JP5730749B2 - Electronic blood pressure monitor - Google Patents
Electronic blood pressure monitor Download PDFInfo
- Publication number
- JP5730749B2 JP5730749B2 JP2011265727A JP2011265727A JP5730749B2 JP 5730749 B2 JP5730749 B2 JP 5730749B2 JP 2011265727 A JP2011265727 A JP 2011265727A JP 2011265727 A JP2011265727 A JP 2011265727A JP 5730749 B2 JP5730749 B2 JP 5730749B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse wave
- blood pressure
- pressure
- cuff
- wave amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000036772 blood pressure Effects 0.000 title claims description 103
- 238000005259 measurement Methods 0.000 claims description 71
- 230000014509 gene expression Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 13
- 210000004204 blood vessel Anatomy 0.000 claims description 9
- 238000012935 Averaging Methods 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 18
- 230000035488 systolic blood pressure Effects 0.000 description 12
- 238000009530 blood pressure measurement Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 101100028900 Caenorhabditis elegans pcs-1 gene Proteins 0.000 description 4
- 102100028298 Vacuolar protein sorting-associated protein VTA1 homolog Human genes 0.000 description 4
- 101710111280 Vacuolar protein sorting-associated protein VTA1 homolog Proteins 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000035487 diastolic blood pressure Effects 0.000 description 4
- 208000019901 Anxiety disease Diseases 0.000 description 3
- 230000036506 anxiety Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000002555 auscultation Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
本発明は、電子血圧計、特にノイズの影響を低減し正確な血圧値を算出する電子血圧計に関する。 The present invention relates to an electronic sphygmomanometer, and more particularly to an electronic sphygmomanometer that reduces the influence of noise and calculates an accurate blood pressure value.
血圧の測定方法としてコロトコフ法(聴診法)とオシロメトリック法が知られている。 As methods for measuring blood pressure, the Korotkoff method (auscultation method) and the oscillometric method are known.
オシロメトリック法による血圧計には、減圧する過程で測定する方式である減圧測定型血圧計、加圧する過程で測定する方式である加圧測定型血圧計がある。 There are two types of sphygmomanometers based on the oscillometric method: a depressurization measurement type sphygmomanometer that measures in the process of depressurization and a pressurization measurement sphygmomanometer that measures in the process of pressurization.
減圧測定型血圧計の測定原理は、人体の上腕等に巻きつけたカフにポンプ等の加圧手段により空気を送った後に、排気により徐々に減圧し、減圧の過程でカフ内の圧力を検出して、動脈波の脈波振幅と残りの静圧を抽出し、脈波振幅の最大値に所定比率を乗じて最高血圧および最低血圧をそれぞれ決定するための脈波振幅のレベルを設定し、これによりそれぞれ脈波を特定し、特定された脈波に基づき最高血圧および最低血圧を決定する。 The measurement principle of the pressure reduction type sphygmomanometer is that after the air is sent to the cuff wrapped around the upper arm of the human body by means of pressure such as a pump, the pressure is gradually reduced by exhaust, and the pressure in the cuff is detected during the process of pressure reduction. Then, extract the pulse wave amplitude of the arterial wave and the remaining static pressure, multiply the maximum value of the pulse wave amplitude by a predetermined ratio, and set the level of the pulse wave amplitude for determining the systolic blood pressure and the diastolic blood pressure, Thereby, the pulse wave is specified, and the systolic blood pressure and the diastolic blood pressure are determined based on the specified pulse wave.
図9および図10はその具体的な方法を説明するための図であり、減圧測定型血圧計のカフ内の圧力の変化を示している。図9は時間(横軸)とカフ内の圧力(縦軸)の関係を示す図であり、図10は図9から抽出したカフ内の圧力(横軸)と脈波振幅(縦軸)の関係を示す図である。 FIG. 9 and FIG. 10 are diagrams for explaining the specific method, and show the change of the pressure in the cuff of the decompression-type blood pressure monitor. FIG. 9 is a diagram showing the relationship between time (horizontal axis) and pressure in the cuff (vertical axis), and FIG. 10 shows the pressure in the cuff (horizontal axis) and pulse wave amplitude (vertical axis) extracted from FIG. It is a figure which shows a relationship.
上述のように、上腕等に巻きつけたカフ内の圧力を加圧して上昇させた後、徐々に排気して低下させると図9に示すようにカフ内の圧力は脈動する成分すなわち脈波を生ずる。この脈波の高さはカフ内の圧力(カフ圧)が低下するに従って増加し、最大脈波振幅Hmaxとなった後には減少する。したがって、図9のグラフで最初に検出される脈波はカフ圧が高い方の脈波であり、時間が経過するにつれて検出される脈波のカフ圧は小さくなっていく。 As described above, when the pressure in the cuff wound around the upper arm is increased by pressurizing and then gradually exhausting and lowering, the pressure in the cuff becomes a pulsating component, that is, a pulse wave as shown in FIG. Arise. The height of the pulse wave increases as the pressure in the cuff (cuff pressure) decreases, and decreases after reaching the maximum pulse wave amplitude Hmax. Therefore, the pulse wave detected first in the graph of FIG. 9 is the pulse wave with the higher cuff pressure, and the cuff pressure of the detected pulse wave becomes smaller as time elapses.
したがって、これをグラフ化すると図10のようになる。
同図において、最大脈波振幅Hmaxとなる前の脈波に対し、最大脈波振幅Hmaxの50%となる脈波振幅に対応するカフ圧をいわゆる「最高血圧」とし(以下、当該ポイントを「S」点と称する)、また、最大脈波振幅Hmaxとなった後の脈波に対し最大脈波振幅Hmaxの70%となる脈波振幅に対応するカフ圧をいわゆる「最低血圧」とする(以下、当該ポイントを「D」点と称する)。ただし、上記の「最高血圧」に関する「50%」あるいは「最低血圧」に対する「70%」という割合は、血圧計の設計条件などにより変わり得る。
Therefore, this is graphed as shown in FIG.
In the figure, the cuff pressure corresponding to the pulse wave amplitude that is 50% of the maximum pulse wave amplitude Hmax with respect to the pulse wave before the maximum pulse wave amplitude Hmax is referred to as a so-called “maximum blood pressure” (hereinafter, the point is referred to as “ The cuff pressure corresponding to the pulse wave amplitude that is 70% of the maximum pulse wave amplitude Hmax with respect to the pulse wave after reaching the maximum pulse wave amplitude Hmax is referred to as a so-called “minimum blood pressure” (referred to as “S” point). Hereinafter, this point is referred to as “D” point). However, the ratio of “50%” or “70%” with respect to “minimum blood pressure” regarding the “maximum blood pressure” may vary depending on the design conditions of the sphygmomanometer.
ところで、上記のような血圧の測定方法においては、S点あるいはD点にカフ圧の測定値が存在しない場合がある。かかる場合には、測定値から直接最高血圧・最低血圧を読み取れない。 By the way, in the blood pressure measurement method as described above, there is a case where a cuff pressure measurement value does not exist at the S point or the D point. In such a case, the maximum blood pressure and the minimum blood pressure cannot be read directly from the measured value.
そのような問題に対応可能な先行技術として、特許文献1の電子血圧計がある。同文献では、S点またはD点に相当する点の両側直近に1ポイントずつ測定値を選択し、それら2ポイントを結ぶ1次式を算出し、その1次式とS点またはD点の脈波振幅との交点から最高血圧または最低血圧のカフ圧を読み取っている。つまり、S点またはD点を求めるにあたって、脈波振幅をいわば補間することにより、上記の問題に対応可能となっている。
As a prior art that can cope with such a problem, there is an electronic blood pressure monitor of
しかしながら、測定中に測定者の身体が動いた場合や、減圧過程でカフの血管圧迫効率が変化した場合には、局所的なノイズが発生し、S点またはD点をまたぐ2ポイント自体の測定値が不正確になる場合がある。この場合当然ながら、補間された点は真値からずれ、最高血圧あるいは最低血圧の正確な算出ができなくなる可能性があった。 However, if the measurer's body moves during the measurement, or if the cuff's blood vessel compression efficiency changes during the decompression process, local noise occurs, and the two points themselves that cross the S or D point are measured. The value may be inaccurate. In this case, as a matter of course, the interpolated point deviates from the true value, and there is a possibility that accurate calculation of the maximum blood pressure or the minimum blood pressure cannot be performed.
また、使用者が1日のうちの測定時刻などを決めて継続的に測定するような場合、上記のような原因により測定した血圧値が変動してばらつくと、使用者は血圧計に不具合があるのではないかと危惧し、不安感を抱く。 In addition, when the user decides the measurement time of the day and continuously measures, if the measured blood pressure value fluctuates due to the above causes, the user has a problem with the sphygmomanometer. I'm worried that there might be, and feel anxious.
したがって、引用文献1においても、精度よく最高血圧あるいは最低血圧を算出するという点において改善の余地があった。
Therefore,
本発明は、以上のような背景技術に鑑みてなされたものであり、オシロメトリック法によって血圧を算出する電子血圧計において、検出された脈波振幅に対する補間の精度を向上させ、最高血圧・最低血圧の正しい測定結果を使用者に提供することができ、また、測定値のばらつきを小さくすることにより、使用者の不安感を解消することのできる電子血圧計および電子血圧計を用いた血圧の測定方法を提供することを目的としている。 The present invention has been made in view of the background art as described above. In an electronic sphygmomanometer that calculates blood pressure by an oscillometric method, the accuracy of interpolation with respect to detected pulse wave amplitude is improved, and It is possible to provide the user with correct blood pressure measurement results, and to reduce blood pressure fluctuations using an electronic sphygmomanometer and an electronic sphygmomanometer that can relieve the user's anxiety by reducing variations in measured values. The purpose is to provide a measurement method.
上述した課題を解決するため、本発明の電子血圧計は、血管に圧力を加えるためのカフと、カフに加圧空気を供給する加圧手段と、カフの圧力を減圧する減圧手段と、カフ内の圧力を検出するカフ圧検出手段と、カフ圧検出手段の検出値に基づいて脈波振幅を検出する脈波検出手段と、カフ内の圧力と脈波振幅に基づいて血圧値を決定する血圧決定手段と
を有する電子血圧計であって、血圧決定手段は、脈波検出手段により検出される最大脈波振幅を抽出する最大振幅脈波検出手段と、最大脈波振幅から一定割合減じた血圧値を決定する脈波振幅レベルを算出し、脈波振幅レベルを境にして、一方の側の測定値から1または複数個を第一の測定値群として選択するとともに、他方の側の測定値から複数個を第二の測定値群として選択し、第一の測定値群のいずれか1点と、第二の測定値群のいずれか1点とを結ぶ直線の組合せのうち2本以上を複数の補間一次式として算出する脈波振幅一次式算出手段とを有し、複数の補間一次式のそれぞれについて脈波振幅レベルに対応するカフ圧に基づき、血圧値を算出することを特徴とする。
In order to solve the above-described problems, an electronic sphygmomanometer according to the present invention includes a cuff for applying pressure to a blood vessel, a pressurizing unit for supplying pressurized air to the cuff, a decompression unit for reducing the pressure of the cuff, and a cuff. A cuff pressure detecting means for detecting the internal pressure, a pulse wave detecting means for detecting the pulse wave amplitude based on the detection value of the cuff pressure detecting means, and a blood pressure value based on the pressure in the cuff and the pulse wave amplitude. An electronic sphygmomanometer having a blood pressure determination means, wherein the blood pressure determination means is a maximum amplitude pulse wave detection means for extracting a maximum pulse wave amplitude detected by the pulse wave detection means, and is subtracted from the maximum pulse wave amplitude by a certain percentage. The pulse wave amplitude level that determines the blood pressure value is calculated, and one or more of the measured values on one side are selected as the first measured value group from the pulse wave amplitude level, and the measurement on the other side is selected. Select multiple values as the second measured value group, And any one point of the measurement value group and a second pulse wave amplitude linear expression calculating means for calculating two or more as a plurality of interpolated linear expression of the linear combinations connecting the any one point of the measurement value group And a blood pressure value is calculated based on the cuff pressure corresponding to the pulse wave amplitude level for each of the plurality of linear interpolation equations.
本発明によれば、脈波振幅レベルに応じて3点以上の測定点を抽出して、それら測定点から複数本の補間式を算出し、該複数本の補間式と血圧決定脈波レベルから最高血圧・最低血圧を算出するようにしたので、血圧測定における局所的なノイズの影響を低減することができ、正しい測定値を得ることができる。その結果、測定ごとの血圧値のばらつきも小さくなる。 According to the present invention, three or more measurement points are extracted according to the pulse wave amplitude level, a plurality of interpolation equations are calculated from the measurement points, and the plurality of interpolation equations and the blood pressure determining pulse wave level are calculated. Since the maximum blood pressure and the minimum blood pressure are calculated, the influence of local noise in blood pressure measurement can be reduced, and a correct measurement value can be obtained. As a result, the variation in blood pressure value for each measurement is also reduced.
好ましくは、血圧決定手段は、複数の補間一次式のそれぞれについて脈波振幅レベルに対応するカフ圧を求め、カフ圧を平均することによって血圧値を算出する。 Preferably, the blood pressure determination unit calculates a blood pressure value by obtaining a cuff pressure corresponding to the pulse wave amplitude level for each of the plurality of linear interpolation equations and averaging the cuff pressure.
この場合、複数本の補間式から求めた複数の補間値を平均して最高血圧・最低血圧を算出するようにしたので、血圧測定における局所的なノイズの影響を低減することができ、正しい測定値を得ることができる。その結果、測定ごとの血圧値のばらつきも小さくなる。 In this case, since the maximum blood pressure and minimum blood pressure are calculated by averaging a plurality of interpolation values obtained from a plurality of interpolation equations, the influence of local noise in blood pressure measurement can be reduced and correct measurement is performed. A value can be obtained. As a result, the variation in blood pressure value for each measurement is also reduced.
また好ましくは、脈波振幅一次式算出手段は、前記脈波振幅レベルを境にして、一方の側の測定値から2点を第一の測定値群として選択するとともに、他方の側の測定値から2点を第二の測定値群として選択し、前記第一の測定値群のいずれか1点と、前記第二の測定値群のいずれか1点とを結ぶ直線の組合せのうち4本を補間一次式として算出する。 Preferably, the pulse wave amplitude primary expression calculating means selects two points as the first measurement value group from the measurement values on one side with the pulse wave amplitude level as a boundary, and the measurement value on the other side. Are selected as the second measured value group, and four of the combinations of straight lines connecting any one point of the first measured value group and any one point of the second measured value group. Is calculated as a linear interpolation equation .
本発明の電子血圧計および血圧の測定方法によれば、検出された脈波振幅に対する補間の精度を向上させ、最高血圧・最低血圧の正しい測定結果を使用者に提供することができ、また、測定値のばらつきを小さくすることにより、使用者の不安感を解消することができる。 According to the electronic sphygmomanometer and the blood pressure measurement method of the present invention, it is possible to improve the accuracy of interpolation with respect to the detected pulse wave amplitude, and to provide the user with the correct measurement result of the maximum blood pressure and the minimum blood pressure, By reducing the variation in the measured values, the user's anxiety can be eliminated.
以下、本発明の各実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、図1および図2を参照して、本発明の実施形態にかかる電子血圧計100の構成を説明する。
First, with reference to FIG. 1 and FIG. 2, the structure of the electronic
図1に示す電子血圧計100は、カフ1と、カフ圧調整手段3と、圧力信号変換手段4と、操作手段5と、制御手段6及び表示手段7を有している。
An
カフ1は、被験者の上腕に圧力をかけて被験者の血管を締め付けるための袋であって、チューブ2によってカフ圧調整手段3と圧力信号変換手段4に接続されている。
The
カフ圧調整手段3は、カフ1に空気を送り、被験者の上腕に圧力を加えるための加圧ポンプ3aと、カフ1内の空気を排出するための排気弁3bと、カフ内の空気圧を一定速度で低下させる減圧弁3cとによって構成されている。
The cuff pressure adjusting means 3 sends air to the
圧力信号変換手段4は、カフ1内の圧力を検出し電気信号に変換する。加圧ポンプ3aと、排気弁3b及び圧力信号変換手段4は、それぞれ制御手段6に接続されている。また、制御手段6には操作手段5と、表示手段7と、ブザー8が接続されている。
The pressure signal conversion means 4 detects the pressure in the
図2に示すように、制御手段6は、図示しないCPU及びROM,RAM等の記憶手段を有するとともに、脈波検出手段61とカフ圧検出手段62及び血圧決定手段63を有している。ここで、脈波検出手段61は、圧力信号変換手段4からの圧力信号にもとづいて脈波を検出し脈波振幅の大きさを検出する。また、カフ圧検出手段62は、圧力信号変換手段4からの圧力信号にもとづいてカフ圧を検出する。さらに、血圧決定手段63は、脈波検出手段61及びカフ圧検出手段62からの信号を入力し、脈波振幅と、この脈波振幅に対応するカフ圧によって血圧を決定する。
As shown in FIG. 2, the
つぎに、図1および図2を参照して、本実施形態にかかる電子血圧計100の動作を説明する。
Next, the operation of the
この電子血圧計においては、操作者が、被験者の血管を締め付けることができるように被検者の上腕にカフ1を装着し、操作手段5を操作して電源を投入する。制御手段6は、電源の投入により、圧力信号変換手段4にカフ1内の圧力検出を開始させて圧力信号を出力させる。
In this electronic sphygmomanometer, the operator attaches the
また、制御手段6は、操作手段5により血圧測定開始が指令されると、加圧ポンプ3aを始動させてカフ1に空気を送り、ついで、カフ1内の圧力が、RAMに記憶されている加圧設定値に達すると加圧ポンプ3aを停止させ、続いて、減圧弁3cによりカフ1内の空気を徐々に排出し減圧させる。
Further, when the start of blood pressure measurement is instructed by the operation means 5, the control means 6 starts the pressurizing
減圧にともないカフ1内の圧力が下がり、被験者の血管がゆるめられ血液が流れ始める。
血管がゆるめられ、最高血圧に近づくと血管は振動を開始するため、脈波検出手段61は、心拍に連動して脈波振幅を検出する。脈波振幅はカフ圧の低下と共に徐々に大きくなり、カフによって圧迫されていた血管がゆるめられて本来の血液の流れに戻ったとき、脈波振幅は急速に小さくなり検出されなくなる(図4参照)。
As the pressure is reduced, the pressure in the
When the blood vessel is relaxed and approaches the maximum blood pressure, the blood vessel starts to vibrate. Therefore, the pulse wave detection means 61 detects the pulse wave amplitude in conjunction with the heartbeat. The pulse wave amplitude gradually increases as the cuff pressure decreases, and when the blood vessel compressed by the cuff is loosened and returned to the original blood flow, the pulse wave amplitude rapidly decreases and cannot be detected (see FIG. 4). ).
血圧決定手段63は、本実施形態にかかる血圧の測定方法にしたがい、カフ圧の低下にともなって変化する脈波振幅と、この変化していく脈波振幅に対応するカフ圧により血圧を決定する。
According to the blood pressure measurement method according to the present embodiment, the blood
(第1の実施形態)
つづけて、図2ないし図6を参照して、第1の本実施形態にかかる電子血圧計100の血圧決定手段63の詳細について説明する。
(First embodiment)
Next, details of the blood pressure determining means 63 of the
図2を参照して、血圧決定手段63は、最大振幅脈波検出手段63a、測定点抽出手段63b、脈波振幅一次式算出手段63c、血圧値算出手段63dより構成されている。
Referring to FIG. 2, blood
図3を併せて参照し、脈波検出手段61より脈波振幅の検出データを受け取った最大振幅脈波検出手段63aは、当該データから最大振幅脈波Hmax(mmHg)を抽出する(S302)。 Referring also to FIG. 3, the maximum amplitude pulse wave detection means 63a that has received the pulse wave amplitude detection data from the pulse wave detection means 61 extracts the maximum amplitude pulse wave Hmax (mmHg) from the data (S302).
ここで、Hmaxから最高血圧「SBP」(Systolic Blood Pressure)、および、最低血圧「DBP」(Diastolic Blood Pressureを算出するための比率(図10における0.5あるいは0.7に相当)を、それぞれ最高血圧決定比率α、最低血圧決定比率β、また、SBPおよびDBPを算出するための血圧を決定する脈波振幅レベルをそれぞれHs=Hmax×α、Hd=Hmax×βと定義する。α、βの具体的な値は、例えばそれぞれ0.5、0.7とすることができる
。
Here, the ratio (corresponding to 0.5 or 0.7 in FIG. 10) for calculating the systolic blood pressure “SBP” (Systemic Blood Pressure) and the systolic blood pressure “DBP” (Diastrotic Blood Pressure) from Hmax, The maximum blood pressure determination ratio α, the minimum blood pressure determination ratio β, and the pulse wave amplitude levels that determine the blood pressure for calculating SBP and DBP are defined as Hs = Hmax × α and Hd = Hmax × β, respectively. Specific values of can be set to, for example, 0.5 and 0.7, respectively.
これらの変数と測定した血圧データとの関係を図示したのが図4である。同図において横軸はカフ圧Pc、縦軸は脈波振幅Hであり、点線で測定点に対する包絡線も示している。符号AないしDは、特定の測定点を示している。 FIG. 4 shows the relationship between these variables and the measured blood pressure data. In the figure, the horizontal axis is the cuff pressure Pc, the vertical axis is the pulse wave amplitude H, and the envelope for the measurement point is also indicated by a dotted line. Reference signs A to D indicate specific measurement points.
図4において、SBPを例にとった場合、包絡線とH=Hsの交点に測定点があれば、その測定点のカフ圧を最高血圧SBPとするのが理想的といえるが、当該交点には測定点が存在しない。この場合、他の測定点を基に補間して求める方法が考えられ、従来は、Hsの前後の測定点Aと測定点Bとから一次式を求め、この一次式とH=Hsの直線との交点からSBPを求めていた。 In FIG. 4, when SBP is taken as an example, if there is a measurement point at the intersection of the envelope and H = Hs, it is ideal to set the cuff pressure at that measurement point as the maximum blood pressure SBP. Does not have a measuring point. In this case, a method of obtaining by interpolation based on other measurement points is conceivable. Conventionally, a linear expression is obtained from measurement points A and B before and after Hs, and this linear expression and a straight line H = Hs are obtained. SBP was calculated from the intersection of
しかしながら、この方法では、測定点Aあるいは測定点Bにノイズなどの外乱が重畳されると、当該交点はSBPの真値から外れた値となってしまう。図4では、例えば測定点Bが予測される包絡線から脈波振幅の小さい方向にずれた測定値となっている場合を示している。 However, in this method, when a disturbance such as noise is superimposed on the measurement point A or the measurement point B, the intersection point becomes a value deviating from the true value of SBP. FIG. 4 shows a case where, for example, the measurement point B is a measured value that is shifted from the predicted envelope in a direction in which the pulse wave amplitude is small.
本実施形態は、そのような問題を避けるため、カフ圧−脈波振幅の関係をプロットしたグラフにおいて、直線H=Hs(H=Hd)の直線をまたいで上下直近の1点ずつに加えて、その2点の前または後に測定された1点を選択し、上下に位置する2点および1点のそれぞれを接続する計2本の直線を求め、これらの直線とH=Hs(H=Hd)の交点を算出して、該交点から2点の最高血圧補間値(最低血圧補間値)を求め、これら補間値の平均値を最高血圧SBP(最低血圧DBP)と決定することを趣旨としている(図4、図5参照)。 In the present embodiment, in order to avoid such a problem, in the graph plotting the relationship between the cuff pressure and the pulse wave amplitude, the straight line H = Hs (H = Hd) is added to each of the nearest points above and below the straight line. Then, one point measured before or after the two points is selected, and a total of two straight lines connecting the two points located above and below and one point are obtained, and these straight lines and H = Hs (H = Hd ) Is calculated, two maximal blood pressure interpolation values (minimum blood pressure interpolation values) are obtained from the intersection, and the average value of these interpolation values is determined as the maximal blood pressure SBP (minimum blood pressure DBP). (See FIGS. 4 and 5).
ふたたび図2、図3を参照して、Hmaxを受け取った測定点抽出手段63bは、Hmaxにα、βを乗算してHs,Hdを算出する(S304)。 Referring to FIGS. 2 and 3 again, the measurement point extraction means 63b that has received Hmax multiplies Hmax by α and β to calculate Hs and Hd (S304).
そして、H=HsおよびH=Hdの直線をまたいで上下直近の1点ずつに加えて、その2点の前または後に測定された1点を、補間一次式を求める測定点として抽出する(S306)。 Then, one point measured before or after the two points is extracted as a measurement point for obtaining the linear interpolation equation (S306) by adding each point closest to the top and bottom across the straight line of H = Hs and H = Hd. ).
以下の説明では最高血圧を測定する場合の、本実施形態による血圧算出方法を説明するが、最低血圧も同様の方法で算出することができる。 In the following description, the blood pressure calculation method according to this embodiment when measuring the maximum blood pressure will be described, but the minimum blood pressure can also be calculated by the same method.
図4を参照して、本実施形態では、補間一次式を求める測定点として、H=Hsの上側直近にAの1点、および、下側直近にB,Dの2点を選択した場合を示している。 Referring to FIG. 4, in the present embodiment, a case where one point of A is selected as the closest measurement point of H = Hs and two points of B and D are selected as the measurement points for obtaining the linear interpolation formula. Show.
つづけて図2、図3および図5を参照して、脈波振幅一次式算出手段63cは、上側1点Aと、下側2点BとDを組み合わせて、補間するための補間一次式を(1)式を用いて算出する。
H=a×Pc+b ・・・ (1)
ここで、a,bは係数であり、脈波振幅一次式算出手段63cは、A、BおよびDの座標データからこの係数を求める。
Next, referring to FIG. 2, FIG. 3 and FIG. 5, the pulse wave amplitude primary
H = a × Pc + b (1)
Here, a and b are coefficients, and the pulse wave amplitude primary
補間一次式は、図5に示すように、点Aと点Bとの組合せからL1、点Aと点Dとの組合せからL2の2式を求める(S308)。 As shown in FIG. 5, two linear expressions for interpolation are obtained: L1 from the combination of point A and point B, and L2 from the combination of point A and point D (S308).
つぎに、上記2式を受け取った血圧値算出手段63dは、それぞれの式とH=Hsの交点2個を算出する(S310)。具体的には、図5において、補間直線L1およびL2に
対してH=Hsとの交点P1およびP2を算出する。
Next, the blood pressure value calculation means 63d that has received the above two formulas calculates two intersections of the respective formulas and H = Hs (S310). Specifically, in FIG. 5, intersection points P1 and P2 with H = Hs are calculated for the interpolation straight lines L1 and L2.
つぎに、血圧値算出手段63dは、交点P1およびP2から、それぞれの点におけるカフ圧Pcs1およびPcs2を求め、それらの平均値を最高血圧<SBP>として決定する(S312、S314)。すなわち、
<SBP>=(Pcs1+Pcs2)/2 ・・・ (2)
である。
Next, the blood pressure
<SBP> = (Pcs1 + Pcs2) / 2 (2)
It is.
図5において、<SBP>に対応するH=Hs上の点をP0として示しており、P0からPc軸上に下した垂線に<SBP>を示している。 In FIG. 5, a point on H = Hs corresponding to <SBP> is indicated as P0, and <SBP> is indicated by a perpendicular line extending from P0 on the Pc axis.
ここで、図6を参照して本実施形態の電子血圧計の作用について説明する。
先述したように、本実施形態では、血圧の測定点Bが他の測定点から予測される包絡線からずれた場合を例示している。すなわち、測定点BのPcに対応する包絡線上の点はB’で、測定点Bはノイズ等の影響で、それより低い脈波振幅となっている。
Here, the operation of the electronic blood pressure monitor of the present embodiment will be described with reference to FIG.
As described above, in the present embodiment, the case where the blood pressure measurement point B deviates from the envelope predicted from other measurement points is illustrated. That is, the point on the envelope corresponding to Pc at the measurement point B is B ′, and the measurement point B has a pulse wave amplitude lower than that due to the influence of noise or the like.
この場合、最高血圧SBPの真値SBP0は、測定点B’と測定点Dを結ぶ直線と直線H=Hsとの交点に近い位置にあり、補間式を1個だけ用いる場合でも、補間式を求める測定点がB’およびDであれば問題はない。 In this case, the true value SBP0 of the systolic blood pressure SBP is close to the intersection of the straight line H = Hs and the straight line connecting the measurement point B ′ and the measurement point D. Even when only one interpolation formula is used, the interpolation formula is If the measurement points to be obtained are B ′ and D, there is no problem.
しかしながら、測定点がBのケースでは、補間式が1個の場合、選択される測定点はAおよびBとなるから、この補間によって得られる最高血圧は交点P1からSBP1となる。この場合、測定値SBP1と真値SBP0との差は、図6に示すΔPc1となる。 However, in the case where the measurement point is B, when the number of interpolation equations is one, the selected measurement points are A and B, so the maximum blood pressure obtained by this interpolation is from the intersection point P1 to SBP1. In this case, the difference between the measured value SBP1 and the true value SBP0 is ΔPc1 shown in FIG.
一方、本実施形態により求めた最高血圧は、交点P0から得られる<SBP>であるから、測定値<SBP>と真値SBP0との差は、図6に示すΔPc2となり、原理的にΔPc2<ΔPc1である。したがって、本実施形態によれば、補間式を算出する測定点にノイズが乗るなどして本来予測される測定値からずれた場合でも、最高血圧・最低血圧の測定値をより真値に近づけることが可能となる。 On the other hand, since the systolic blood pressure obtained by the present embodiment is <SBP> obtained from the intersection point P0, the difference between the measured value <SBP> and the true value SBP0 is ΔPc2 shown in FIG. 6, and in principle ΔPc2 < ΔPc1. Therefore, according to the present embodiment, the measured values of the systolic blood pressure and the diastolic blood pressure are made closer to the true value even when the measurement point for calculating the interpolation formula deviates from the originally predicted measurement value due to noise or the like. Is possible.
つまり本実施形態では、測定点に冗長性をもたせ、ある測定点にノイズが重畳するなどして全体的な包絡線からずれた場合でも、他の包絡線に近い測定点によってそのずれを補正しているということもできる。 In other words, in the present embodiment, even if the measurement point is made redundant and the noise is superimposed on a certain measurement point to deviate from the overall envelope, the deviation is corrected by the measurement point close to the other envelope. It can also be said.
最低血圧<DBP>も、上述の最高血圧<SBP>と同様に補間して求めることができ、本実施形態の電子血圧計によれば、このようにして算出したより真値に近く誤差の少ない最高血圧・最低血圧を、操作手段5の操作により表示手段7に表示させるなどすることができる。 The minimum blood pressure <DBP> can also be obtained by interpolation in the same manner as the above-described maximum blood pressure <SBP>. According to the electronic sphygmomanometer of the present embodiment, it is closer to the true value and has less error. The maximum blood pressure / minimum blood pressure can be displayed on the display means 7 by operating the operation means 5.
以上のように本実施形態によれば、複数の補間式から求めた複数の補間値を平均して最高血圧・最低血圧を算出するようにしたので、血圧測定における局所的なノイズの影響を低減することができ、その結果より正しい最高血圧・最低血圧の測定値を使用者に提供することが可能となる。 As described above, according to the present embodiment, the maximum blood pressure and the minimum blood pressure are calculated by averaging a plurality of interpolation values obtained from a plurality of interpolation formulas, thereby reducing the influence of local noise in blood pressure measurement. As a result, it is possible to provide the user with a correct measurement value of the maximum blood pressure and the minimum blood pressure.
また、局所的なノイズの影響を低減することで、測定ごとの血圧値のばらつきが小さくなるという効果もある。この場合、血圧値のばらつきが大きいことにより、使用者が血圧計の不具合を危惧するというようなことがなくなり、使用者の血圧計に対する不安を解消することが可能となる。 In addition, by reducing the influence of local noise, there is an effect that variation in blood pressure values for each measurement is reduced. In this case, since the variation of the blood pressure value is large, the user does not worry about the malfunction of the blood pressure monitor, and the user's anxiety about the blood pressure monitor can be solved.
(第2の実施形態)
図7および図8を用いて、本発明の第2の実施形態にかかる電子血圧計100について説明する。
(Second Embodiment)
An
本実施形態は、図4に示すカフ圧と脈波振幅の関係において、補間一次式を求める測定点としてA、B、CおよびDを選択した場合、すなわちH=Hsの上側直近にA、Cの2点、下側直近にB、Dの2点を選択した場合の実施形態である。 In the present embodiment, in the relationship between the cuff pressure and the pulse wave amplitude shown in FIG. 4, when A, B, C, and D are selected as measurement points for obtaining a linear interpolation equation, that is, A, C This is an embodiment in the case where two points B and D are selected closest to the lower side.
本実施形態の最高血圧・最低血圧算出のフローチャートは、図3において、補間一次式を求める測定点の数を3点から4点に読み替え(S306)、脈波振幅一次式数を2式から4式に読み替え(S308)たものとなる。 In the flowchart of calculating the systolic blood pressure / diastolic blood pressure of this embodiment, in FIG. 3, the number of measurement points for obtaining the interpolation primary expression is changed from 3 to 4 (S306), and the pulse wave amplitude primary expression number is changed from 2 expressions to 4 expressions. It is read as an expression (S308).
読み替えた図3のフローにしたがって、脈波振幅一次式算出手段63cは、A、B、CおよびDの座標データから式(1)の係数a,bを求め、図7に示すように、点Aと点Bとの組合せからL1、点Aと点Dとの組合せからL2、点Cと点Bとの組合せからL3、点Cと点Dとの組合せからL4の4式を求める(S308)。 According to the read flow of FIG. 3, the pulse wave amplitude primary expression calculating means 63 c obtains the coefficients a and b of the expression (1) from the coordinate data of A, B, C and D, and as shown in FIG. Four formulas are obtained: L1 from the combination of A and point B, L2 from the combination of point A and point D, L3 from the combination of point C and point B, and L4 from the combination of point C and point D (S308). .
つぎに、上記4式を受け取った血圧値算出手段63dは、それぞれの式とH=Hsの交点4個を算出する(S310)。具体的には、図7において、補間直線L1ないしL4に対してH=Hsとの交点P1ないしP4を算出する。 Next, the blood pressure value calculation means 63d that has received the above four formulas calculates four intersections of the respective formulas and H = Hs (S310). Specifically, in FIG. 7, intersection points P1 to P4 with H = Hs are calculated for the interpolation straight lines L1 to L4.
つぎに、血圧値算出手段63dは、交点P1ないしP4から、それぞれの点におけるカフ圧Pcs1ないしPcs4を求め、それらの平均値を最高血圧<SBP>’として決定する(S312、S314)。すなわち、
<SBP>’=(Pcs1+Pcs2+Pcs3+Pcs4)/4 ・・・ (3)
である。
Next, the blood pressure
<SBP> ′ = (Pcs1 + Pcs2 + Pcs3 + Pcs4) / 4 (3)
It is.
図7において、<SBP>’に対応するH=Hs上の点をP0’として示しており、P0’からPc軸上に下した垂線に<SBP>’を示している。
In FIG. 7, a point on H = Hs corresponding to <SBP> ′ is indicated as
図8は、図6と同様に、上記<SBP>’、真値SBP0、1個の補間式から求めた最高血圧SBP1の関係を示す。 FIG. 8 shows the relationship between <SBP> ′, true value SBP0, and systolic blood pressure SBP1 obtained from one interpolation equation, as in FIG.
図8より、<SBP>’と真値SBP0との差ΔPc2’は、SBP1と真値SBP0との差ΔPc1より小さいことが分かる。
したがって、本実施形態によっても、補間式を算出する測定点にノイズが乗るなどして本来予測される測定値からずれた場合でも、最高血圧・最低血圧の測定値をより真値に近づけることが可能となるとともに、補間一次式を第1の実施形態より多数とすることにより、測定値をより真値に近づけることが可能となる。
FIG. 8 shows that the difference ΔPc2 ′ between <SBP> ′ and the true value SBP0 is smaller than the difference ΔPc1 between SBP1 and the true value SBP0.
Therefore, according to the present embodiment, even when the measurement point for calculating the interpolation formula is deviated from the originally predicted measurement value due to noise or the like, it is possible to make the measurement values of the maximum blood pressure and the minimum blood pressure closer to the true value. In addition, by making the number of linear interpolation equations larger than that in the first embodiment, the measured value can be made closer to the true value.
なお、上記実施形態においては、補間一次式を求める測定点として、血圧値を決定する脈波振幅レベルの直線H=Hs(H=Hd)の前後に測定された測定点を2点ずつの計4点を選択し、4本の直線による4個の交点から血圧値を求める場合を例示して説明したが、血圧値を決定する脈波振幅レベルの前後それぞれ2点以上の測定点を選択してもよい。 In the above embodiment, two measurement points measured before and after the pulse wave amplitude level straight line H = Hs (H = Hd) for determining the blood pressure value are measured as two measurement points for obtaining the interpolation linear expression. Although the case where four points are selected and the blood pressure value is obtained from four intersections by four straight lines has been described as an example, two or more measurement points before and after the pulse wave amplitude level for determining the blood pressure value are selected. May be.
その場合、血圧値を決定する脈波振幅レベルの前に測定された測定点の選択数をM、血圧値を決定する脈波振幅レベルの後に測定された測定点の選択数をNとすると、直線の本数はM×N本となる。このようにすれば、測定値をさらに正確なものとすることができる。例えば、直線H=Hs(H=Hd)の上下直近に上に3個、下に2個選択した場合補間一次式は6本となる。 In that case, if the selected number of measurement points measured before the pulse wave amplitude level for determining the blood pressure value is M and the selected number of measurement points measured after the pulse wave amplitude level for determining the blood pressure value is N, The number of straight lines is M × N. In this way, the measured value can be made more accurate. For example, when three lines are selected in the upper and lower positions of the straight line H = Hs (H = Hd) and two lines are selected below, the number of linear interpolation equations is six.
さらには、補間一次式を求める測定点の選択は、直線H=Hs(H=Hd)直近である必要もなく、あらかじめ定めた規則により直近を飛ばして選択してもよい。 Furthermore, the selection of the measurement point for obtaining the linear interpolation equation does not need to be closest to the straight line H = Hs (H = Hd), and may be selected by skipping the closest point according to a predetermined rule.
また、あらかじめ定めた個数の測定点のうち、測定条件等に応じて適宜一部を選択してもよく、補間一次式は血圧値を決定する脈波振幅レベルの前に測定された測定点と後ろに測定された測定点から算出すればよい。 In addition, a part of the predetermined number of measurement points may be selected as appropriate according to the measurement conditions, etc., and the primary interpolation equation is the measurement point measured before the pulse wave amplitude level for determining the blood pressure value. What is necessary is just to calculate from the measurement point measured behind.
1 カフ
2 チューブ
3 カフ圧調整手段
3a 加圧ポンプ
3b 排気弁
3c 減圧弁
4 圧力信号変換手段
5 操作手段
6 制御手段
7 表示手段
8 ブザー
61 脈波検出手段
62 カフ圧検出手段
63 血圧決定手段
63a 最大振幅脈波検出手段
63b 測定点抽出手段
63c 脈波振幅一次式算出手段
63d 血圧値算出手段
100 電子血圧計
1
Claims (3)
前記血圧決定手段は、前記脈波検出手段により検出される最大脈波振幅を抽出する最大振幅脈波検出手段と、前記最大脈波振幅から一定割合減じた血圧値を決定する脈波振幅レベルを算出し、前記脈波振幅レベルを境にして、一方の側の測定値から1または複数個を第一の測定値群として選択するとともに、他方の側の測定値から複数個を第二の測定値群として選択し、前記第一の測定値群のいずれか1点と、前記第二の測定値群のいずれか1点とを結ぶ直線の組合せのうち2本以上を複数の補間一次式として算出する脈波振幅一次式算出手段とを有し、前記複数の補間一次式のそれぞれについて前記脈波振幅レベルに対応するカフ圧に基づき、血圧値を算出することを特徴とする電子血圧計。 A cuff for applying pressure to the blood vessel, a pressurizing means for supplying pressurized air to the cuff, a depressurizing means for reducing the pressure of the cuff, a cuff pressure detecting means for detecting the pressure in the cuff, and An electronic sphygmomanometer having a pulse wave detection unit that detects a pulse wave amplitude based on a detection value of a cuff pressure detection unit, and a blood pressure determination unit that determines a blood pressure value based on the pressure in the cuff and the pulse wave amplitude. There,
The blood pressure determining means includes a maximum amplitude pulse wave detecting means for extracting a maximum pulse wave amplitude detected by the pulse wave detecting means, and a pulse wave amplitude level for determining a blood pressure value obtained by subtracting a certain percentage from the maximum pulse wave amplitude. Calculate and select one or more of the measured values on one side as the first measured value group with the pulse wave amplitude level as a boundary, and the second measured from the measured values on the other side Select as a value group, and two or more of the combinations of straight lines connecting any one point of the first measurement value group and any one point of the second measurement value group as a plurality of interpolation linear expressions An electronic sphygmomanometer, comprising: a pulse wave amplitude primary expression calculating unit that calculates a blood pressure value for each of the plurality of interpolation primary expressions based on a cuff pressure corresponding to the pulse wave amplitude level .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011265727A JP5730749B2 (en) | 2011-12-05 | 2011-12-05 | Electronic blood pressure monitor |
CN201210477369.2A CN103126662B (en) | 2011-12-05 | 2012-11-21 | Electronic sphygmomanometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011265727A JP5730749B2 (en) | 2011-12-05 | 2011-12-05 | Electronic blood pressure monitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013116264A JP2013116264A (en) | 2013-06-13 |
JP5730749B2 true JP5730749B2 (en) | 2015-06-10 |
Family
ID=48487582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011265727A Active JP5730749B2 (en) | 2011-12-05 | 2011-12-05 | Electronic blood pressure monitor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5730749B2 (en) |
CN (1) | CN103126662B (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06109B2 (en) * | 1985-05-10 | 1994-01-05 | オムロン株式会社 | Electronic blood pressure monitor |
US4785820A (en) * | 1986-12-22 | 1988-11-22 | Spacelabs, Inc. | Method and apparatus for systolic blood pressure measurement |
JP3006767B2 (en) * | 1990-01-26 | 2000-02-07 | 松下電工株式会社 | Electronic sphygmomanometer |
JPH05115448A (en) * | 1991-10-25 | 1993-05-14 | Omron Corp | Waveform processor |
JPH05184547A (en) * | 1992-01-10 | 1993-07-27 | Omron Corp | Electronic hemodynamometer |
US5368039A (en) * | 1993-07-26 | 1994-11-29 | Moses; John A. | Method and apparatus for determining blood pressure |
JPH0739529A (en) * | 1993-07-27 | 1995-02-10 | Matsushita Electric Works Ltd | Electronic sphygmomanometer |
-
2011
- 2011-12-05 JP JP2011265727A patent/JP5730749B2/en active Active
-
2012
- 2012-11-21 CN CN201210477369.2A patent/CN103126662B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103126662A (en) | 2013-06-05 |
CN103126662B (en) | 2016-05-04 |
JP2013116264A (en) | 2013-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10064561B2 (en) | Blood pressure measurement apparatus, blood pressure measurement method, and blood pressure measurement program | |
AU2018235369B2 (en) | Central aortic blood pressure and waveform calibration method | |
JP5146996B2 (en) | Blood pressure measurement device and control method thereof | |
JPH07327940A (en) | Sphygmometer of pulse wave propagation time system | |
JP3626171B1 (en) | Cardiodynamic evaluation device | |
CN101288586A (en) | Non-invasion blood pressure determination method | |
JP2003284696A (en) | Electronic sphygmomanometer and sphygmomanometry for the same | |
EP2465422B1 (en) | Circulatory function measurement device | |
JP5041155B2 (en) | Blood pressure measurement device | |
CN114224305A (en) | Detection method and device for blood pressure monitor | |
TWI600408B (en) | Method for estimating central aortic blood pressure and apparatus using the same | |
JP5730749B2 (en) | Electronic blood pressure monitor | |
JP6111741B2 (en) | Electronic blood pressure monitor | |
EP2369984A1 (en) | Method of measuring blood pressure and apparatus for performing the same | |
US20040059232A1 (en) | Blood pressure measuring apparatus with pulse wave detecting function | |
WO2022059653A1 (en) | Arterial pressure estimation device, arterial pressure estimation system, and arterial pressure estimation method | |
JP3480703B2 (en) | Hemodynamic measuring device, hemodynamic measuring method and recording medium | |
JP5146994B2 (en) | Blood pressure measurement device and control method thereof | |
JP2011234876A (en) | Blood pressure measuring instrument | |
KR100650041B1 (en) | Oscillometric blood pressure measurement system with a motion artifact eliminator using accelerometer | |
JP2005278965A (en) | Cardiac function evaluation device | |
JP2008168055A (en) | Stroke volume estimating apparatus | |
JP6304651B2 (en) | Cardiovascular function arithmetic unit | |
JP2013090824A (en) | Electronic blood pressure meter | |
JP2006051197A (en) | Pulse wave data correction apparatus of electronic tonometer, electronic tonometer, pulse wave data correction method for electronic tonometer, and control process, program and recording medium for electronic tonometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5730749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |