands up from the floor surface due to acceleration / deceleration of the vehicle. When concentrated on a specific cylinder, the output fluctuation of the internal combustion engine causes vehicle resonance vibration. Therefore, without providing ribs or protrusions on the floor or ceiling surface, ribs 20, 120, 120a, 120b, 122, 122a, 122b, 220, 222 and protrusions 220a, 220b, 222a, as shown in FIGS. Even in an EGR chamber provided with only 222b and 224, it is possible to prevent the condensed water from being biased toward a specific cylinder. As a result, the misfire state in a specific cylinder does not become noticeable, and low-frequency vibrations can be prevented, so that the vehicle can be prevented from resonating and the vehicle driver does not feel uncomfortable.

2…吸気マニホールド、2a,2b…ピース、2c…第3ピース、4…サージタンク、6…吸気枝管集合部、6a,6b,6c,6d…吸気枝管、8…EGRチャンバー、8a…排気供給部、8b…床部、8c…床面、8d…天井面、10,12,14,16…排気分配路、20,22…リブ、102c…第3ピース、120,122…主リブ、120a,120b,122a,122b…副リブ、202c…第3ピース、220,222…リブ、220a,220b,222a,222b,224…突起、Dw…水集合体。   2 ... intake manifold, 2a, 2b ... piece, 2c ... third piece, 4 ... surge tank, 6 ... intake branch pipe assembly, 6a, 6b, 6c, 6d ... intake branch pipe, 8 ... EGR chamber, 8a ... exhaust Supply part, 8b ... Floor part, 8c ... Floor surface, 8d ... Ceiling surface, 10, 12, 14, 16 ... Exhaust distribution passage, 20, 22 ... Rib, 102c ... Third piece, 120, 122 ... Main rib, 120a , 120b, 122a, 122b ... secondary rib, 202c ... third piece, 220, 222 ... rib, 220a, 220b, 222a, 222b, 224 ... projection, Dw ... water assembly.

Claims (12)

複数気筒の内燃機関の吸気系に配置したチャンバー内に内燃機関の排気を導入し、このチャンバーに配列して開口する気筒毎の排気分配路から、吸気マニホールドに気筒毎に設けられた吸気分岐経路に排気を導入する吸気系排気導入構造であって、
前記内燃機関が車両に搭載された際に前記チャンバーにおける前記排気分配路の配列方向と直交する断面において鉛直方向下方に位置する床面から上方に向かって連続して設けられる内壁面には、前記排気分配路の配列方向において最も端に位置する排気分配路と隣接する排気分配路との間の部位と前記排気分配路の配列方向における同じ部位に、前記内壁面に直交するように同内壁面に立設して前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる移動抵抗部が形成されていることを特徴とする吸気系排気導入構造。
An intake branch path provided for each cylinder in an intake manifold from an exhaust distribution path for each cylinder, which is arranged in the chamber and opened, into the chamber disposed in the intake system of the multi-cylinder internal combustion engine Intake system exhaust introduction structure that introduces exhaust into
When the internal combustion engine is mounted on a vehicle, the inner wall surface continuously provided upward from the floor surface positioned vertically downward in the cross section orthogonal to the arrangement direction of the exhaust distribution path in the chamber includes The inner wall surface orthogonal to the inner wall surface at a position between the exhaust distribution path located at the end in the arrangement direction of the exhaust distribution path and the adjacent exhaust distribution path and the same position in the arrangement direction of the exhaust distribution path upright and intake system exhaust introduction structure, characterized in that the transfer resistance portion is formed of condensed water is resistance when the moving direction of the arrangement of the exhaust distribution path to.
請求項1に記載の吸気系排気導入構造において、前記内壁面には、全ての隣接する前記排気分配路間の部位と前記排気分配路の配列方向における同じ部位に、前記移動抵抗部が形成されていることを特徴とする吸気系排気導入構造。 2. The intake system exhaust introduction structure according to claim 1 , wherein the movement resistance portion is formed on the inner wall surface at a portion between all adjacent exhaust distribution passages and the same portion in the arrangement direction of the exhaust distribution passages. Intake system exhaust introduction structure characterized by that. 複数気筒の内燃機関の吸気系に配置したチャンバー内に内燃機関の排気を導入し、このチャンバーに配列して開口する気筒毎の排気分配路から、吸気マニホールドに気筒毎に設けられた吸気分岐経路に排気を導入する吸気系排気導入構造であって、
前記内燃機関が車両に搭載された際に前記チャンバーにおける前記排気分配路の配列方向と直交する断面において鉛直方向下方に位置する床面から上方に向かって連続して設けられる内壁面には、隣接する前記排気分配路間の部位と前記排気分配路の配列方向における同じ部位に、前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる移動抵抗部が形成されるとともに、前記排気分配路の配列方向にて、前記移動抵抗部に対して間隔を置いて、前記排気分配路の配列方向で凝縮水が移動する際の抵抗となる副移動抵抗部が形成されていることを特徴とする吸気系排気導入構造。
An intake branch path provided for each cylinder in an intake manifold from an exhaust distribution path for each cylinder, which is arranged in the chamber and opened, into the chamber disposed in the intake system of the multi-cylinder internal combustion engine Intake system exhaust introduction structure that introduces exhaust into
When the internal combustion engine is mounted on a vehicle, adjacent to the inner wall surface continuously provided upward from the floor surface positioned vertically downward in the cross section orthogonal to the arrangement direction of the exhaust distribution passage in the chamber A movement resistance portion serving as a resistance when condensate moves in the arrangement direction of the exhaust distribution path is formed at the same part in the arrangement direction of the exhaust distribution path and the portion between the exhaust distribution paths to be formed, and the exhaust In the arrangement direction of the distribution path, an auxiliary movement resistance part is formed which is spaced from the movement resistance part and serves as a resistance when condensed water moves in the arrangement direction of the exhaust distribution path. Intake system exhaust introduction structure.
請求項に記載の吸気系排気導入構造において、記チャンバーの床面には、前記内壁面に前記副移動抵抗部が設けられる部位と前記排気分配路の配列方向における同じ部位に、前記副移動抵抗部が前記内壁面から連続して形成されていることを特徴とする吸気系排気導入構造。 In the intake system exhaust introducing structure according to claim 3, in the floor of the front Symbol chamber, wherein the same site in the array direction of the site of the sub-transfer resistance portions are provided the exhaust distribution path within said wall, said sub An intake system exhaust introduction structure characterized in that a movement resistance portion is formed continuously from the inner wall surface . 請求項1〜4のいずれか一項に記載の吸気系排気導入構造において、前記移動抵抗部は、前記排気分配路の配列方向に対して交叉する方向に形成された突条であることを特徴とする吸気系排気導入構造。 The intake system exhaust introduction structure according to any one of claims 1 to 4 , wherein the movement resistance portion is a ridge formed in a direction intersecting with an arrangement direction of the exhaust distribution passages. Intake system exhaust introduction structure. 請求項に記載の吸気系排気導入構造において、前記移動抵抗部は、前記排気分配路の配列方向に対して直交方向に形成された突条であることを特徴とする吸気系排気導入構造。 6. The intake system exhaust introduction structure according to claim 5 , wherein the movement resistance portion is a ridge formed in a direction orthogonal to the arrangement direction of the exhaust distribution passages. 請求項1〜4のいずれか一項の吸気系排気導入構造において、前記移動抵抗部は、複数の突起であることを特徴とする吸気系排気導入構造。 The intake system exhaust introduction structure according to any one of claims 1 to 4 , wherein the movement resistance portion is a plurality of protrusions. 請求項3又は4に記載の吸気系排気導入構造において、前記移動抵抗部は前記排気分配路の配列方向に対して交叉する方向に形成された突条であり、前記副移動抵抗部は前記移動抵抗部に平行な突条であることを特徴とする吸気系排気導入構造。 5. The intake system exhaust introduction structure according to claim 3 , wherein the movement resistance portion is a protrusion formed in a direction intersecting with an arrangement direction of the exhaust distribution path, and the sub movement resistance portion is the movement. Intake system exhaust introduction structure characterized by a ridge parallel to the resistance portion. 請求項3又は4に記載の吸気系排気導入構造において、前記移動抵抗部は前記排気分配路の配列方向に対して交叉する方向に形成された突条であり、前記副移動抵抗部は突起であることを特徴とする吸気系排気導入構造。 5. The intake system exhaust introduction structure according to claim 3 , wherein the movement resistance portion is a protrusion formed in a direction intersecting with an arrangement direction of the exhaust distribution path, and the sub movement resistance portion is a protrusion. An intake system exhaust introduction structure characterized by being. 請求項1〜9のいずれか一項に記載の吸気系排気導入構造において、前記チャンバーの床面には、前記内壁面に前記移動抵抗部が設けられる部位と前記排気分配路の配列方向における同じ部位に、前記移動抵抗部が前記内壁面から連続して形成されていることを特徴とする吸気系排気導入構造。 In the intake system exhaust introducing structure according to any one of claims 1 to 9, the floor of the front Symbol chamber, in the arrangement direction of the exhaust distribution channels and sites where the transfer resistance portion is provided in said wall surface An intake system exhaust introduction structure , wherein the movement resistance portion is formed continuously from the inner wall surface at the same site . 請求項1〜10のいずれか一項に記載の吸気系排気導入構造において、前記壁面は、前記床面と対向する前記チャンバーの天井面を含むことを特徴とする吸気系排気導入構造。 The intake system exhaust introduction structure according to any one of claims 1 to 10, wherein the inner wall surface includes a ceiling surface of the chamber facing the floor surface . 請求項1〜11のいずれか一項に記載の吸気系排気導入構造において、前記排気分配路の配列方向は、車両の左右方向であることを特徴とする吸気系排気導入構造。 In the intake system exhaust introducing structure according to any one of claims 1 to 11, the arrangement direction of the front Symbol exhaust dispensing path, intake system exhaust introduction structure, which is a lateral direction of the vehicle.
JP2011153093A 2011-07-11 2011-07-11 Intake system exhaust introduction structure Expired - Fee Related JP5737020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153093A JP5737020B2 (en) 2011-07-11 2011-07-11 Intake system exhaust introduction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153093A JP5737020B2 (en) 2011-07-11 2011-07-11 Intake system exhaust introduction structure

Publications (2)

Publication Number Publication Date
JP2013019315A JP2013019315A (en) 2013-01-31
JP5737020B2 true JP5737020B2 (en) 2015-06-17

Family

ID=47690988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153093A Expired - Fee Related JP5737020B2 (en) 2011-07-11 2011-07-11 Intake system exhaust introduction structure

Country Status (1)

Country Link
JP (1) JP5737020B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6142477B2 (en) * 2012-07-31 2017-06-07 アイシン精機株式会社 Intake manifold
JP6435976B2 (en) 2015-04-20 2018-12-12 アイシン精機株式会社 Intake device for internal combustion engine
JP6642516B2 (en) * 2017-05-12 2020-02-05 トヨタ自動車株式会社 Vehicle control device
JP7163251B2 (en) 2019-07-11 2022-10-31 愛三工業株式会社 EGR gas distributor
JP7336379B2 (en) 2019-12-27 2023-08-31 愛三工業株式会社 EGR gas distributor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772871B2 (en) * 2003-10-10 2006-05-10 日産自動車株式会社 Intake device for internal combustion engine
JP4916380B2 (en) * 2007-05-16 2012-04-11 トヨタ自動車株式会社 Intake manifold for internal combustion engines
JP4569621B2 (en) * 2007-11-30 2010-10-27 トヨタ自動車株式会社 Intake mixed gas introduction device
JP5015827B2 (en) * 2008-03-05 2012-08-29 トヨタ自動車株式会社 Intake path gas introduction structure and intake manifold
JP2009287418A (en) * 2008-05-27 2009-12-10 Toyota Motor Corp Intake manifold and internal combustion engine
JP5316349B2 (en) * 2009-10-06 2013-10-16 株式会社デンソー EGR device
JP2012062902A (en) * 2011-12-27 2012-03-29 Toyota Motor Corp Intake path gas introducing structure and intake manifold

Also Published As

Publication number Publication date
JP2013019315A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5737020B2 (en) Intake system exhaust introduction structure
US8602158B2 (en) Muffler system with protector for small-sized vehicle
US9133741B2 (en) Freeze prevention arrangement for PCV channel and intake manifold
JP6169012B2 (en) Intake device
US9249765B2 (en) Intake manifold
EP2832985B1 (en) Air cleaner device for vehicle
CN113047984B (en) EGR gas distributor
EP1522714B1 (en) Intake device for internal combustion engine
JP2004316501A (en) Blow-by gas reflux device for internal combustion engine
JP2013007357A (en) Air intake device of internal combustion engine
US20170260891A1 (en) Exhaust structure for multi-cylinder engine
US9476390B2 (en) Intake system for a vehicle, and engine including same
US20170260893A1 (en) Exhaust insulator structure for multi-cylinder engine
JP5505255B2 (en) Intake device for internal combustion engine
JP5760893B2 (en) Intake system exhaust introduction structure
JP2013139742A (en) Intake device
US10697402B2 (en) Intake apparatus for internal combustion engine
JP2007332873A (en) Trap device for blow-by gas
JP2013007360A (en) Air intake device of internal combustion engine
US20200063641A1 (en) Intake device for multi-cylinder engine
JP5602121B2 (en) Exhaust sensor mounting structure
JP7505849B2 (en) Intake manifold
JP6142864B2 (en) Engine intake system
JP6692656B2 (en) Internal combustion engine exhaust adapter
JP2024066799A (en) Intake manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees