JP5729647B2 - Negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP5729647B2
JP5729647B2 JP2011179944A JP2011179944A JP5729647B2 JP 5729647 B2 JP5729647 B2 JP 5729647B2 JP 2011179944 A JP2011179944 A JP 2011179944A JP 2011179944 A JP2011179944 A JP 2011179944A JP 5729647 B2 JP5729647 B2 JP 5729647B2
Authority
JP
Japan
Prior art keywords
powder
ion secondary
secondary battery
lithium ion
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011179944A
Other languages
Japanese (ja)
Other versions
JP2013033696A (en
Inventor
武彦 橘川
武彦 橘川
伸介 八木
伸介 八木
信 三島
信 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP2011179944A priority Critical patent/JP5729647B2/en
Publication of JP2013033696A publication Critical patent/JP2013033696A/en
Application granted granted Critical
Publication of JP5729647B2 publication Critical patent/JP5729647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、チタン酸リチウム(以下、LiTi12と略記する場合がある)およびナトリウムブロンズ型の結晶構造有する酸化チタン(以下、TiO(B)と略記する場合がある)を負極活物質として含有するリチウムイオン二次電池用負極および該負極を用いたリチウムイオン二次電池に関する。The present invention relates to lithium titanate (hereinafter sometimes abbreviated as Li 4 Ti 5 O 12 ) and titanium oxide having a sodium bronze type crystal structure (hereinafter sometimes abbreviated as TiO 2 (B)) as a negative electrode. The present invention relates to a negative electrode for a lithium ion secondary battery contained as an active material and a lithium ion secondary battery using the negative electrode.

非水電解質二次電池であるリチウムイオン二次電池は、小型化、軽量化、高性能化の進むビデオカメラ、携帯型オーディオプレイヤー、携帯電話、ノートパソコン等の携帯用電子機器の用途に広く利用されている。また、電気自動車、ハイブリッド自動車、電力負荷平準化システムの分野等において、大型のリチウムイオン二次電池の重要性がますます高まっている。  Lithium-ion secondary batteries, which are non-aqueous electrolyte secondary batteries, are widely used in portable electronic devices such as video cameras, portable audio players, mobile phones, and notebook computers that are becoming smaller, lighter, and higher in performance. Has been. In addition, large lithium ion secondary batteries are becoming increasingly important in the fields of electric vehicles, hybrid vehicles, and power load leveling systems.

特許文献1には、レート特性が良好なリチウムイオン二次電池用負極活物質として、特定の粒度有するLiTi12が提案されている。
特許文献2には、放電容量が高く、レート特性、サイクル特性に優れたリチウムイオン二次電池用負極活物質として、X線回折の特定ピークの積分強度比を規定したTiO(B)が提案されている。
Patent Document 1 proposes Li 4 Ti 5 O 12 having a specific particle size as a negative electrode active material for a lithium ion secondary battery having good rate characteristics.
Patent Document 2 proposes TiO 2 (B) that defines an integral intensity ratio of a specific peak of X-ray diffraction as a negative electrode active material for a lithium ion secondary battery having a high discharge capacity and excellent rate characteristics and cycle characteristics. Has been.

特許第4249727号Japanese Patent No. 4249727 特開2010−55855号JP 2010-55855 A

特許文献1のLiTi12をリチウムイオン二次電池の負極活物質として用いた場合、レート特性は良好であるが、実施例において放電容量は最も高いものでも167mAh/gである。LiTi12の理論放電容量は175mAh/g程度であるから、例え理論放電容量に限りなく近い値であっても、十分な放電容量とは言えない。また、高価なLiを使用することから、コストが高いという問題もある。
特許文献2のTiO(B)をリチウムイオン二次電池の負極活物質として用いた場合、実施例において放電容量は高いもので232mAh/gである。しかしながら、LiTi12と比較し、TiO(B)のレート特性は十分でない。
When Li 4 Ti 5 O 12 of Patent Document 1 is used as a negative electrode active material of a lithium ion secondary battery, the rate characteristics are good, but the discharge capacity is 167 mAh / g at the highest in the examples. Since the theoretical discharge capacity of Li 4 Ti 5 O 12 is about 175 mAh / g, even if it is a value close to the theoretical discharge capacity, it cannot be said that the discharge capacity is sufficient. Moreover, since expensive Li is used, there also exists a problem that cost is high.
When TiO 2 (B) of Patent Document 2 is used as the negative electrode active material of the lithium ion secondary battery, the discharge capacity is high at 232 mAh / g in the examples. However, the rate characteristics of TiO 2 (B) are not sufficient compared to Li 4 Ti 5 O 12 .

本発明の課題は、TiO(B)粉末をリチウムイオン二次電池の負極活物質として用いる場合の長所である大きい放電容量を維持しながら、その欠点であるレート特性を改善することを目的とする。An object of the present invention is to improve rate characteristics, which is a drawback, while maintaining a large discharge capacity, which is an advantage when using TiO 2 (B) powder as a negative electrode active material of a lithium ion secondary battery. To do.

本発明者らは、TiO(B)粉末のレート特性を改善するため、LiTi12粉末との混合使用を検討したところ、特にレートの高い充放電時において、大きな放電容量を維持することを見出し、本発明を完成した。In order to improve the rate characteristics of the TiO 2 (B) powder, the present inventors examined the use of a mixture with Li 4 Ti 5 O 12 powder, and maintained a large discharge capacity especially during charge / discharge at a high rate. The present invention has been completed.

本発明によれば、少なくともTiO(B)粉末およびLiTi12粉末を含有するリチウムイオン二次電池用負極および該負極を用いたリチウムイオン二次電池が提供される。According to the present invention, a negative electrode for a lithium ion secondary battery containing at least a TiO 2 (B) powder and a Li 4 Ti 5 O 12 powder and a lithium ion secondary battery using the negative electrode are provided.

本発明のリチウムイオン二次電池用負極およびリチウムイオン二次電池は、放電容量が大きく、かつレート特性が優れておリ、また、TiO(B)粉末およびLiTi 12粉末を混合使用しているにも係わらず、放電時の電位は約1.6Vにおいて一定である。したがって、小型電子機器、特に安全性が求められる電気自動車、ハイブリッド自動車、電力負荷平準化システム等に好ましく用いることができる。また、Liを使用しないTiO(B)粉末を使用できるため、コストの低減が可能である。  The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery of the present invention have a large discharge capacity and excellent rate characteristics.2(B) Powder and Li4Ti5O 12Despite the use of mixed powder, the electric potential during discharge is constant at about 1.6V. Therefore, it can be preferably used for small electronic devices, particularly electric vehicles, hybrid vehicles, power load leveling systems, and the like that require safety. TiO not using Li2(B) Since powder can be used, the cost can be reduced.

参考例1で用いたイオン交換法で作製したTiO(B)粉末のSEM観察像の写しである。 4 is a copy of an SEM observation image of TiO 2 (B) powder produced by an ion exchange method used in Reference Example 1 .

以下、本発明を更に詳細に説明する。
本発明のリチウムイオン二次電池用負極は、少なくともTiO(B)粉末およびLi Ti12粉末を含有する。
TiO(B)は、酸化チタンの準安定相の一つであり、空間群C2/mに属する単斜晶系の結晶構造であることが知られている。本発明においてTiO(B)と記した場合、主相としてTiO(B)の結晶構造を有するチタン酸化物を意味し、副相としてアナターゼ型等の結晶構造を有するものも含む。主相としてTiO(B)の結晶構造を有するチタン酸化物とは、X線回折測定によりTiO(B)に由来する最大ピークの強度が他の結晶構造に由来する最大ピークの強度より大きいものをいう。本発明で使用するTiO(B)粉末は、TiO(B)の単一相であることが好ましい。本発明で使用するTiO(B)粉末は、Ti、酸素以外の元素を含有してもよい。Ti、酸素以外の元素としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属、B、ハロゲンが挙げられる。
  Hereinafter, the present invention will be described in more detail.
  The negative electrode for a lithium ion secondary battery of the present invention has at least TiO2(B) Powder and Li 4Ti5O12Contains powder.
  TiO2(B) is one of the metastable phases of titanium oxide and is known to have a monoclinic crystal structure belonging to the space group C2 / m. In the present invention, TiO2When (B) is written, TiO as the main phase2(B) means a titanium oxide having a crystal structure, and includes those having a crystal structure such as anatase type as a subphase. TiO as the main phase2The titanium oxide having the crystal structure (B) is TiO 2 by X-ray diffraction measurement.2The maximum peak intensity derived from (B) is greater than the maximum peak intensity derived from another crystal structure. TiO used in the present invention2(B) Powder is TiO2A single phase (B) is preferred. TiO used in the present invention2(B) The powder may contain elements other than Ti and oxygen. Examples of elements other than Ti and oxygen include alkali metals, alkaline earth metals, transition metals, B, and halogen.

本発明で使用するTiO(B)粉末は、レーザー回折法で測定した場合、D50が0.1〜20μmが好ましく、さらに好ましくは0.1〜10μmである。TiO(B)粉末の形状は特に限定されないが、通常、粒状もしくはウィスカー状である。また、TiO(B)粉末として、チューブ状または繊維状の異方性の大きい形状のものを使用することができる。これらは主に後述する水熱法により合成され、水熱法により合成したTiO(B)粉末は結晶性が高く、充放電容量が大きいことが知られている。したがって、チューブ状または繊維状のTiO(B)粉末を使用することで充放電容量が大きい負極または電池とすることができる。
上記好ましい範囲のTiO(B)粉末を用いることにより、Liの移動距離が短くなることから、充放電容量が大きく、レート特性に優れた負極および電池とすることができる。
The TiO 2 (B) powder used in the present invention has a D50 of preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm, when measured by a laser diffraction method. The shape of the TiO 2 (B) powder is not particularly limited, but is usually granular or whisker-like. In addition, as the TiO 2 (B) powder, a tube-like or fibrous shape having a large anisotropy can be used. These are mainly synthesized by the hydrothermal method described later, and TiO 2 (B) powder synthesized by the hydrothermal method is known to have high crystallinity and large charge / discharge capacity. Therefore, a negative electrode or a battery having a large charge / discharge capacity can be obtained by using tube-like or fibrous TiO 2 (B) powder.
By using the TiO 2 (B) powder in the above preferred range, the Li moving distance is shortened, so that a negative electrode and a battery having a large charge / discharge capacity and excellent rate characteristics can be obtained.

TiO(B)粉末は公知の方法により製造できる。例えば、層状のチタン酸塩であるKTiを塩酸等で酸処理して得られたHTi・HOを加熱脱水処理する、いわゆるイオン交換法で得られる。後述する実施例1で用いたイオン交換法で作製したTiO(B)粉末のSEM観察像を図1に示す。その他の方法としては、チタン酸化物をアルカリ環境下で水熱処理する方法やグリコール酸チタン錯体を酸環境下で水熱処理する方法などがある。The TiO 2 (B) powder can be produced by a known method. For example, the layered titanate K 2 Ti 4 O 9 can be obtained by a so-called ion exchange method in which H 2 Ti 4 O 9 · H 2 O obtained by acid treatment with hydrochloric acid or the like is heated and dehydrated. FIG. 1 shows an SEM observation image of the TiO 2 (B) powder produced by the ion exchange method used in Example 1 described later. Other methods include hydrothermal treatment of titanium oxide in an alkaline environment and hydrothermal treatment of titanium glycolate complex in an acidic environment.

LiTi12は空間群Fd3mに属するスピネル型の結晶構造を有することが知られている。本発明においてLiTi12と記した場合、主相としてLiTi12の結晶構造を有するチタン酸化物を意味し、副相としてアナターゼ型、LiTi等の結晶構造を有するものも含む。主相としてLiTi12の結晶構造を有するチタン酸化物とは、X線回折測定によりLiTi12に由来する最大ピークの強度が他の結晶構造に由来する最大ピークの強度より大きいものをいう。本発明で使用するLiTi12粉末は、LiTi12の単一相であることが好ましい。本発明で使用するLiTi12粉末は、Ti、酸素以外の元素を含有してもよい。Ti、酸素以外の元素としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属、B、ハロゲンが挙げられる。アルカリ金属、Mg、Alを含有することでレート特性が改善すること等が知られている。Li 4 Ti 5 O 12 is known to have a spinel crystal structure belonging to the space group Fd3m. In the present invention, when Li 4 Ti 5 O 12 is described, it means a titanium oxide having a crystal structure of Li 4 Ti 5 O 12 as a main phase, and an anatase type, LiTi 2 O 4 or the like as a subphase. Includes what you have. Titanium oxide having a crystal structure of Li 4 Ti 5 O 12 as the main phase means that the intensity of the maximum peak derived from Li 4 Ti 5 O 12 is determined by X-ray diffraction measurement and the intensity of the maximum peak derived from another crystal structure The bigger one. The Li 4 Ti 5 O 12 powder used in the present invention is preferably a single phase of Li 4 Ti 5 O 12 . The Li 4 Ti 5 O 12 powder used in the present invention may contain elements other than Ti and oxygen. Examples of elements other than Ti and oxygen include alkali metals, alkaline earth metals, transition metals, B, and halogen. It is known that rate characteristics are improved by containing an alkali metal, Mg, and Al.

