JP5730184B2 - Fluid temperature measuring device and fluid temperature measuring method - Google Patents

Fluid temperature measuring device and fluid temperature measuring method Download PDF

Info

Publication number
JP5730184B2
JP5730184B2 JP2011280239A JP2011280239A JP5730184B2 JP 5730184 B2 JP5730184 B2 JP 5730184B2 JP 2011280239 A JP2011280239 A JP 2011280239A JP 2011280239 A JP2011280239 A JP 2011280239A JP 5730184 B2 JP5730184 B2 JP 5730184B2
Authority
JP
Japan
Prior art keywords
fluid
temperature
thermometer
temperature measuring
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011280239A
Other languages
Japanese (ja)
Other versions
JP2013130478A (en
Inventor
郭之 八木
郭之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011280239A priority Critical patent/JP5730184B2/en
Publication of JP2013130478A publication Critical patent/JP2013130478A/en
Application granted granted Critical
Publication of JP5730184B2 publication Critical patent/JP5730184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、原子炉プラントや化学プラントなどのプラントに存在するタンク、蒸発缶、濃縮缶などの貯槽内に存在する又は配管に流れる流体の温度を測定する流体温度測定装置及び温度測定方法に関するものである。   The present invention relates to a fluid temperature measuring device and a temperature measuring method for measuring the temperature of a fluid existing in a storage tank such as a tank, an evaporating can, a concentrating can or the like existing in a plant such as a nuclear reactor plant or a chemical plant. It is.

従来の流体温度測定装置の一例を本発明の実施形態を示す図1を参照して説明する。以下の説明では、貯槽又は配管内を空間体と表す。図1における空間体1内には気体又は液体などの流体が満たされており、この流体の温度を測定するために、温度計4が空間体1内に設置されている。しかしながら、空間体1内が直接アクセスできない場合、図1に示したように温度計4の温度検出素子4aを空間体1内のへ外部から挿入し、温度計4の保守や交換を外部から行えるようにする必要が有る。   An example of a conventional fluid temperature measuring device will be described with reference to FIG. 1 showing an embodiment of the present invention. In the following description, the inside of a storage tank or piping is represented as a space body. A space body 1 in FIG. 1 is filled with a fluid such as gas or liquid, and a thermometer 4 is installed in the space body 1 in order to measure the temperature of the fluid. However, when the space body 1 cannot be directly accessed, the temperature detecting element 4a of the thermometer 4 is inserted into the space body 1 from the outside as shown in FIG. It is necessary to make it.

この場合、温度計4を外部から挿入する為のガイド管5が必要となり、このガイド管5の先端側に温度検出素子4a挿入することにより、空間体1内の温度の測定が行われることになる。   In this case, a guide tube 5 for inserting the thermometer 4 from the outside is required, and the temperature in the space body 1 is measured by inserting the temperature detection element 4a at the distal end side of the guide tube 5. Become.

特許文献1は、このようなガイド管を配管に挿入し、配管に流れる流体の温度を測定する技術を開示している。特許文献2は、露光装置内の空調システムの空間を流れる空気の風速を測定し、その流れる空気の温度を補正する技術を開示している。
なお、図1の説明おいて、説明されていない符号の構成要素などは、本発明の実施例で説明する。
Patent Document 1 discloses a technique for inserting such a guide pipe into a pipe and measuring the temperature of the fluid flowing through the pipe. Patent Document 2 discloses a technique for measuring the velocity of air flowing through a space of an air conditioning system in an exposure apparatus and correcting the temperature of the flowing air.
In the description of FIG. 1, constituent elements and the like that are not described will be described in an embodiment of the present invention.

特開2000−155055号公報JP 2000-155055 A 特開2010−216806号公報JP 2010-216806 A

空間体1内の流体の温度を測定する場合、ガイド管5は、空間体1内の流体が外部に漏れないように密閉されて使用される場合が多い。ガイド管5の製作時に開いた継ぎ手部分の穴や経年劣化等により、内壁に穴があく場合がある。空間体1内の圧力は、密閉状態にする為、外部に対して負圧に維持されている場合が多いが、この場合、ガイド管5内に穴があると、ガイド管5を封入して空気などの流体がガイド管5内を流れることになる。このような場合、ガイド管内を封入している流体が温度検出素子4aの近傍を流れることになる為、空間体1内に存在する流体の温度の測定値は正しい値を示さなくなる。   When the temperature of the fluid in the space body 1 is measured, the guide tube 5 is often used in a sealed state so that the fluid in the space body 1 does not leak to the outside. There may be a case where a hole is formed in the inner wall due to a hole in a joint portion opened at the time of manufacturing the guide tube 5 or aging deterioration. The pressure in the space body 1 is often maintained at a negative pressure with respect to the outside in order to make it sealed, but in this case, if there is a hole in the guide tube 5, the guide tube 5 is sealed. A fluid such as air flows in the guide tube 5. In such a case, since the fluid sealed in the guide tube flows in the vicinity of the temperature detecting element 4a, the measured value of the temperature of the fluid existing in the space body 1 does not show a correct value.

特許文献1の技術は上記の課題を認識しておらず、まして解決するための手段の示唆もない。一方、特許文献2は、空調システム内に流れる空気の風速を測定し、流れる空気の温度を補正する技術を開示しているが、特許文献2も、測定対象とは異なる流体による温度計の近傍の環境が変化するために、測定対象である空間体内に存在する流体の温度を補正するという課題の認識も、解決手段の示唆もない。   The technique of Patent Document 1 does not recognize the above-described problem, and there is no suggestion of means for solving it. On the other hand, Patent Document 2 discloses a technique for measuring the wind speed of air flowing in an air conditioning system and correcting the temperature of the flowing air, but Patent Document 2 also discloses a vicinity of a thermometer using a fluid different from the measurement target. Therefore, there is no recognition of the problem of correcting the temperature of the fluid existing in the space to be measured nor suggestion of a solution.

本発明の目的は,流体温度測定装置又は温度測定方法において、ガイド管を封入している流体が温度検出素子近傍を流れる場合において、この異なる流体の影響による空間体内の流体の温度測定誤差を低減することである。   The object of the present invention is to reduce the temperature measurement error of the fluid in the space due to the influence of the different fluid when the fluid enclosing the guide tube flows in the vicinity of the temperature detecting element in the fluid temperature measuring device or the temperature measuring method. It is to be.

本発明は、上記の目的を達成するために、少なくとも以下の特徴を有する。
本発明は、先端側が密閉され、内部に第1の流体を備える空間体の壁面から前記先端側を挿入されたガイド管と、前記ガイド管の前記先端側に温度検出素子が内装された第1の温度計と、前記第1の温度計から出力を処理する処理部とを有し、前記第1の流体の温度を測定する流体温度測定装置において、前記空間体は前記ガイド管より相対的に負圧に維持され、前記ガイド管内に存在する第2の流体の流量、温度を測定する流量計及び第2の温度計を備え、前記処理部は、前記流量計及び前記第2の温度計の測定結果に基づいて、前記第1の流体の温度を補正することを特徴とする。
In order to achieve the above object, the present invention has at least the following features.
In the present invention, a guide tube having a distal end sealed and a distal end side inserted from a wall surface of a space body having a first fluid therein, and a temperature detection element disposed on the distal end side of the guide tube A fluid temperature measuring device that measures the temperature of the first fluid, wherein the space body is relatively closer to the guide tube. A flowmeter for measuring the flow rate and temperature of the second fluid existing in the guide tube and maintained at a negative pressure, and a second thermometer; and the processing section includes: the flowmeter and the second thermometer The temperature of the first fluid is corrected based on the measurement result.

また、本発明は、先端側が密閉され、内部に第1の流体を備える空間体の壁面から前記先端側を挿入されたガイド管の前記先端側に温度測定素子が内装された第1の温度計で前記第1の流体の温度を測定する流体温度測定方法において、前記空間体は前記ガイド管より相対的に負圧に維持され、前記ガイド管内に存在する第2の流体の流量及び温度を測定し、前記測定結果に基づいて前記第1の流体の温度を補正することを特徴とする。   Further, the present invention provides a first thermometer in which a tip end side is hermetically sealed, and a temperature measuring element is housed on the tip end side of the guide tube into which the tip end side is inserted from a wall surface of a space body having a first fluid therein. In the fluid temperature measuring method for measuring the temperature of the first fluid, the space body is maintained at a relatively negative pressure relative to the guide tube, and the flow rate and temperature of the second fluid existing in the guide tube are measured. The temperature of the first fluid is corrected based on the measurement result.

さらに、前記補正は予め実験又はシミュレーションに基づいて規定された温度補正係数に基づいて行ってもよい。
また、前記空間体はタンク、缶、配管のうちいずれかであってもよい。
Further, the correction may be performed based on a temperature correction coefficient defined in advance based on experiments or simulations.
The space body may be any one of a tank, a can, and a pipe.

さらに、前記空間体は原子力プラントまたは化学プラントの構成するものであってもよい。
また、前記第2の流体は前記第1の流体と異なる種類の流体であってもよい。
Furthermore, the said space body may comprise a nuclear power plant or a chemical plant.
The second fluid may be a different type of fluid from the first fluid.

さらに、前記補正は、前記第1の温度計で測定された測定値に前記温度補正係数を掛けることによって行ってもよい。   Further, the correction may be performed by multiplying the measured value measured by the first thermometer by the temperature correction coefficient.

本発明によれば、流体温度測定装置又は温度測定方法において、ガイド管を封入している流体が温度検出素子近傍を流れる場合において、この異なる流体の影響による測定対象の流体の温度測定誤差を低減できる。   According to the present invention, in the fluid temperature measurement device or the temperature measurement method, when the fluid enclosing the guide tube flows in the vicinity of the temperature detection element, the temperature measurement error of the measurement target fluid due to the influence of the different fluid is reduced. it can.

本発明の流体温度測定装置の第1の実施例を示す図である。It is a figure which shows the 1st Example of the fluid temperature measuring apparatus of this invention. 図1に本発明の流体温度測定装置の第1の実施例における温度補正係数関係表を加えた図である。FIG. 1 is a diagram in which a temperature correction coefficient relation table in the first embodiment of the fluid temperature measuring apparatus of the present invention is added to FIG. 本発明の流体温度測定装置の第2の実施例を示す図である。It is a figure which shows the 2nd Example of the fluid temperature measuring apparatus of this invention. 本発明の流体温度測定装置の第3の実施例を示す図である。It is a figure which shows the 3rd Example of the fluid temperature measuring apparatus of this invention.

本発明の実施形態における実施例を図面を参照して説明する。
(実施例1)
図1は、第1の実施形態1として空間体1に、例えば、タンクに監視流体2として原子力プラントで発生した放射性ガスなどの監視気体2kが密閉されており、監視気体2kの温度を測定する流体温度測定装置100の第1の実施例100Aを示す図である。
流体温度測定装置100Aは、空間体1内の監視流体2kの温度を測定するために、先端に温度検出素子4aを有する空間流体温度計4と、空間流体温度計4を空間体1の壁面から挿入可能とし、監視気体2kとは異なる流体である管流体3が存在するガイド管5と、空間流体温度計4で測定した空間流体測定温度6に基づき監視気体2kの真の温度に近い真空間流体温度8を求める処理部7と、真空間流体温度を求めるプログラムや所定のデータを内蔵するメモリ10と、求めた真空間流体温度を表示する表示器9とを有する。管流体3が空気であれば、ガイド管5の温度検出素子4aとは反対側端は開放されている。管流体3が空気でなければ、前記反対側端は、図示しない流体供給装置に接続されていてもよい。空間体1内の監視流体2が気体であるので、管流体3も気体が望ましい。また、その種類も異なった方が望ましい場合は、異なった種類のものを、同じ種類の方が望ましい場合は、同じ種類のものを選ぶのもよい。なお、空間体1内は、密閉状態にする為、図示しない装置によって、外部に対して負圧に維持されている。
Embodiments of the present invention will be described with reference to the drawings.
(Example 1)
In FIG. 1, a monitoring gas 2k such as a radioactive gas generated in a nuclear power plant is sealed as a monitoring fluid 2 in a space body 1 as a first embodiment 1, for example, in a tank, and the temperature of the monitoring gas 2k is measured. 1 is a diagram illustrating a first embodiment 100A of a fluid temperature measuring device 100. FIG.
In order to measure the temperature of the monitoring fluid 2k in the space body 1, the fluid temperature measuring device 100A includes a space fluid thermometer 4 having a temperature detecting element 4a at the tip, and the space fluid thermometer 4 from the wall surface of the space body 1. Between the guide tube 5 in which the pipe fluid 3 which is a fluid different from the monitoring gas 2k exists and the vacuum close to the true temperature of the monitoring gas 2k based on the spatial fluid measurement temperature 6 measured by the spatial fluid thermometer 4 It has a processing unit 7 for obtaining the fluid temperature 8, a memory 10 for storing a program for obtaining the fluid temperature between the vacuums and predetermined data, and a display 9 for displaying the obtained fluid temperature for the vacuum. If the pipe fluid 3 is air, the end opposite to the temperature detecting element 4a of the guide pipe 5 is open. If the pipe fluid 3 is not air, the opposite end may be connected to a fluid supply device (not shown). Since the monitoring fluid 2 in the space body 1 is a gas, the tube fluid 3 is also preferably a gas. If different types are desired, different types may be selected, and if the same type is desired, the same type may be selected. In addition, in order to make the inside of the space body 1 sealed, it is maintained at a negative pressure with respect to the outside by a device (not shown).

更に、流体温度測定装置100Aは、ガイド管5に存在する管流体3の温度を測定する管内温度計11と、管流体3の流量を測定する管内流量計12とを有する。そして、それらの出力であるガイド管5内の管内温度Tk、管内流量Fkは、処理部7に取り込まれる。   Furthermore, the fluid temperature measuring device 100 </ b> A includes a pipe thermometer 11 that measures the temperature of the pipe fluid 3 existing in the guide pipe 5 and a pipe flowmeter 12 that measures the flow rate of the pipe fluid 3. Then, the pipe temperature Tk and the pipe flow rate Fk in the guide pipe 5 which are those outputs are taken into the processing unit 7.

このような流体温度測定装置100Aにおいて、空間流体温度計4が挿入されているガイド管5の内部に穴が、例えば図1に示す位置に穴5aがあいている場合、空間体1内は負圧で有るために、ガイド管内5を管流体3が穴5aに向かって流れるため、空間流体測定温度6に誤差が生じることになる。   In such a fluid temperature measuring device 100A, when a hole is formed in the guide tube 5 into which the space fluid thermometer 4 is inserted, for example, a hole 5a is formed at the position shown in FIG. Because of the pressure, the pipe fluid 3 flows in the guide pipe 5 toward the hole 5a, and an error occurs in the spatial fluid measurement temperature 6.

この誤差をなくす為、処理部7内で行われる、空間流体測定温度6の補正方法について以下説明する。
まず、図2に示すように、予めガイド管5内を流れる管流体3の管内温度Tkおよび流量Fkに基づく空間流体測定温度6の温度補正係数Hkを、温度補正係数関係表15としてメモリ10に記憶しておく。
In order to eliminate this error, a correction method of the spatial fluid measurement temperature 6 performed in the processing unit 7 will be described below.
First, as shown in FIG. 2, the temperature correction coefficient Hk of the spatial fluid measurement temperature 6 based on the in-pipe temperature Tk and the flow rate Fk of the pipe fluid 3 flowing in the guide pipe 5 in advance is stored in the memory 10 as a temperature correction coefficient relation table 15. Remember.

次に、ガイド管5内の管内温度Tkと管内流量Fkに対応した温度補正係数Hkをメモリ10内の温度補正係数関係表15より導出し、真の温度に近い真空間流体温度8を求める。真空間流体温度8は、測定したに空間流体測定温度6に温度補正係数Hkに掛け合わせることにより求める。   Next, a temperature correction coefficient Hk corresponding to the pipe temperature Tk and the pipe flow rate Fk in the guide pipe 5 is derived from the temperature correction coefficient relation table 15 in the memory 10, and the inter-vacuum fluid temperature 8 close to the true temperature is obtained. The inter-vacuum fluid temperature 8 is obtained by multiplying the measured spatial fluid temperature 6 by the temperature correction coefficient Hk.

次に、処理部7内で行われる補正方法に関する具体例を示す。ガイド管5内の管内温度Tkが15℃、管内流量Fkが22ml/minであった場合、メモリ10内に記憶されている温度補正係数関係表15より温度補正係数Hkは1.3となる。そして、空間流体温度計4の空間流体測定温度6が25℃であった場合、この補正係数1.3をかけて、実際の空間体1内の温度に近い真空間流体温度8として、32.5℃(=25*1.3)を得ることができる。最終的には、求められた真空間流体温度8は表示器9に送られ表示される。   Next, a specific example regarding the correction method performed in the processing unit 7 will be described. When the tube temperature Tk in the guide tube 5 is 15 ° C. and the tube flow rate Fk is 22 ml / min, the temperature correction coefficient Hk is 1.3 from the temperature correction coefficient relationship table 15 stored in the memory 10. Then, when the spatial fluid measurement temperature 6 of the spatial fluid thermometer 4 is 25 ° C., the correction coefficient 1.3 is applied to obtain the inter-vacuum fluid temperature 8 close to the actual temperature in the space body 1. 5 ° C. (= 25 * 1.3) can be obtained. Finally, the obtained inter-vacuum fluid temperature 8 is sent to the display 9 and displayed.

以上説明したように、実施例1によれば、空間体1の監視流体2として気体が密閉された実施形態において、ガイド管5に穴があいており、ガイド管5に空間体1の気体とは異なる流体が流れている状態であっても、この流れによる誤差を無くして空間体1内の液体の真に近い空間流体温度を測定できる。   As described above, according to Example 1, in the embodiment in which the gas is sealed as the monitoring fluid 2 of the space body 1, the guide tube 5 has a hole, and the gas in the space body 1 is in the guide tube 5. Even when different fluids are flowing, it is possible to measure the spatial fluid temperature close to the true of the liquid in the space body 1 without errors due to the flow.

(実施例2)
図3は、流体温度測定装置100の第2の実施例100Bを示す図である。また、流体温度測定装置の他、流体温度測定装置100Bを適用する空間体1の実施形態が異なる。
(Example 2)
FIG. 3 is a diagram showing a second embodiment 100B of the fluid temperature measuring apparatus 100. As shown in FIG. In addition to the fluid temperature measuring device, the embodiment of the space body 1 to which the fluid temperature measuring device 100B is applied is different.

まず、流体温度測定装置100Bである実施例2の実施例1と異なる点は、以下の点である。その他の流体温度測定装置100Bの構成及び動作は実施例1と同様である。実施例1では、温度補正係数Hkを温度補正係数関係表15により求めていたのに対し、実施例2では、温度補正係数Hkを管内温度Tkと管内流量Fkの2変数近似関数Hk=f(Tk,Fk)で規定し、メモリ10にその関数形式で記憶する。実施例1の温度補正係数関係表15にしろ、実施例2の2変数近似関数にしろ、測定対象である空間体1の寸法やガイド管5を流れる管流体3の種類などの体系が決まれば、予め実験やシミュレーション等に基づいて、規定することができる。   First, the differences of the fluid temperature measuring device 100B from the first embodiment with respect to the first embodiment are as follows. Other configurations and operations of the fluid temperature measuring device 100B are the same as those in the first embodiment. In the first embodiment, the temperature correction coefficient Hk is obtained from the temperature correction coefficient relation table 15, whereas in the second embodiment, the temperature correction coefficient Hk is calculated as a two-variable approximate function Hk = f (in-pipe temperature Tk and in-pipe flow rate Fk). Tk, Fk) and stored in the memory 10 in the function format. Regardless of the temperature correction coefficient relationship table 15 of the first embodiment or the two-variable approximate function of the second embodiment, if the system such as the size of the space body 1 to be measured and the type of the pipe fluid 3 flowing through the guide pipe 5 is determined. It can be specified based on experiments and simulations in advance.

次に、実施例2の実施形態2は、実施例1の実施形態1とは異なり、空間体1(例えばタンク、濃縮缶等の貯槽)内の監視流体2として、例えば化学プラントの処理に使用された硝酸、硫酸又はその廃液等などの液体2eが密閉されており、流体温度測定装置100Bは、液体2eの温度を測定する。   Next, Embodiment 2 of Example 2 differs from Embodiment 1 of Example 1 in that it is used as a monitoring fluid 2 in a space body 1 (for example, a storage tank such as a tank or a concentrated can), for example, for processing in a chemical plant. The liquid 2e such as nitric acid, sulfuric acid or waste liquid thereof is sealed, and the fluid temperature measuring device 100B measures the temperature of the liquid 2e.

以上説明した実施例2よれば、2変数近似関数を用いることで、さらに細かく温度補正をすることができ、また、さらに温度補正係数を細かく規定する場合には、実施例1に比べメモリ容量を低減できる効果がある。
以上説明した実施例2によれば、空間体1の監視流体としての液体が密閉された実施形態において、ガイド管5に穴があいており、ガイド管5に空間体1の気体とは異なる流体が流れている状態であっても、この流れによる誤差を無くし、空間体1内の液体の真に近い空間流体温度を測定できる。
According to the second embodiment described above, the temperature correction can be performed more finely by using the two-variable approximate function. Further, when the temperature correction coefficient is further finely defined, the memory capacity is larger than that in the first embodiment. There is an effect that can be reduced.
According to Example 2 described above, in the embodiment in which the liquid as the monitoring fluid of the space body 1 is sealed, the guide tube 5 has a hole, and the guide tube 5 has a fluid different from the gas of the space body 1. Even in a state where the fluid flows, the error due to this flow is eliminated, and the fluid temperature close to the true of the liquid in the space body 1 can be measured.

(実施例3)
図4は、実施形態として配管である空間体1を流れている監視流体2の温度を測定にする第3の実施例を示す図である。監視流体2としては、気体でも液体でもよい。
実施例3では、測定対象である実施形態が異なるだけで、流体温度測定装置100Cとして、実施例1で示した流体温度測定装置100A又は実施例2で示した流体温度測定装置100Bを用いる。
(Example 3)
FIG. 4 is a diagram illustrating a third example in which the temperature of the monitoring fluid 2 flowing through the space body 1 which is a pipe is measured as an embodiment. The monitoring fluid 2 may be gas or liquid.
In Example 3, only the embodiment to be measured is different, and the fluid temperature measuring device 100A shown in Example 1 or the fluid temperature measuring device 100B shown in Example 2 is used as the fluid temperature measuring device 100C.

従って、実施例3で示した流体温度測定装置100Cによれば、実施例1又は実施例2と同様な効果を奏することができる。   Therefore, according to the fluid temperature measuring device 100C shown in the third embodiment, the same effects as those of the first or second embodiment can be obtained.

以上各実施例で説明したように本発明は、温度計が実装されている空間体に流れる液体の流量に基づいて温度計の測定値を補正するのではなく、温度計が実装されているガイド管に流れる流体の管内流量、管内温度に基づいて、ガイド管が挿入されている空間体の流体の温度を測定する温度計の測定値を補正するものである。   As described above in each embodiment, the present invention does not correct the measured value of the thermometer based on the flow rate of the liquid flowing in the space body in which the thermometer is mounted, but the guide in which the thermometer is mounted. The measured value of the thermometer which measures the temperature of the fluid of the space body in which the guide tube is inserted is corrected based on the in-tube flow rate and the in-tube temperature of the fluid flowing through the tube.

本発明は空間体に外部からガイド管を介して温度計を挿入する流体温度測定装置に適用可能である。   The present invention can be applied to a fluid temperature measuring device in which a thermometer is inserted into a space body from the outside via a guide tube.

1:空間体 2:監視流体
2e:監視液体 2k:監視気体
3:管流体 4:空間流体温度計
4a:温度測定素子 5:ガイド管
5a:ガイド管に生じる穴 6:空間流体測定温度
7:処理部 8:真空間流体温度
9:表示器 10:メモリ
11:管内温度計 12:管内流量計
15:温度補正係数関係表
100、100A、100B:流体温度測定装置
Fk:管内流量 Hk:温度補正係数
Tk:管内温度
1: Spatial body 2: Monitoring fluid 2e: Monitoring liquid 2k: Monitoring gas 3: Tube fluid 4: Spatial fluid thermometer 4a: Temperature measuring element 5: Guide tube 5a: Hole generated in the guide tube 6: Spatial fluid measurement temperature 7: Processing unit 8: Fluid temperature between vacuums 9: Display 10: Memory 11: In-pipe thermometer 12: In-pipe flow meter 15: Temperature correction coefficient relation table
100, 100A, 100B: Fluid temperature measuring device Fk: In-pipe flow rate Hk: Temperature correction coefficient Tk: In-pipe temperature

Claims (10)

先端側が密閉され、内部に第1の流体を備える空間体の壁面から前記先端側を挿入され
たガイド管と、前記ガイド管の前記先端側に温度検出素子が内装された第1の温度計と、
前記第1の温度計から出力を処理する処理部とを有し、前記第1の流体の温度を測定する
流体温度測定装置において、
前記空間体は前記ガイド管より相対的に負圧に維持され、前記ガイド管内に存在する第
2の流体の流量、温度を測定する流量計及び第2の温度計を備え、前記処理部は、前記流
量計及び前記第2の温度計の測定結果に基づいて、前記第1の流体の温度を補正すること
を特徴とする流体温度測定装置。
A guide tube whose front end side is sealed and the front end side is inserted from the wall surface of the space body including the first fluid therein; and a first thermometer in which a temperature detection element is built in the front end side of the guide tube; ,
A fluid temperature measurement device that measures the temperature of the first fluid, and a processing unit that processes output from the first thermometer,
The space body is maintained at a negative pressure relative to the guide tube, and includes a flow meter and a second thermometer for measuring a flow rate and temperature of a second fluid existing in the guide tube, and the processing unit includes: A fluid temperature measuring device that corrects the temperature of the first fluid based on measurement results of the flow meter and the second thermometer.
前記補正は予め実験又はシミュレーションに基づいて規定された温度補正係数に基づい
て行うことを特徴とする請求項1に記載の流体温度測定装置。
The fluid temperature measuring device according to claim 1, wherein the correction is performed based on a temperature correction coefficient defined in advance based on experiments or simulations.
前記規定は前記流量計及び前記第2の温度計の測定結果を2変数とする表又は近似関数
で行われることを特徴とする請求項2に記載の流体温度測定装置。
3. The fluid temperature measuring apparatus according to claim 2, wherein the regulation is performed by a table or an approximate function using two measurement results of the flow meter and the second thermometer.
前記空間体はタンク、缶、配管のうちいずれかであることを特徴とする請求項1に記載
の流体温度測定装置。
The fluid temperature measuring device according to claim 1, wherein the space body is any one of a tank, a can, and a pipe.
前記空間体は原子力プラントまたは化学プラント構成すること特徴とする請求項4に
記載の流体温度測定装置。
The space body fluid temperature measuring device according to claim 4, wherein configuring the nuclear power plant or chemical plant.
前記第2の流体は前記第1の流体と異なる種類の流体であることを特徴とする請求項1
に記載の流体温度測定装置。
2. The second fluid is a fluid of a different type from the first fluid.
The fluid temperature measuring device according to 1.
前記第2の流体は前記第1の流体が気体ならば気体、液体ならば液体であることを特徴
する請求項1または6に記載の流体温度測定装置。
The fluid temperature measuring device according to claim 1 or 6, wherein the second fluid is a gas if the first fluid is a gas, and a liquid if the first fluid is a liquid.
先端側に密閉され、内部に第1の流体を備える空間体の壁面から前記先端側を挿入され
たガイド管の前記先端側に温度測定素子が内装された第1の温度計で前記第1の流体の温
度を測定する流体温度測定方法において、
前記空間体は前記ガイド管より相対的に負圧に維持され、前記ガイド管内に存在する第
2の流体の流量及び温度を測定し、前記測定結果に基づいて前記第1の流体の温度を補正
することを特徴とする流体温度測定方法。
The first thermometer is a first thermometer that is hermetically sealed on the distal end side and includes a temperature measuring element on the distal end side of the guide tube inserted into the distal end side from the wall surface of the space body including the first fluid therein. In a fluid temperature measurement method for measuring a fluid temperature,
The space body is maintained at a relatively negative pressure relative to the guide tube, measures the flow rate and temperature of the second fluid existing in the guide tube, and corrects the temperature of the first fluid based on the measurement result. A method for measuring a fluid temperature.
前記補正は予め実験又はシミュレーションに基づいて規定された温度補正係数に基づい
て行うことを特徴とする請求項8に記載の流体温度測定方法。
9. The fluid temperature measuring method according to claim 8, wherein the correction is performed based on a temperature correction coefficient defined in advance based on experiments or simulations.
前記補正は、前記第1の温度計で測定された測定値に前記温度補正係数を掛けることに
よって行うことを特徴とする請求項に記載の流体温度測定方法。
The fluid temperature measuring method according to claim 9 , wherein the correction is performed by multiplying the measurement value measured by the first thermometer by the temperature correction coefficient.
JP2011280239A 2011-12-21 2011-12-21 Fluid temperature measuring device and fluid temperature measuring method Active JP5730184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280239A JP5730184B2 (en) 2011-12-21 2011-12-21 Fluid temperature measuring device and fluid temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280239A JP5730184B2 (en) 2011-12-21 2011-12-21 Fluid temperature measuring device and fluid temperature measuring method

Publications (2)

Publication Number Publication Date
JP2013130478A JP2013130478A (en) 2013-07-04
JP5730184B2 true JP5730184B2 (en) 2015-06-03

Family

ID=48908145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280239A Active JP5730184B2 (en) 2011-12-21 2011-12-21 Fluid temperature measuring device and fluid temperature measuring method

Country Status (1)

Country Link
JP (1) JP5730184B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196773A (en) * 1996-01-23 1997-07-31 Hitachi Ltd Temperature sensor and semiconductor-manufacturing apparatus using the sensor
JP4396026B2 (en) * 2000-11-29 2010-01-13 三菱自動車工業株式会社 Catalyst temperature estimation device
JP2002310806A (en) * 2001-04-17 2002-10-23 Mitsubishi Heavy Ind Ltd Temperature calibration method

Also Published As

Publication number Publication date
JP2013130478A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US9870006B2 (en) Pressure type flow control system with flow monitoring
CN102128666B (en) Method for calibrating Coriolis mass flowmeter
EP2893301B1 (en) Self-diagnosing differential pressure flow meter
RU2606345C2 (en) Flow meter
US10359308B2 (en) Flow meter and a method of calibration
JP5123175B2 (en) Thermal mass flow meter and thermal mass flow controller
JP2009002901A (en) Pressure sensor, differential pressure type flow meter, and flow controller
KR20180030447A (en) Method of inspecting gas supply system, method of calibrating flow controller, and method of calibrating secondary reference device
US10036662B2 (en) Flow rate calculation system and flow rate calculation method
JP6607796B2 (en) Liquid level detection device for liquid supply equipment, liquid level detection method for liquid supply equipment, and liquid supply equipment provided with the liquid level detection device
JP2007163203A (en) Coriolis mass flowmeter
JP2013133542A (en) Sample solution evaporation system, diagnostic system, and diagnostic program
JP5730184B2 (en) Fluid temperature measuring device and fluid temperature measuring method
CN116569009A (en) Method for verifying an invasive temperature measurement system
JP5033464B2 (en) Liquid tank liquid level measuring device
CN210135981U (en) Flow and wind speed sensor calibration device
US9752905B2 (en) Fluid transport system including a flow measurement system and a purge system
JP4718121B2 (en) Temperature characteristic correction method
TWI542859B (en) A method for detecting the height of a powder or liquid in a closed container
CN210950801U (en) Liquefied natural gas adds mechanism of qi calibrating installation
US9175995B2 (en) Inferential coriolis mass flowmeter for determining a mass flowrate of a fluid by using algorithm derived partially from coriolis force
TW201600831A (en) A correction device of a handheld gas flow detection
JP2007132904A (en) Diagnostic system
JP4158989B2 (en) Formation method of high-precision flowmeter
CN115638840A (en) Venturi tube pulsating flow correction method, device, equipment and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150