JP5733832B2 - Wavelength multiplexed optical transmitter - Google Patents

Wavelength multiplexed optical transmitter Download PDF

Info

Publication number
JP5733832B2
JP5733832B2 JP2012069633A JP2012069633A JP5733832B2 JP 5733832 B2 JP5733832 B2 JP 5733832B2 JP 2012069633 A JP2012069633 A JP 2012069633A JP 2012069633 A JP2012069633 A JP 2012069633A JP 5733832 B2 JP5733832 B2 JP 5733832B2
Authority
JP
Japan
Prior art keywords
optical
output
collimating lens
output light
multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012069633A
Other languages
Japanese (ja)
Other versions
JP2013201348A (en
Inventor
大木 明
明 大木
慈 金澤
慈 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012069633A priority Critical patent/JP5733832B2/en
Publication of JP2013201348A publication Critical patent/JP2013201348A/en
Application granted granted Critical
Publication of JP5733832B2 publication Critical patent/JP5733832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光通信システムで用いられる波長多重光送信器に関する。   The present invention relates to a wavelength division multiplexing optical transmitter used in an optical communication system.

光通信システムの最新通信規格の一つである、100Gbitイーサネット(以下100GbE)では、100GbE−LR4と呼ばれる通信規格が標準化されている(非特許文献1参照)。100GbE−LR4では、25Gb/s×4Chの波長多重(WDM:Wavelength Division Multiplexing)光伝送方式が採用され、その光送信器には25.7Gbit/sの変調信号で符号化された4つの波長レーン(Lane0:1294.53−1296.59 nm、Lane1:1299.02−1301.09 nm、Lane2:1303.54−1305.63nm、Lane3:1308.09−1310.19 nm)に対応した光信号を送信する機能が求められている。   In 100 Gbit Ethernet (hereinafter, 100 GbE), which is one of the latest communication standards for optical communication systems, a communication standard called 100 GbE-LR4 is standardized (see Non-Patent Document 1). In 100 GbE-LR4, a wavelength division multiplexing (WDM) optical transmission system of 25 Gb / s × 4 Ch is adopted, and the optical transmitter has four wavelength lanes encoded with a 25.7 Gbit / s modulated signal. (Lane 0: 1294.53-1296.59 nm, Lane 1: 1299.02-1301.09 nm, Lane 2: 1303.54-1305.63 nm, Lane 3: 1300.009-130.19 nm) A function to transmit is required.

従来、100GbE−LR4用の光送信器は、Lane0〜4の各波長レーンに対応した4個の光送信器と各送信器から送出された光信号を1本の光ファイバに合波する波長フィルタを組み合わせて構成し、100GbE−LR4 の求める機能を実現していた。この構成法により作製された光送信器を用いて、CFP(Centum form factor pluggable)と呼ばれる100GbE−LR4規格に対応した光トランシーバも開発されている(非特許文献2、3)。   Conventionally, an optical transmitter for 100 GbE-LR4 includes four optical transmitters corresponding to each wavelength lane of Lane 0 to 4 and a wavelength filter that multiplexes optical signals transmitted from the transmitters into one optical fiber. To realize the function required by 100 GbE-LR4. An optical transceiver compatible with the 100 GbE-LR4 standard called CFP (Centum form factor pluggable) has been developed using an optical transmitter manufactured by this configuration method (Non-Patent Documents 2 and 3).

また、1つの半導体発光素子内に4−laneに対応したLD素子と光合波器を集積した半導体発光素子とそれを用いた100GbE−LR4用光送信器の研究開発成果も報告されている(非特許文献4、5)。この構成法による光送信器は、CFP2、CFP4へと続く100GbE−LR4用光トランシーバの小型化(非特許文献3、6)を推進する上で、有望であるが研究段階にあり、実用化には至っていない。   In addition, research and development results of a semiconductor light emitting device in which an LD device corresponding to 4-lane and an optical multiplexer are integrated in one semiconductor light emitting device and an optical transmitter for 100 GbE-LR4 using the semiconductor light emitting device have been reported. Patent Documents 4 and 5). The optical transmitter based on this configuration method is promising in promoting the miniaturization of optical transceivers for 100 GbE-LR4 (Non-patent Documents 3 and 6) following CFP2 and CFP4. Has not reached.

Pete Anslow, “100GBASE-xR4 Discussion”, [online],2009年2月16日検索、<http://www.ieee802.org/3/ba/BaselineSummary_0908.pdf>Pete Anslow, “100GBASE-xR4 Discussion”, [online], search February 16, 2009, <http://www.ieee802.org/3/ba/BaselineSummary_0908.pdf> 有馬他、「100Gb/sイーサネット向けトランシーバ」、2009年電子情報通信学会通信ソサイエティ大会予稿B-10-22、pp.202、(2009)。Arima et al., "Transceivers for 100Gb / s Ethernet", 2009 IEICE Communications Society Conference Proposal B-10-22, pp.202, (2009).

C. Cole, “100Gb/s and Beyond Ethernet Optical Interface”, 15th Optoelectronics and Communication Conference (OECC'2010), Sapporo, Japan, 5-9 July, 2010.・Technical Digest. 15th Optoelectronics and Communications Conference: 7A3-2, pp.108-109, (2010).C. Cole, “100Gb / s and Beyond Ethernet Optical Interface”, 15th Optoelectronics and Communication Conference (OECC'2010), Sapporo, Japan, 5-9 July, 2010. ・ Technical Digest. 15th Optoelectronics and Communications Conference: 7A3-2 , Pp.108-109, (2010). T. Fujisawa, K. Takahata, T. Tadokoro, W. Kobayashi, A. Ohki, N. Fujiwara, S. Kanazawa, T. Yamanaka, and F. Kano, “Long-reach 100Gbit Ethernet light source based on 4 X 25 Gbit/s 1.3-・m InGaAlAs EADFB lasers”, IEICE Trans. on Electronics vol. E94C, no.7, pp.1167-1172, July (2011).T. Fujisawa, K. Takahata, T. Tadokoro, W. Kobayashi, A. Ohki, N. Fujiwara, S. Kanazawa, T. Yamanaka, and F. Kano, “Long-reach 100Gbit Ethernet light source based on 4 X 25 Gbit / s 1.3- ・ m InGaAlAs EADFB lasers ”, IEICE Trans. On Electronics vol. E94C, no.7, pp.1167-1172, July (2011). S. Kanazawa, et. al., “A compact EADFB laser array module for a future 100-Gbit/s ethernet transceiver”, IEEE Journal of Selected Topics in Quantum Electronics, issue 99, pp. 1-7, Sept. (2011).S. Kanazawa, et. Al., “A compact EADFB laser array module for a future 100-Gbit / s ethernet transceiver”, IEEE Journal of Selected Topics in Quantum Electronics, issue 99, pp. 1-7, Sept. (2011 ). CFP-MSA, “CFP MSA 100G Roadmap and Applications”, 2011年12月13日検索、<http://www.cfp-msa.org/documents.html>CFP-MSA, “CFP MSA 100G Roadmap and Applications”, search December 13, 2011, <http://www.cfp-msa.org/documents.html>

上述した2つの構成法のうち、4波長多重を行うために4個の光送信器と波長フィルタを組み合わせる構成法では、各部品の占有面積が大きく、CFP光トランシーバの小型化を進める上での障害になっている。また、集積半導体光素子を用いる構成法では、光素子作製プロセス複雑化による歩留り低下、光素子の大型化によるコスト上昇が当初より懸念されている。さらに、4波長の合波用に集積されるMMI(Multi−Mode Interference)カプラは、原理的に6dBの光学損失を有するため、信号光出力が低下する問題もある。   Of the two configuration methods described above, the configuration method in which four optical transmitters and wavelength filters are combined to perform four-wavelength multiplexing occupies a large area for each component, and this leads to the miniaturization of the CFP optical transceiver. It is an obstacle. Further, in the configuration method using an integrated semiconductor optical element, there are concerns from the beginning that the yield is reduced due to the complexity of the optical element manufacturing process and the cost is increased due to the enlargement of the optical element. Furthermore, since an MMI (Multi-Mode Interference) coupler integrated for multiplexing four wavelengths has an optical loss of 6 dB in principle, there is also a problem that signal light output is reduced.

本発明は上記課題に鑑みなされたもので、半導体光素子の集積度を歩留り低下やコスト上昇を誘発しない程度に抑制し、かつCFP光トランシーバの小型化に適合した4波長多重光送信器の提供を目的とする。   The present invention has been made in view of the above problems, and provides a four-wavelength multiplexing optical transmitter that suppresses the degree of integration of semiconductor optical devices to such an extent that does not induce yield reduction or cost increase, and is suitable for downsizing of a CFP optical transceiver. With the goal.

上記の課題を解決するために、請求項1に記載の発明は、N個(Nは4以上の整数)の異なる波長の光信号を1つの出力部から送出するN波長多重光送信器をファイバコリメートレンズを備えたパッケージに搭載する方法であって、
前記N波長多重光送信器は異なる波長の光信号を出力する少なくとも2つのLD素子とこれらの出力光を合波する合波器とをそれぞれ有する2つの集積半導体光素子と、
一方の集積半導体光素子からの第1の出力光と他方の集積半導体光素子からの第2の出力光とを合波する合波素子とを備え、
2つの集積半導体光素子はそれぞれ異なるサブキャリアに搭載されていて、
第1の出力光を出力する集積半導体光素子が搭載される第1のサブキャリアの長さが、
第2の出力光を出力する集積半導体光素子が搭載される第2のサブキャリアの長さよりも長く、
前記第1の出力光と前記第2の出力光は、前記合波素子に入力されるときには、互いに偏波状態が異なり、前記合波素子は、前記第1の出力光と前記第2の出力光との偏波状態
を利用してその光路を重ね合わせるとともに、
前記第1の出力光をコリメートする第1のコリメートレンズと、前記第2の出力光をコ
リメートする第2のコリメートレンズとをさらに備え、
前記第1のコリメートレンズと前記第2のコリメートレンズが光軸方向に対して前後に
ずれて配置されているとともに、前記第2のコリメートレンズが前記第1のサブキャリア
の横に配置されており、
前記第1のコリメートレンズをパッシブ固定する工程と、
前記パッシブ固定した前記第1のコリメートレンズを通過した光を、前記合波素子の出力端にある前記ファイバコリメートレンズで集光して出力対象の光ファイバに結合するように前記ファイバコリメートレンズの位置を調芯して固定する工程と、
前記合波素子から出力される第1の出力光の強度が最大となるように、前記第2のコリメートレンズの位置を調芯してYAG溶接固定することを特徴とするN波長多重光送信器をファイバコリメートレンズを備えたパッケージに搭載する方法である。
In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an N-wavelength multiplexing optical transmitter that transmits N (N is an integer of 4 or more) optical signals having different wavelengths from one output unit. It is a method of mounting on a package equipped with a collimating lens ,
The N-wavelength multiplexing optical transmitter has at least two LD elements that output optical signals of different wavelengths and two integrated semiconductor optical elements each having a multiplexer that multiplexes these output lights;
A multiplexing element for multiplexing the first output light from one integrated semiconductor optical element and the second output light from the other integrated semiconductor optical element;
The two integrated semiconductor optical devices are mounted on different subcarriers,
The length of the first subcarrier on which the integrated semiconductor optical device that outputs the first output light is mounted is:
Longer than the length of the second subcarrier on which the integrated semiconductor optical device that outputs the second output light is mounted;
When the first output light and the second output light are input to the multiplexing element, their polarization states are different from each other, and the multiplexing element has the first output light and the second output. Overlapping the optical path using the polarization state with light ,
A first collimating lens that collimates the first output light, and a second collimator that collimates the second output light.
A second collimating lens to be remitted,
The first collimating lens and the second collimating lens are moved back and forth with respect to the optical axis direction.
The second collimating lens is disposed so as to be shifted from the first subcarrier.
Is located next to
Passively fixing the first collimating lens;
The position of the fiber collimator lens so that the light that has passed through the passively fixed first collimator lens is collected by the fiber collimator lens at the output end of the multiplexing element and coupled to the optical fiber to be output. Aligning and fixing, and
An N-wavelength multiplex optical transmitter characterized in that the position of the second collimating lens is aligned and YAG welding fixed so that the intensity of the first output light output from the multiplexing element is maximized. Is mounted on a package having a fiber collimating lens.

本発明によれば、半導体光素子の集積度をLD素子2個とその合波器まで低減でき、光素子作製プロセス複雑化による歩留り低下、光素子の大型化によるコスト上昇、および半導体合波器の光損失増加による信号光出力低下を抑制できる。また、多重数の半分の合波器を用いることで出力向上が期待できる。一例としては2波長のMMI合波器の原理損失は3dBであり、その倍の4波長MMI合波器を集積した場合に比べ、3dB程度の出力向上が期待できる。さらに、小型、安価かつ低損失な誘電体多層膜のブリュースター角を利用して、合波を行うことで、信号光出力低下の問題も解決できる。以上の効果により、信号光出力を低下させること無く、波長多重光送信器の小型・低コスト化が実現できる。   According to the present invention, the degree of integration of semiconductor optical elements can be reduced to two LD elements and their multiplexers, the yield decreases due to the complexity of the optical element fabrication process, the cost increases due to the increase in size of the optical elements, and the semiconductor multiplexer It is possible to suppress a decrease in signal light output due to an increase in optical loss. In addition, an improvement in output can be expected by using a multiplexer that is half the number of multiplexing. As an example, the principle loss of a two-wavelength MMI multiplexer is 3 dB, and an improvement in output of about 3 dB can be expected as compared to a case where a double-wavelength MMI multiplexer is integrated. Furthermore, the problem of a decrease in signal light output can be solved by performing multiplexing using the Brewster angle of a small, inexpensive and low-loss dielectric multilayer film. With the above effects, it is possible to reduce the size and cost of the wavelength division multiplexing optical transmitter without reducing the signal light output.

本発明に係る集積半導体光素子AおよびBの構造を示す図である。It is a figure which shows the structure of the integrated semiconductor optical elements A and B based on this invention. 本発明に係るサブキャリア組立て工程を示す図である。It is a figure which shows the subcarrier assembly process which concerns on this invention. 本発明に係るキャリア組立てを示す図である。It is a figure which shows the carrier assembly which concerns on this invention. 本発明に係る誘電体多層膜フィルタのTE偏波およびTM偏波に対する反射特性を示す図である。It is a figure which shows the reflective characteristic with respect to the TE polarized wave and TM polarized wave of the dielectric multilayer filter which concerns on this invention. 本発明に係るキャリア調芯工程の第一段階を示す図である。It is a figure which shows the 1st step of the carrier alignment process which concerns on this invention. 本発明に係るキャリア調芯工程の第二段階を示す図である。It is a figure which shows the 2nd step of the carrier alignment process which concerns on this invention. 本発明に係る4波長多重光送信器作製工程の最終工程を示す図である。It is a figure which shows the last process of the 4 wavelength multiplexing optical transmitter preparation process which concerns on this invention. 本発明に係る4波長多重光送信器の性能の一例を示す図である。It is a figure which shows an example of the performance of the 4-wavelength multiplexing optical transmitter which concerns on this invention. 本発明の実施例2に基づき組立てたキャリアの構造を示す図である。It is a figure which shows the structure of the carrier assembled based on Example 2 of this invention. 本発明に基づきキャリア組立てを行う際に、YAG溶接に伴うレンズの位置ズレを補正するレンズを挿入した構造を示す図である。It is a figure which shows the structure which inserted the lens which correct | amends the position shift of the lens accompanying YAG welding, when performing carrier assembly based on this invention.

本発明の具体的な実施形態の例を示して以下に説明する。   An example of a specific embodiment of the present invention will be shown and described below.

(第1の実施形態)
本実施形態の波長多重光送信器は、Lane0に対応する波長のEADFB−LD素子、Lane1に対応する波長のEADFB−LD素子とこれら2個のEADFB−LD素子からの出力光を合波するMMI(Multi−Mode Interference)カプラを半導体光導波路で接続した第1の集積半導体光素子と、Lane2に対応する波長のEADFB−LD素子、Lane3に対応する波長のEADFB−LD素子とこれら2個のEADFB−LD素子からの出力光を合波するMMIカプラを半導体光導波路で接続した第2の集積半導体光素子と、偏波回転型光アイソレータと、誘電体多層膜合波素子とを備えて構成される。この波長多重光送信器は、第1の集積光半導体素子の出力光の偏波を偏波回転型光アイソレータで90°回転し、誘電体多層膜合波素子のブリュースター角を用いて第1の集積光半導体素子の出力光と第2の集積光半導体素子の出力光とを合波して出力する。
(First embodiment)
The wavelength division multiplexing optical transmitter of this embodiment includes an EADFB-LD element having a wavelength corresponding to Lane 0, an EADFB-LD element having a wavelength corresponding to Lane 1, and an MMI that combines output light from these two EADFB-LD elements. (Multi-Mode Interface) A first integrated semiconductor optical device in which a coupler is connected by a semiconductor optical waveguide, an EADFB-LD device having a wavelength corresponding to Lane2, an EADFB-LD device having a wavelength corresponding to Lane3, and these two EADFBs A second integrated semiconductor optical device in which MMI couplers for multiplexing output light from the LD device are connected by a semiconductor optical waveguide, a polarization rotation type optical isolator, and a dielectric multilayer film multiplexing device; The In this wavelength division multiplexing optical transmitter, the polarization of the output light of the first integrated optical semiconductor element is rotated by 90 ° with a polarization rotation type optical isolator, and the first wavelength is transmitted using the Brewster angle of the dielectric multilayer multiplexing element. The output light of the integrated optical semiconductor device and the output light of the second integrated optical semiconductor device are combined and output.

なお、本実施形態では、MMIカプラを2波長用の合波器として集積した集積半導体光素子を用いたが、MMIカプラの代わりにマッハツェンダー干渉フィルタを合波器として用いても本発明の効果に差は無い。   In this embodiment, an integrated semiconductor optical device in which an MMI coupler is integrated as a two-wavelength combiner is used. However, even if a Mach-Zehnder interference filter is used as a multiplexer instead of the MMI coupler, the effect of the present invention is achieved. There is no difference.

[1.集積光半導体素子]
まず、本発明の波長多重光送信器に搭載される集積光半導体素子について説明する。図1は、本実施形態で用いる集積光半導体素子の構造を示す図である。この集積光半導体素子30は、2つのDFB−LD素子1、2を備えており、DFBLD1はLane−0に対応する波長で発振し、DFBLD2はLane−1に対応する波長で発振するよう回折格子の周期が設計されている。DFB−LD素子1、2のそれぞれの後端面側には出力モニタ用PD3がそれぞれ集積され、それぞれの前端面側にはEA変調器4がそれぞれ集積されている。EA変調器4の後段には半導体光導波路5が形成され、MMIカプラ6で2つの信号光は合波され、チップ先端の出力導波路7より送出される。
[1. Integrated optical semiconductor device]
First, an integrated optical semiconductor device mounted on the wavelength division multiplexing optical transmitter of the present invention will be described. FIG. 1 is a diagram showing the structure of an integrated optical semiconductor device used in this embodiment. This integrated optical semiconductor element 30 includes two DFB-LD elements 1 and 2, and DFBLD1 oscillates at a wavelength corresponding to Lane-0, and DFBLD2 oscillates at a wavelength corresponding to Lane-1. The period is designed. Output monitoring PDs 3 are respectively integrated on the rear end face sides of the DFB-LD elements 1 and 2, and EA modulators 4 are integrated on the respective front end face sides. A semiconductor optical waveguide 5 is formed at the subsequent stage of the EA modulator 4, and the two signal lights are combined by the MMI coupler 6 and transmitted from the output waveguide 7 at the tip of the chip.

Lane−2、Lane−3に対応する波長が合波された光を出力する集積光半導体素子40(図2参照)の構造も図1の集積光半導体素子と同等であり、外観上の違いはない。唯一の違いは、DFBLDの発振波長を決める回折格子の周期であり、集積光半導体素子40では、発振波長がLane2と3の波長に合うよう設計されている。   The structure of the integrated optical semiconductor element 40 (see FIG. 2) that outputs light in which wavelengths corresponding to Lane-2 and Lane-3 are combined is the same as that of the integrated optical semiconductor element of FIG. Absent. The only difference is the period of the diffraction grating that determines the oscillation wavelength of the DFBLD. In the integrated optical semiconductor element 40, the oscillation wavelength is designed to match the wavelengths of Lanes 2 and 3.

また、集積光半導体素子30と集積光半導体素子40の出力光偏波面は、一致しており、紙面に平行(TEモード)になっている。   Further, the output optical polarization planes of the integrated optical semiconductor element 30 and the integrated optical semiconductor element 40 coincide with each other and are parallel to the paper surface (TE mode).

[2.4波長多重光送信器の組立て]
(1)サブキャリア組立て
まず、集積光半導体素子を波長多重光送信器のキャリアに搭載するためのサブキャリア組立てについて、図2を用いて説明する。図2(a)、(b)はそれぞれ集積光半導体光素子30、40を示している。それぞれ集積光半導体光素子30、40をそれぞれ、窒化アルミ製サブキャリア8、9上に金錫ハンダを用いてダイボンディングする。窒化アルミ製サブキャリア8、9上には、DFB−LD1、2とモニタPD3への直流給電線とEA変調器への信号伝送線が形成されており、それらと対応する集積光半導体光素子上に設けられた電極パッド間をワイヤボンディングにより接続する。
[Assembling 2.4 Wavelength Multiplexed Optical Transmitter]
(1) Subcarrier assembly First, subcarrier assembly for mounting an integrated optical semiconductor element on a carrier of a wavelength division multiplexing optical transmitter will be described with reference to FIG. 2A and 2B show integrated optical semiconductor optical devices 30 and 40, respectively. The integrated optical semiconductor optical devices 30 and 40 are die-bonded on the aluminum nitride subcarriers 8 and 9, respectively, using gold-tin solder. On the subcarriers 8 and 9 made of aluminum nitride, DC feed lines to the DFB-LDs 1 and 2 and the monitor PD3 and a signal transmission line to the EA modulator are formed. On the corresponding integrated optical semiconductor optical device The electrode pads provided on are connected by wire bonding.

(2)キャリア組立て
図3は波長多重光送信器のキャリアの構成を示す図である。図3に示すようにサブキャリア8、9を銅タングステン合金製のキャリア10上の所定の位置に金錫ハンダを用いて固定する。サブキャリア9の出力光導波路の前面には、出力光をコリメート光に変換するLDコリメートレンズ11を金錫ハンダによりパッシブ固定する。ここでは、LDコリメートレンズ11をハンダで固定したが、UV(紫外線)硬化樹脂等の接着剤で固定してもよい。
(2) Carrier Assembly FIG. 3 is a diagram showing a carrier configuration of the wavelength division multiplexing optical transmitter. As shown in FIG. 3, the subcarriers 8 and 9 are fixed at predetermined positions on a carrier 10 made of copper tungsten alloy using gold tin solder. An LD collimator lens 11 that converts output light into collimated light is passively fixed to the front surface of the output optical waveguide of the subcarrier 9 by gold tin solder. Here, the LD collimating lens 11 is fixed with solder, but may be fixed with an adhesive such as UV (ultraviolet) curable resin.

光アイソレータ12は、接着剤によりキャリア10上に固定される。なお、光アイソレータ12は入射光の偏波を回転しない偏波保持型であり、集積半導体光素子Bの出力光偏波面は、光アイソレータ12を透過後もTEモード(紙面に水平)のままである。   The optical isolator 12 is fixed on the carrier 10 with an adhesive. The optical isolator 12 is a polarization maintaining type that does not rotate the polarization of the incident light, and the output light polarization plane of the integrated semiconductor optical device B remains in the TE mode (horizontal to the paper surface) after passing through the optical isolator 12. is there.

集積半導体光素子30の光路となるキャリア10上の所定の位置に、全反射ミラー13、光アイソレータ14、誘電体多層膜フィルタ15を接着剤により固定する。図3に示す例ではなお、光アイソレータ14は、偏波回転型であり、集積半導体光素子30の出力光の偏波面は、光アイソレータ14を透過後には、TMモード(紙面に垂直方向)に回転している。光アイソレータ14の代わりに、半波長板を用い、後述するファイバコリメートレンズ19と筐体23との間に偏波無依存アイソレータを挿入してもよい。なお、この場合には、光アイソレータ12も省略可能である。なお、金属層17は、後述するLDコリメートレンズ等をCuWキャリアに搭載するために用いられる層であり、突起16は、誘電体多層膜フィルタ15の位置決めを行うために設けられた構造物である。   The total reflection mirror 13, the optical isolator 14, and the dielectric multilayer filter 15 are fixed with adhesives at predetermined positions on the carrier 10 that become the optical path of the integrated semiconductor optical device 30. In the example shown in FIG. 3, the optical isolator 14 is a polarization rotation type, and the polarization plane of the output light of the integrated semiconductor optical device 30 is in the TM mode (perpendicular to the paper surface) after passing through the optical isolator 14. It is rotating. Instead of the optical isolator 14, a half-wave plate may be used, and a polarization-independent isolator may be inserted between the fiber collimating lens 19 described later and the housing 23. In this case, the optical isolator 12 can also be omitted. The metal layer 17 is a layer used for mounting an LD collimator lens or the like to be described later on a CuW carrier, and the protrusion 16 is a structure provided for positioning the dielectric multilayer filter 15. .

ここで本発明で用いられる誘電体多層膜フィルタ15について説明する。図4は、誘電体多層膜フィルタの反射特性を示す図である。誘電体多層膜フィルタ15は、45°±5°の角度で入射する1300nm帯の光に対して、図4に示す反射特性を示す。図4で、黒線はTEモード光に対する反射特性、赤線はTMモードに対する反射特性を示す。TMモードで入射するLane0とLane1の信号光は98%以上反射され、TEモードで入射するLane2とLane3の信号光は98%以上透過することがこの図より判る。   Here, the dielectric multilayer filter 15 used in the present invention will be described. FIG. 4 is a diagram showing the reflection characteristics of the dielectric multilayer filter. The dielectric multilayer filter 15 exhibits the reflection characteristics shown in FIG. 4 for 1300 nm band light incident at an angle of 45 ° ± 5 °. In FIG. 4, the black line indicates the reflection characteristic for the TE mode light, and the red line indicates the reflection characteristic for the TM mode. It can be seen from this figure that the signal light of Lane 0 and Lane 1 incident in the TM mode is reflected by 98% or more, and the signal light of Lane 2 and Lane 3 incident in the TE mode is transmitted by 98% or more.

(3)キャリア調芯工程の第一段階
図5に示すようにキャリア10に調芯ジグ取り付け、さらにこれを調芯装置に取り付け、集積半導体光素子40のどちらか1つのDFBLD素子に通電し、発光させる。図5(b)は、調芯工程の第一段階における合波手段としての誘電体多層膜フィルタ15の部分の上方視野図である。この出力光の偏波は光アイソレータ12透過後もTEモードを維持しているので、誘電体多層膜フィルタ15を98%以上の透過率で透過する。この透過光をファイバコリメートレンズ19で集光し、光ファイバ20に結合する。ファイバコリメートレンズ19と光ファイバ20の位置は調芯装置を用いて最適化する。
(3) First stage of carrier alignment process As shown in FIG. 5, the alignment jig is attached to the carrier 10, and this is attached to the alignment apparatus, and one of the integrated semiconductor optical elements 40 is energized, Make it emit light. FIG. 5B is a top view of the portion of the dielectric multilayer filter 15 as the multiplexing means in the first stage of the alignment process. Since the polarization of the output light maintains the TE mode even after passing through the optical isolator 12, it passes through the dielectric multilayer filter 15 with a transmittance of 98% or more. The transmitted light is collected by the fiber collimating lens 19 and coupled to the optical fiber 20. The positions of the fiber collimating lens 19 and the optical fiber 20 are optimized using a centering device.

(4)キャリア調芯工程の第二段階
図6に示すように集積半導体光素子40を消光して、集積半導体光素子30のどちらか一方のDFBLD素子を通電発光させる。図6(b)は、調芯工程の第二段階における合波手段としての誘電体多層膜フィルタ15の部分の上方視野図である。この出力光の偏波面は、光アイソレータ14を通過後にTMモードに変換され、全反射ミラー13で反射された後、およそ45°の入射角で誘電体多層膜フィルタ15に入射する。誘電体多層膜フィルタ15は、このTMモード光を98%以上反射する。そのため、集積半導体光素子30と全反射ミラー13との間にステンレス鏡筒付きのLDコリメートレンズ21を挿入し、集積半導体光素子30の出力光が光ファイバ20と結合するようLDコリメートレンズ21のみを調芯することで、集積半導体光素子30の出力光と集積半導体光素子40の出力光との極めて簡易で低損失な光路合成が可能となる。LDコリメートレンズ21は、調芯後、レンズホルダ22にYAG溶接により固定する。レンズホルダ22はキャリア10に貼り付けられた金属層17にYAG溶接固定されている。なお、図3から5に示されたキャリア10に設けられた段差は、レンズの光軸とLD素子の光軸とを合わせるために形成されている。
(4) Second Stage of Carrier Alignment Process As shown in FIG. 6, the integrated semiconductor optical device 40 is quenched, and either one of the integrated semiconductor optical devices 30 is energized to emit light. FIG. 6B is a top view of the portion of the dielectric multilayer filter 15 as a multiplexing means in the second stage of the alignment process. The polarization plane of this output light is converted to TM mode after passing through the optical isolator 14, reflected by the total reflection mirror 13, and then incident on the dielectric multilayer filter 15 at an incident angle of about 45 °. The dielectric multilayer filter 15 reflects 98% or more of this TM mode light. Therefore, an LD collimating lens 21 with a stainless lens barrel is inserted between the integrated semiconductor optical device 30 and the total reflection mirror 13, and only the LD collimating lens 21 is coupled so that the output light of the integrated semiconductor optical device 30 is coupled to the optical fiber 20. As a result, the optical path synthesis of the output light of the integrated semiconductor optical device 30 and the output light of the integrated semiconductor optical device 40 can be performed very simply and with low loss. The LD collimating lens 21 is fixed to the lens holder 22 by YAG welding after alignment. The lens holder 22 is YAG welded and fixed to the metal layer 17 attached to the carrier 10. The steps provided on the carrier 10 shown in FIGS. 3 to 5 are formed to align the optical axis of the lens with the optical axis of the LD element.

(5)4波長多重光送信器作製工程の最終工程
図7は組立てが完了したキャリアを筐体内に搭載する例を示している。組立てが完了したキャリア10を温調器の付属した筐体23内に搭載し、接続が必要な端子間をワイヤボンディングにより接続する。その後、筐体気密封止用の蓋となるLID24で筐体23を窒素雰囲気中で気密封止する。なお、リードピンPは、パッケージのコリメートレンズの反対側に設けられた電極用の端子である。
(5) Final Step of 4-Wavelength Multiplexed Optical Transmitter Manufacturing Process FIG. 7 shows an example in which the assembled carrier is mounted in the casing. The assembled carrier 10 is mounted in a case 23 attached with a temperature controller, and terminals that need to be connected are connected by wire bonding. Thereafter, the casing 23 is hermetically sealed in a nitrogen atmosphere with the LID 24 serving as a lid for hermetically sealing the casing. The lead pin P is a terminal for an electrode provided on the opposite side of the collimating lens of the package.

さらに、ファイバコリメートレンズ、光ファイバレセプタクル、送信器筐体間の光学調芯を行い、筐体にファイバコリメートレンズと光ファイバレセプタクルをYAGレ−ザーにより溶接固定する。以上の工程により、4波長多重光送信器は完成する。   Further, optical alignment is performed between the fiber collimating lens, the optical fiber receptacle, and the transmitter casing, and the fiber collimating lens and the optical fiber receptacle are fixed to the casing by welding with a YAG laser. The four-wavelength multiplexed optical transmitter is completed through the above steps.

[3.光送信器の特性]
完成した4波長多重光送信器の全ての電源供給端子と制御端子をDC電源に接続し、適切なバイアス電圧を与え、さらに全信号端子に、[25.8Gbit/s−NRZ−PRBS 231−1]の変調信号を与えた際の出力光波形を図8に示す。Lane0〜Lane3の全波長において明瞭なアイ開口が確認でき作製した4波長多重光送信器が良好な特性を有していることが判る。この時の各Laneの平均光出力をパワーメータにて測定した。全Laneとも0〜+1dBmの平均光出力を有しており、100GbE−LR4の仕様に適合することが確認できた。
[3. Characteristics of optical transmitter]
All power supply terminals and control terminals of the completed four-wavelength multiplexing optical transmitter are connected to a DC power source, an appropriate bias voltage is applied, and [25.8 Gbit / s-NRZ-PRBS 231-1 is applied to all signal terminals. FIG. 8 shows the output light waveform when the modulated signal is given. It can be seen that the four-wavelength multiplexed optical transmitter manufactured by confirming clear eye openings at all wavelengths of Lane 0 to Lane 3 has good characteristics. The average light output of each Lane at this time was measured with a power meter. All of the lanes have an average light output of 0 to +1 dBm, and it was confirmed that it conforms to the specification of 100 GbE-LR4.

(第2の実施形態)
本実施形態では、第1の集積光半導体素子をTMモードで発振するように構成している。TMモードで発振する構成は、集積光半導体素子のDFB−LD1、2の活性層に適度な格子歪を与えてTMモードとTEモードの利得逆転により実現してもよいし、MMIカプラと出力端の間の半導体導波路に偏波回転部を集積して実現してもよい。本実施形態の4波長多重光送信器は、第1の集積光半導体素子の出力光偏波はTMモードであり、半波長板や偏波回転型光アイソレータを用いなくてもTEモードで発振している第2の集積光半導体素子の出力偏波とは直交している。従って、第1の実施形態の4波長多重光送信器で用いていた偏波回転型光アイソレータを省略できる。その他の構成は、第1の実施形態と同様に構成できる。
(Second Embodiment)
In the present embodiment, the first integrated optical semiconductor element is configured to oscillate in the TM mode. The configuration for oscillating in the TM mode may be realized by applying an appropriate lattice distortion to the active layers of the DFB-LDs 1 and 2 of the integrated optical semiconductor element to reverse the gain between the TM mode and the TE mode. The polarization rotation unit may be integrated in the semiconductor waveguide between the two. In the four-wavelength multiplexing optical transmitter of this embodiment, the output optical polarization of the first integrated optical semiconductor element is TM mode, and it oscillates in TE mode without using a half-wave plate or a polarization rotation type optical isolator. It is orthogonal to the output polarization of the second integrated optical semiconductor device. Therefore, the polarization rotation type optical isolator used in the four-wavelength multiplexing optical transmitter of the first embodiment can be omitted. Other configurations can be configured similarly to the first embodiment.

[1.4波長多重光送信器の組立て工程]
(1)サブキャリア組立て
集積半導体素子30、40を搭載した2つのサブキャリアは、第1の実施形態と同様に構成することができる。ただし、集積半導体光素子30は、TMモードで発振するように構成する。
[Assembling process of 1.4 wavelength multiplexing optical transmitter]
(1) Subcarrier assembly The two subcarriers on which the integrated semiconductor elements 30 and 40 are mounted can be configured in the same manner as in the first embodiment. However, the integrated semiconductor optical device 30 is configured to oscillate in the TM mode.

(2)キャリア組立て工程
キャリア10の組立ても、光アイソレータ14を設けない以外は第1の実施形態と同様に構成することができる。
(2) Carrier Assembling Step Even when the carrier 10 is assembled, it can be configured in the same manner as in the first embodiment except that the optical isolator 14 is not provided.

(3)キャリア調芯工程
第1の実施形態と同様にキャリア調芯工程の第一段階と第二段階を行い、2つの集積半導体光素子30、40の光路合成を実現する。
(3) Carrier alignment step The first and second steps of the carrier alignment step are performed in the same manner as in the first embodiment, and the optical path synthesis of the two integrated semiconductor optical devices 30 and 40 is realized.

(4)4波長多重光送信器作製工程の最終工程
第1の実施形態と同様に組立て最終工程を行う。なお、ここで用いる光ファイバレセプタクル25の光入力側には、偏波無依存型光アイソレータ26が取り付けてある。以上の工程により、4波長多重光送信器は完成する。
(4) Final Step of 4-Wavelength Multiplexed Optical Transmitter Manufacturing Process An assembly final process is performed as in the first embodiment. A polarization-independent optical isolator 26 is attached to the optical input side of the optical fiber receptacle 25 used here. The four-wavelength multiplexed optical transmitter is completed through the above steps.

[2.光送信器の特性]
完成した4波長多重光送信器の全ての電源供給端子と制御端子をDC電源に接続し、適切なバイアス電圧を与え、さらに全信号端子に、[25.8Gbit/s−NRZ−PRBS 231−1]の変調信号を与えた測定した所、実施例1で作製した4波長多重光送信器と同等の性能を有することが確認できた。
[2. Characteristics of optical transmitter]
All power supply terminals and control terminals of the completed four-wavelength multiplexing optical transmitter are connected to a DC power source, an appropriate bias voltage is applied, and [25.8 Gbit / s-NRZ-PRBS 231-1 is applied to all signal terminals. When the measured modulation signal was given, it was confirmed that the device had the same performance as the four-wavelength multiplexed optical transmitter manufactured in Example 1.

以上の実施形態では、集積半導体光素子を構成する発光素子としてEADFBLD素子を用いたが、DFB−LD素子に限定されず、いずれのLD素子を用いてもよい。本発明の本質とは関係の無い、電気信号配線を変更するだけで、直接変調DFB素子を用いることが可能であることは言うまでもない。   In the above embodiment, the EADFBLD element is used as the light emitting element constituting the integrated semiconductor optical element. However, the present invention is not limited to the DFB-LD element, and any LD element may be used. It goes without saying that a direct modulation DFB element can be used only by changing the electric signal wiring, which has nothing to do with the essence of the present invention.

また、LDコリメートレンズ21のYAG溶接時の最適位置から位置ズレ(PWS:Post welding shift)による光結合損失の発生を抑制するために、ビーム角度調整用のPWS補正レンズ27を用いることはいずれの実施形態においても可能であり、その場合のキャリア構成図を図10に示す。図10に示すように、PWS補正レンズ27は、LDコリメートレンズ21とミラー13との間の光路上に挿入することができる。   Further, in order to suppress the occurrence of optical coupling loss due to a positional deviation (PWS: Post welding shift) from the optimum position at the time of YAG welding of the LD collimating lens 21, any of the use of the PWS correction lens 27 for adjusting the beam angle can be used. This is also possible in the embodiment, and FIG. 10 shows a carrier configuration diagram in that case. As shown in FIG. 10, the PWS correction lens 27 can be inserted on the optical path between the LD collimating lens 21 and the mirror 13.

図4で示した誘電体多層膜フィルタの反射/透過特性を逆転し、TMモードを透過、TEモードを反射する組み合わせの光路構成も可能なことは言うまでもない。   Needless to say, a combination optical path configuration in which the reflection / transmission characteristics of the dielectric multilayer filter shown in FIG. 4 are reversed to transmit the TM mode and reflect the TE mode is also possible.

以上の実施形態では、4波長多重光送信器を例に挙げて説明したが、これ以上の波長数の多重光送信器の構成としても用いることができる。この場合、2つのLD素子で構成されていた集積半導体光素子を、2つ以上のLD素子で構成し、これらの出力波を合波する合波器を用いて構成すればよい。   In the above embodiment, the four-wavelength multiplexing optical transmitter has been described as an example. However, it can also be used as a configuration of a multiplexing optical transmitter having more wavelengths. In this case, the integrated semiconductor optical device constituted by two LD elements may be constituted by two or more LD elements and a multiplexer that multiplexes these output waves.

以上の実施形態では、合波手段として誘電体多層膜フィルタを用いた場合を例に挙げて説明したが、これに限定されず、2つの光の異なる偏波状態を利用してその光路を重ね合わせることができる手段であればいずれの手段でも用いることができる。   In the above embodiment, the case where the dielectric multilayer filter is used as the multiplexing means has been described as an example. However, the present invention is not limited to this, and the optical paths are overlapped using different polarization states of two lights. Any means that can be combined can be used.

1、2 DFB−LD素子
3 出力モニタ用PD
4 EA変調器
5 半導体光導波路
6 MMIカプラ
7 出力導波路
8、9 サブキャリア
10 キャリア
11 LDコリメートレンズ
12 光アイソレータ
13 全反射ミラー
14 光アイソレータ
15 誘電体多層膜フィルタ
16 突起
17 金属層
30、40 集積光半導体素子
1, 2 DFB-LD element 3 Output monitor PD
4 EA modulator 5 Semiconductor optical waveguide 6 MMI coupler 7 Output waveguide 8, 9 Subcarrier 10 Carrier 11 LD collimating lens 12 Optical isolator 13 Total reflection mirror 14 Optical isolator 15 Dielectric multilayer filter 16 Protrusion 17 Metal layers 30, 40 Integrated optical semiconductor device

Claims (1)

N個(Nは4以上の整数)の異なる波長の光信号を1つの出力部から送出するN波長多重光送信器をファイバコリメートレンズを備えたパッケージに搭載する方法であって、
前記N波長多重光送信器は異なる波長の光信号を出力する少なくとも2つのLD素子とこれらの出力光を合波する合波器とをそれぞれ有する2つの集積半導体光素子と、
一方の集積半導体光素子からの第1の出力光と他方の集積半導体光素子からの第2の出力光とを合波する合波素子とを備え、
2つの集積半導体光素子はそれぞれ異なるサブキャリアに搭載されていて、
第1の出力光を出力する集積半導体光素子が搭載される第1のサブキャリアの長さが、
第2の出力光を出力する集積半導体光素子が搭載される第2のサブキャリアの長さよりも長く、
前記第1の出力光と前記第2の出力光は、前記合波素子に入力されるときには、互いに偏波状態が異なり、前記合波素子は、前記第1の出力光と前記第2の出力光との偏波状態
を利用してその光路を重ね合わせるとともに、
前記第1の出力光をコリメートする第1のコリメートレンズと、前記第2の出力光をコ
リメートする第2のコリメートレンズとをさらに備え、
前記第1のコリメートレンズと前記第2のコリメートレンズが光軸方向に対して前後に
ずれて配置されているとともに、前記第2のコリメートレンズが前記第1のサブキャリア
の横に配置されており、
前記第2のコリメートレンズをパッシブ固定する工程と、
前記パッシブ固定した前記第2のコリメートレンズを通過した光を、前記合波素子の出力端にある前記ファイバコリメートレンズで集光して出力対象の光ファイバに結合するように前記ファイバコリメートレンズの位置を調芯して固定する工程と、
前記合波素子から出力される第1の出力光の強度が最大となるように、前記第1のコリメートレンズの位置を調芯してYAG溶接固定することを特徴とするN波長多重光送信器をファイバコリメートレンズを備えたパッケージに搭載する方法。
A method of mounting an N-wavelength multiplexed optical transmitter for transmitting optical signals of N different wavelengths (N is an integer of 4 or more) from one output unit in a package including a fiber collimating lens ,
The N-wavelength multiplexing optical transmitter has at least two LD elements that output optical signals of different wavelengths and two integrated semiconductor optical elements each having a multiplexer that multiplexes these output lights;
A multiplexing element for multiplexing the first output light from one integrated semiconductor optical element and the second output light from the other integrated semiconductor optical element;
The two integrated semiconductor optical devices are mounted on different subcarriers,
The length of the first subcarrier on which the integrated semiconductor optical device that outputs the first output light is mounted is:
Longer than the length of the second subcarrier on which the integrated semiconductor optical device that outputs the second output light is mounted;
When the first output light and the second output light are input to the multiplexing element, their polarization states are different from each other, and the multiplexing element has the first output light and the second output. Overlapping the optical path using the polarization state with light ,
A first collimating lens that collimates the first output light, and a second collimator that collimates the second output light.
A second collimating lens to be remitted,
The first collimating lens and the second collimating lens are moved back and forth with respect to the optical axis direction.
The second collimating lens is disposed so as to be shifted from the first subcarrier.
Is located next to
Passively fixing the second collimating lens;
The position of the fiber collimator lens so that the light passing through the passively fixed second collimator lens is collected by the fiber collimator lens at the output end of the multiplexing element and coupled to the output optical fiber. Aligning and fixing, and
An N-wavelength multiplex optical transmitter characterized in that the position of the first collimating lens is aligned and YAG welding fixed so that the intensity of the first output light output from the multiplexing element is maximized. Is mounted on a package equipped with a fiber collimating lens.
JP2012069633A 2012-03-26 2012-03-26 Wavelength multiplexed optical transmitter Active JP5733832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069633A JP5733832B2 (en) 2012-03-26 2012-03-26 Wavelength multiplexed optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069633A JP5733832B2 (en) 2012-03-26 2012-03-26 Wavelength multiplexed optical transmitter

Publications (2)

Publication Number Publication Date
JP2013201348A JP2013201348A (en) 2013-10-03
JP5733832B2 true JP5733832B2 (en) 2015-06-10

Family

ID=49521325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069633A Active JP5733832B2 (en) 2012-03-26 2012-03-26 Wavelength multiplexed optical transmitter

Country Status (1)

Country Link
JP (1) JP5733832B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340902B2 (en) * 2014-05-13 2018-06-13 住友電気工業株式会社 Manufacturing method of optical module
CN108336458B (en) * 2018-02-12 2021-05-28 香港凡谷發展有限公司 Multimode mixed medium structure applied to filter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148793A (en) * 1996-11-19 1998-06-02 Nec Corp Optical multiplexer and wavelength multiplexing light source using it
US7085440B2 (en) * 2001-07-02 2006-08-01 The Furukawa Electric Co., Ltd Semiconductor laser module and optical amplifier
JP5545847B2 (en) * 2010-06-16 2014-07-09 日本電信電話株式会社 Optical semiconductor device

Also Published As

Publication number Publication date
JP2013201348A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US20200310054A1 (en) Optical transceiver
US11929826B2 (en) Optical modules having an improved optical signal to noise ratio
CN110095879B (en) Multi-channel light emitting devices and methods of making and using the same
US10746933B2 (en) Fiber coupled laser source pump with wavelength division multiplexer, isolator, tap filter, and photodetector
WO2014119450A1 (en) Optical modulator
US9444218B1 (en) Compact WDM optical modules
CN111512218B (en) Optical module and method of assembling the same
US9442248B2 (en) Polarization beam combiner/splitter, polarization beam combining/splitting structure, light mixer, optical modulator module, and method for manufacturing polarization beam combiner/splitter
JP5157409B2 (en) Optical module
JP6034811B2 (en) Wavelength multiplexing transmitter
JP5733832B2 (en) Wavelength multiplexed optical transmitter
JP2014186127A (en) Polarization combiner, and optical modulator having the same
US20100021103A1 (en) Wavelength blocker
EP3179645B1 (en) Optical signal modulation apparatus and system
WO2021186799A1 (en) Optical function device
JP2016086130A (en) Optical module
JP2016038558A (en) Method for configuring 4-wavelength multiplex optical transmitter
JP5591671B2 (en) Optical device
JP2021189227A (en) Optical modulator
JP2016134398A (en) Method for manufacturing optical module
JP2015035480A (en) Semiconductor optical element module
US20180013261A1 (en) Optical element and light generating device
JPH11295529A (en) Adjuster for equalizing length of optical fiber and adjustment method for equalizing length of optical fiber
JP2017156739A (en) Semiconductor device
JP2011146493A (en) Package for integrated optical semiconductor module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150410

R150 Certificate of patent or registration of utility model

Ref document number: 5733832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150