JP5731654B2 - Artificial leather and method for producing the same - Google Patents

Artificial leather and method for producing the same Download PDF

Info

Publication number
JP5731654B2
JP5731654B2 JP2013530097A JP2013530097A JP5731654B2 JP 5731654 B2 JP5731654 B2 JP 5731654B2 JP 2013530097 A JP2013530097 A JP 2013530097A JP 2013530097 A JP2013530097 A JP 2013530097A JP 5731654 B2 JP5731654 B2 JP 5731654B2
Authority
JP
Japan
Prior art keywords
artificial leather
nonwoven fabric
sea
short fibers
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013530097A
Other languages
Japanese (ja)
Other versions
JP2013540908A (en
Inventor
ウン ミン イ
ウン ミン イ
ジョン スク ジュン
ジョン スク ジュン
ヨン ナム ファン
ヨン ナム ファン
ジョン ホ パク
ジョン ホ パク
Original Assignee
コーロン インダストリーズ インク
コーロン インダストリーズ インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーロン インダストリーズ インク, コーロン インダストリーズ インク filed Critical コーロン インダストリーズ インク
Publication of JP2013540908A publication Critical patent/JP2013540908A/en
Application granted granted Critical
Publication of JP5731654B2 publication Critical patent/JP5731654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5416Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric

Description

本発明は、人工皮革及びその製造方法に係り、より具体的には、天然皮革を代替できる人工皮革及びその製造方法に関する。   The present invention relates to an artificial leather and a method for manufacturing the same, and more specifically to an artificial leather that can replace natural leather and a method for manufacturing the same.

人工皮革は、極細繊維が3次元に絡合してなる不織布に、高分子弾性体が含浸されてなるものであって、天然皮革に酷似した柔らかい質感及び独特の外観を有しており、履き物、衣類、手袋、雑貨、家具、及び自動車用内装材などの様々な分野に広く利用されている。   Artificial leather is made by impregnating a non-woven fabric in which ultrafine fibers are entangled in three dimensions with a polymer elastic body, and has a soft texture and a unique appearance very similar to natural leather. It is widely used in various fields such as clothing, gloves, miscellaneous goods, furniture, and automobile interior materials.

このような人工皮革は、ポリエチレンテレフタレート繊維、ポリアミド繊維などの様々な種類の繊維を用いて製造されている。   Such artificial leather is manufactured using various types of fibers such as polyethylene terephthalate fibers and polyamide fibers.

しかし、通常の人工皮革は、1成分の短繊維からなっている。したがって、人工皮革を構成する短繊維は、互いに類似した機械的物性を有し、類似した絡合挙動を示す。その結果、短繊維同士の距離及び空隙がほぼ同じである。また、短繊維同士の相互作用もあまり変わらないため、満足のいく触感、ボリューム感、及び柔軟性を持つ人工皮革を具現しにくいという問題がある。   However, ordinary artificial leather consists of one component short fiber. Therefore, the short fibers constituting the artificial leather have mechanical properties similar to each other and exhibit similar entanglement behavior. As a result, the distances and gaps between the short fibers are substantially the same. Moreover, since the interaction between the short fibers does not change so much, there is a problem that it is difficult to realize an artificial leather having a satisfactory touch feeling, volume feeling and flexibility.

一方、人工皮革に天然皮革のようなボリューム感を与えるために、収縮工程にて不織布の密度を増加させる方法が提示された。また、人工皮革の柔軟性を向上させるための柔軟剤処理方法、タンブリング処理方法などが提示されている。   On the other hand, in order to give the artificial leather a volume feeling like natural leather, a method of increasing the density of the nonwoven fabric in the shrinking process has been proposed. In addition, a softener treatment method, a tumbling treatment method, and the like for improving the flexibility of artificial leather have been proposed.

しかし、これらの方法は、人工皮革の触感、外観などの特性を損なうことがある。   However, these methods may impair characteristics such as the touch and appearance of the artificial leather.

したがって、本発明は、前記関連技術の制限及び欠点による問題を解決できる人工皮革及びその製造方法を提供する。   Therefore, the present invention provides an artificial leather that can solve the problems due to limitations and disadvantages of the related art and a method for manufacturing the same.

本発明は、不織布の内部構造制御のように人工皮革の物性を向上させるための、抜本的な方法を工夫すべきであるという問題意識から始まる。   The present invention starts from the awareness of the problem that a drastic method for improving the physical properties of artificial leather, such as controlling the internal structure of a nonwoven fabric, should be devised.

本発明は、それぞれ異なる成分でそれぞれ製造された2種以上の短繊維を含むことにより、優れた触感、柔軟性、通気性及びボリューム感を持つだけでなく、画期的な軽量化ができる人工皮革を提供する。   The present invention includes not only excellent tactile sensation, flexibility, breathability and volume feeling, but also an artificial weight that can dramatically reduce the weight by including two or more kinds of short fibers each made of different components. Provide leather.

又本発明は、それぞれ異なる成分でそれぞれ製造された2種以上の短繊維を含むことにより、優れた触感、柔軟性、通気性及びボリューム感を持つだけでなく、画期的な軽量化ができる人工皮革の製造方法を提供する。   In addition, the present invention includes not only excellent tactile sensation, flexibility, breathability and volume feeling, but also an epoch-making weight reduction by including two or more kinds of short fibers respectively produced with different components. A method for producing artificial leather is provided.

本発明では、0.001〜0.5デニールの繊度を有する短繊維を含む不織布、及び前記不織布内部に含浸されている高分子弾性体を含み、前記短繊維は、−CH−の繰返し単位を有し、該繰返し単位の数の異なる2種以上のポリエステル系短繊維であることを特徴とする人工皮革が提供される。 The present invention includes a non-woven fabric containing short fibers having a fineness of 0.001 to 0.5 denier, and a polymer elastic body impregnated in the non-woven fabric, wherein the short fibers are a repeating unit of —CH 2 —. There is provided an artificial leather characterized by being two or more polyester-based short fibers having different numbers of repeating units.

又本発明では、海成分及び島成分を含む2種以上の海島型複合繊維を準備する工程−ここで、前記2種以上の海島型複合繊維の島成分は−CH−の繰返し単位を有し、該繰返し単位の数の異なるポリエステル系ポリマーである−、前記2種以上の海島型複合繊維で不織布を形成する工程、及び前記2種以上の海島型複合繊維の海成分を溶出して極細不織布を形成する工程を含む人工皮革の製造方法が提供される。 In the present invention, the step of preparing two or more types of sea-island type composite fibers containing a sea component and an island component--wherein the island components of the two or more types of sea-island type composite fibers have a repeating unit of —CH 2 —. And a step of forming a nonwoven fabric with the two or more types of sea-island type composite fibers, and eluting sea components of the two or more types of sea-island type composite fibers. Provided is a method for producing artificial leather including a step of forming a nonwoven fabric.

上記の一般的な記述及び以下の詳細な説明はすべて本発明を例示したり説明するためのものに過ぎず、特許請求の範囲の発明に関する、より詳細な説明を提供するためのものである。   The above general description and the following detailed description are all for the purpose of illustrating and explaining the present invention and are intended to provide a more detailed description of the claimed invention.

本発明の人工皮革は、弾性回復力の異なる2種以上のポリエステル系短繊維を含む。そのなかの高い弾性回復力を有する短繊維は、不織布の形成のための絡合工程中にバネのような構造を形成するようになる。   The artificial leather of the present invention contains two or more kinds of polyester short fibers having different elastic recovery forces. Among them, the short fibers having high elastic recovery force form a spring-like structure during the entanglement process for forming the nonwoven fabric.

本発明の人工皮革は、このようなバネ構造を部分的に含んでいるので、ポリエチレンテレフタレート(繰返し単位−CH−が2個)短繊維のみを含む人工皮革に比べて、優れた圧縮弾性(厚さ方向)を有し、内部に均一な大きさで、均一に形成された空隙を有する。したがって、優れた触感、柔軟性、通気性、及びボリューム感を持つだけでなく、画期的な軽量化ができる人工皮革を提供することができる。 Since the artificial leather of the present invention partially includes such a spring structure, it has superior compressive elasticity compared to artificial leather containing only polyethylene terephthalate ( two repeating units —CH 2 —) short fibers ( (Thickness direction), and there are uniformly formed voids of uniform size inside. Therefore, it is possible to provide an artificial leather that not only has excellent tactile sensation, flexibility, breathability, and volume feeling, but also can achieve an epoch-making weight reduction.

さらに、このようなバネ構造は、表面毛羽を直立させる特性を有するので、一方向に毛羽が寝ている通常の人工皮革に比べて、毛羽の方向による摩擦係数のバラツキが最小限に抑えられた人工皮革を製造することができる。したがって、本発明の人工皮革は、方向性による摩擦特性の差に起因する不快感を著しく低減できる。   Furthermore, since such a spring structure has the characteristic of standing up the surface fluff, variation in the coefficient of friction due to the direction of the fluff is minimized as compared to normal artificial leather in which the fluff lies in one direction. Artificial leather can be manufactured. Therefore, the artificial leather of the present invention can remarkably reduce discomfort caused by a difference in friction characteristics depending on directionality.

一方、−CH−繰返し単位を3個以上有する1種のポリエステル系短繊維のみで不織布が構成される場合、内部的にバネ構造が容易に形成されるが、短繊維同士の絡合が難しいため、不織布の密度及び機械的強度の低下が発生し、その結果、必要とされる外観、触感及び物理的特性を備えた人工皮革を製造することができない。 On the other hand, when the nonwoven fabric is composed of only one type of polyester-based short fiber having three or more —CH 2 — repeating units, a spring structure is easily formed internally, but it is difficult to entangle the short fibers. Therefore, the density and mechanical strength of the nonwoven fabric are reduced, and as a result, it is not possible to produce artificial leather having the required appearance, touch and physical properties.

また、本発明の不織布は、ポリエステル系短繊維を含むので、高分子弾性体、例えば、ポリウレタンと優れた接着性を有する。したがって、本発明の人工皮革は優れた耐久性を有する。   Moreover, since the nonwoven fabric of this invention contains a polyester-type short fiber, it has the adhesiveness outstanding with the polymeric elastic body, for example, polyurethane. Therefore, the artificial leather of the present invention has excellent durability.

このように優れた物性を有する本発明の人工皮革は、履き物、衣類、手袋、雑貨、家具、及び自動車用内装材などの様々な分野で広く利用することができる。   The artificial leather of the present invention having such excellent physical properties can be widely used in various fields such as footwear, clothing, gloves, miscellaneous goods, furniture, and automobile interior materials.

本発明の技術的思想及び範囲を逸脱しない限り、本発明の様々な変更及び変形が可能であるということは明白である。したがって、本発明は、特許請求の範囲に記載された発明及びその均等物の範囲内に入る変更及び変形を全て含む。   Obviously, various modifications and variations of the present invention are possible without departing from the spirit and scope of the invention. Accordingly, this invention includes all modifications and variations that fall within the scope of the claimed invention and its equivalents.

以下、本発明の人工皮革及びその製造方法の実施例を具体的に説明する。   Examples of the artificial leather and the method for producing the same according to the present invention will be specifically described below.

本発明の人工皮革は、不織布及び前記不織布内部に含浸されている高分子弾性体を含む。   The artificial leather of the present invention includes a nonwoven fabric and a polymer elastic body impregnated in the nonwoven fabric.

前記不織布は、0.001〜0.5デニールの繊度を有する短繊維を含む。この範囲の繊度を有する短繊維からなる不織布は、優れた触感を持つようになる。前記短繊維の繊度が0.001デニール未満である場合、不織布の触感は良くなるが製造が容易でなく洗濯の後に、染料の損失程度を示す洗濯堅ろう度が低下することがある。そして、前記短繊維の繊度が0.5デニールを超えた場合、不織布の触感が落ちることがある。   The nonwoven fabric includes short fibers having a fineness of 0.001 to 0.5 denier. A nonwoven fabric made of short fibers having a fineness in this range comes to have an excellent tactile sensation. When the fineness of the short fibers is less than 0.001 denier, the touch of the nonwoven fabric is improved, but the production is not easy, and the washing fastness indicating the degree of dye loss may be lowered after washing. And when the fineness of the said short fiber exceeds 0.5 denier, the tactile feeling of a nonwoven fabric may fall.

前記短繊維の繊度は、ゴールド・コーティング法を用いてサンプルを作製し、走査型電子顕微鏡(SEM)を用いて一定の倍率で前記サンプルの断面を撮影し、短繊維の直径を測定し、このように測定された短繊維の直径を下式により算出することができる。   The fineness of the short fiber is measured by preparing a sample using a gold coating method, photographing a cross section of the sample at a constant magnification using a scanning electron microscope (SEM), and measuring the diameter of the short fiber. Thus, the diameter of the short fiber measured can be calculated by the following formula.

繊度(デニール)=9πDρ/4000 Fineness (denier) = 9πD 2 ρ / 4000

前記の式において、πは円周率であり、Dは短繊維の断面の直径(μm)であり、ρは繊維密度(g/cm)である。 In the above formula, π is the circular ratio, D is the diameter (μm) of the cross section of the short fiber, and ρ is the fiber density (g / cm 3 ).

本発明の不織布は、2種以上のポリエステル系短繊維を含む。前記2種以上のポリエステル系短繊維は、−CH−の繰返し単位を有する。但し、それぞれ異なる種類のポリエステル系短繊維は、それぞれ異なる数の−CH−の繰返し単位を有する。 The nonwoven fabric of the present invention contains two or more polyester short fibers. The two or more types of polyester short fibers have a repeating unit of —CH 2 —. However, different types of short polyester fibers each have a different number of repeating units of —CH 2 —.

さらに、前記2種以上のポリエステル系短繊維は、それぞれ2〜4の前記繰返し単位を有することができる。例えば、前記不織布は、ポリエチレンテレフタレート(PET)短繊維、ポリトリメチレンテレフタレート(PTT)短繊維、及びポリブチレンテレフタレート(PBT)短繊維のうち2種以上の短繊維を含むことができる。   Further, the two or more kinds of polyester short fibers may each have 2 to 4 repeating units. For example, the nonwoven fabric may include two or more kinds of short fibers among polyethylene terephthalate (PET) short fibers, polytrimethylene terephthalate (PTT) short fibers, and polybutylene terephthalate (PBT) short fibers.

ポリエチレンテレフタレート短繊維は、比較的安価で且つ優れた引張強度を有する。また、高い融点を有するので、前記ポリエチレンテレフタレート短繊維は優れた耐熱性を有する。したがって、本発明の不織布は、前記2種以上のポリエステル系短繊維のうちの一つとして、基本的にポリエチレンテレフタレート短繊維を含むことができる。   Polyethylene terephthalate short fibers are relatively inexpensive and have excellent tensile strength. Moreover, since it has a high melting point, the polyethylene terephthalate short fibers have excellent heat resistance. Therefore, the nonwoven fabric of this invention can contain a polyethylene terephthalate short fiber fundamentally as one of the said 2 or more types of polyester-type short fiber.

前記不織布においてポリエチレンテレフタレート短繊維の含有量は、5〜95重量%、好ましくは、10〜50重量%であるとよい。もし、前記ポリエチレンテレフタレート短繊維の含有量が5重量%未満の場合、不織布の機械的強度が低下することがあり、前記ポリエチレンテレフタレート短繊維の含量が95重量%を超えた場合、不織布を構成する短繊維が緻密な構造を形成することができなくなり、その結果、前記不織布により製造された人工皮革の触感、柔軟性、及びボリューム感が低下することがある。   In the nonwoven fabric, the content of the short polyethylene terephthalate fiber is 5 to 95% by weight, preferably 10 to 50% by weight. If the content of the short polyethylene terephthalate fiber is less than 5% by weight, the mechanical strength of the nonwoven fabric may be lowered. If the content of the short polyethylene terephthalate fiber exceeds 95% by weight, the nonwoven fabric is constituted. Short fibers cannot form a dense structure, and as a result, the tactile sensation, flexibility, and volume of the artificial leather manufactured by the nonwoven fabric may be lowered.

人工皮革の触感、柔軟性、及びボリューム感に影響を及ぼす因子の一つとして、前記人工皮革の製造に用いられる不織布の短繊維がどのくらい均一に混合されているかがある。本発明おいては、前記不織布が20%以下の重量変動係数(CV%)を有する程度に、前記2種以上のポリエステル系短繊維が均一に混合される。もし、不織布の重量変動係数が20%を超えた場合、その不織布により製造された人工皮革の触感、柔軟性及びボリューム感が低下することになる。   One factor affecting the feel, flexibility, and volume of the artificial leather is how uniformly the short fibers of the nonwoven fabric used for the production of the artificial leather are mixed. In the present invention, the two or more types of polyester short fibers are uniformly mixed so that the nonwoven fabric has a weight variation coefficient (CV%) of 20% or less. If the weight variation coefficient of the nonwoven fabric exceeds 20%, the tactile sensation, flexibility and volume feeling of the artificial leather produced from the nonwoven fabric will be reduced.

前記重量変動係数(CV%)は、不織布からランダムでサンプルを採取して、サンプルの単位面積当たりの重量を測定し、この単位面積当たりの重量を用いて標準偏差及び算術平均を計算し、下式から変動係数を求める。   The weight coefficient of variation (CV%) is obtained by randomly collecting a sample from a nonwoven fabric, measuring the weight per unit area of the sample, calculating the standard deviation and arithmetic average using the weight per unit area, Obtain the coefficient of variation from the equation.

変動係数(CV%)=標準偏差/算術平均   Coefficient of variation (CV%) = standard deviation / arithmetic mean

本発明の不織布を構成するそれぞれ異なる種類のポリエステル系短繊維は、それぞれ異なる「20%伸長時の弾性回復率」を有することができる。   Different types of short polyester fibers constituting the nonwoven fabric of the present invention can have different “elastic recovery rates at 20% elongation”.

本発明の一実施例において、本発明の不織布を構成するそれぞれ異なる種類の短繊維の「20%伸長時の弾性回復率」のうちには最大値と最小値が存在し、最大値に対する最小値の比率は10〜80%である。   In one embodiment of the present invention, there is a maximum value and a minimum value among the “elastic recovery rates at 20% elongation” of different types of short fibers constituting the nonwoven fabric of the present invention, and the minimum value with respect to the maximum value. The ratio is 10 to 80%.

20%伸長時の弾性回復率の最大値に対する最小値の比率が前記範囲内にあれば、不織布を構成する2種以上の短繊維が互いに緻密に絡合できるだけでなく、相対的に高い弾性回復率を有する短繊維がバネのような構造を形成することができる。したがって、このような不織布により製造された人工皮革は、優れた触感、柔軟性及びボリューム感を発現することができる。   If the ratio of the minimum value to the maximum value of the elastic recovery rate at 20% elongation is within the above range, not only the two or more kinds of short fibers constituting the nonwoven fabric can be intertwined closely but also a relatively high elastic recovery. Short fibers having a rate can form a spring-like structure. Therefore, the artificial leather manufactured with such a nonwoven fabric can exhibit excellent tactile sensation, flexibility and volume feeling.

もし、20%伸長時の弾性回復率の最大値に対する最小値の比率が10%未満であれば、2種以上の短繊維が互いに緻密に絡合することはできるが、不織布内部にバネ構造が形成され難い。したがって、人工皮革の触感、柔軟性及びボリューム感が低下することがある。
又、20%伸長時の弾性回復率の最大値に対する最小値の比率が80%を超えた場合、不織布そのものを容易に製造できなくなることがある。
If the ratio of the minimum value to the maximum value of the elastic recovery rate at 20% elongation is less than 10%, two or more kinds of short fibers can be intertwined closely, but the spring structure is formed inside the nonwoven fabric. It is difficult to form. Therefore, the tactile sensation, flexibility and volume feeling of the artificial leather may be reduced.
Moreover, when the ratio of the minimum value to the maximum value of the elastic recovery rate at 20% elongation exceeds 80%, the nonwoven fabric itself may not be easily manufactured.

バネ構造を形成する相対的に高い弾性回復率を有する短繊維によって人工皮革の厚さ方向の圧縮弾性特性が向上する。前記圧縮弾性特性は、圧縮率及び復元率で示すことが出来る。すなわち前記不織布で形成された本発明の人工皮革は、8%〜50%の圧縮率(厚さ方向)を有する。人工皮革の圧縮率が8%未満の場合、硬直した感じが発現され、前記圧縮率が50%を超えた場合、ボリューム感などの質感が低下する。   The compression elastic characteristics in the thickness direction of the artificial leather are improved by the short fibers having a relatively high elastic recovery rate forming the spring structure. The compression elastic characteristic can be expressed by a compression rate and a restoration rate. That is, the artificial leather of the present invention formed of the nonwoven fabric has a compression rate (thickness direction) of 8% to 50%. When the compression ratio of the artificial leather is less than 8%, a stiff feeling is expressed, and when the compression ratio exceeds 50%, the texture such as volume is lowered.

一方、復元率は、圧縮後に荷重を除去した時に、回復する程度を示す。前記不織布で製造された本発明の人工皮革は80%以上の復元率を有する。人工皮革の復元率が80%未満であれば、人工皮革の形態安定性及びボリューム感が低下し高級な風合いを提供することができない。   On the other hand, the restoration rate indicates the degree of recovery when the load is removed after compression. The artificial leather of the present invention made of the nonwoven fabric has a restoration rate of 80% or more. If the restoration rate of the artificial leather is less than 80%, the form stability and volume feeling of the artificial leather are lowered, and a high-quality texture cannot be provided.

また、弾性回復率の高い繊維は、外力に対する回復特性に優れる。人工皮革が、高い弾性回復率を有する繊維を含むと、内部のバネ構造のため、バッフィング工程などの研削工程により形成された表面毛羽の直立性がさらに増すようになる。したがって、人工皮革の表面の順方向(毛羽方向)及び逆方向の摩擦係数の差が著しく減少し人工皮革の表面の方向による質感の差を減少させ、方向性による異質感を最小限に抑え、表面触感を向上させることができる。前記順方向及び逆方向の摩擦係数の差が小さいほど人工皮革の触感に優れる。本発明の一実施例において前記摩擦係数の差は0.30以下である。   A fiber having a high elastic recovery rate is excellent in recovery characteristics against external force. When the artificial leather contains fibers having a high elastic recovery rate, the uprightness of the surface fluff formed by a grinding process such as a buffing process is further increased due to the internal spring structure. Therefore, the difference in the friction coefficient between the forward direction (fluff direction) and the reverse direction of the surface of the artificial leather is remarkably reduced, the difference in the texture due to the direction of the surface of the artificial leather is reduced, and the different texture due to the direction is minimized. Surface tactile sensation can be improved. The smaller the difference between the forward and reverse friction coefficients, the better the tactile feel of artificial leather. In one embodiment of the present invention, the friction coefficient difference is 0.30 or less.

本発明の不織布を構成する前記2種以上のポリエステル系短繊維は、5〜100mmの長さを有する。この範囲の長さを有する短繊維が絡合することで、不織布の製造工程性が向上することができ、このような不織布で製造された人工皮革は、優れた物性を発現することができる。もし、前記短繊維の長さが5mm未満の場合、不織布の製造が困難になり、人工皮革の強度、触感などが低下することがある。
又、前記短繊維の長さが10mmを超えた場合、不織布の製造が困難になり得る。
The two or more types of polyester short fibers constituting the nonwoven fabric of the present invention have a length of 5 to 100 mm. When the short fibers having a length in this range are intertwined, the manufacturing process of the nonwoven fabric can be improved, and the artificial leather manufactured with such a nonwoven fabric can exhibit excellent physical properties. If the length of the short fiber is less than 5 mm, it is difficult to produce a nonwoven fabric, and the strength and feel of the artificial leather may be lowered.
Moreover, when the length of the said short fiber exceeds 10 mm, manufacture of a nonwoven fabric may become difficult.

不織布内部に含浸される高分子弾性体として、ポリウレタンを用いることができる。たとえば、ポリカーボネートジオール系、ポリエステルジオール系またはポリエーテルジオール系の単独で、又はこれらの混合物を用いることができる。
又、前記高分子弾性体としてポリシロキサンを用いることもできる。但し、前記高分子弾性体がポリウレタンまたはポリシロキサンに限定されるものではない。
Polyurethane can be used as the polymer elastic body impregnated in the nonwoven fabric. For example, a polycarbonate diol type, a polyester diol type or a polyether diol type alone or a mixture thereof can be used.
Polysiloxane can also be used as the polymer elastic body. However, the polymer elastic body is not limited to polyurethane or polysiloxane.

人工皮革内部の前記高分子弾性体の含量は20〜30重量%であるとよい。前記高分子弾性体の含量が20重量%未満の場合、必要な伸度を得ることができず、前記高分子弾性体の含量が30重量%を超えた場合、人工皮革の触感が低下し、人工皮革が変色する危険が増加し、人工皮革の伸度も低下する。   The content of the polymer elastic body in the artificial leather is preferably 20 to 30% by weight. When the content of the polymer elastic body is less than 20% by weight, the required elongation cannot be obtained, and when the content of the polymer elastic body exceeds 30% by weight, the tactile sensation of the artificial leather decreases, The risk of discoloration of artificial leather increases and the elongation of artificial leather also decreases.

本発明の人工皮革は、「10%伸長時の弾性回復率」が80%以上であるとよい。80%以上の弾性回復率を有する人工皮革は長時間にわたって圧力を受けても前記圧力が除去された場合、元の形状に容易に戻ることができる。このような優れた弾性回復率によって本発明の人工皮革が履き物、衣類、手袋、雑貨、家具、及び自動車用内装材などの製造に使用された場合、製品にシワが発生せず自然で高級な製品の外観を具現することができる。   The artificial leather of the present invention preferably has an “elastic recovery rate at 10% elongation” of 80% or more. Artificial leather having an elastic recovery rate of 80% or more can easily return to its original shape when the pressure is removed even when subjected to pressure for a long time. When the artificial leather of the present invention is used for the production of footwear, clothing, gloves, miscellaneous goods, furniture, automobile interior materials, etc. due to such an excellent elastic recovery rate, the product is free of wrinkles and is natural and high-grade. Appearance of the product can be realized.

以下に、本発明の一実施例により人工皮革の製造方法について詳細に説明する。   Below, the manufacturing method of artificial leather is demonstrated in detail by one Example of this invention.

まず、海成分及び島成分を含む2種以上の海島型複合繊維を準備する。具体的には、海成分ポリマー溶融液と島成分ポリマー溶融液をそれぞれ準備した後、複合紡糸用口金を通して複合紡糸を行うことによりフィラメントを製造する。
次いで前記フィラメントを延伸する。該延伸されたフィラメントにクリンプ(crimp)を形成し、前記クリンプが付与されたフィラメントを所定の長さで切断することにより、短繊維形状の海島型複合繊維を完成する。
First, two or more types of sea-island type composite fibers including sea components and island components are prepared. Specifically, after preparing a sea component polymer melt and an island component polymer melt, a filament is produced by performing composite spinning through a composite spinning die.
The filament is then stretched. A crimp is formed on the drawn filament, and the filament provided with the crimp is cut to a predetermined length, thereby completing a sea-island type composite fiber having a short fiber shape.

本発明において、前記2種以上の海島型複合繊維の島成分は、−CH−の繰返し単位を有し、該繰返し単位の数がそれぞれ異なるポリエステル系ポリマーである。 In the present invention, the island component of the two or more sea-island type composite fibers is a polyester polymer having a repeating unit of —CH 2 —, and the number of repeating units is different.

すなわち第1の海島型複合繊維は、海成分及び島成分として、第1及び第2のポリマーを含むことができ、第2の海島型複合繊維は、海成分及び島成分として、第1及び第3のポリマーを含むことができる。もちろん海成分及び島成分として第1及び第4のポリマーを含む第3の海島型複合繊維をさらに用意することもできる。すなわち第1ないし第3の海島型複合繊維は、海成分として同じポリマーを含み、島成分として異なるポリマーをそれぞれ含むことができる。後述の海成分溶出の際の、溶剤に溶解される特性において前記第1のポリマーは、前記第2ないし第4のポリマーと異なる。   That is, the first sea-island type composite fiber can include the first and second polymers as the sea component and the island component, and the second sea-island type composite fiber can include the first and second as the sea component and the island component. Three polymers can be included. Of course, a third sea-island composite fiber containing the first and fourth polymers as the sea component and the island component can be further prepared. That is, the first to third sea-island type composite fibers can each contain the same polymer as the sea component and different polymers as the island component. The first polymer is different from the second to fourth polymers in the property of being dissolved in a solvent at the time of sea component elution described later.

例えば、前記第2ポリマーはポリエチレンテレフタレート(PET)で、前記第3のポリマーはポリブチレンテレフタレート(PBT)で、前記第4のポリマーはポリトリメチレンテレフタレート(PTT)であるとよい。   For example, the second polymer may be polyethylene terephthalate (PET), the third polymer may be polybutylene terephthalate (PBT), and the fourth polymer may be polytrimethylene terephthalate (PTT).

次に前記2種以上の海島型複合繊維で不織布を形成する。   Next, a nonwoven fabric is formed with the two or more sea-island type composite fibers.

具体的には、前記2種以上の海島型複合繊維に対してオープニング、ブレンディング及びカーディング工程を行うことにより短繊維形状の海島型複合繊維を均一に混繊してウェブを製造する。その後得られたウェブをクロスラッピング工程を通して積層した後、ニードルパンチングにより各海島型複合繊維を絡合させながら積層されたウェブを結合させることにより不織布を製造する。   Specifically, by performing an opening, blending, and carding process on the two or more kinds of sea-island composite fibers, the short-sea-shaped sea-island composite fibers are uniformly mixed to produce a web. Thereafter, the obtained web is laminated through a cross-wrapping step, and then the nonwoven web is manufactured by bonding the laminated webs while interlacing the sea-island composite fibers by needle punching.

前記2種以上の海島型複合繊維を混繊してウェブを製造する工程はエアージェットを用いたエアーレイド法、水中で混合する抄紙法などを用いて行うこともできる。   The step of producing a web by mixing two or more kinds of sea-island type composite fibers can also be performed using an air raid method using an air jet, a paper making method mixed in water, or the like.

前記2種以上の海島型複合繊維を絡合させる工程は、高速流体処理法、ケミカルボンド法、またはホットエアースルー法により行ってもよい。   The step of entanglement of the two or more sea-island composite fibers may be performed by a high-speed fluid treatment method, a chemical bond method, or a hot air through method.

このように製造された不織布は100〜700g/mの単位重量を有することができる。この単位重量を有する不織布を用いて完成した最終製品は最適の密度を有することになる。 The thus produced nonwoven may have a basis weight of 100~700g / m 2. The final product completed using a nonwoven fabric having this unit weight will have an optimal density.

次いで、前記不織布内部に高分子弾性体を含浸させる。   Next, the nonwoven fabric is impregnated with a polymer elastic body.

例えば、高分子弾性体溶液を調製し、該溶液に前記不織布を浸漬させる。前記高分子弾性体溶液は、所定の溶媒にポリウレタンを溶解させたり、分散させたりして調製することができる。例えば、ジメチルホルムアミド(DMF)にポリウレタンを溶解させたり、水にポリウレタンを分散させたりして前記高分子弾性体溶液を調製することができる。又高分子弾性体を溶媒または分散媒に溶解・分散させずに、シリコーン高分子弾性体をそのまま利用してもよい。   For example, a polymer elastic body solution is prepared, and the nonwoven fabric is immersed in the solution. The polymer elastic body solution can be prepared by dissolving or dispersing polyurethane in a predetermined solvent. For example, the polymer elastic body solution can be prepared by dissolving polyurethane in dimethylformamide (DMF) or dispersing polyurethane in water. Alternatively, the silicone elastic polymer may be used as it is without dissolving or dispersing the elastic polymer in a solvent or dispersion medium.

又顔料、光安定剤、酸化防止剤、難燃剤、柔軟剤、着色剤などが前記高分子弾性体溶液に添加されてもよい。   In addition, pigments, light stabilizers, antioxidants, flame retardants, softeners, colorants and the like may be added to the polymer elastic body solution.

前記不織布を前記高分子弾性体溶液に浸漬させる前に前記不織布をポリビニルアルコール水溶液でパディング処理することにより、その形態を安定化させることができる。   Before the non-woven fabric is immersed in the polymer elastic body solution, the non-woven fabric can be padded with an aqueous polyvinyl alcohol solution to stabilize its form.

前記高分子弾性体溶液の濃度などを調節することにより、前記不織布に含浸される高分子弾性体の含浸量を調節することができる。最終製品の人工皮革に含まれる高分子弾性体の含量が20〜30%であることを考慮すると前記高分子弾性体溶液の濃度は5〜20重量%の範囲に調節されることが好ましい。また、前記5〜20重量%の高分子弾性体溶液の温度を10〜30℃の範囲に維持した状態で0.5〜15分間、前記不織布を高分子弾性体溶液内に浸漬させることが好ましい。   By adjusting the concentration of the elastic polymer solution, the amount of the elastic polymer impregnated in the nonwoven fabric can be adjusted. Considering that the content of the polymer elastic body contained in the final artificial leather is 20 to 30%, the concentration of the polymer elastic body solution is preferably adjusted to a range of 5 to 20% by weight. The nonwoven fabric is preferably immersed in the polymer elastic body solution for 0.5 to 15 minutes in a state where the temperature of the 5 to 20% by weight polymer elastic body solution is maintained in the range of 10 to 30 ° C. .

前記高分子弾性体溶液に不織布を浸漬させた後には、凝固槽にて不織布に含浸された高分子弾性体を凝固させその後に水洗槽で水洗いを行う。前記高分子弾性体溶液が、ジメチルホルムアミドにポリウレタンを溶解させて得られた場合には、前記凝固槽を水と少量のジメチルホルムアミドとの混合物で構成し、前記凝固槽にて高分子弾性体を凝固させながら、不織布に含まれたジメチルホルムアミドが前記凝固槽に溶出させることができ、前記水洗槽では不織布にパディング処理したポリビニルアルコール及び残存するジメチルホルムアミドが不織布から除去される。   After the nonwoven fabric is immersed in the polymer elastic body solution, the polymer elastic body impregnated in the nonwoven fabric is solidified in a coagulation tank, and then washed with water in a water washing tank. When the polymer elastic body solution is obtained by dissolving polyurethane in dimethylformamide, the coagulation tank is composed of a mixture of water and a small amount of dimethylformamide, and the polymer elastic body is formed in the coagulation tank. While solidifying, dimethylformamide contained in the non-woven fabric can be eluted into the coagulation tank, and in the washing tank, the polyvinyl alcohol padded on the non-woven fabric and the remaining dimethylformamide are removed from the non-woven fabric.

次いで前記高分子弾性体が含浸された不織布を熱カレンダリングする。該熱カレンダリングは前記高分子弾性体が含浸された不織布を加熱されたローラーに通過させて加圧することによって行うことができる。前記加熱ローラーの温度は80〜200℃の範囲に維持することができ前記加熱ローラーの温度が80℃未満の場合、十分な熱カレンダリング効果を得ることができず、前記加熱ローラーの温度が200℃を超えた場合、不織布表面の短繊維が損傷することがある。   Next, the non-woven fabric impregnated with the polymer elastic body is subjected to heat calendering. The thermal calendering can be performed by passing a non-woven fabric impregnated with the polymer elastic body through a heated roller and applying pressure. The temperature of the heating roller can be maintained in the range of 80 to 200 ° C. If the temperature of the heating roller is less than 80 ° C., a sufficient heat calendering effect cannot be obtained, and the temperature of the heating roller is 200 If the temperature exceeds ℃, the short fibers on the nonwoven fabric surface may be damaged.

このような熱カレンダリング工程を通して高分子弾性体が再配列され、不織布表面の短繊維が均一に並ぶので後述の仕上げ工程において、不織布表面の均一な立毛ができる。   The polymer elastic bodies are rearranged through such a heat calendering process, and the short fibers on the surface of the nonwoven fabric are evenly arranged, so that the surface of the nonwoven fabric can be uniformly raised in the finishing step described later.

次いで熱カレンダリングされた不織布から海成分を除去する。不織布を構成する2種以上の海島型複合繊維の海成分を溶出させると、島成分のみが残り極細化された短繊維で構成された極細不織布が形成される。海成分の溶出工程は、苛性ソーダ水溶液などのアルカリ溶剤を用いて行うことができる。   The sea component is then removed from the heat calendered nonwoven. When the sea component of two or more kinds of sea-island type composite fibers constituting the nonwoven fabric is eluted, only the island component remains and an ultrafine nonwoven fabric composed of ultrafine fibers is formed. The sea component elution step can be performed using an alkaline solvent such as an aqueous caustic soda solution.

前記第1ないし第3の海島型複合繊維で製造された不織布の場合、海成分である第1のポリマーが溶出されることにより、島成分である第2ないし第4のポリマーのみが残り極細化された短繊維で構成された極細不織布が形成される。   In the case of the non-woven fabric manufactured with the first to third sea-island type composite fibers, the first polymer that is the sea component is eluted, so that only the second to fourth polymers that are the island component remain and become ultrafine. An ultra-fine nonwoven fabric composed of the short fibers thus formed is formed.

又上述の高分子弾性体の含浸工程は、前記極細化工程の前でなく後に行われてもよい。すなわち、極細化工程前の不織布内部に高分子弾性体を含浸させる代わりに極細化工程により形成された極細不織布内部に前記高分子弾性体を含浸させることもできる。   In addition, the above-described impregnation step of the polymer elastic body may be performed after the ultrathinning step, not before. That is, instead of impregnating the polymer elastic body into the nonwoven fabric before the ultrathinning step, the polymer elastic body can be impregnated into the ultrathin nonwoven fabric formed by the ultrathinning step.

次いで前記極細不織布に対して立毛(raising)を行う。該立毛工程は、サンドペーパーなどの研磨道具により前記極細不織布の表面を磨耗せしめ不織布表面に多量の毛羽を生成させる工程である。   Next, raising is performed on the ultrafine nonwoven fabric. The napping step is a step of generating a large amount of fluff on the surface of the non-woven fabric by wearing the surface of the ultra-fine non-woven fabric with a polishing tool such as sandpaper.

次いで前記立毛処理された不織布を染色・仕上げを行って、本発明による人工皮革の製造を完成する。   Next, the napped nonwoven fabric is dyed and finished to complete the production of artificial leather according to the present invention.

このように製造された人工皮革は8〜50%の圧縮率及び80%以上の復元率を有し、その表面の順方向(毛羽方向)及び逆方向の摩擦係数の差が0.30以下である。   The artificial leather produced in this way has a compression rate of 8-50% and a restoration rate of 80% or more, and the difference in friction coefficient between the forward direction (fluff direction) and the reverse direction of the surface is 0.30 or less. is there.

以下、実施例及び比較例を用いて本発明をさらに具体的に説明する。但し、下記の実施例は、本発明の理解を助けるためのものでこれによって本発明の権利範囲が制限されてはならない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the following examples are for helping understanding of the present invention, and the scope of rights of the present invention should not be limited thereby.

実施例1Example 1

島成分であるポリエチレンテレフタレート及び海成分である共重合ポリエステルを複合紡糸してフィラメントを形成し該フィラメントを延伸、クリンピング及び切断して3.5デニールの繊度及び50mmの長さを有する短繊維形状の第1の複合繊維を製造した。該第1の複合繊維の島成分であるポリエチレンテレフタレートの含量は70重量%であり、海成分である共重合ポリエステルの含量は30重量%であった。   Polyethylene terephthalate, which is an island component, and copolymer polyester, which is a sea component, are composite-spun to form a filament, and the filament is drawn, crimped, and cut to form a short fiber having a fineness of 3.5 denier and a length of 50 mm. A first conjugate fiber was produced. The content of polyethylene terephthalate which is an island component of the first composite fiber was 70% by weight, and the content of copolymerized polyester which was a sea component was 30% by weight.

また、島成分として、ポリトリメチレンテレフタレートを使用したことを除いては、前記第1の複合繊維の製造方法と同様の方法により、4.0デニールの繊度及び51mmの繊維長を有する短繊維形状の第2の複合繊維を製造した。前記第2の複合繊維の島成分であるポリトリメチレンテレフタレートの含量は70重量%であり海成分である共重合ポリエステルの含量は30重量%であった。   Further, except that polytrimethylene terephthalate was used as an island component, a short fiber shape having a fineness of 4.0 denier and a fiber length of 51 mm was obtained in the same manner as the first composite fiber production method. Of the second composite fiber. The content of polytrimethylene terephthalate as an island component of the second composite fiber was 70% by weight, and the content of copolymer polyester as a sea component was 30% by weight.

次いで前記第1の複合繊維及び第2の複合繊維の含量がそれぞれ90重量%及び10重量%になるように仕込んだ後、オープニング及びブレンディングにより開繊及び混合し、カーディング/クロスラッピング工程を行いウェブ積層体を形成した後、該積層体のウェブをニードルパンチングで結合させることにより不織布を製造した。   Next, after the contents of the first conjugate fiber and the second conjugate fiber were charged so as to be 90% by weight and 10% by weight, respectively, opening and blending were performed, and the carding / cross wrapping process was performed. After forming a web laminated body, the nonwoven fabric was manufactured by bonding the web of this laminated body by needle punching.

次いで前記不織布を高温で熱収縮させて不織布の密度を高めた。その後、ジメチルホルムアミド(DMF)にポリウレタンを溶解させて得た15重量%のポリウレタン溶液に、前記高密度の不織布を8分間浸漬させた後25重量%のジメチルホルムアミド水溶液で前記ポリウレタンを凝固させた。そして70℃の水で数回水洗いすることによりポリウレタンが含浸された不織布を製造した。   Next, the nonwoven fabric was heat-shrinked at a high temperature to increase the density of the nonwoven fabric. Thereafter, the high-density nonwoven fabric was immersed in a 15% by weight polyurethane solution obtained by dissolving polyurethane in dimethylformamide (DMF) for 8 minutes, and then the polyurethane was coagulated with a 25% by weight dimethylformamide aqueous solution. The nonwoven fabric impregnated with polyurethane was produced by washing with water at 70 ° C. several times.

次いで前記ポリウレタンが含浸された不織布を100℃、10重量%の苛性ソーダ水溶液で処理し前記不織布において海成分である共重合ポリエステルを溶出させて島成分のみを残すことにより極細不織布を製造した。   Subsequently, the nonwoven fabric impregnated with polyurethane was treated with a 10% by weight aqueous caustic soda solution at 100 ° C. to elute the copolymer polyester, which is a sea component, to leave only the island component, thereby producing an ultrafine nonwoven fabric.

その後、粗度#240のサンドペーパーを用いて前記極細不織布の表面にバッフィング処理を施し分散染料を用いて高圧ラピッド染色機で染色した後、固着、洗浄、乾燥した後、柔軟剤及び帯電防止剤処理を施して人工皮革を得た。   Subsequently, the surface of the ultra-thin nonwoven fabric was buffed using a sandpaper having a roughness of # 240, dyed with a high-pressure rapid dyeing machine using a disperse dye, fixed, washed and dried, and then a softener and an antistatic agent. The artificial leather was obtained after the treatment.

実施例2Example 2

ポリトリメチレンテレフタレートの代わりにポリブチレンテレフタレートを島成分として使用して第2の複合繊維を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   An artificial leather was produced in the same manner as in Example 1 except that polybutylene terephthalate was used as an island component instead of polytrimethylene terephthalate to produce the second composite fiber.

実施例3Example 3

第1の複合繊維及び第2の複合繊維の含量がそれぞれ70重量%及び30重量%になるように不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   An artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced so that the contents of the first conjugate fiber and the second conjugate fiber were 70% by weight and 30% by weight, respectively.

実施例4Example 4

第1の複合繊維及び第2の複合繊維の含量がそれぞれ50重量%及び50重量%になるように不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   An artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced so that the contents of the first conjugate fiber and the second conjugate fiber were 50% by weight and 50% by weight, respectively.

実施例5Example 5

第1の複合繊維及び第2の複合繊維の含量がそれぞれ30重量%及び70重量%になるように不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   An artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced so that the contents of the first conjugate fiber and the second conjugate fiber were 30% by weight and 70% by weight, respectively.

実施例6Example 6

第1の複合繊維及び第2の複合繊維の含量がそれぞれ10重量%及び90重量%になるように不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   An artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced so that the contents of the first conjugate fiber and the second conjugate fiber were 10% by weight and 90% by weight, respectively.

実施例7Example 7

前記第1及び第2の複合繊維の他に、70重量%のポリブチレンテレフタレート(島成分)及び30重量%の共重合ポリエステル(海成分)を含む第3の複合繊維がさらに用いられ、前記第1ないし第3の複合繊維のそれぞれの含量が90%、5%、5%になるように不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   In addition to the first and second composite fibers, a third composite fiber containing 70% by weight of polybutylene terephthalate (island component) and 30% by weight of a copolyester (sea component) is further used. Artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced so that the content of each of the first to third composite fibers was 90%, 5%, and 5%.

実施例8Example 8

第1ないし第3の複合繊維の含量がそれぞれ50%、25%、25%になるように不織布を製造したことを除き実施例7と同様の方法により人工皮革を製造した。   Artificial leather was produced in the same manner as in Example 7 except that the nonwoven fabric was produced so that the contents of the first to third composite fibers were 50%, 25%, and 25%, respectively.

実施例9Example 9

第1ないし第3の複合繊維の含量がそれぞれ10%、60%、30%になるように不織布を製造したことを除き実施例7と同様の方法により人工皮革を製造した。   Artificial leather was produced in the same manner as in Example 7 except that the nonwoven fabric was produced so that the contents of the first to third composite fibers were 10%, 60%, and 30%, respectively.

実施例10Example 10

第1ないし第3の複合繊維の含量がそれぞれ10%、30%、60%になるように不織布を製造したことを除き実施例7と同様の方法により人工皮革を製造した。   Artificial leather was produced in the same manner as in Example 7 except that the nonwoven fabric was produced so that the contents of the first to third composite fibers were 10%, 30%, and 60%, respectively.

比較例1Comparative Example 1

前記第2の複合繊維を使用せず前記第1の複合繊維のみを用いて不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   Artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced using only the first conjugate fiber without using the second conjugate fiber.

比較例2Comparative Example 2

前記第1の複合繊維を使用せず前記第2の複合繊維のみを用いて不織布を製造したことを除き実施例1と同様の方法により人工皮革を製造した。   Artificial leather was produced in the same manner as in Example 1 except that the nonwoven fabric was produced using only the second conjugate fiber without using the first conjugate fiber.

前記各実施例及び比較例によって製造された人工皮革の弾性回復率、質感、表面の触感、摩擦特性及び圧縮弾性(圧縮率及び復元率)を下記の方法によりそれぞれ測定しその結果を表3に示した。   The elastic recovery rate, texture, surface tactile sensation, frictional properties, and compressive elasticity (compression rate and recovery rate) of the artificial leather manufactured according to each of the examples and comparative examples were respectively measured by the following methods, and the results are shown in Table 3. Indicated.

弾性回復率(%)Elastic recovery rate (%)

200mmの距離を表示した試料をクランプ間隔250mmの引張試験機に装着し速度50mm/分で伸び率10%まで伸長させ1分間放置した。
次いで引張り速度と同じ速度で荷重を除去し試料を3分間放置した後当初表示された距離の実際距離xを測定し下式により弾性回復率を算出した。
A sample displaying a distance of 200 mm was mounted on a tensile tester with a clamp interval of 250 mm, and stretched to 10% elongation at a speed of 50 mm / min and left for 1 minute.
Next, the load was removed at the same speed as the pulling speed, and the sample was left for 3 minutes, and then the actual distance x of the initially displayed distance was measured, and the elastic recovery rate was calculated by the following equation.

弾性回復率(%)=[(200−x)/200]×100   Elastic recovery rate (%) = [(200−x) / 200] × 100

質感Texture

人工皮革の質感を測定するために5人の専門家で構成された評価団を構成した。柔軟性、ボリューム感、及び曲げ特性の3項目に対して官能試験を行い各0点〜5点(5点:最優秀)で6段階評価した。各項目の点数を合算した後5人の専門家が与えた合算点数をすべて合算して表1のように評価した。   In order to measure the texture of artificial leather, an evaluation team consisting of 5 experts was formed. A sensory test was performed on the three items of flexibility, volume feeling, and bending characteristics, and each was evaluated on a 6-point scale from 0 to 5 points (5 points: best). After summing up the scores for each item, all the sums given by five experts were summed up and evaluated as shown in Table 1.

Figure 0005731654
Figure 0005731654

表面の触感Surface feel

人工皮革の表面の触感を測定するために5人の専門家で構成された評価団を構成した。表面の柔らかさを各0点〜5点(5点:最優秀)で6段階評価した。5人の専門家が与えた点数を合算して表2のように評価した。   In order to measure the tactile sensation of the artificial leather surface, an evaluation team consisting of five experts was constructed. The softness of the surface was evaluated on a 6-point scale with 0 to 5 points (5 points: best). The scores given by five experts were added together and evaluated as shown in Table 2.

Figure 0005731654
Figure 0005731654

摩擦特性Friction characteristics

摩擦特性は人工皮革の表面の順方向(毛羽方向)及び逆方向の摩擦係数をそれぞれ測定し、その差で評価した。測定方法は下記の通りである。   The friction characteristic was evaluated by measuring the friction coefficient in the forward direction (fluff direction) and the reverse direction of the surface of the artificial leather, and evaluating the difference. The measuring method is as follows.

毛羽の立毛方向と同じ方向である順方向の摩擦係数と毛羽の立毛方向と逆の方向の摩擦係数を東洋精機社製の摩擦試験機を用いて測定した。上部摩擦材と下部摩擦材には同じ試験片を用い、上部摩擦材は毛羽方向が摩擦試験機の運動方向と逆になるように設置した。一方、下部摩擦材は順方向摩擦係数の測定の際は摩擦試験機の運動方向と毛羽の方向が同じ方向になるように付着され、逆方向摩擦係数の測定の際は摩擦試験機の運動方向と毛羽の方向が互いに逆になるように付着された。   The friction coefficient in the forward direction, which is the same direction as the napping direction of the fluff, and the friction coefficient in the direction opposite to the napping direction of the fuzz were measured using a friction tester manufactured by Toyo Seiki Co., Ltd. The same specimen was used for the upper friction material and the lower friction material, and the upper friction material was installed so that the fluff direction was opposite to the movement direction of the friction tester. On the other hand, the lower friction material is attached so that the direction of motion of the friction tester and the direction of fluff are the same when measuring the forward friction coefficient, and the direction of motion of the friction tester when measuring the reverse friction coefficient. And the fluffs were attached so that their directions were opposite to each other.

被摩擦材である下部摩擦材の移動距離を約20cmとし、重りの重さは200gとし、ロードセル(load cell)は1kgとし、チャートスケール(Chart scale)はX1とし、各摩擦係数を3回測定した後、これらの測定値の平均をとることで最終摩擦係数を求めた。   The moving distance of the lower friction material, which is the friction material, is about 20 cm, the weight is 200 g, the load cell is 1 kg, the chart scale is X1, and each friction coefficient is measured three times. After that, the final friction coefficient was obtained by taking the average of these measured values.

摩擦係数の値は、最大静止摩擦力を示す値を用いる。   As the value of the friction coefficient, a value indicating the maximum static friction force is used.

このように測定されたそれぞれの摩擦係数の値を用いて、順摩擦係数と逆摩擦係数の差の絶対値を取って摩擦特性を求めた。   Using the friction coefficient values thus measured, the friction characteristics were obtained by taking the absolute value of the difference between the forward friction coefficient and the reverse friction coefficient.

摩擦特性=|正摩擦係数−逆摩擦係数|   Friction characteristics = | Friction coefficient−Reverse friction coefficient |

圧縮弾性Compression elasticity

人工皮革の圧縮弾性(厚さ方向)は圧縮率及び復元率で把握することができるので、G&P Technology社のVMS
PV−Series装置を用いて人工皮革の圧縮率及び復元率をそれぞれ測定した。
Since the compression elasticity (thickness direction) of artificial leather can be grasped by compressibility and restoration rate, VMS of G & P Technology
The compression rate and restoration rate of artificial leather were measured using a PV-Series apparatus.

円形の圧子に900gf/cmの初荷重(load)をかけて30秒間維持した。そして、前記初荷重を除去してから30秒が経過した時の人工皮革の最大厚さ(T1)を1/1000mm単位で測定した。初荷重を再び30秒間かけた後、厚さの最小値(T2)を1/1000mm単位で測定した。その後、初荷重を除去し30秒が経過した時、人工皮革の厚さ(T3)を1/1000mm単位で測定した。そして下式を用いて圧縮率及び復元率をそれぞれ計算した。 A circular indenter was subjected to an initial load of 900 gf / cm 2 and maintained for 30 seconds. And the maximum thickness (T1) of the artificial leather when 30 seconds passed after removing the initial load was measured in units of 1/1000 mm. After the initial load was again applied for 30 seconds, the minimum thickness value (T2) was measured in units of 1/1000 mm. Then, when the initial load was removed and 30 seconds passed, the thickness (T3) of the artificial leather was measured in units of 1/1000 mm. And the compression rate and the decompression | restoration rate were calculated using the following Formula, respectively.

圧縮率(%)=[(T1−T2)/T1]×100   Compression rate (%) = [(T1-T2) / T1] × 100

復元率(%)=[(T3−T2)/(T1−T2)]×100   Restoration rate (%) = [(T3-T2) / (T1-T2)] × 100

Figure 0005731654
Figure 0005731654

Claims (15)

0.001〜0.5デニールの繊度を有する短繊維を含む不織布と、
前記不織布内部に含浸されている高分子弾性体とを含み、
前記短繊維は、−CH−の繰返し単位を有し、該繰返し単位の数がそれぞれ異なる2種以上のポリエステル系短繊維であることを特徴とする、人工皮革。
A non-woven fabric comprising short fibers having a fineness of 0.001 to 0.5 denier;
A polymer elastic body impregnated inside the nonwoven fabric,
The artificial leather, wherein the short fibers are two or more kinds of polyester short fibers having a repeating unit of —CH 2 —, and the number of the repeating units is different from each other.
前記2種以上のポリエステル系短繊維は、それぞれ2〜4個の前記繰返し単位を有することを特徴とする請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein the two or more kinds of polyester-based short fibers each have 2 to 4 repeating units. 前記不織布は、5〜95重量%のポリエチレンテレフタレート短繊維を含む請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein the nonwoven fabric contains 5 to 95% by weight of polyethylene terephthalate short fibers. 前記不織布は、20%以下の重量変動係数を有することを特徴とする請求項1記載の人工皮革。   2. The artificial leather according to claim 1, wherein the nonwoven fabric has a weight variation coefficient of 20% or less. 前記2種以上のポリエステル系短繊維は、それぞれ異なる20%伸長時の弾性回復率を有し、
前記2種以上のポリエステル系短繊維の20%伸長時の弾性回復率の最大値に対する最小値の比率が10〜80%であることを特徴とする請求項1記載の人工皮革。
The two or more polyester short fibers have different elastic recovery rates at 20% elongation,
2. The artificial leather according to claim 1, wherein the ratio of the minimum value to the maximum value of the elastic recovery rate at 20% elongation of the two or more kinds of polyester short fibers is 10 to 80%.
前記2種以上のポリエステル系短繊維は、5〜100mmの長さを有することを特徴とする請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein the two or more kinds of polyester short fibers have a length of 5 to 100 mm. 前記人工皮革の10%伸長時の弾性回復率が80%以上であることを特徴とする請求項1記載の人工皮革。   2. The artificial leather according to claim 1, wherein the artificial leather has an elastic recovery rate of 80% or more at 10% elongation. 前記人工皮革の毛羽方向に対して平行な方向及びその逆方向のそれぞれにおいて前記人工皮革の摩擦係数の差が0.30以下であることを特徴とする請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein a difference in friction coefficient between the artificial leather and the direction parallel to the fluff direction of the artificial leather is 0.30 or less. 前記人工皮革は、8〜50%の圧縮率を有することを特徴とする請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein the artificial leather has a compression rate of 8 to 50%. 前記人工皮革は、80%以上の復元率を有することを特徴とする請求項1記載の人工皮革。   The artificial leather according to claim 1, wherein the artificial leather has a restoration rate of 80% or more. 海成分及び島成分を含む2種以上の海島型複合繊維を準備する工程(ここで前記2種以上の海島型複合繊維の島成分は、−CH−の繰返し単位を有し、該繰返し単位の数がそれぞれ異なるポリエステル系ポリマーである。)と、
前記2種以上の海島型複合繊維で不織布を形成する工程と、
前記2種以上の海島型複合繊維の海成分を溶出して極細不織布を形成する工程とを含む人工皮革の製造方法。
Step of preparing two or more types of sea-island type composite fibers containing sea component and island component (wherein the island components of the two or more types of sea-island type composite fibers have a repeating unit of —CH 2 — Are different polyester polymers).
Forming a nonwoven fabric with the two or more sea-island composite fibers;
And a step of eluting sea components of the two or more types of sea-island composite fibers to form an ultrafine nonwoven fabric.
前記極細不織布を形成する前に前記不織布に高分子弾性体を含浸する工程をさらに含むことを特徴とする請求項11記載の人工皮革の製造方法。   The method for producing artificial leather according to claim 11, further comprising a step of impregnating the nonwoven fabric with a polymer elastic body before forming the ultrafine nonwoven fabric. 前記極細不織布に高分子弾性体を含浸する工程をさらに含むことを特徴とする請求項11記載の人工皮革の製造方法。   The method for producing artificial leather according to claim 11, further comprising a step of impregnating the ultrafine nonwoven fabric with a polymer elastic body. 前記不織布を形成する工程はエアーレイド法、抄紙法及びカーディング/クロスラッピング法のうち一つ以上の方法を用いて行われ、
前記不織布を形成する工程は前記不織布が20%以下の重量変動係数を有するように、前記2種以上の海島型複合繊維を均一に混合する段階を含むことを特徴とする請求項11記載の人工皮革の製造方法。
The step of forming the nonwoven fabric is performed using one or more methods of air raid method, paper making method and carding / cross wrapping method,
The artificial fabric according to claim 11, wherein the step of forming the nonwoven fabric includes a step of uniformly mixing the two or more kinds of sea-island type composite fibers so that the nonwoven fabric has a weight variation coefficient of 20% or less. A method of manufacturing leather.
前記不織布は、100〜700g/mの単位重量を有することを特徴とする請求項11記載の人工皮革の製造方法。 The method for producing artificial leather according to claim 11, wherein the nonwoven fabric has a unit weight of 100 to 700 g / m 2 .
JP2013530097A 2010-09-29 2011-09-27 Artificial leather and method for producing the same Active JP5731654B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2010-0094743 2010-09-29
KR20100094743 2010-09-29
PCT/KR2011/007091 WO2012044036A2 (en) 2010-09-29 2011-09-27 Artificial leather and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2013540908A JP2013540908A (en) 2013-11-07
JP5731654B2 true JP5731654B2 (en) 2015-06-10

Family

ID=45893634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530097A Active JP5731654B2 (en) 2010-09-29 2011-09-27 Artificial leather and method for producing the same

Country Status (6)

Country Link
US (1) US20130209738A1 (en)
EP (1) EP2623655B1 (en)
JP (1) JP5731654B2 (en)
KR (1) KR101782778B1 (en)
CN (1) CN103154358B (en)
WO (1) WO2012044036A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138709B (en) * 2011-05-10 2013-03-27 丹阳市丹祈鱼跃纺织有限公司 Method for preparing maize biology-based special-leather-feel top grade leisure shell fabric
KR102433427B1 (en) * 2016-03-30 2022-08-16 코오롱인더스트리 주식회사 artificial leather and manufacturing method thereof
CN106079680A (en) * 2016-06-20 2016-11-09 福建鑫华股份有限公司 A kind of composite lether base fabric and preparation method thereof
KR20180103307A (en) * 2017-03-09 2018-09-19 현대자동차주식회사 High density artificial leather having excellent surface touch and method for manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214589A (en) * 1982-06-04 1983-12-13 東レ株式会社 Production of resin molded article having fibrous raised surface
TW257814B (en) * 1993-10-29 1995-09-21 Kuraray Co
WO1999023289A1 (en) * 1997-10-31 1999-05-14 Teijin Limited Nonwoven fabric, and sheetlike materials and synthetic leathers made by using the same
JP4046901B2 (en) * 1999-07-16 2008-02-13 株式会社クラレ Multicomponent fiber and leather-like sheet using the same
JP2002069789A (en) * 2000-09-05 2002-03-08 Asahi Kasei Corp Woven fabric for artificial leather and artificial leather
JP2002294571A (en) * 2001-03-30 2002-10-09 Kuraray Co Ltd Flame-retardant leather-like sheet substrate body and method for producing the same
ITMI20012108A1 (en) * 2001-10-12 2003-04-12 Alcantara Spa PRODUCTION OF HIGH-ELASTICITY MICROFIBER SUEDE NON-WOVEN FABRIC
TWI230216B (en) * 2002-03-11 2005-04-01 San Fang Chemical Industry Co Manufacture method for artificial leather composite reinforced with ultra-fine fiber non-woven fabric
JP4271553B2 (en) * 2003-10-31 2009-06-03 株式会社クラレ Suede-like artificial leather with good light fastness and method for producing the same
KR20050073909A (en) * 2004-01-12 2005-07-18 주식회사 휴비스 Ultra fine conjugate ptt fibers for artificial leather and manufacturing method thereof
JP5162837B2 (en) * 2006-03-02 2013-03-13 東レ株式会社 Sheet material, method for producing the same, and interior material and clothing material using the same
JP5088293B2 (en) * 2007-10-29 2012-12-05 東レ株式会社 Leather-like sheet material, interior material, clothing material and industrial material using the same, and method for producing leather-like sheet material
KR101062675B1 (en) * 2007-12-04 2011-09-06 코오롱인더스트리 주식회사 Artificial leather and its manufacturing method
KR100951976B1 (en) * 2007-12-12 2010-04-08 현대자동차주식회사 Artificial leather used in conveyance with excellent shrinkage properties
JP5924763B2 (en) * 2008-12-31 2016-05-25 コーロン インダストリーズ インク Artificial leather and method for producing the same
CN101671917B (en) * 2009-08-25 2011-06-01 浙江航天无纺布有限公司 Non-woven fabric used for synthetic leather and artificial leather and production method thereof

Also Published As

Publication number Publication date
CN103154358A (en) 2013-06-12
WO2012044036A2 (en) 2012-04-05
JP2013540908A (en) 2013-11-07
KR20120033257A (en) 2012-04-06
EP2623655A2 (en) 2013-08-07
WO2012044036A3 (en) 2012-06-21
KR101782778B1 (en) 2017-10-24
US20130209738A1 (en) 2013-08-15
EP2623655A4 (en) 2017-04-05
EP2623655B1 (en) 2020-06-17
CN103154358B (en) 2014-12-31

Similar Documents

Publication Publication Date Title
TWI250239B (en) A composite sheet used for artificial leather with low elongation and excellent softness
JP4699528B2 (en) Suede-like artificial leather with excellent strength and elongation characteristics
JP5593379B2 (en) Leather-like sheet
CN107849806A (en) Leather sample cloth and silk
JP5924763B2 (en) Artificial leather and method for producing the same
JP5731654B2 (en) Artificial leather and method for producing the same
TWI735716B (en) Fuzzy artificial leather, polyester fiber, and non-woven fabric
JP2004521194A (en) Abrasion resistant and drapable nonwoven
KR20170047209A (en) Sheet material and manufacturing method thereof
KR20160038526A (en) Manufacturing method of artificial leather
TW202027994A (en) Artificial leather base material, method for production thereof, and napped artificial leather
JP2008169505A (en) Compressed fabric consisting of ultra fine fiber, and method for producing the same
JP2013067917A (en) Leather-like sheet
JP6221538B2 (en) Sheet material and method for producing the same
KR101885253B1 (en) Artificial Leather and Method for Manufacturing The Same
JP2012136801A (en) Artificial leather having novel pattern and method for producing the same
JPS58191280A (en) Leather-like sheet and production thereof
JP5029217B2 (en) Manufacturing method of sheet-like material
JPH03137281A (en) Napped fiber sheet and its production
JPH02234981A (en) Production of flexible leather-like sheet material
JPS6075688A (en) Leathery sheet
JP2005194664A (en) Suede-like artificial leather
JPH10226968A (en) Production of leather-like sheet
JPS6075684A (en) Leathery sheet
JP2005188008A (en) Nubuck-like artificial leather

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250