本発明で使用するLiTi12粉末は、レーザー回折法で測定した場合、D50が0.1〜30μmが好ましく、さらに好ましくは0.1〜15μm、最も好ましくは0.1〜10μmで、かつ混合使用するTiO(B)粉末より小さい。
上記好ましい範囲のLiTi12粉末を用いることにより、レート特性に優れた負極または電池とすることができる。上記最も好ましい範囲の場合、TiO(B)粉末とLiTi12粉末の混合比率から予想されるレート特性より、特に優れたレート特性の負極および電池とすることができる。
The Li 4 Ti 5 O 12 powder used in the present invention preferably has a D50 of 0.1 to 30 μm, more preferably 0.1 to 15 μm, and most preferably 0.1 to 10 μm when measured by a laser diffraction method. And smaller than the TiO 2 (B) powder used for mixing.
By using Li 4 Ti 5 O 12 powder in the above preferred range, a negative electrode or a battery excellent in rate characteristics can be obtained. In the case of the above-mentioned most preferable range, a negative electrode and a battery having particularly excellent rate characteristics can be obtained from the rate characteristics expected from the mixing ratio of the TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder.

LiTi12粉末は公知の方法により製造できる。例えば、アナターゼ型の酸化チタンと炭酸リチウム、水酸化リチウム等Li塩を混合し、700〜1000℃程度で焼成する、いわゆる固相反応法により得ることができる。Li 4 Ti 5 O 12 powder can be produced by a known method. For example, it can be obtained by a so-called solid phase reaction method in which anatase-type titanium oxide and Li salt such as lithium carbonate and lithium hydroxide are mixed and baked at about 700 to 1000 ° C.

本発明のリチウムイオン二次電池用負極は、TiO(B)粉末とLiTi12粉末の他の種類の活物質を含有することができる。充放電電位がTiO(B)とLiTi12に近い活物質が好ましく、例えばHTi1225粉末が使用できる。The negative electrode for a lithium ion secondary battery of the present invention can contain other types of active materials of TiO 2 (B) powder and Li 4 Ti 5 O 12 powder. An active material whose charge / discharge potential is close to TiO 2 (B) and Li 4 Ti 5 O 12 is preferable, and for example, H 2 Ti 12 O 25 powder can be used.

TiO(B)粉末とLiTi12粉末の混合比率は特に限定されないが、重量比率でTiO(B)粉末:LiTi12粉末=10〜90%:10〜90%であることが好ましい。さらに好ましくはTiO(B)粉末:LiTi12粉末=25〜75%:75〜25%、最も好ましくはTiO(B)粉末:LiTi12粉末=60〜80%:20〜40%である。上記の好ましい範囲の場合、TiO(B)による高容量化とLiTi12による良好なレート特性が両立できる。また、異なる活物質を混合使用しているにも係わらず、両者の充放電電位が近いため、放電時の電位は約1.6Vにおいて一定となることから、各種アプリケーションにおいて幅広く使用することができる。上記最も好ましい範囲においては、TiO(B)粉末またはLiTi 12粉末を単独で使用した場合より、比較的低いレートから高いレートまで大きな放電容量を維持することができ、また、Liを含有しないTiO(B)粉末を多く用いることができることから、コストの低減が可能である。  TiO2(B) Powder and Li4Ti5O12The mixing ratio of the powder is not particularly limited, but the weight ratio of TiO2(B) Powder: Li4Ti5O12Powder = 10 to 90%: 10 to 90% is preferable. More preferably TiO2(B) Powder: Li4Ti5O12Powder = 25-75%: 75-25%, most preferably TiO2(B) Powder: Li4Ti5O12Powder = 60-80%: 20-40%. In the above preferred range, TiO2(B) High capacity and Li4Ti5O12Good rate characteristics can be achieved at the same time. In addition, even though different active materials are used in mixture, the charge and discharge potentials of both are close, so the potential at the time of discharge is constant at about 1.6 V, so it can be used widely in various applications. . In the most preferred range, TiO2(B) Powder or Li4Ti 5O12Larger discharge capacity can be maintained from a relatively low rate to a higher rate than when the powder is used alone, and Li-free TiO2(B) Since a large amount of powder can be used, the cost can be reduced.

TiO(B)粉末とLiTi12粉末は、均一な混合状態であることが好ましい。混合は公知の方法で行うことができる。例えば、ダブルコーン、V型等の回転型混合機、羽根型、スクリュー型等の攪拌型号混合機、またはボールミル、アトライターミル等の粉砕機を使用し、TiO(B)粉末とLiTi12粉末を一部、粉砕しながら混合することも可能である。TiO(B)粉末とLiTi12粉末の混合は、これら活物質のみで行っても良いし、負極の作製工程において、導電助剤、バインダー、溶媒等と一緒に行っても良いし、両方行っても良い。The TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder are preferably in a uniform mixed state. Mixing can be performed by a known method. For example, a rotary type mixer such as a double cone or V type, a stirring type mixer such as a blade type or a screw type, or a pulverizer such as a ball mill or an attritor mill is used, and TiO 2 (B) powder and Li 4 Ti are used. It is also possible to mix while pulverizing a part of the 5 O 12 powder. The mixing of the TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder may be performed only with these active materials, or may be performed together with a conductive additive, a binder, a solvent, and the like in the production process of the negative electrode. And you can do both.

本発明の負極は負極活物質であるTiO(B)粉末とLiTi12粉末、導電剤、結着剤等を有機溶媒と混練、スラリー化し、電極板に塗布、乾燥後、ローラーで圧延、所定の寸法に裁断する公知の方法で得られる。一般的には負極は20〜200μmの厚さとする。In the negative electrode of the present invention, TiO 2 (B) powder and Li 4 Ti 5 O 12 powder, which are negative electrode active materials, a conductive agent, a binder, and the like are kneaded and slurried with an organic solvent, applied to an electrode plate, dried, and then roller And is obtained by a known method of rolling and cutting to a predetermined size. Generally, the negative electrode has a thickness of 20 to 200 μm.

導電剤、結着剤、有機溶媒、電極板等も公知のものが使用でき、例えば導電剤は天然黒鉛、人造黒鉛、ケッチェンブラック、アセチレンブラック等の炭素質材が挙げられる。結着剤はポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ酢酸ビニル、ポリメチルメタクリレート、エチレン−プロピレン−ジエン共重合体、スチレン−ブタジエン共重合体、アクリロニトリルブタジエン共重合体、カルボキシメチルセルロース等が挙げられる。有機溶媒としてはN−メチルピロリドン、テトラヒドロフラン、エチレンオキシド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。  Known materials such as a conductive agent, a binder, an organic solvent, and an electrode plate can be used. Examples of the conductive agent include carbonaceous materials such as natural graphite, artificial graphite, ketjen black, and acetylene black. The binder is fluorine resin such as polytetrafluoroethylene and polyvinylidene fluoride, polyvinyl acetate, polymethyl methacrylate, ethylene-propylene-diene copolymer, styrene-butadiene copolymer, acrylonitrile butadiene copolymer, carboxymethyl cellulose. Etc. Examples of the organic solvent include N-methylpyrrolidone, tetrahydrofuran, ethylene oxide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, dimethylformamide, dimethylacetamide and the like.

電極板はAl、Cu等の金属箔が挙げられる。厚みが10〜30μmの金属箔が好ましい。  Examples of the electrode plate include metal foils such as Al and Cu. A metal foil having a thickness of 10 to 30 μm is preferred.

本発明のリチウムイオン二次電池は上述の本発明のリチウムイオン二次電池用負極を用いる。本発明のリチウムイオン二次電池用負極を用いることで放電容量が大きく、レート特性に優れ、さらには低コストなリチウムイオン二次電池とすることができる。  The lithium ion secondary battery of the present invention uses the above-described negative electrode for a lithium ion secondary battery of the present invention. By using the negative electrode for a lithium ion secondary battery of the present invention, a lithium ion secondary battery having a large discharge capacity, excellent rate characteristics, and low cost can be obtained.

本発明の電池は主に正極、負極、有機溶媒、電解質、セパレータで構成される。有機溶媒と電解質の代わりに固体電解質を用いる場合もある。正極、有機電解液、電解質、セパレーターは公知のものが使用でき、例えば正極は正極活物質として、コバルト、ニッケル、マンガンのリチウム酸化物、リチウムリン酸塩等が用いられ、必要に応じ、負極と同様な結着剤、電極板等が使用される。  The battery of the present invention is mainly composed of a positive electrode, a negative electrode, an organic solvent, an electrolyte, and a separator. A solid electrolyte may be used in place of the organic solvent and the electrolyte. Known materials can be used for the positive electrode, the organic electrolyte, the electrolyte, and the separator. For example, the positive electrode is made of cobalt, nickel, lithium oxide of manganese, lithium phosphate, or the like as the positive electrode active material. Similar binders, electrode plates and the like are used.

例えば有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等のカーボネート類、1,2,1,3−ジメトキシプロパン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類、酢酸メチル、Γ−ブチロラクトン等のエステル類、アセトニトリル、ブチロニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類等が挙げられる。例えば電解質としては、LiClO、LiPF 、LiBF等が挙げられる。  For example, as an organic solvent, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, ethers such as 1,2,1,3-dimethoxypropane, tetrahydrofuran and 2-methyltetrahydrofuran, methyl acetate, Examples thereof include esters such as Γ-butyrolactone, nitriles such as acetonitrile and butyronitrile, amides such as N, N-dimethylformamide and N, N-dimethylacetamide. For example, as an electrolyte, LiClO4, LiPF 6, LiBF4Etc.

例えば固体電解質としてはポリエチレンオキサイド系等の高分子電解質、LiS−SiS、LiS−P、LiS−B等の硫化物系電解質等が挙げられる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。For example, examples of the solid electrolyte include polymer electrolytes such as polyethylene oxide, and sulfide-based electrolytes such as Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , and Li 2 S—B 2 S 3 . Moreover, what is called a gel type which hold | maintained the nonaqueous electrolyte solution in the polymer | macromolecule can also be used.

例えばセパレータとしては、ポリエチレン、ポリプロピレン等の多孔質高分子膜およびセラミックス塗布多孔質シート等が挙げられる。  For example, examples of the separator include porous polymer films such as polyethylene and polypropylene, and ceramic-coated porous sheets.

本発明のリチウムイオン二次電池の形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状であっても、上述の構成要素を電池ケースに収納し、正極および負極から正極端子および負極端子までの間を集電用リード等を用いて接続し、電池ケースを密閉する。  The lithium ion secondary battery of the present invention can have various shapes such as a cylindrical shape, a stacked shape, and a coin shape. Regardless of the shape, the above-described components are housed in a battery case, and the space between the positive electrode and the negative electrode to the positive electrode terminal and the negative electrode terminal is connected using a current collecting lead or the like, and the battery case is sealed.

以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。
参考例1
イオン交換法でTiO(B)粉末(D50 1.5μm)を、固相法でLiTi12粉末(D50 15.1μm)を調製した。TiO(B)粉末とLiTi12粉末についてX線回折測定を行ったところ、それぞれTiO(B)、LiTi12を主相とする結晶構造を有することを確認した。TiO(B)粉末とLiTi12粉末(重量比で1:1)0.800g、ケッチェンブラック0.100g、ポリフッ化ビニリデン0.100gを秤量し、適量のN−メチルピロリドンを加えて、乳鉢でよく混練し、電極ペーストを得た。得られた電極ペーストをドクターブレード法により厚さ25μmの銅箔に塗布し、乾燥後、プレス機で加圧成形した後、所定の寸法に裁断し、負極とした。対極にリチウム金属箔、セパレータに厚さ25μmのポリプロピレン製多孔質不織布、電解液にエチレンカーボネートとジエチルカーボネートを体積比で1:1で混合した溶媒に六フッ化リン酸リチウムを1Mとなるように溶解させた電解液を用い、コイン型のリチウムイオン二次電池を作製した
作製したリチウムイオン二次電池について、20℃の温度条件下、3.0V−1.0Vのカットオフ電位でTiO(B)の理論容量335mAh/gを基準にして、C/6、0.5C、1C、2C、5C、10Cとそれぞれ5回ずつ充放電を行った。それぞれのレートでの放電容量の平均値は、202.3mAh/g、194.3mAh/g、185.5mAh/g、174.5mAh/g、153.0mAh/g、128.4mAh/gであった。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not limited to these.
Reference example 1
TiO 2 (B) powder (D50 1.5 μm) was prepared by an ion exchange method, and Li 4 Ti 5 O 12 powder (D50 15.1 μm) was prepared by a solid phase method. When X-ray diffraction measurement was performed on the TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder, it was confirmed that each of the TiO 2 (B) and Li 4 Ti 5 O 12 had a crystal structure having a main phase. . TiO 2 (B) powder and Li 4 Ti 5 O 12 powder (1: 1 by weight) 0.800 g, Ketjen black 0.100 g, polyvinylidene fluoride 0.100 g, and weighed an appropriate amount of N-methylpyrrolidone. In addition, the mixture was well kneaded in a mortar to obtain an electrode paste. The obtained electrode paste was applied to a copper foil having a thickness of 25 μm by a doctor blade method, dried, press-formed with a press, and then cut into a predetermined size to obtain a negative electrode. A lithium metal foil is used as the counter electrode, a 25 μm-thick polypropylene non-woven fabric is used as the separator, and an electrolyte is mixed with ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 so that lithium hexafluorophosphate is 1M. A coin-type lithium ion secondary battery was manufactured using the dissolved electrolyte solution. About the manufactured lithium ion secondary battery, TiO 2 (at a cut-off potential of 3.0 V-1.0 V under a temperature condition of 20 ° C. Based on the theoretical capacity of 335 mAh / g of B), charging / discharging was performed 5 times each for C / 6, 0.5C, 1C, 2C, 5C, and 10C. The average discharge capacity at each rate was 202.3 mAh / g, 194.3 mAh / g, 185.5 mAh / g, 174.5 mAh / g, 153.0 mAh / g, 128.4 mAh / g. .

実施例2
TiO(B)粉末とLiTi12粉末の重量比を3:1に変更した以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、217.0mAh/g、205.2mAh/g、194.4mAh/g、179.9mAh/g、157.2mAh/g、130.8mAh/gであった。
Example 2
A negative electrode and a lithium ion secondary battery were produced in the same manner as in Reference Example 1 except that the weight ratio of the TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder was changed to 3: 1.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 217.0 mAh / g, 205.2 mAh / g, 194.4 mAh / g, 179.9 mAh / g, 157.2 mAh / g, 130.8 mAh / g.

参考例2
TiO(B)粉末とLiTi12粉末の重量比を1:3に変更した以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、186.9mAh/g、182.3mAh/g、176.8mAh/g、167.0mAh/g、149.2mAh/g、125.2mAh/gであった。
Reference example 2
A negative electrode and a lithium ion secondary battery were produced in the same manner as in Reference Example 1 except that the weight ratio of the TiO 2 (B) powder and the Li 4 Ti 5 O 12 powder was changed to 1: 3.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 186.9 mAh / g, 182.3 mAh / g, 176.8 mAh / g, and 167.0 mAh / g, 149.2 mAh / g, 125.2 mAh / g.

参考例3
LiTi12粉末として、固相法で調製したD50 1.2μmのLiTi12粉末を使用した以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
LiTi12粉末についてX線回折測定を行ったところ、LiTi12を主相とする結晶構造を有することを確認した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、202.0mAh/g、197.9mAh/g、189.7mAh/g、177.9mAh/g、156.4mAh/g、131.6mAh/gであった。
Reference example 3
As Li 4 Ti 5 O 12 powder, except using D50 1.2 [mu] m of Li 4 Ti 5 O 12 powder prepared by the solid phase method was prepared in the same manner as the negative electrode and a lithium ion secondary battery as in Reference Example 1.
When X-ray diffraction measurement was performed on the Li 4 Ti 5 O 12 powder, it was confirmed that it had a crystal structure having Li 4 Ti 5 O 12 as a main phase.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 202.0 mAh / g, 197.9 mAh / g, 189.7 mAh / g, 177.9 mAh / g, 156.4 mAh / g, 131.6 mAh / g.

実施例5
参考例3で使用したLiTi12粉末を用い、TiO(B)粉末とLiTi12粉末の重量比を4:1とした以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、219.3mAh/g、211.5mAh/g、198.6mAh/g、183.3mAh/g、157.8mAh/g、130.8mAh/gであった。
Example 5
The negative electrode and lithium were the same as in Reference Example 1 except that the Li 4 Ti 5 O 12 powder used in Reference Example 3 was used and the weight ratio of TiO 2 (B) powder to Li 4 Ti 5 O 12 powder was 4: 1. An ion secondary battery was produced.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 219.3 mAh / g, 211.5 mAh / g, 198.6 mAh / g, and 183.3 mAh /. g, 157.8 mAh / g, 130.8 mAh / g.

参考例4
参考例3で使用したLiTi12粉末を用い、TiO(B)粉末とLiTi12粉末の重量比を1:4とした以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、182.2mAh/g、178.5mAh/g、175.5mAh/g、168.4mAh/g、153.1mAh/g、129.6mAh/gであった。
Reference example 4
The negative electrode and lithium were the same as in Reference Example 1 except that the Li 4 Ti 5 O 12 powder used in Reference Example 3 was used and the weight ratio of TiO 2 (B) powder to Li 4 Ti 5 O 12 powder was 1: 4. An ion secondary battery was produced.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 182.2 mAh / g, 178.5 mAh / g, 175.5 mAh / g, 168.4 mAh / g, 153.1 mAh / g, 129.6 mAh / g.

比較例1
TiO(B)粉末のみを使用した以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、230.3mAh/g、207.4mAh/g、192.1mAh/g、174.9mAh/g、146.8mAh/g、120.1mAh/gであった。
Comparative Example 1
A negative electrode and a lithium ion secondary battery were produced in the same manner as in Reference Example 1 except that only TiO 2 (B) powder was used.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 230.3 mAh / g, 207.4 mAh / g, 192.1 mAh / g, 174.9 mAh / g, 146.8 mAh / g, 120.1 mAh / g.

比較例2
LiTi12粉末のみを使用した以外は参考例1と同様に負極およびリチウムイオン二次電池を作製した。
得られたリチウムイオン二次電池について、参考例1と同様に充放電試験を行った。C/6、0.5C、1C、2C、5C、10Cのそれぞれのレートでの放電容量の平均値は、170.2mAh/g、168.9mAh/g、165.8mAh/g、159.0mAh/g、146.3mAh/g、124.8mAh/gであった。
Comparative Example 2
A negative electrode and a lithium ion secondary battery were produced in the same manner as in Reference Example 1 except that only Li 4 Ti 5 O 12 powder was used.
The obtained lithium ion secondary battery was subjected to a charge / discharge test in the same manner as in Reference Example 1 . The average values of the discharge capacities at the respective rates of C / 6, 0.5C, 1C, 2C, 5C, and 10C are 170.2 mAh / g, 168.9 mAh / g, 165.8 mAh / g, 159.0 mAh / g, 146.3 mAh / g, 124.8 mAh / g.

以上の実施例と比較例より、本発明のリチウムイオン二次電池用負極およびリチウムイオン電池は、特にレートの高い充放電時において、大きな放電容量を維持することから有用である。  From the above examples and comparative examples, the negative electrode for lithium ion secondary batteries and the lithium ion battery of the present invention are useful because they maintain a large discharge capacity, particularly during charge / discharge at a high rate.

Claims (3)

少なくともTiO(B)粉末およびLiTi12粉末を含有し、TiO (B)粉末とLi Ti 12 粉末の重量比率が、TiO (B)粉末:Li Ti 12 粉末=60〜80%:20〜40%であるリチウムイオン二次電池用負極。It contains at least TiO 2 (B) powder and Li 4 Ti 5 O 12 powder, and the weight ratio of TiO 2 (B) powder to Li 4 Ti 5 O 12 powder is TiO 2 (B) powder: Li 4 Ti 5 O. 12 powder = 60-80%: 20-40% negative electrode for lithium ion secondary battery. LiTi12粉末の平均粒径(D50)がTiO(B)粉末の平均粒径より小さいことを特徴とする請求項記載のリチウムイオン二次電池用負極。Li 4 Ti 5 O 12 powder having an average particle size (D50) of the TiO 2 (B) according to claim 1 negative electrode for a lithium ion secondary battery, wherein a smaller than the average particle size of the powder. 請求項1又は2に記載の負極を用いたリチウムイオン二次電池。Lithium ion secondary battery using the anode according to claim 1 or 2.
JP2011179944A 2011-08-02 2011-08-02 Negative electrode for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP5729647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011179944A JP5729647B2 (en) 2011-08-02 2011-08-02 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179944A JP5729647B2 (en) 2011-08-02 2011-08-02 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013033696A JP2013033696A (en) 2013-02-14
JP5729647B2 true JP5729647B2 (en) 2015-06-03

Family

ID=47789399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179944A Expired - Fee Related JP5729647B2 (en) 2011-08-02 2011-08-02 Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5729647B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592050B1 (en) * 2011-11-11 2014-05-14 Samsung SDI Co., Ltd. Composite, method of manufacturing the composite, negative electrode active material including the composite, negative electrode including the negative electrode active material, and lithium secondary battery including the same
CN116682955B (en) * 2023-08-01 2023-09-22 北京荣田储能科技有限公司 Nano titanium-based composite negative electrode material, processing method thereof and lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093643B2 (en) * 2006-11-02 2012-12-12 独立行政法人産業技術総合研究所 Lithium secondary battery active material, method for producing the same, and lithium secondary battery using the same
JP5319312B2 (en) * 2009-01-21 2013-10-16 株式会社東芝 Negative electrode active material for batteries, non-aqueous electrolyte battery and battery pack
JP5159681B2 (en) * 2009-03-25 2013-03-06 株式会社東芝 Non-aqueous electrolyte battery
JP5546787B2 (en) * 2009-03-26 2014-07-09 株式会社東芝 Non-aqueous electrolyte battery
JP5417978B2 (en) * 2009-05-14 2014-02-19 株式会社豊田中央研究所 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5221692B2 (en) * 2011-03-02 2013-06-26 株式会社東芝 Nonaqueous electrolyte battery and battery pack

Also Published As

Publication number Publication date
JP2013033696A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP6168603B2 (en) Cathode active material for lithium ion battery and method for producing the same
US20130252107A1 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material
US9960413B2 (en) LMFP cathode materials with improved electrochemical performance
US20100203389A1 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
US10158144B2 (en) Solid electrolyte material and all solid lithium battery
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2009140787A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery employing the same
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
WO2011117992A1 (en) Active material for battery, and battery
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP4957911B2 (en) Lithium ion battery active material and lithium ion battery comprising Al-containing lithium titanate
CN106575746B (en) Nonaqueous electrolyte secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2014191865A (en) Negative electrode, nonaqueous electrolyte battery, and battery pack
WO2015045254A1 (en) Lithium-titanium compound oxide
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP5729647B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5733550B2 (en) Lithium ion secondary battery
WO2018123603A1 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
Shkreba et al. Electrochemical performance of lithium titanate anode fabricated using a water-based binder
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150326

R150 Certificate of patent or registration of utility model

Ref document number: 5729647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees