JP5734763B2 - Compound input device - Google Patents
Compound input device Download PDFInfo
- Publication number
- JP5734763B2 JP5734763B2 JP2011138777A JP2011138777A JP5734763B2 JP 5734763 B2 JP5734763 B2 JP 5734763B2 JP 2011138777 A JP2011138777 A JP 2011138777A JP 2011138777 A JP2011138777 A JP 2011138777A JP 5734763 B2 JP5734763 B2 JP 5734763B2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- input device
- transparent conductive
- conductive film
- touch panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Position Input By Displaying (AREA)
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池と、その受光面の上に設けられたタッチパネルと、を備えた複合入力装置に関する。 The present invention relates to a composite input device including a solar cell and a touch panel provided on a light receiving surface thereof.
太陽電池部材は、光電変換効率の向上が重要な課題であり、そのために光電変換層の膜厚を厚くする、凹凸表面構造からなる”テクスチャ構造”と呼ばれる構造を設け、光をこの”テクスチャ構造”によって光を散乱させることによって、光電変換層を通過する光の光路長を長くして、光電変換層において吸収される光の量を増加させる方法が用いられている。 For solar cell members, improvement of photoelectric conversion efficiency is an important issue. For this purpose, a structure called “texture structure” consisting of an uneven surface structure is provided to increase the film thickness of the photoelectric conversion layer. The method of increasing the amount of light absorbed in the photoelectric conversion layer by increasing the optical path length of the light passing through the photoelectric conversion layer by scattering the light by "" is used.
しかし、テクスチャ構造上に光電変換層(半導体層)を形成した場合、光電変換層に多くの欠陥を誘起し、変換効率を悪化させる場合があることや、光電変換層の膜厚を厚くすることによる材料コストのアップや生産速度の低下などの問題がある。太陽電池において、変換効率向上及び入射角度依存性の解消のために、入射光を散乱光に変換する提案がある(例えば、特許文献1及び2参照。)。 However, when a photoelectric conversion layer (semiconductor layer) is formed on the texture structure, many defects may be induced in the photoelectric conversion layer to deteriorate the conversion efficiency, or the film thickness of the photoelectric conversion layer is increased. There are problems such as an increase in material cost and a decrease in production speed. In solar cells, there is a proposal to convert incident light into scattered light in order to improve conversion efficiency and eliminate incident angle dependency (see, for example, Patent Documents 1 and 2).
一方、太陽電池と透明タッチパネルとを組み合わせたデバイス技術についていくつか提案がなされている(例えば、特許文献3〜6参照。)。このように太陽電池とタッチパネルを組み合わせたデバイスによれば、例えばリモコンとして用いた場合、1次電池を必要としないというメリットがある。 On the other hand, some proposals have been made on device technology combining a solar cell and a transparent touch panel (see, for example, Patent Documents 3 to 6). Thus, according to the device which combined the solar cell and the touch panel, for example, when used as a remote controller, there is an advantage that a primary battery is not required.
しかし、図8の従来のタッチパネルの平面図に示すように、タッチパネルには引き回し配線部22が存在する。この引き回し配線部22には銀ペーストなどが用いられる。そのため、図9に示すように、太陽電池1の上に従来のタッチパネル2を配置した場合、引き回し配線部22の光透過率は低く、有効な受光面として機能しない。その結果、引き回し配線部22の面積については十分な発電効率が得られないという問題があった。 However, as shown in the plan view of the conventional touch panel in FIG. 8, the lead wiring portion 22 exists in the touch panel. A silver paste or the like is used for the routing wiring portion 22. Therefore, as shown in FIG. 9, when the conventional touch panel 2 is disposed on the solar cell 1, the light transmittance of the routing wiring portion 22 is low and does not function as an effective light receiving surface. As a result, there is a problem that sufficient power generation efficiency cannot be obtained for the area of the routing wiring portion 22.
一方、タッチパネルの透明導電膜として通常使用されているITO材料は折り曲げに弱く、わずかな折り曲げであっても抵抗値変化が大きくなる。そのため、引き回し配線部22を側面に配置することは困難であるという問題があった。 On the other hand, the ITO material normally used as the transparent conductive film of the touch panel is vulnerable to bending, and the resistance value changes greatly even with slight bending. Therefore, there is a problem that it is difficult to arrange the routing wiring portion 22 on the side surface.
そこで、本発明の目的は、太陽電池の上にタッチパネルを設けた複合入力装置において、引き回し配線部による光透過率の低下を防いで、太陽電池に届く光を十分に確保し、太陽電池における光電変換効率を向上させると共に、タッチパネルとしての機能を有する複合入力装置を提供することである。 Accordingly, an object of the present invention is to prevent a decrease in light transmittance due to the routing wiring portion in a composite input device provided with a touch panel on a solar cell, to ensure sufficient light reaching the solar cell, and An object of the present invention is to provide a composite input device that improves conversion efficiency and has a function as a touch panel.
本発明に係る複合入力装置は、受光面で受光して発電可能な太陽電池部と、
前記太陽電池部の前記受光面の上に設けられ、透明導電膜を有するタッチパネル部と、
前記太陽電池部の前記受光面に対する側面に設けられ、前記透明導電膜と接続された引き回し配線部と、
を備え、
導電性ナノワイヤ材料によって構成され、前記受光面上から前記側面にわたって折り曲げ可能な折り曲げ部によって、前記透明導電膜と前記引き回し配線部とを電気的に接続する。
A composite input device according to the present invention includes a solar cell unit capable of receiving and generating electric power at a light receiving surface;
A touch panel unit provided on the light receiving surface of the solar cell unit and having a transparent conductive film;
Provided on a side surface of the solar cell portion with respect to the light receiving surface, and a lead wiring portion connected to the transparent conductive film,
With
The transparent conductive film and the routing wiring portion are electrically connected by a bent portion that is made of a conductive nanowire material and can be bent from the light receiving surface to the side surface.
また、前記引き回し配線部は、前記太陽電池の前記側面に接する面に光を反射する反射材を設けてもよい。 Further, the routing wiring portion may be provided with a reflective material that reflects light on a surface in contact with the side surface of the solar cell.
さらに、前記透明導電膜は、導電性ナノワイヤ材料によって構成されてもよい。またさらに、前記透明導電膜は、ITOによって構成されてもよい。 Furthermore, the transparent conductive film may be made of a conductive nanowire material. Furthermore, the transparent conductive film may be made of ITO.
また、外部と無線通信を行うための無線通信部と、
前記太陽電池で発電した電力を蓄えるためのバッテリと、
をさらに備えてもよい。
A wireless communication unit for performing wireless communication with the outside;
A battery for storing electric power generated by the solar cell;
May be further provided.
本発明に係る複合入力装置は、太陽電池部の側面にタッチパネル部の透明導電膜と折り曲げ部を介して電気的に接続された引き回し配線部を備える。この折り曲げ部は、導電性ナノワイヤ材料によって構成されており、これによって、タッチパネル部の引き回し配線部を太陽電池部の受光面の上ではなく、太陽電池部の側面に設けることができる。そのため、太陽電池部の受光面を最大限に生かすことができ、発電効率を向上させることができる。 The composite input device according to the present invention includes a lead wiring portion electrically connected to the side surface of the solar cell portion via a transparent conductive film of the touch panel portion and a bent portion. The bent portion is made of a conductive nanowire material, whereby the lead wiring portion of the touch panel portion can be provided not on the light receiving surface of the solar cell portion but on the side surface of the solar cell portion. Therefore, the light receiving surface of the solar cell unit can be utilized to the maximum, and the power generation efficiency can be improved.
以下に、本発明の実施の形態に係る複合入力装置について添付図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。 A composite input device according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.
(実施の形態1)
図1は、実施の形態1に係る複合入力装置10の断面構造を示す概略断面図である。図2は、図1の特に端部の引き回し配線部22とタッチパネル部2の透明導電膜4との接続部分の断面構造を示す部分断面図である。また、図5は、この複合入力装置10のタッチパネル部2の透明導電膜4と接続された引き回し配線部22を折り曲げ線23で折り曲げて太陽電池部1の側面に配置する概念図である。図6は、この複合入力装置10の引き回し配線部22を示す斜視図である。図7(a)は、図5の引き回し配線部22を折り曲げ線23で折り曲げて太陽電池部1の側面に配置する工程を示す概略断面図であり、図7(b)は、(a)によって得られる複合入力装置10の断面構造を示す概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a cross-sectional structure of the composite input device 10 according to the first embodiment. FIG. 2 is a partial cross-sectional view showing a cross-sectional structure of a connection portion between the lead wiring portion 22 at the end portion of FIG. 1 and the transparent conductive film 4 of the touch panel portion 2. FIG. 5 is a conceptual diagram in which the routing wiring portion 22 connected to the transparent conductive film 4 of the touch panel portion 2 of the composite input device 10 is bent along the folding line 23 and arranged on the side surface of the solar cell portion 1. FIG. 6 is a perspective view showing the routing wiring portion 22 of the composite input device 10. FIG. 7A is a schematic cross-sectional view showing a process of bending the lead wiring portion 22 of FIG. 5 along the fold line 23 and arranging it on the side surface of the solar cell portion 1. FIG. 1 is a schematic cross-sectional view showing a cross-sectional structure of a composite input device 10 obtained.
この複合入力装置10は、太陽電池部1と、太陽電池部1の受光面12の上に設けられたタッチパネル部2とを備える。また、この複合入力装置10は、太陽電池部1の側面にタッチパネル部2の透明導電膜4と折り曲げ部24を介して電気的に接続された引き回し配線部22を備える。この折り曲げ部24は、導電性ナノワイヤ材料3によって構成されていることを特徴とする。これによって、タッチパネル部2の引き回し配線部22を太陽電池部1の受光面12の上ではなく、太陽電池部1の側面に設けることができる。そのため、太陽電池部1の受光面12を最大限に生かすことができ、発電効率を向上させることができる。 The composite input device 10 includes a solar cell unit 1 and a touch panel unit 2 provided on a light receiving surface 12 of the solar cell unit 1. The composite input device 10 further includes a lead wiring portion 22 electrically connected to the side surface of the solar cell portion 1 through the transparent conductive film 4 of the touch panel portion 2 and the bent portion 24. The bent portion 24 is configured by the conductive nanowire material 3. Thereby, the routing wiring part 22 of the touch panel part 2 can be provided not on the light receiving surface 12 of the solar cell part 1 but on the side surface of the solar cell part 1. Therefore, the light receiving surface 12 of the solar cell unit 1 can be utilized to the maximum, and the power generation efficiency can be improved.
上記のタッチパネル部2の透明導電膜4と電気的に接続された引き回し配線部22を太陽電池部1の側面に配置することについてさらに説明する。
図4は、ITOからなる透明導電膜(◆)と、銀ナノワイヤからなる透明導電膜(■)とについて、8mmφマンドレル屈曲試験テスト結果の折り曲げ回数と抵抗値変化率との関係を示すグラフである。この図4に示すように、通常よく使用されるITO(インジウムスズ酸化物)材料からなる透明導電膜は、折り曲げに弱く、わずかな折り曲げであってもその抵抗値が大きく変化する。そのため、図8の従来のタッチパネルの平面図に示すように、透明導電膜4からの引き回し配線部22は透明導電膜4と同一平面内に設けられていた。この引き回し配線部22には、通常、銀ペーストが用いられている。図9は、図8のタッチパネル部2を太陽電池部1の上に設けた場合の断面構造を示す断面図である。図9に示すように、従来のタッチパネル2をそのまま太陽電池1の上に設けた場合、銀ペーストによる引き回し配線部22の部分の光透過率は低く、発電に寄与しない。そのため、引き回し配線部22を除く部分だけが有効な受光面12となっていた。
The arrangement of the lead wiring portion 22 electrically connected to the transparent conductive film 4 of the touch panel portion 2 on the side surface of the solar cell portion 1 will be further described.
FIG. 4 is a graph showing the relationship between the number of bendings and the resistance value change rate of the 8 mmφ mandrel bending test results for the transparent conductive film (♦) made of ITO and the transparent conductive film (■) made of silver nanowires. . As shown in FIG. 4, a commonly used transparent conductive film made of ITO (indium tin oxide) material is vulnerable to bending, and its resistance value changes greatly even with slight bending. Therefore, as shown in the plan view of the conventional touch panel in FIG. 8, the lead wiring portion 22 from the transparent conductive film 4 is provided in the same plane as the transparent conductive film 4. A silver paste is usually used for the routing wiring portion 22. FIG. 9 is a cross-sectional view showing a cross-sectional structure when the touch panel unit 2 of FIG. 8 is provided on the solar cell unit 1. As shown in FIG. 9, when the conventional touch panel 2 is provided on the solar cell 1 as it is, the light transmittance of the portion of the lead wiring portion 22 made of silver paste is low and does not contribute to power generation. Therefore, only the portion excluding the routing wiring portion 22 is an effective light receiving surface 12.
この複合入力装置10では、タッチパネル部2の透明導電膜4と引き回し配線部22とを電気的に接続する折り曲げ部24を導電性ナノワイヤ材料3によって構成している。図4の8mmφマンドレル屈曲試験テスト結果に示すように、この導電性ナノワイヤ材料3の一つである銀ナノワイヤ材料からなる透明導電膜は、10回を越える折り曲げ回数を経ても抵抗値変化がほとんどないほど十分な折り曲げ耐性を有している。そこで、図5及び図7(a)に示すように、引き回し配線部22を折り曲げ線23で折り曲げた場合でも導電性ナノワイヤ材料3で構成された折り曲げ部24の抵抗値は変化しない。その結果、図6及び図7(b)に示すように太陽電池部1の側面に引き回し配線部22を配置でき、太陽電池部1の受光面12を発電に有効に利用することができる。 In the composite input device 10, the bent portion 24 that electrically connects the transparent conductive film 4 of the touch panel portion 2 and the routing wiring portion 22 is formed of the conductive nanowire material 3. As shown in the 8 mmφ mandrel bending test test result in FIG. 4, the transparent conductive film made of the silver nanowire material, which is one of the conductive nanowire materials 3, has almost no change in resistance even after the number of bending times exceeding 10. It has sufficient bending resistance. Therefore, as shown in FIG. 5 and FIG. 7A, even when the routing wiring portion 22 is bent along the folding line 23, the resistance value of the bent portion 24 made of the conductive nanowire material 3 does not change. As a result, as shown in FIG. 6 and FIG. 7B, the lead wiring part 22 can be disposed on the side surface of the solar cell unit 1, and the light receiving surface 12 of the solar cell unit 1 can be effectively used for power generation.
以下に、この複合入力装置10を構成する各構成部材について説明する。 Below, each structural member which comprises this composite input device 10 is demonstrated.
<タッチパネル部>
タッチパネル部2は、マトリクス・スイッチ方式、抵抗膜方式、静電容量方式等のいずれの方式によるタッチパネルも使用できる。タッチパネル部2は、入力のための入力面14を有する。この入力面14は、太陽電池部1の受光面12に光を入射するための面としても機能する。なお、タッチ箇所を示すための最下層の表示部分については、例えば、図10に示す印刷によるボタン16表示であってもよい。あるいは、タッチパネル部2と太陽電池部1との間に、さらに液晶表示部を備えてもよい。また、タッチパネル部2の透明導電膜4は、導電性ナノワイヤ材料3で構成された折り曲げ部24を介して太陽電池部1の側面に配置された引き回し配線部22と電気的に接続されている。
<Touch panel part>
The touch panel unit 2 can use a touch panel of any system such as a matrix switch system, a resistance film system, or a capacitance system. The touch panel unit 2 has an input surface 14 for input. The input surface 14 also functions as a surface for allowing light to enter the light receiving surface 12 of the solar cell unit 1. Note that the lowermost display portion for indicating the touch location may be, for example, the button 16 display by printing shown in FIG. Alternatively, a liquid crystal display unit may be further provided between the touch panel unit 2 and the solar cell unit 1. In addition, the transparent conductive film 4 of the touch panel unit 2 is electrically connected to the lead wiring unit 22 disposed on the side surface of the solar cell unit 1 through a bent unit 24 formed of the conductive nanowire material 3.
<折り曲げ部>
折り曲げ部24によって、タッチパネル部2の透明導電膜4と、太陽電池部1の側面に配置された引き回し配線部22とが電気的に接続されている。この折り曲げ部24は、導電性ナノワイヤ材料3によって構成されており、複数回の折り曲げによっても抵抗値変化をほとんど示さない。
<Bending part>
The transparent conductive film 4 of the touch panel part 2 and the lead wiring part 22 arranged on the side surface of the solar cell part 1 are electrically connected by the bent part 24. The bent portion 24 is made of the conductive nanowire material 3 and hardly shows a change in resistance value even after being bent a plurality of times.
<導電性ナノワイヤ材料>
図3は、直径d及び長さLを有する導電性ナノワイヤ材料3の構造を示す概略図である。この導電性ナノワイヤ材料3は、およそ10〜100,000の範囲のアスペクト比を有する。また、図4の8mmφマンドレル屈曲試験テスト結果に示すように、この導電性ナノワイヤ材料3の一つである銀ナノワイヤ材料からなる透明導電膜(■)は、10回を超える折り曲げ回数を経ても抵抗値変化がほとんどないほど十分な折り曲げ耐性を有している。
<Conductive nanowire material>
FIG. 3 is a schematic diagram showing the structure of a conductive nanowire material 3 having a diameter d and a length L. This conductive nanowire material 3 has an aspect ratio in the range of approximately 10-100,000. In addition, as shown in the 8 mmφ mandrel bending test result of FIG. 4, the transparent conductive film (■) made of a silver nanowire material, which is one of the conductive nanowire materials 3, is resistant even after being bent more than 10 times. It has sufficient bending resistance so that there is almost no change in value.
導電性ナノワイヤ材料3としては、例えば、銀、金、銅、ニッケル、金めっきされた銀、アルミニウム等の金属ナノワイヤ、カーボンナノファイバー、カーボンナノチューブ等の繊維状カーボンを用いることができる。なお、導電性ナノワイヤ材料3としては、上記例示に限定されるものではない。導電性ナノワイヤ材料として、特に銀ナノワイヤが好ましい。 As the conductive nanowire material 3, for example, metal nanowires such as silver, gold, copper, nickel, gold-plated silver and aluminum, and fibrous carbon such as carbon nanofibers and carbon nanotubes can be used. Note that the conductive nanowire material 3 is not limited to the above example. As the conductive nanowire material, silver nanowire is particularly preferable.
なお、導電性ナノワイヤ材料を透明導電材料として用いる提案(特開2010−244747号公報、特表2009−505358号公報)がある。 There are proposals (Japanese Patent Application Laid-Open No. 2010-244747, Japanese Translation of PCT International Publication No. 2009-505358) that use a conductive nanowire material as a transparent conductive material.
<引き回し配線部>
引き回し配線部22は、図1及び図2に示すように、太陽電池部1の側面に配置される。この引き回し配線部22は、上記折り曲げ部24を介してタッチパネル部2の透明導電膜4と電気的に接続されている。また、引き回し配線部22は、例えば、銀ペースト等で形成してもよい。
<Leading wiring section>
The lead-out wiring part 22 is arrange | positioned at the side surface of the solar cell part 1, as shown in FIG.1 and FIG.2. The routing wiring portion 22 is electrically connected to the transparent conductive film 4 of the touch panel portion 2 through the bent portion 24. Moreover, you may form the routing wiring part 22 with a silver paste etc., for example.
なお、引き回し配線部22の太陽電池部1の側面に接する面に光を反射する反射材を設けてもよい。これによって、太陽電池部1内で散乱光を反射させることができ、発電効率をさらに向上させることができる。 In addition, you may provide the reflecting material which reflects light in the surface which contact | connects the side surface of the solar cell part 1 of the routing wiring part 22. FIG. Thereby, scattered light can be reflected in the solar cell unit 1, and the power generation efficiency can be further improved.
<太陽電池部>
太陽電池部1には、通常の可視光領域の光について光電変換して発電可能な太陽電池を使用できる。例えば、単結晶シリコン系太陽電池、多結晶シリコン系太陽電池、アモルファスシリコン系太陽電池、化合物系太陽電池、等のいずれであってもよい。
<Solar cell part>
As the solar cell unit 1, a solar cell that can generate electric power by photoelectrically converting light in a normal visible light region can be used. For example, any of a single crystal silicon solar cell, a polycrystalline silicon solar cell, an amorphous silicon solar cell, a compound solar cell, and the like may be used.
(実施の形態2)
図11は、実施の形態2に係る複合入力装置10aの構成を示すブロック図である。この複合入力装置10aは、実施の形態1に係る複合入力装置と対比すると、2次電池部18と、無線通信部20と、をさらに備える点で相違する。2次電池部18は、太陽電池部1で発電した電力を蓄える。無線通信部20は、外部と無線通信を行う。この複合入力装置10aによれば、例えば無線通信部20を利用してリモコンとして機能させることができる。この場合、太陽電池部1で発電した電力を2次電池部18で蓄えておくことができるので、十分な太陽光や照明等が得られない場合にも、あらかじめ発電し、蓄えておいた電力を利用できる。
(Embodiment 2)
FIG. 11 is a block diagram illustrating a configuration of the composite input device 10a according to the second embodiment. This composite input device 10a is different from the composite input device according to Embodiment 1 in that it further includes a secondary battery unit 18 and a wireless communication unit 20. The secondary battery unit 18 stores the power generated by the solar cell unit 1. The wireless communication unit 20 performs wireless communication with the outside. According to the composite input device 10a, for example, the wireless communication unit 20 can be used to function as a remote controller. In this case, since the electric power generated by the solar cell unit 1 can be stored in the secondary battery unit 18, the electric power generated and stored in advance even when sufficient sunlight, lighting, or the like cannot be obtained. Can be used.
本発明に係る複合入力装置は、太陽電池部の側面にタッチパネル部の透明導電膜と折り曲げ部を介して電気的に接続された引き回し配線部を備える。この折り曲げ部は、導電性ナノワイヤ材料によって構成されており、タッチパネル部の引き回し配線部を折り曲げて太陽電池部の側面に設けることができる。そのため、太陽電池部1の受光面を最大限に生かすことができ、発電効率を向上させることができ、太陽電池及びタッチパネルを有する複合入力装置として有用である。 The composite input device according to the present invention includes a lead wiring portion electrically connected to the side surface of the solar cell portion via a transparent conductive film of the touch panel portion and a bent portion. The bent portion is made of a conductive nanowire material, and can be provided on the side surface of the solar cell portion by bending the lead wiring portion of the touch panel portion. Therefore, the light-receiving surface of the solar cell unit 1 can be utilized to the maximum, power generation efficiency can be improved, and it is useful as a composite input device having a solar cell and a touch panel.
1 太陽電池部
2 タッチパネル部
3 導電性ナノワイヤ
4 透明導電膜
10 複合入力装置
12 受光面
14 入力面
16 ボタン
18 2次電池部
20 無線通信部
22 引き回し配線部
23 折り曲げ線
24 折り曲げ部
DESCRIPTION OF SYMBOLS 1 Solar cell part 2 Touch panel part 3 Conductive nanowire 4 Transparent conductive film 10 Composite input device 12 Light receiving surface 14 Input surface 16 Button 18 Secondary battery part 20 Wireless communication part 22 Leading wiring part 23 Folding line 24 Bending part
Claims (4)
前記太陽電池部の前記受光面の上に設けられ、透明導電膜を有するタッチパネル部と、
前記太陽電池部の前記受光面に対する側面に設けられ、前記透明導電膜と接続された引き回し配線部と、
を備え、
導電性ナノワイヤ材料によって構成され、前記受光面上から前記側面にわたって折り曲げ可能な折り曲げ部によって、前記透明導電膜と前記引き回し配線部とを電気的に接続すると共に、
前記引き回し配線部は、前記太陽電池部の前記側面に接する面に光を反射する反射材を設けた、複合入力装置。 A solar cell unit that can receive light from the light receiving surface and generate power;
A touch panel unit provided on the light receiving surface of the solar cell unit and having a transparent conductive film;
Provided on a side surface of the solar cell portion with respect to the light receiving surface, and a lead wiring portion connected to the transparent conductive film,
With
Constructed of a conductive nanowire material, and electrically connecting the transparent conductive film and the routing wiring portion by a bent portion that can be bent from the light receiving surface to the side surface ,
The said routing wiring part is a composite input device which provided the reflecting material which reflects light in the surface which contact | connects the said side surface of the said solar cell part .
前記太陽電池で発電した電力を蓄えるためのバッテリと、
をさらに備えた、請求項1から3のいずれか一項に記載の複合入力装置。 A wireless communication unit for performing wireless communication with the outside;
A battery for storing electric power generated by the solar cell;
The composite input device according to any one of claims 1 to 3 , further comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011138777A JP5734763B2 (en) | 2011-06-22 | 2011-06-22 | Compound input device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011138777A JP5734763B2 (en) | 2011-06-22 | 2011-06-22 | Compound input device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013008102A JP2013008102A (en) | 2013-01-10 |
JP5734763B2 true JP5734763B2 (en) | 2015-06-17 |
Family
ID=47675423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011138777A Active JP5734763B2 (en) | 2011-06-22 | 2011-06-22 | Compound input device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5734763B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6134968B2 (en) * | 2013-07-17 | 2017-05-31 | グンゼ株式会社 | Display device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3825560B2 (en) * | 1998-04-10 | 2006-09-27 | セイコーインスツル株式会社 | Solar cell and electronic device using the same |
JP2004054050A (en) * | 2002-07-22 | 2004-02-19 | Toshiba Corp | Touch panel and personal digital assistant equipped with same |
JP2006228196A (en) * | 2005-01-21 | 2006-08-31 | Fanuc Ltd | Display console panel for control device |
JP5409369B2 (en) * | 2006-10-12 | 2014-02-05 | カンブリオス テクノロジーズ コーポレイション | Nanowire-based transparent conductor and its application |
JP2009009901A (en) * | 2007-06-29 | 2009-01-15 | Tdk Corp | Photoelectric conversion element |
-
2011
- 2011-06-22 JP JP2011138777A patent/JP5734763B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013008102A (en) | 2013-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5874011B2 (en) | Solar cell and solar cell module | |
JP5857237B2 (en) | Solar cell and solar cell module | |
JP5687506B2 (en) | Solar cell and solar cell module | |
JP5084146B2 (en) | Photovoltaic module | |
WO2012164814A1 (en) | Solar cell module | |
JP5799293B2 (en) | Solar cell and solar cell module | |
JP5204023B2 (en) | Photovoltaic device | |
JPWO2011061950A1 (en) | Thin film solar cell and manufacturing method thereof | |
JP2012142452A (en) | Solar cell and solar cell module | |
JP5554409B2 (en) | Photoelectric conversion device | |
CN106098801A (en) | A kind of heterojunction solar battery and preparation method thereof | |
JP5734763B2 (en) | Compound input device | |
CN102918657A (en) | Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer | |
JP5756845B2 (en) | Method for manufacturing touch device | |
JPWO2013099039A1 (en) | Solar cell and manufacturing method thereof | |
JP5027185B2 (en) | Solar cell | |
JP5799255B2 (en) | Solar cell and solar cell module | |
JP2008159799A (en) | Photoelectromotive force device | |
JP2013125633A (en) | Solar battery module | |
JP2010263253A (en) | Photovoltaic module | |
JP2012160768A (en) | Solar cell | |
JP2013008101A (en) | Composite input unit | |
JP5817461B2 (en) | Flexible solar cell module | |
TWI459568B (en) | Solar cell | |
JP6352632B2 (en) | Photoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5734763 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |