JP5729079B2 - Radiation sensitive resin composition for immersion exposure - Google Patents

Radiation sensitive resin composition for immersion exposure Download PDF

Info

Publication number
JP5729079B2
JP5729079B2 JP2011071242A JP2011071242A JP5729079B2 JP 5729079 B2 JP5729079 B2 JP 5729079B2 JP 2011071242 A JP2011071242 A JP 2011071242A JP 2011071242 A JP2011071242 A JP 2011071242A JP 5729079 B2 JP5729079 B2 JP 5729079B2
Authority
JP
Japan
Prior art keywords
group
polymer
structural unit
immersion exposure
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011071242A
Other languages
Japanese (ja)
Other versions
JP2012203406A (en
Inventor
仁視 大▲崎▼
仁視 大▲崎▼
光央 佐藤
光央 佐藤
永井 智樹
智樹 永井
裕介 浅野
裕介 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2011071242A priority Critical patent/JP5729079B2/en
Publication of JP2012203406A publication Critical patent/JP2012203406A/en
Application granted granted Critical
Publication of JP5729079B2 publication Critical patent/JP5729079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、液浸露光用感放射線性樹脂組成物に関する。   The present invention relates to a radiation-sensitive resin composition for immersion exposure.

集積回路素子の製造に代表される微細加工の分野においては、従来、酸解離性基を有する重合体を含む樹脂組成物によって基板上にレジスト膜を形成し、マスクパターンを介してそのレジスト膜にエキシマレーザー等の短波長の放射線を照射して露光させ、露光部をアルカリ現像液で除去することにより微細なレジストパターンを形成することが行われている。   In the field of microfabrication represented by the manufacture of integrated circuit elements, conventionally, a resist film is formed on a substrate with a resin composition containing a polymer having an acid-dissociable group, and the resist film is formed on the resist film via a mask pattern. A fine resist pattern is formed by irradiating a short-wavelength radiation such as an excimer laser for exposure, and removing an exposed portion with an alkaline developer.

近年、線幅45nm程度のより微細なレジストパターンを形成する方法として、液浸露光法の利用が拡大しつつある。液浸露光法ではレンズの開口数(NA)を増大させた場合でも焦点深度が低下し難く、かつ高い解像性が得られるという利点がある。液浸露光法において用いられる樹脂組成物には、形成されたレジスト膜から液浸媒体への酸発生剤等の溶出を抑制して、塗膜性能の低下やレンズ等の汚染を防止すると共に、レジスト膜表面の水切れ性を良くして、ウォーターマークの残存を防止し、高速スキャン露光を可能にすることが要求される。   In recent years, the use of the immersion exposure method is expanding as a method for forming a finer resist pattern having a line width of about 45 nm. The immersion exposure method has an advantage that the depth of focus is hardly lowered even when the numerical aperture (NA) of the lens is increased, and high resolution can be obtained. The resin composition used in the immersion exposure method suppresses elution of the acid generator and the like from the formed resist film to the immersion medium, and prevents deterioration of the coating film performance and contamination of the lens, etc. It is required to improve the water drainage of the resist film surface to prevent the watermark from remaining and to enable high-speed scan exposure.

それらを達成する手段として、例えば特開2005−352384号公報には、レジスト膜上に上層膜(保護膜)を形成する技術が提案されているが、成膜工程が別途必要になり煩雑である。そのため、レジスト膜表面の疎水性を高める方法が検討されており、例えば国際公開第2007/116664号には、疎水性が高いフッ素含有重合体を含有せしめた樹脂組成物が提案されている。   As means for achieving these, for example, Japanese Patent Application Laid-Open No. 2005-352384 proposes a technique for forming an upper layer film (protective film) on a resist film, but requires a separate film formation step, which is complicated. . Therefore, methods for increasing the hydrophobicity of the resist film surface have been studied. For example, International Publication No. 2007/116664 proposes a resin composition containing a fluorine-containing polymer having high hydrophobicity.

しかし、レジスト膜の疎水性を上げると、現像液やリンス液の表面濡れ性が低下するため、現像時にレジスト表面の未露光部に沈着した現像残渣の除去が不十分となり、ブロッブ(Blob)等の現像欠陥が発生することがある。このような現像欠陥を抑制することを目的として、特開2010−032994号公報には、液浸露光時には疎水性であるが、アルカリ現像時には疎水性が低下するフッ素含有重合体が提案されている。   However, if the hydrophobicity of the resist film is increased, the surface wettability of the developing solution and the rinsing solution decreases, so that the development residue deposited on the unexposed portion of the resist surface during development becomes insufficient, and blob (Blob) etc. Development defects may occur. For the purpose of suppressing such development defects, JP 2010-032994 A proposes a fluorine-containing polymer that is hydrophobic during immersion exposure but decreases in hydrophobicity during alkali development. .

これらの文献においては、レジスト膜の疎水性の変化を、水との静的接触角を指標として確認している。   In these documents, the change in hydrophobicity of the resist film is confirmed using the static contact angle with water as an index.

特開2005−352384号公報JP 2005-352384 A 国際公開第2007/116664号International Publication No. 2007/116664 特開2010−032994号公報JP 2010-032994 A

しかしながら、実際の液浸露光プロセスにおける上述の水切れ性能に関する指標としては、静的接触角よりも後退接触角等の動的接触角が重要と考えられる。また、現像プロセスの時間短縮のため、現像液処理の際にこのような動的接触角の変化がより短時間に起こることも望まれている。その点、上記文献に示されるフッ素含有重合体のアルカリ現像後の動的接触角の低下の度合い及び接触角変化に要する時間では、実際の液浸露光プロセスにおける改善には十分に寄与していない。   However, the dynamic contact angle such as the receding contact angle is more important than the static contact angle as an index regarding the above-mentioned water drainage performance in the actual immersion exposure process. In addition, in order to shorten the development process time, it is also desired that such a change in the dynamic contact angle occurs in a shorter time during the processing of the developer. In that respect, the degree of decrease in the dynamic contact angle after alkali development of the fluorine-containing polymer shown in the above document and the time required for the contact angle change do not sufficiently contribute to the improvement in the actual immersion exposure process. .

本発明は以上のような事情に基づいてなされたものであり、その目的は、液浸露光プロセスにおいて、露光時には大きい動的接触角を示すことにより、レジスト膜表面が優れた水切れ性を示し、現像時には動的接触角が大きく低下することにより、現像欠陥の発生が抑制されるレジスト膜を与え、さらに動的接触角の変化に要する時間を短縮できる液浸露光用感放射線性樹脂組成物を提供することである。   The present invention has been made based on the circumstances as described above, and its purpose is to exhibit excellent water drainage on the resist film surface by showing a large dynamic contact angle during exposure in the immersion exposure process. A radiation-sensitive resin composition for immersion exposure that gives a resist film in which the occurrence of development defects is suppressed by greatly reducing the dynamic contact angle during development, and further reduces the time required for changing the dynamic contact angle. Is to provide.

上記課題を解決するためになされた発明は、
[A]フッ素原子及びアルカリ解離性基を有し、主鎖に脂環式基を有する重合体(以下、「[A]重合体」とも称する)、及び
[C]酸発生体
を含有する液浸露光用感放射線性樹脂組成物である。
The invention made to solve the above problems is
[A] a polymer having a fluorine atom and an alkali dissociable group and having an alicyclic group in the main chain (hereinafter also referred to as “[A] polymer”), and a liquid containing [C] an acid generator A radiation-sensitive resin composition for immersion exposure.

当該組成物が含有する[A]重合体はフッ素原子を有し、かつ主鎖に脂環式基を有する重合体である。[A]重合体がフッ素原子を有することに加えて、主鎖に脂環式基を有することで、レジスト膜と液浸媒体を遮断することを目的とした上層膜等を別途形成することを要することなく、レジスト膜表面はより大きい動的接触角を示す。従って、当該組成物によれば、レジスト膜からの[C]酸発生体等の溶出を抑制すると共に、レジスト膜表面により高い水切れ特性を付与できる。さらに、[A]重合体はフッ素原子を有していることから、アルカリ現像において、[A]重合体が有するアルカリ解離性基はより容易に解離し、親水性の基を生じ、レジスト膜表面の疎水性が大きく低下する。その結果、アルカリ現像工程において現像時には動的接触角が大きく低下することにより、レジスト膜表面の現像液やリンス液に対する濡れ性が大きく向上するので、リンス液による洗浄効率が低いことに起因するレジスト膜の現像欠陥の発生をより抑制できる。   The [A] polymer contained in the composition is a polymer having a fluorine atom and an alicyclic group in the main chain. [A] The polymer has an alicyclic group in the main chain in addition to having a fluorine atom, so that an upper layer film for the purpose of blocking the resist film and the immersion medium can be separately formed. Without necessity, the resist film surface exhibits a larger dynamic contact angle. Therefore, according to the composition, elution of the [C] acid generator and the like from the resist film can be suppressed, and higher drainage characteristics can be imparted to the resist film surface. Furthermore, since the [A] polymer has a fluorine atom, in alkali development, the alkali dissociable group of the [A] polymer is more easily dissociated to produce a hydrophilic group, and the resist film surface The hydrophobicity of is greatly reduced. As a result, the dynamic contact angle during the development in the alkaline development process is greatly reduced, so that the wettability of the resist film surface to the developer and the rinse liquid is greatly improved. Occurrence of development defects in the film can be further suppressed.

[A]重合体は、下記式(1)で表される構造単位(I)を含むことが好ましい。

Figure 0005729079
[A] The polymer preferably contains a structural unit (I) represented by the following formula (1).
Figure 0005729079

(式(1)中、R〜Rは、それぞれ独立して水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。aは、0又は1である。bは、0〜2の整数である。) (In Formula (1), R < 1 > -R < 4 > is respectively independently a hydrogen atom, a fluorine atom, or a C1-C20 monovalent organic group. A is 0 or 1. b is It is an integer from 0 to 2.)

構造単位(I)を[A]重合体の主たる構造単位として含むことで、[A]重合体はより嵩高い脂環式基を有することができ、偏在化がより促進する。   By including the structural unit (I) as the main structural unit of the [A] polymer, the [A] polymer can have a bulkier alicyclic group, and uneven distribution is further promoted.

上記R〜Rの少なくとも1つは、フッ素原子又はトリフルオロメチル基であることが好ましい。[A]重合体が、フッ素原子を有する態様として、構造単位(I)中にフッ素原子を有することで、[A]重合体をより偏在化させることができる。 At least one of R 1 to R 4 is preferably a fluorine atom or a trifluoromethyl group. As an embodiment in which the [A] polymer has a fluorine atom, the [A] polymer can be more unevenly distributed by having a fluorine atom in the structural unit (I).

上記R〜Rの少なくとも1つは下記式(2)で表される基であることが好ましい。

Figure 0005729079
(式(2)中、Rはアルカリ解離性基である。) At least one of the R 1 to R 4 is preferably a group represented by the following formula (2).
Figure 0005729079
(In formula (2), R 5 is an alkali dissociable group.)

[A]重合体が、アルカリ解離性基を有する態様として、構造単位(I)中にアルカリ解離性基を有することで、偏在化がより促進され、動的接触角の低下をより大きくすることができる。   [A] As an aspect in which the polymer has an alkali-dissociable group, having an alkali-dissociable group in the structural unit (I) promotes uneven distribution and further increases the decrease in dynamic contact angle. Can do.

上記Rは、フッ素原子で置換されていてもよい炭素数1〜10の直鎖状若しくは分岐状のアルキル基、又はフッ素原子若しくはフッ素化アルキル基で置換されていてもよい炭素数6〜20の芳香族基であることが好ましい。アルカリ解離性基であるRを、上記特定基とすることでより本願発明の効果が向上する。 R 5 is a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, or a carbon number having 6 to 20 which may be substituted with a fluorine atom or a fluorinated alkyl group. It is preferable that it is an aromatic group. The R 5 is an alkali dissociative group, the effect of the more the present invention by the above specific groups is improved.

[A]重合体は下記式(3)で表される構造単位(II)をさらに含んでいてもよく、上記R及びRの少なくとも1つが酸素原子であり、この酸素原子と結合するR又はRがアルカリ解離性基であることが好ましい。

Figure 0005729079
(式(3)中、R及びRは、それぞれ独立して炭素数1〜20の1価の有機基である。R及びRは、それぞれ独立して2価の連結基である。) [A] The polymer may further contain a structural unit (II) represented by the following formula (3), and at least one of the above R 8 and R 9 is an oxygen atom, and R is bonded to this oxygen atom. 6 or R 7 is preferably an alkali dissociable group.
Figure 0005729079
(In Formula (3), R 6 and R 7 are each independently a monovalent organic group having 1 to 20 carbon atoms. R 8 and R 9 are each independently a divalent linking group. .)

[A]重合体が、アルカリ解離性基を有する態様として、構造単位(II)をさらに含む態様であっても好ましく、構造単位中にアルカリ解離性基を有することからアルカリ解離性基の存在密度が高まり、本願発明の効果がより向上する。   [A] As an aspect in which the polymer has an alkali-dissociable group, an aspect further including the structural unit (II) is preferable, and since the structural unit has an alkali-dissociable group, the density of the alkali-dissociable group is present. The effect of the present invention is further improved.

上記酸素原子と結合するR又はRで表されるアルカリ解離性基が、炭素数1〜10の直鎖状若しくは分岐状のフッ素化アルキル基であることが好ましい。構造単位(II)がフッ素原子を有することで、アルカリ現像工程においてアルカリ解離性基はより容易に解離し、親水性の基を生じ、レジスト膜表面の疎水性がより低下する。 It is preferable that the alkali dissociable group represented by R 6 or R 7 bonded to the oxygen atom is a linear or branched fluorinated alkyl group having 1 to 10 carbon atoms. When the structural unit (II) has a fluorine atom, the alkali-dissociable group is more easily dissociated in the alkali development step to generate a hydrophilic group, and the hydrophobicity of the resist film surface is further reduced.

[A]重合体は、−C(=O)−O−C(=O)−を有する構造単位(III)をさらに含むことが好ましく、上記構造単位(III)は、無水マレイン酸に由来する構造単位であることがより好ましい。構造単位(III)を[A]重合体が含むことで、例えば構造単位(I)以外に[A]重合体は嵩高い構造を主鎖に有することができる。また、アルカリ現像工程において、無水マレイン酸に由来する構造単位(III)は、容易に加水分解によって解離することから、動的接触角の低下をより短時間で実現することができる。   [A] The polymer preferably further includes a structural unit (III) having —C (═O) —O—C (═O) —, and the structural unit (III) is derived from maleic anhydride. More preferably, it is a structural unit. By including the structural unit (III) in the [A] polymer, for example, in addition to the structural unit (I), the [A] polymer can have a bulky structure in the main chain. Further, in the alkali development step, the structural unit (III) derived from maleic anhydride is easily dissociated by hydrolysis, so that the dynamic contact angle can be reduced in a shorter time.

当該組成物は、[B]酸解離性基を有し、[A]重合体よりもフッ素原子含有率が小さいベース重合体(以下、「[B]重合体」とも称する)をさらに含有することが好ましい。当該組成物が[B]重合体を含有することで、[A]重合体成分の偏在化がより促進される。その結果、レジスト膜と液浸媒体を遮断することを目的とした上層膜等を別途形成することを要することなく、レジスト膜表面はより大きい動的接触角を示す。   The composition further contains a base polymer having a [B] acid dissociable group and having a fluorine atom content smaller than that of the [A] polymer (hereinafter also referred to as “[B] polymer”). Is preferred. When the composition contains the [B] polymer, uneven distribution of the [A] polymer component is further promoted. As a result, the resist film surface exhibits a larger dynamic contact angle without the need to separately form an upper layer film for the purpose of blocking the resist film and the immersion medium.

当該組成物は、[D]酸拡散制御剤をさらに含有することが好ましい。当該組成物が、[D]酸拡散制御剤をさらに含有することで露光により[C]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度が向上するとともに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。   The composition preferably further contains a [D] acid diffusion controller. The composition further contains a [D] acid diffusion control agent, thereby controlling the diffusion phenomenon of the acid generated from the [C] acid generator upon exposure in the resist film and suppressing undesirable chemical reactions in the non-exposed areas. As a result, the storage stability of the resulting radiation-sensitive resin composition is improved, the resolution of the resist is improved, and the change of the resist pattern line width due to fluctuations in the holding time from exposure to development processing is achieved. The composition which can be suppressed and is extremely excellent in process stability is obtained.

以上説明したように、本発明の液浸露光用感放射線性樹脂組成物は、液浸露光プロセスにおいて形成されたレジスト膜が、露光時には適度に大きい動的接触角を示す一方、アルカリ現像後は動的接触角が大きく低下する特性を発揮し、またその動的接触角の変化に要する時間も短縮できる。その結果、レジスト膜からの酸発生剤等の溶出が抑制されることに加えて、レジスト膜表面が優れた水切れ性を有することで高速スキャン露光を可能にすると共に、現像時には現像液に対する親和性が高まり現像欠陥の発生を抑制して、良好なレジストパターンを形成できる。   As described above, the radiation-sensitive resin composition for immersion exposure of the present invention is such that the resist film formed in the immersion exposure process exhibits a moderately large dynamic contact angle during exposure, while after alkali development. The dynamic contact angle is greatly reduced, and the time required for changing the dynamic contact angle can be shortened. As a result, in addition to suppressing the elution of acid generators from the resist film, the resist film surface has excellent water drainage, enabling high-speed scan exposure and compatibility with the developer during development. Therefore, the occurrence of development defects can be suppressed and a good resist pattern can be formed.

<液浸露光用感放射線性樹脂組成物>
本発明の液浸露光用感放射線性樹脂組成物は、[A]重合体、及び[C]酸発生体を含有する。また、当該組成物は好適成分として[B]重合体、[D]酸拡散制御剤を含有することができる。さらに、当該組成物は本発明の効果を損なわない限り、その他の任意成分を含有してもよい。以下、各成分について詳述する。
<Radiation-sensitive resin composition for immersion exposure>
The radiation-sensitive resin composition for immersion exposure of the present invention contains a [A] polymer and a [C] acid generator. Moreover, the said composition can contain a [B] polymer and a [D] acid diffusion control agent as a suitable component. Furthermore, the said composition may contain another arbitrary component, unless the effect of this invention is impaired. Hereinafter, each component will be described in detail.

<[A]重合体>
[A]重合体は、フッ素原子及びアルカリ解離性基を有し、主鎖に脂環式基を有する重合体である。
<[A] polymer>
[A] The polymer is a polymer having a fluorine atom and an alkali-dissociable group and having an alicyclic group in the main chain.

[構造単位(I)]
[A]重合体としては、フッ素原子及びアルカリ解離性基を有し、主鎖に脂環式基を有していれば特に限定されないが、上記式(1)で表される構造単位(I)を[A]重合体の主たる構造単位として含むことが好ましい。構造単位(I)を[A]重合体の主たる構造単位として含むことで、[A]重合体はより嵩高い脂環式基を有することができ、偏在化がより促進する。
[Structural unit (I)]
[A] The polymer is not particularly limited as long as it has a fluorine atom and an alkali dissociable group and an alicyclic group in the main chain, but the structural unit represented by the above formula (1) (I ) As a main structural unit of the polymer [A]. By including the structural unit (I) as the main structural unit of the [A] polymer, the [A] polymer can have a bulkier alicyclic group, and uneven distribution is further promoted.

上記式(1)中、R〜Rは、それぞれ独立して水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。aは、0又は1である。bは、0〜2の整数である。 In said formula (1), R < 1 > -R < 4 > is a hydrogen atom, a fluorine atom, or a C1-C20 monovalent organic group each independently. a is 0 or 1. b is an integer of 0-2.

上記R〜Rで表される炭素数1〜20の1価の有機基としては、例えば炭素数1〜20の鎖状若しくは分岐状の炭化水素基、炭素数3〜20の脂環式炭化水素基、又は炭素数6〜20の芳香族炭化水素基等が挙げられる。但し、これらの基が有する水素原子の一部又は全部は置換されていてもよい。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 1 to R 4 include a chain or branched hydrocarbon group having 1 to 20 carbon atoms and an alicyclic group having 3 to 20 carbon atoms. Examples thereof include a hydrocarbon group or an aromatic hydrocarbon group having 6 to 20 carbon atoms. However, one part or all part of the hydrogen atom which these groups have may be substituted.

上記炭素数1〜20の鎖状若しくは分岐状の炭化水素基として、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。上記炭素数3〜20の脂環式炭化水素基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等の単環式飽和炭化水素基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロデセニル基、シクロペンタジエニル基、シクロヘキサジエニル基、シクロオクタジエニル基、シクロデカジエン等の単環式不飽和炭化水素基;ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基、トリシクロ[5.2.1.02,6]デシル基、トリシクロ[3.3.1.13,7]デシル基、テトラシクロ[6.2.1.13,6.02,7]ドデシル基、アダマンチル基等の多環式飽和炭化水素基等が挙げられる。上記炭素数6〜20の芳香族炭化水素基としては、例えばフェニル基、ビフェニル基、ターフェニル基、ベンジル基、ナフチル基等が挙げられる。 Examples of the chain or branched hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the alicyclic hydrocarbon group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, a methylcyclohexyl group, and an ethylcyclohexyl group. Monocyclic saturated hydrocarbon group; such as cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, cyclooctenyl group, cyclodecenyl group, cyclopentadienyl group, cyclohexadienyl group, cyclooctadienyl group, cyclodecadiene, etc. Monocyclic unsaturated hydrocarbon group; bicyclo [2.2.1] heptyl group, bicyclo [2.2.2] octyl group, tricyclo [5.2.1.0 2,6 ] decyl group, tricyclo [3 .3.1.1 3,7] decyl group, tetracyclo [6.2.1.1 , 6. 0 2,7 ] dodecyl group, polycyclic saturated hydrocarbon group such as adamantyl group and the like. As said C6-C20 aromatic hydrocarbon group, a phenyl group, a biphenyl group, a terphenyl group, a benzyl group, a naphthyl group etc. are mentioned, for example.

上記R〜Rの少なくとも1つは、フッ素原子又はトリフルオロメチル基であることが好ましい。[A]重合体が、フッ素原子を有する態様として、構造単位(I)中にフッ素原子を有することで、[A]重合体をより偏在化させることができる。また、上記R〜Rの少なくとも1つは上記式(2)で表される基であることが好ましい。[A]重合体が、アルカリ解離性基を有する態様として、構造単位(I)中にアルカリ解離性基を有することで、偏在化がより促進され、動的接触角の低下をより大きくすることができる。 At least one of R 1 to R 4 is preferably a fluorine atom or a trifluoromethyl group. As an embodiment in which the [A] polymer has a fluorine atom, the [A] polymer can be more unevenly distributed by having a fluorine atom in the structural unit (I). Moreover, it is preferable that at least 1 of said R < 1 > -R < 4 > is group represented by the said Formula (2). [A] As an aspect in which the polymer has an alkali-dissociable group, having an alkali-dissociable group in the structural unit (I) promotes uneven distribution and further increases the decrease in dynamic contact angle. Can do.

上記式(2)中、Rはアルカリ解離性基である。アルカリ解離性基とは、例えばヒドロキシル基、カルボキシル基等の極性官能基中の水素原子を置換する基であって、アルカリの存在下(例えば、23℃のテトラメチルアンモニウムヒドロキシシド2.38質量%水溶液中)で解離する基をいう。これにより、構造単位(I)は、アルカリの作用によって極性基を生じることとなる。 In the above formula (2), R 5 is an alkali dissociable group. The alkali-dissociable group is a group that replaces a hydrogen atom in a polar functional group such as a hydroxyl group or a carboxyl group, and is in the presence of an alkali (for example, 2.38% by mass of tetramethylammonium hydroxyside at 23 ° C. A group that dissociates in an aqueous solution. Thereby, a structural unit (I) will produce a polar group by the effect | action of an alkali.

上記Rは、フッ素原子で置換されていてもよい炭素数1〜10の直鎖状若しくは分岐状のアルキル基、又はフッ素原子若しくはフッ素化アルキル基で置換されていてもよい炭素数6〜20の芳香族基であることが好ましい。アルカリ解離性基であるRを、上記特定基とすることでより本願発明の効果が向上する。 R 5 is a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, or a carbon number having 6 to 20 which may be substituted with a fluorine atom or a fluorinated alkyl group. It is preferable that it is an aromatic group. The R 5 is an alkali dissociative group, the effect of the more the present invention by the above specific groups is improved.

a及びbとしては、0が好ましい。構造単位(I)としては、下記式で表される構造単位が好ましい。   As a and b, 0 is preferable. As the structural unit (I), a structural unit represented by the following formula is preferred.

Figure 0005729079
Figure 0005729079

[A]重合体は、構造単位(I)を2種以上含んでいてもよい。[A]重合体における全構造単位に対する構造単位(I)の含有率としては、30モル%以上100モル%以下が好ましい。構造単位(I)の含有率を上記特定範囲とすることで、液浸露光時における大きい動的接触角と共に、現像による動的接触角の十分な低下を達成できる。   [A] The polymer may contain two or more structural units (I). [A] The content of the structural unit (I) with respect to all the structural units in the polymer is preferably 30 mol% or more and 100 mol% or less. By setting the content of the structural unit (I) in the specific range, it is possible to achieve a sufficient decrease in the dynamic contact angle due to development as well as a large dynamic contact angle during immersion exposure.

[構造単位(II)]
[A]重合体は、上記式(3)で表される構造単位(II)をさらに含んでいてもよい。上記式(3)中、R及びRは、それぞれ独立して炭素数1〜20の1価の有機基である。R及びRは、それぞれ独立して2価の連結基である。
[Structural unit (II)]
[A] The polymer may further contain the structural unit (II) represented by the above formula (3). In the above formula (3), R 6 and R 7 are each independently a monovalent organic group having 1 to 20 carbon atoms. R 8 and R 9 are each independently a divalent linking group.

上記R及びRで表される炭素数1〜20の1価の有機基としては、例えば上記R〜Rで表される炭素数1〜20の1価の有機基として例示した基が適用できる。 Examples of the monovalent organic group having 1 to 20 carbon atoms represented by the R 6 and R 7 include the groups exemplified as the monovalent organic group having 1 to 20 carbon atoms represented by the R 1 to R 4. Is applicable.

上記R及びRで表される2価の連結基としては、例えば炭素数1〜30の2価の鎖状炭化水素基、炭素数3〜30の2価の脂肪族環状炭化水素基、炭素数6〜30の2価の芳香族炭化水素基、エーテル基、エステル基、カルボニル基、イミノ基、アミド基又はこれらを組み合わせた2価の基等が挙げられる。 Examples of the divalent linking group represented by R 8 and R 9 include a divalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent aliphatic cyclic hydrocarbon group having 3 to 30 carbon atoms, Examples thereof include a divalent aromatic hydrocarbon group having 6 to 30 carbon atoms, an ether group, an ester group, a carbonyl group, an imino group, an amide group, or a divalent group obtained by combining these.

上記炭素数1〜30の2価の鎖状炭化水素基としては、例えば、メタンジイル基、エタンジイル基、プロパンジイル基、ブタンジイル基、ペンタンジイル基、ヘキサンジイル基、オクタンジイル基、デカンジイル基、ウンデカンジイル基、ヘキサデカンジイル基、イコサンジイル基等のアルカンジイル基;エテンジイル基、プロペンジイル基、ブテンジイル基、ペンテンジイル基、ヘキセンジイル基、オクテンジイル基、デセンジイル基、ウンデセンジイル基、ヘキサデセンジイル基、イコセンジイル基等のアルケンジイル基;エチンジイル基、プロピンジイル基、ブチンジイル基、オクチンジイル基、ブタジエンジイル基、ヘキサジエンジイル基、オクタトリエンジイル基等のアルキンジイル基等が挙げられる。   Examples of the divalent chain hydrocarbon group having 1 to 30 carbon atoms include a methanediyl group, an ethanediyl group, a propanediyl group, a butanediyl group, a pentanediyl group, a hexanediyl group, an octanediyl group, a decandidiyl group, and an undecandiyl group. Alkenediyl groups such as ethenediyl group, propenediyl group, butenediyl group, pentenediyl group, hexenediyl group, octenediyl group, decenediyl group, undecenediyl group, hexadecenediyl group, icocenediyl group; And alkynediyl groups such as propynediyl group, butynediyl group, octynediyl group, butadienediyl group, hexadienediyl group, octatrienediyl group and the like.

上記炭素数3〜30の2価の脂肪族環状炭化水素基としては、例えば、シクロプロパンジイル基、シクロブタンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基、シクロデカンジイル基、メチルシクロヘキサンジイル基、エチルシクロヘキサンジイル基等の単環式飽和炭化水素基;シクロブテンジイル基、シクロペンテンジイル基、シクロヘキセンジイル基、シクロヘプテンジイル基、シクロオクテンジイル基、シクロデセンジイル基、シクロペンタジエンジイル基、シクロヘキサジエンジイル基、シクロオクタジエンジイル基、シクロデカジエンジイル基等の単環式不飽和炭化水素基;ビシクロ[2.2.1]ヘプタンジイル基、ビシクロ[2.2.2]オクタンジイル基、トリシクロ[5.2.1.02,6]デカンジイル基、トリシクロ[3.3.1.13,7]デカンジイル基、テトラシクロ[6.2.1.13,6.02,7]ドデカンジイル基、アダマンタンジイル基等の多環式飽和炭化水素基;ビシクロ[2.2.1]ヘプテンジイル基、ビシクロ[2.2.2]オクテンジイル基、トリシクロ[5.2.1.02,6]デセンジイル基、トリシクロ[3.3.1.13,7]デセンジイル基、テトラシクロ[6.2.1.13,6.02,7]ドデセンジイル基等の多環式不飽和炭化水素基等が挙げられる。上記炭素数6〜30の2価の芳香族炭化水素基としては、例えばフェニレン基、ビフェニレン基、ターフェニレン基、ベンジレン基、フェニレンエチレン基、フェニレンシクロへキシレン基、ナフチレン基等が挙げられる。 Examples of the divalent aliphatic cyclic hydrocarbon group having 3 to 30 carbon atoms include cyclopropanediyl group, cyclobutanediyl group, cyclopentanediyl group, cyclohexanediyl group, cycloheptanediyl group, cyclooctanediyl group, cyclohexane Monocyclic saturated hydrocarbon groups such as decanediyl group, methylcyclohexanediyl group, ethylcyclohexanediyl group; cyclobutenediyl group, cyclopentenediyl group, cyclohexenediyl group, cycloheptenediyl group, cyclooctenediyl group, cyclodecenediyl group Group, cyclopentadienediyl group, cyclohexadienediyl group, cyclooctadienediyl group, cyclodecadienediyl group and the like; bicyclo [2.2.1] heptanediyl group, bicyclo [2.2 .2] Octanediyl group Tricyclo [5.2.1.0 2, 6] decanediyl group, tricyclo [3.3.1.1 3, 7] decanediyl group, tetracyclo [6.2.1.1 3, 6. 0 2,7 ] polycyclic saturated hydrocarbon groups such as dodecanediyl group and adamantanediyl group; bicyclo [2.2.1] heptenediyl group, bicyclo [2.2.2] octenediyl group, tricyclo [5.2.1] .0 2,6] Desenjiiru group, tricyclo [3.3.1.1 3, 7] Desenjiiru group, tetracyclo [6.2.1.1 3, 6. And a polycyclic unsaturated hydrocarbon group such as 0 2,7 ] dodecenediyl group. Examples of the divalent aromatic hydrocarbon group having 6 to 30 carbon atoms include a phenylene group, a biphenylene group, a terphenylene group, a benzylene group, a phenyleneethylene group, a phenylenecyclohexylene group, and a naphthylene group.

構造単位(II)としては、上記R及びRの少なくとも1つが酸素原子であり、この酸素原子と結合するR又はRがアルカリ解離性基であることが好ましい。構造単位(II)中にアルカリ解離性基を有することでアルカリ解離性基の存在密度が高まり、本願発明の効果がより向上する。 As the structural unit (II), it is preferable that at least one of R 8 and R 9 is an oxygen atom, and R 6 or R 7 bonded to the oxygen atom is an alkali dissociable group. By having the alkali dissociable group in the structural unit (II), the density of the alkali dissociable group is increased, and the effect of the present invention is further improved.

上記R及びRは、それぞれ独立して炭素数1〜10の直鎖状若しくは分岐状のフッ素化アルキル基であることが好ましい。構造単位(II)がフッ素原子を有することで、アルカリ現像工程においてアルカリ解離性基はより容易に解離し、親水性の基を生じ、レジスト膜表面の疎水性低下がより向上する。 R 6 and R 7 are preferably each independently a linear or branched fluorinated alkyl group having 1 to 10 carbon atoms. When the structural unit (II) has a fluorine atom, the alkali-dissociable group is more easily dissociated in the alkali development step to generate a hydrophilic group, and the hydrophobicity of the resist film surface is further reduced.

上記フッ素化アルキル基のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、2−メチルプロピル基、1−メチルプロピル基、t−ブチル基等が挙げられる。   Examples of the alkyl group of the fluorinated alkyl group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a 2-methylpropyl group, a 1-methylpropyl group, and a t-butyl group. Is mentioned.

構造単位(II)としては、下記式で表される構造単位が好ましい。   As the structural unit (II), a structural unit represented by the following formula is preferred.

Figure 0005729079
Figure 0005729079

[A]重合体は、構造単位(II)を2種以上含んでいてもよい。[A]重合体における全構造単位に対する構造単位(II)の含有率としては、30モル%以上60モル%以下が好ましい。構造単位(II)の含有率を上記特定範囲とすることで液浸露光時における大きい動的接触角と共に現像による動的接触角の十分な低下を達成できる。   [A] The polymer may contain two or more structural units (II). [A] As a content rate of structural unit (II) with respect to all the structural units in a polymer, 30 mol% or more and 60 mol% or less are preferable. By setting the content of the structural unit (II) within the above specific range, it is possible to achieve a sufficient decrease in the dynamic contact angle by development as well as a large dynamic contact angle during immersion exposure.

[構造単位(III)]
[A]重合体は、−C(=O)−O−C(=O)−を有する構造単位(III)をさらに含むことが好ましい。構造単位(III)を[A]重合体が含むことで、例えば構造単位(I)以外に[A]重合体は嵩高い構造を主鎖に有することができる。また、アルカリ現像工程において、−C(=O)−O−C(=O)−を有する構造単位(III)は、容易に加水分解によって解離することから、動的接触角の低下をより短時間で実現することができる。
[Structural unit (III)]
[A] The polymer preferably further includes a structural unit (III) having —C (═O) —O—C (═O) —. By including the structural unit (III) in the [A] polymer, for example, in addition to the structural unit (I), the [A] polymer can have a bulky structure in the main chain. Further, in the alkali development step, the structural unit (III) having —C (═O) —O—C (═O) — is easily dissociated by hydrolysis, so that the decrease in the dynamic contact angle is further shortened. Can be realized in time.

構造単位(III)としては、無水マレイン酸に由来する構造単位であることが好ましく、例えば下記式で表される構造単位等が挙げられる。   The structural unit (III) is preferably a structural unit derived from maleic anhydride, and examples thereof include a structural unit represented by the following formula.

Figure 0005729079
Figure 0005729079

上記式中、R10は、炭素数1〜20の1価の有機基である。cは、0〜2の整数である。但し、R10が複数の場合、複数のR10は同一であっても異なっていてもよい。 In the above formula, R 10 is a monovalent organic group having 1 to 20 carbon atoms. c is an integer of 0-2. However, when R 10 is plural, the plurality of R 10 may be different even in the same.

上記R10で表される炭素数1〜20の1価の有機基としては、例えば上記R〜Rで表される炭素数1〜20の1価の有機基として例示した基が適用できる。 As the monovalent organic group having 1 to 20 carbon atoms represented by R 10 , for example, the groups exemplified as the monovalent organic group having 1 to 20 carbon atoms represented by R 1 to R 4 can be applied. .

[A]重合体は、構造単位(III)を2種以上含んでいてもよい。[A]重合体における全構造単位に対する構造単位(III)の含有率としては、30モル%以上60モル%以下が好ましい。構造単位(III)の含有率を上記特定範囲とすることで、液浸露光時における大きい動的接触角と共に、現像による動的接触角の十分な低下を達成できる。   [A] The polymer may contain two or more kinds of structural units (III). [A] As a content rate of structural unit (III) with respect to all the structural units in a polymer, 30 mol% or more and 60 mol% or less are preferable. By making the content rate of structural unit (III) into the said specific range, sufficient fall of the dynamic contact angle by image development can be achieved with the large dynamic contact angle at the time of immersion exposure.

当該組成物における[A]重合体の含有量としては、後述する[B]重合体を含有する場合に、[B]重合体100質量部に対して0.1質量部以上10質量部以下が好ましい。[A]重合体の含有量を上記特定範囲とすることで、[A]重合体のレジスト膜の表面への偏析が効果的に起きるので、レジスト膜からの溶出がより抑制されると共に、レジスト膜表面の動的接触角がさらに高まるため水切れ性をより向上できる。   As content of the [A] polymer in the said composition, when it contains the [B] polymer mentioned later, 0.1 mass part or more and 10 mass parts or less are with respect to 100 mass parts of [B] polymers. preferable. [A] By making the content of the polymer within the above specified range, segregation of the polymer [A] on the surface of the resist film occurs effectively, so that elution from the resist film is further suppressed and the resist Since the dynamic contact angle on the film surface is further increased, the water drainage can be further improved.

<[A]重合体の合成方法>
[A]重合体の合成方法としては、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。例えば、単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等の方法で合成することが好ましい。
<[A] Polymer Synthesis Method>
[A] As a method for synthesizing the polymer, for example, a monomer corresponding to each predetermined structural unit can be produced by polymerizing in a suitable solvent using a radical polymerization initiator. For example, a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction; a solution containing a monomer and a solution containing a radical initiator Respectively, a method of dropping a solution into a reaction solvent or a monomer-containing solution to cause a polymerization reaction; a plurality of types of solutions each containing a monomer, and a solution containing a radical initiator, It is preferable to synthesize by a method such as a method of dropping it into a reaction solvent or a solution containing a monomer to cause a polymerization reaction.

構造単位(I)を与える単量体としては、例えば下記式で表される単量体等が挙げられる。   Examples of the monomer that gives the structural unit (I) include monomers represented by the following formulas.

Figure 0005729079
Figure 0005729079

上記式中、R〜R、a及びbは、上記式(1)と同義である。 In said formula, R < 1 > -R < 4 >, a and b are synonymous with the said Formula (1).

構造単位(II)を与える単量体としては、例えば下記式で表される単量体等が挙げられ。   As a monomer which gives structural unit (II), the monomer etc. which are represented by a following formula are mentioned, for example.

Figure 0005729079
Figure 0005729079

上記式中、R〜Rは、上記式(3)と同義である。 In said formula, R < 6 > -R < 9 > is synonymous with the said Formula (3).

構造単位(III)としては、上述したように、無水マレイン酸に由来する構造単位が好ましく、構造単位(III)を与える単量体としては、例えば下記式で表される単量体等が挙げられる。   As described above, the structural unit (III) is preferably a structural unit derived from maleic anhydride, and examples of the monomer that gives the structural unit (III) include a monomer represented by the following formula: It is done.

Figure 0005729079
Figure 0005729079

上記式中、R10は、炭素数1〜20の1価の有機基である。cは、0〜2の整数である。但し、R10が複数の場合、複数のR10は同一であっても異なっていてもよい。 In the above formula, R 10 is a monovalent organic group having 1 to 20 carbon atoms. c is an integer of 0-2. However, when R 10 is plural, the plurality of R 10 may be different even in the same.

これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常、30℃〜150℃であり、40℃〜150℃が好ましく、50℃〜140℃がより好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常、30分〜8時間であり、45分〜6時間が好ましく、1時間〜5時間がより好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常、30分〜12時間であり、45分〜12時間が好ましく、1時間〜10時間がより好ましい。   What is necessary is just to determine the reaction temperature in these methods suitably with initiator seed | species. Usually, it is 30 degreeC-150 degreeC, 40 degreeC-150 degreeC is preferable, and 50 degreeC-140 degreeC is more preferable. The dropping time varies depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is usually 30 minutes to 8 hours, preferably 45 minutes to 6 hours, and more preferably 1 hour to 5 hours. . Further, the total reaction time including the dropping time varies depending on the conditions similarly to the dropping time, but is usually 30 minutes to 12 hours, preferably 45 minutes to 12 hours, and more preferably 1 hour to 10 hours.

上記重合に使用されるラジカル開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。このうち、AIBNが好ましい。これらは単独で又は2種以上を組み合わせて使用できる。   Examples of the radical initiator used in the polymerization include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2 -Cyclopropylpropionitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobis (2-methylpropionate); benzoyl peroxide And peroxide radical initiators such as t-butyl hydroperoxide and cumene hydroperoxide. Of these, AIBN is preferred. These can be used alone or in combination of two or more.

重合溶媒としては、重合を阻害する溶媒(重合禁止効果を有するニトロベンゼン、連鎖移動効果を有するメルカプト化合物等)以外の溶媒であって、その単量体を溶解可能な溶媒であれば使用することができる。例えば、アルコール類、エーテル類、ケトン類、アミド類、エステル・ラクトン類、ニトリル類及びその混合溶媒等が挙げられる。これらは単独で又は2種以上を組み合わせて使用できる。   As the polymerization solvent, any solvent other than a solvent that inhibits polymerization (nitrobenzene having a polymerization inhibiting effect, mercapto compound having a chain transfer effect, etc.) and capable of dissolving the monomer may be used. it can. Examples thereof include alcohols, ethers, ketones, amides, esters / lactones, nitriles, and mixed solvents thereof. These can be used alone or in combination of two or more.

重合反応により得られた重合体は、再沈殿法により回収することが好ましい。すなわち重合反応終了後、重合液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール類やアルカン類等を単独で又は2種以上を混合して使用することができる。また、再沈殿法の他に、分液操作やカラム操作、限外ろ過操作等により、単量体、オリゴマー等の低分子成分を除去して、重合体を回収することもできる。   The polymer obtained by the polymerization reaction is preferably recovered by a reprecipitation method. That is, after the polymerization reaction is completed, the polymer is recovered as a powder by introducing the polymerization solution into a reprecipitation solvent. As the reprecipitation solvent, alcohols or alkanes can be used alone or in admixture of two or more. In addition to the reprecipitation method, the polymer can be recovered by removing low molecular components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.

[A]重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量(Mw)は、特に限定されないが、1,000〜50,000であることが好ましく、1,000〜40,000であることがより好ましく、1,000〜30,000であることが特に好ましい。[A]重合体のMwを上記特定範囲内とすることで、十分な動的接触角を有するレジスト膜を得られ、かつレジスト膜の現像性が向上する観点から好ましい。   [A] Although the polystyrene conversion weight average molecular weight (Mw) by the gel permeation chromatography (GPC) of a polymer is not specifically limited, It is preferable that it is 1,000-50,000, and is 1,000-40,000. More preferably, it is particularly preferably 1,000 to 30,000. [A] By setting Mw of the polymer within the specific range, a resist film having a sufficient dynamic contact angle can be obtained, and the developability of the resist film is improved.

[A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常1.0〜5.0であり、1.0〜4.0であることが好ましく、1.0〜2.0であることがより好ましい。   [A] The ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is usually 1.0 to 5.0, preferably 1.0 to 4.0. 1.0 to 2.0 is more preferable.

なお、Mw及びMnは東ソー製GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い流量1.0mL/分、溶出溶媒にテトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィーにより測定した。   In addition, Mw and Mn were obtained by using monodisperse polystyrene under analytical conditions of a TOSOH GPC column (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) at a flow rate of 1.0 mL / min, elution solvent at a column temperature of 40 ° C. It was measured by standard gel permeation chromatography.

<[B]重合体>
当該組成物が含有する[B]重合体は、レジスト膜の主成分となる成分であり、酸解離性基を有し、[A]重合体よりもフッ素原子含有率が小さいベース重合体である。[B]重合体を含有することで、[A]重合体及び[B]重合体を含む当該組成物からレジスト膜を形成した際に、[A]重合体がレジスト膜表面に偏在化することとなる。なお、フッ素原子含有率は13C−NMRにより測定することができる。
<[B] polymer>
The [B] polymer contained in the composition is a component that is a main component of the resist film, has an acid-dissociable group, and is a base polymer having a fluorine atom content smaller than that of the [A] polymer. . By containing the [B] polymer, the [A] polymer is unevenly distributed on the resist film surface when the resist film is formed from the composition containing the [A] polymer and the [B] polymer. It becomes. The fluorine atom content can be measured by 13 C-NMR.

[B]重合体におけるフッ素原子含有率は、フッ素含有重合体全体を100質量%とした際に、通常5質量%未満であり、好ましくは0質量%〜4.9質量%、より好ましくは0質量%〜4質量%である。[B]重合体におけるフッ素原子含有割合を上記範囲内とすることで、[B]重合体及び[A]重合体を含む当該組成物から形成されるレジスト膜表面の撥水性を高めることができる。   [B] The fluorine atom content in the polymer is usually less than 5% by mass, preferably 0% by mass to 4.9% by mass, more preferably 0%, when the entire fluorine-containing polymer is 100% by mass. It is mass%-4 mass%. [B] By making the fluorine atom content ratio in the polymer within the above range, the water repellency of the resist film surface formed from the composition containing the [B] polymer and the [A] polymer can be increased. .

[構造単位(IV)]
[B]重合体としては、酸解離性基を有し、[A]重合体よりもフッ素原子含有率が小さければ特に限定されないが、通常下記式で表される酸解離性基を有する構造単位(以下、「構造単位(IV)」とも称する)を含む。酸解離性基とは、例えばヒドロキシル基、カルボキシル基等の極性官能基中の水素原子を置換する基であって、酸の存在下で解離する基をいう。これにより、構造単位(IV)は、酸の作用によって極性基を生じることとなる。従って、露光工程において露光された部分のアルカリ現像液に対する溶解性を高くすることができる点で好ましい。
[Structural unit (IV)]
[B] The polymer is not particularly limited as long as it has an acid-dissociable group and has a fluorine atom content smaller than that of the polymer [A], but is usually a structural unit having an acid-dissociable group represented by the following formula (Hereinafter also referred to as “structural unit (IV)”). The acid dissociable group refers to a group that substitutes a hydrogen atom in a polar functional group such as a hydroxyl group or a carboxyl group, and dissociates in the presence of an acid. Thereby, a structural unit (IV) will produce a polar group by the effect | action of an acid. Therefore, it is preferable at the point which can make the solubility with respect to the alkali developing solution of the part exposed in the exposure process high.

Figure 0005729079
Figure 0005729079

上記式中、R11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R12〜R14は、それぞれ独立して炭素数1〜10の直鎖状若しくは分岐状のアルキル基又は置換基を有してもよい炭素数6~14のアリール基である。但し、R12とR13とが互いに結合している炭素原子と共に、炭素数3〜20の2価の脂環式炭化水素基を形成していてもよい。 In the above formula, R 11 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group. R 12 to R 14 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms which may have a substituent. However, R 12 and R 13 may form a divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms together with the carbon atom bonded to each other.

上記R12〜R14で表される炭素数1〜10の直鎖状又は分岐状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、1−ブチル基、i−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、i−ペンチル基、sec−ペンチル基、neo−ペンチル基、tert−ペンチル基、n−ヘキシル基、i−ヘキシル基、n−ヘプチル基、i−ヘプチル基、n−オクチル基、i−オクチル基、n−ノニル基、i−ノニル基、n−デシル基、i−デシル基等が挙げられる。上記R12〜R14で表される炭素数6〜14のアリール基としては、例えばフェニル基、ナフチル基、アントラニル基等が挙げられる。上記R12とR13とが互いに結合している炭素原子と共に、形成していてもよい炭素数3〜20の2価の脂環式炭化水素基としては、例えばシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ジシクロペンタン、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタン等の脂環式炭化水素から水素原子2つを除いた基が挙げられる。 Examples of the linear or branched alkyl group having 1 to 10 carbon atoms represented by R 12 to R 14 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a 1-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, i-pentyl group, sec-pentyl group, neo-pentyl group, tert-pentyl group, n-hexyl group, i-hexyl group, Examples include n-heptyl group, i-heptyl group, n-octyl group, i-octyl group, n-nonyl group, i-nonyl group, n-decyl group, i-decyl group and the like. Examples of the aryl group having 6 to 14 carbon atoms represented by R 12 to R 14 include a phenyl group, a naphthyl group, and an anthranyl group. Examples of the divalent alicyclic hydrocarbon group having 3 to 20 carbon atoms that may be formed together with the carbon atom in which R 12 and R 13 are bonded to each other include cyclopropane, cyclobutane, cyclopentane, Examples include groups in which two hydrogen atoms have been removed from an alicyclic hydrocarbon such as cyclohexane, dicyclopentane, norbornane, tricyclodecane, tetracyclododecane, and adamantane.

構造単位(IV)としては、例えば下記式で表される構造単位等が挙げられる。   Examples of the structural unit (IV) include a structural unit represented by the following formula.

Figure 0005729079
Figure 0005729079

上記式中、R11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R 11 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.

これらのうち、上記Rがメチル基であり、R11とR12とが互いに結合している炭素原子と共に、アダマンタンから水素原子2つを除いた基を形成し、R10が炭素数1〜4の直鎖状のアルキル基である構造が構造単位(IV)としては好ましい。 Of these, R 9 is a methyl group, and together with the carbon atoms to which R 11 and R 12 are bonded to each other, a group in which two hydrogen atoms are removed from adamantane is formed, and R 10 has a carbon number of 1 to The structure of 4 linear alkyl groups is preferred as the structural unit (IV).

[B]重合体における構造単位(IV)の含有率としては、[A]重合体を構成する全構造単位に対して、5モル%〜70モル%が好ましく、10モル%〜60モル%がより好ましい。なお、[B]重合体は、構造単位(IV)を2種以上含んでいてもよい。   [B] The content of the structural unit (IV) in the polymer is preferably 5 mol% to 70 mol%, and preferably 10 mol% to 60 mol% with respect to all the structural units constituting the [A] polymer. More preferred. In addition, the [B] polymer may contain 2 or more types of structural units (IV).

[構造単位(V)]
[B]重合体は、ラクトン構造及び環状カーボネート構造からなる群より選ばれる少なくとも1種の構造を含む構造単位(以下、「構造単位(V)」とも称する)を含んでいてもよい。[B]重合体が構造単位(V)を含むことで、当該組成物から得られるレジスト膜の基板との密着性が向上する。
[Structural unit (V)]
[B] The polymer may contain a structural unit containing at least one structure selected from the group consisting of a lactone structure and a cyclic carbonate structure (hereinafter also referred to as “structural unit (V)”). [B] When a polymer contains a structural unit (V), the adhesiveness with the board | substrate of the resist film obtained from the said composition improves.

構造単位(V)としては、例えば下記式で表される構造単位等が挙げられる。   Examples of the structural unit (V) include a structural unit represented by the following formula.

Figure 0005729079
Figure 0005729079

Figure 0005729079
Figure 0005729079

上記式中、R12は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。 In the above formula, R 12 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.

[B]重合体における構造単位(V)の含有率としては、[B]重合体を構成する全構造単位に対して、0モル%〜70モル%が好ましく、5モル%〜60モル%がより好ましい。なお、[B]重合体は、構造単位(V)を2種以上含んでいてもよい。   [B] The content of the structural unit (V) in the polymer is preferably 0 mol% to 70 mol%, preferably 5 mol% to 60 mol%, based on all structural units constituting the [B] polymer. More preferred. In addition, the [B] polymer may contain 2 or more types of structural units (V).

<[B]重合体の合成方法>
[B]重合体の合成方法としては、例えば所定の各構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。例えば、単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法;各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等の方法で合成することが好ましい。
<[B] Polymer Synthesis Method>
[B] As a method for synthesizing the polymer, for example, a monomer corresponding to each predetermined structural unit can be produced by polymerizing in a suitable solvent using a radical polymerization initiator. For example, a method in which a solution containing a monomer and a radical initiator is dropped into a reaction solvent or a solution containing a monomer to cause a polymerization reaction; a solution containing a monomer and a solution containing a radical initiator Respectively, a method of dropping a solution into a reaction solvent or a monomer-containing solution to cause a polymerization reaction; a plurality of types of solutions each containing a monomer, and a solution containing a radical initiator, It is preferable to synthesize by a method such as a method of dropping it into a reaction solvent or a solution containing a monomer to cause a polymerization reaction.

これらの方法における反応温度は開始剤種によって適宜決定すればよい。通常30℃〜180℃であり、40℃〜160℃が好ましい。滴下時間は、反応温度、開始剤の種類、反応させる単量体等の条件によって異なるが、通常、30分〜8時間であり、45分〜6時間が好ましい。また、滴下時間を含む全反応時間も、滴下時間と同様に条件により異なるが、通常、30分〜8時間であり、45分〜7時間が好ましい。   What is necessary is just to determine the reaction temperature in these methods suitably with initiator seed | species. Usually, it is 30 degreeC-180 degreeC, and 40 degreeC-160 degreeC is preferable. Although dripping time changes with conditions, such as reaction temperature, the kind of initiator, and the monomer made to react, it is 30 minutes-8 hours normally, and 45 minutes-6 hours are preferable. Further, the total reaction time including the dropping time varies depending on the conditions as well as the dropping time, but is usually 30 minutes to 8 hours, and preferably 45 minutes to 7 hours.

重合に使用されるラジカル開始剤、溶媒、重合体の回収方法としては、[A]重合体の合成方法に記載した例と同様の化合物、方法を適用できる。   As the radical initiator, the solvent, and the polymer recovery method used for the polymerization, the same compounds and methods as those described in [A] Polymer Synthesis Method can be applied.

[B]重合体のMwとしては、通常1,000〜300,000であり、2,000〜200,000が好ましく、3,000〜100,000がより好ましい。Mwを上記特定範囲とすることで、レジストとしての耐熱性及び現像性が向上する観点から好ましい。   [B] The Mw of the polymer is usually 1,000 to 300,000, preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. By making Mw into the said specific range, it is preferable from a viewpoint which the heat resistance and developability as a resist improve.

<[C]酸発生体>
[C]酸発生体は、レジストパターン形成の一工程である露光工程において、マスクを通過した光によって酸を発生する化合物である。当該組成物における[C]酸発生体の含有形態としては、後述するような化合物の態様(以下、この態様を適宜「[C]酸発生剤」とも称する)でも、重合体の一部として組み込まれた態様でも、これらの両方の態様でもよい。
<[C] acid generator>
[C] The acid generator is a compound that generates an acid by light that has passed through a mask in an exposure process, which is one process of forming a resist pattern. The composition of the [C] acid generator in the composition is incorporated as a part of the polymer even in the form of a compound as described later (hereinafter, this aspect is also referred to as “[C] acid generator” as appropriate). Or both of these embodiments.

[C]酸発生剤としては、例えばオニウム塩化合物、スルホンイミド化合物等が挙げられる。これらのうち、オニウム塩化合物が好ましい。   [C] Examples of the acid generator include onium salt compounds and sulfonimide compounds. Of these, onium salt compounds are preferred.

オニウム塩化合物としては、例えばスルホニウム塩(テトラヒドロチオフェニウム塩を含む)、ヨードニウム塩等が挙げられる。   Examples of the onium salt compounds include sulfonium salts (including tetrahydrothiophenium salts) and iodonium salts.

スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、トリフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、トリフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−シクロヘキシルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ−n−オクタンスルホネート、4−メタンスルホニルフェニルジフェニルスルホニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、トリフェニルホスホニウム1,1,2,2−テトラフルオロ−6−(1−アダマンタンカルボニロキシ)−ヘキサン−1−スルホネート等が挙げられる。これらのうち、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ−n−ブタンスルホネート、トリフェニルホスホニウム1,1,2,2−テトラフルオロ−6−(1−アダマンタンカルボニロキシ)−ヘキサン−1−スルホネート、4−シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ−n−ブタンスルホネートが好ましい。   Examples of the sulfonium salt include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-cyclohexylphenyldiphenylsulfonium perfluoro- n-octanesulfonate, 4-cyclohexylphenyldiphenylsulfonium 2-bicyclo [2.2.1] hept- -Yl-1,1,2,2-tetrafluoroethanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium par Fluoro-n-octanesulfonate, 4-methanesulfonylphenyldiphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, triphenylphosphonium 1,1, Examples include 2,2-tetrafluoro-6- (1-adamantane carbonyloxy) -hexane-1-sulfonate. Among these, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylphosphonium 1,1,2,2-tetrafluoro-6- (1-adamantanecarbonyloxy) -hexane-1 -Sulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate is preferred.

テトラヒドロチオフェニウム塩としては、例えば1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(6−n−ブトキシナフタレン−2−イル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート、1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート等が挙げられる。これらのテトラヒドロチオフェニウム塩のうち、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムパーフルオロ−n−オクタンスルホネート及び1−(3,5−ジメチル−4−ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネートが好ましい。   Examples of the tetrahydrothiophenium salt include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona. Fluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium perfluoro-n-octanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophene Nitro 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 1- (6-n-butoxynaphthalen-2-yl) tetrahydrothiophenium trifluoromethane Sulfonate, 1- (6-n-butoxynaphthalene-2 Yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (6-n-butoxynaphthalen-2-yl) tetrahydrothiophenium perfluoro-n-octanesulfonate, 1- (6-n-butoxynaphthalene- 2-yl) tetrahydrothiophenium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) ) Tetrahydrothiophenium trifluoromethanesulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydro Thiophenium perfluoro-n-octance Phonates, 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonate, etc. Can be mentioned. Of these tetrahydrothiophenium salts, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) Tetrahydrothiophenium perfluoro-n-octane sulfonate and 1- (3,5-dimethyl-4-hydroxyphenyl) tetrahydrothiophenium nonafluoro-n-butane sulfonate are preferred.

ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ−n−ブタンスルホネート、ジフェニルヨードニウムパーフルオロ−n−オクタンスルホネート、ジフェニルヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウムパーフルオロ−n−オクタンスルホネート、ビス(4−t−ブチルフェニル)ヨードニウム2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホネート等が挙げられる。これらのヨードニウム塩のうち、ビス(4−t−ブチルフェニル)ヨードニウムノナフルオロ−n−ブタンスルホネートが好ましい。   Examples of the iodonium salt include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t -Butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetra Le Oro ethanesulfonate. Of these iodonium salts, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate is preferred.

スルホンイミド化合物としては、例えばN−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(ノナフルオロ−n−ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(パーフルオロ−n−オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ビシクロ[2.2.1]ヘプト−2−イル−1,1,2,2−テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド等が挙げられる。   Examples of the sulfonimide compound include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy) bicyclo [ 2.2.1] Hept-5-ene-2,3-dicarboximide, N- (perfluoro-n-octanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3- Dicarboximide, N- (2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoroethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene -2,3-dicarboximide and the like.

[C]酸発生剤は、単独で使用してもよく2種以上を併用してもよい。[C]酸発生体が「剤」である場合の使用量としては、当該組成物により形成される塗膜の感度及び現像性を確保する観点から、[B]重合体100質量部に対して、0.1質量部以上30質量部以下が好ましく、1質量部以上20質量部以下がより好ましい。   [C] The acid generator may be used alone or in combination of two or more. [C] The amount used when the acid generator is an “agent” is from the viewpoint of ensuring the sensitivity and developability of the coating film formed from the composition, with respect to 100 parts by mass of the polymer (B). 0.1 parts by mass or more and 30 parts by mass or less are preferable, and 1 part by mass or more and 20 parts by mass or less are more preferable.

<[D]酸拡散制御剤>
当該組成物は、好適成分として[D]酸拡散制御剤を含有することができる。[D]酸拡散制御剤は、露光により[C]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏し、得られる感放射線性樹脂組成物の貯蔵安定性が向上し、またレジストとしての解像度が向上するとともに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。
<[D] Acid diffusion controller>
The composition may contain a [D] acid diffusion controller as a suitable component. [D] The acid diffusion control agent controls the diffusion phenomenon of the acid generated from the [C] acid generator upon exposure in the resist film, and suppresses an undesirable chemical reaction in the non-exposed region, and the resulting radiation sensitive This improves the storage stability of the functional resin composition, improves the resolution of the resist, and suppresses changes in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing. An extremely excellent composition is obtained.

[D]酸拡散制御剤としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。   [D] Examples of the acid diffusion controller include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.

アミン化合物としては、例えばモノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルアミン、2,2−ビス(4−アミノフェニル)プロパン、2−(3−アミノフェニル)−2−(4−アミノフェニル)プロパン、2−(4−アミノフェニル)−2−(3−ヒドロキシフェニル)プロパン、2−(4−アミノフェニル)−2−(4−ヒドロキシフェニル)プロパン、1,4−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、1,3−ビス(1−(4−アミノフェニル)−1−メチルエチル)ベンゼン、ビス(2−ジメチルアミノエチル)エーテル、ビス(2−ジエチルアミノエチル)エーテル、1−(2−ヒドロキシエチル)−2−イミダゾリジノン、2−キノキサリノール、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’−ペンタメチルジエチレントリアミン等が挙げられる。   Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines or derivatives thereof; ethylenediamine, N, N, N ′, N′-tetra Methylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis (4 -Aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-amino) Phenyl) -2- (4-hydroxyphenyl) propane, 1, -Bis (1- (4-aminophenyl) -1-methylethyl) benzene, 1,3-bis (1- (4-aminophenyl) -1-methylethyl) benzene, bis (2-dimethylaminoethyl) ether Bis (2-diethylaminoethyl) ether, 1- (2-hydroxyethyl) -2-imidazolidinone, 2-quinoxalinol, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, N, N, N ′, N ″ N ″ -pentamethyldiethylenetriamine and the like.

アミド基含有化合物としては、例えばN−t−ブトキシカルボニル基含有アミノ化合物、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン、N−アセチル−1−アダマンチルアミン、イソシアヌル酸トリス(2−ヒドロキシエチル)等が挙げられる。   Examples of amide group-containing compounds include Nt-butoxycarbonyl group-containing amino compounds, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, Examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, and isocyanuric acid tris (2-hydroxyethyl).

ウレア化合物としては、例えば尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリ−n−ブチルチオウレア等が挙げられる。   Examples of urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea and the like. Is mentioned.

含窒素複素環化合物としては、例えばイミダゾール類;ピリジン類;ピペラジン類;ピペリジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3−ピペリジノ−1,2−プロパンジオール、モルホリン、4−メチルモルホリン、1−(4−モルホリニル)エタノール、4−アセチルモルホリン、3−(N−モルホリノ)−1,2−プロパンジオール、1,4−ジメチルピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。   Examples of the nitrogen-containing heterocyclic compound include imidazoles; pyridines; piperazines; piperidines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidineethanol, 3-piperidino-1,2-propanediol, morpholine 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2. 2.2] octane and the like.

[D]酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基の一例として、露光により分解して酸拡散制御性を失うオニウム塩化合物がある。オニウム塩化合物としては、例えばスルホニウム塩化合物、ヨードニウム塩化合物等が挙げられる。   [D] As the acid diffusion controlling agent, a photodisintegrating base that is exposed to light and generates a weak acid can be used. As an example of the photodegradable base, there is an onium salt compound that is decomposed by exposure and loses acid diffusion controllability. Examples of the onium salt compound include a sulfonium salt compound and an iodonium salt compound.

[D]酸拡散制御剤は、単独で使用してもよく2種以上を併用してもよい。[D]酸拡散制御剤酸の含有量としては、[B]重合体100質量部に対して、レジストとしての感度が向上する観点から15質量部以下が好ましい。   [D] The acid diffusion controller may be used alone or in combination of two or more. [D] The acid diffusion control agent acid content is preferably 15 parts by mass or less from the viewpoint of improving the sensitivity as a resist with respect to 100 parts by mass of the polymer [B].

<その他の任意成分>
当該組成物は、[A]重合体、[C]酸発生体及び好適成分である[B]重合体、[D]酸拡散制御剤に加え、本発明の効果を損なわない範囲で必要に応じて例えば偏在化促進剤、界面活性剤、増感剤等のその他の任意成分を含有できる。これらの各任意成分は、単独で使用してもよいし2種以上を混合して使用してもよい。また、その他の任意成分の配合量はその目的に応じて適宜決定することができる。以下、各成分を詳述する。
<Other optional components>
In addition to the [A] polymer, the [C] acid generator, and the [B] polymer, which is a preferred component, and the [D] acid diffusion controller, the composition may be used as long as the effects of the present invention are not impaired. For example, it can contain other optional components such as an uneven distribution accelerator, a surfactant, and a sensitizer. Each of these optional components may be used alone or in combination of two or more. Moreover, the compounding quantity of another arbitrary component can be suitably determined according to the objective. Hereinafter, each component will be described in detail.

[偏在化促進剤]
偏在化促進剤は、[A]重合体をより効率的にレジスト膜表面に偏析させる効果を有する。偏在化促進剤としては、例えば比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物等が挙げられる。このような化合物としては、例えばラクトン化合物、カーボネート化合物、ニトリル化合物v等が挙げられる。
[Uneven distribution promoter]
The uneven distribution promoter has an effect of segregating the [A] polymer on the resist film surface more efficiently. Examples of the uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 or more and 200 or less and a boiling point of 100 ° C. or more at 1 atm. Examples of such compounds include lactone compounds, carbonate compounds, and nitrile compounds v.

ラクトン化合物としては、例えばγ−ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。   Examples of the lactone compound include γ-butyrolactone, valerolactone, mevalonic lactone, norbornane lactone, and the like.

カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。   Examples of the carbonate compound include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and the like.

ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。上記多価アルコールとしては、例えばグリセリン等が挙げられる。   Examples of the nitrile compound include succinonitrile. Examples of the polyhydric alcohol include glycerin.

[界面活性剤]
界面活性剤は、塗布性、現像性等を改良する作用を示す成分である。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤等が挙げられる。市販品としては、例えばKP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、大日本インキ化学工業製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(以上、旭硝子製)等が挙げられる。
[Surfactant]
A surfactant is a component that exhibits an effect of improving coatability, developability, and the like. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate. Nonionic surfactants such as stearate are listed. Examples of commercially available products include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 (above, manufactured by Kyoeisha Chemical Co., Ltd.), F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFac F171, F173 (above, manufactured by Dainippon Ink & Chemicals), Fluorad FC430, FC431 ( As above, manufactured by Sumitomo 3M, Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (above, manufactured by Asahi Glass) ) And the like.

[増感剤]
増感剤は、[C]酸発生体に吸収される放射線のエネルギー以外のエネルギーを吸収して、そのエネルギーを例えば電子やラジカルのような形で[C]酸発生体に伝達し、それにより酸の生成量を増加する作用を示すものであり、当該組成物の「みかけの感度」を向上させる効果を有する。
[Sensitizer]
The sensitizer absorbs energy other than the energy of radiation absorbed by the [C] acid generator, and transmits the energy to the [C] acid generator in the form of, for example, electrons and radicals, thereby It has the effect of increasing the amount of acid produced, and has the effect of improving the “apparent sensitivity” of the composition.

増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。   Examples of the sensitizer include carbazoles, acetophenones, benzophenones, naphthalenes, phenols, biacetyl, eosin, rose bengal, pyrenes, anthracenes, phenothiazines and the like.

<液浸露光用感放射線性樹脂組成物の調製方法>
当該組成物は、[A]重合体、[B]重合体、[C]酸発生体及び好適成分である[D]酸拡散制御剤に加え、その他の任意成分を均一に混合することによって調製される。当該組成物は、好ましくは適当な溶媒に溶解されて溶液状で用いられる。
<Method for preparing radiation-sensitive resin composition for immersion exposure>
The composition is prepared by uniformly mixing other optional components in addition to the [A] polymer, [B] polymer, [C] acid generator and [D] acid diffusion controller as a suitable component. Is done. The composition is preferably used in the form of a solution dissolved in a suitable solvent.

当該組成物の調製に用いられる溶媒としては、必須成分及び任意成分を均一に溶解し、各成分と反応しないものが用いられる。溶媒としては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−プロピルエーテル、エチレングリコールモノ−n−ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ−n−プロピルエーテル、ジエチレングリコールモノ−n−ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノ−n−ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ−n−プロピルエーテル、ジプロピレングリコールモノ−n−ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸エチレングリコールモノ−n−プロピルエーテル、酢酸エチレングリコールモノ−n−ブチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ−n−プロピルエーテル、酢酸ジエチレングリコールモノ−n−ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸3−メトキシブチル、酢酸3−メチル−3−メトキシブチル等の酢酸(ポリ)アルキレングリコールモノアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等の他のエーテル類;メチルエチルケトン、シクロヘキサノン、2−ヘプタノン、3−ヘプタノン、ジアセトンアルコール(4−ヒドロキシ−4−メチルペンタン−2−オン)、4−ヒドロキシ−4−メチルヘキサン−2−オン等のケトン類;プロピレングリコールジアセテート、1,3−ブチレングリコールジアセテート、1,6−ヘキサンジオールジアセテート等のジアセテート類;乳酸メチル、乳酸エチル等の乳酸アルキルエステル類;酢酸エチル、酢酸n−プロピル、酢酸i−プロピル、酢酸n−ブチル、酢酸i−ブチル、ぎ酸n−ペンチル、酢酸i−ペンチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、プロピオン酸n−ブチル、3−メトキシブチルアセテート、3−メチル−3−メトキシブチルプロピオネート、酪酸エチル、酪酸n−プロピル、酪酸i−プロピル、酪酸n−ブチル、ヒドロキシ酢酸エチル、エトキシ酢酸エチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n−プロピル、アセト酢酸メチル、アセト酢酸エチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、2−ヒドロキシ−3−メチル酪酸メチル、2−オキソ酪酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類等が挙げられる。溶媒は単独又は2種以上を使用できる。   As a solvent used for the preparation of the composition, a solvent that uniformly dissolves essential components and optional components and does not react with each component is used. Examples of the solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, Diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, dipropylene Glycol monomethyl ether, dipro (Poly) alkylene glycol monoalkyl ethers such as lenglycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether; acetic acid Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-propyl ether acetate , Diethylene glycol acetate mono-n-butyl ether, propylene glycol acetate Acetic acid (poly) alkylene glycol monoalkyl ethers such as ethyl monomethyl ether, propylene glycol monoethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate; diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl Other ethers such as ether and tetrahydrofuran; methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone, diacetone alcohol (4-hydroxy-4-methylpentan-2-one), 4-hydroxy-4-methylhexane-2 Ketones such as -one; diacetates such as propylene glycol diacetate, 1,3-butylene glycol diacetate, and 1,6-hexanediol diacetate Alkyl lactates such as methyl lactate and ethyl lactate; ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-pentyl formate, i-pentyl acetate, 3- Methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, n-butyl propionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutylpropionate, ethyl butyrate, n-propyl butyrate, i-propyl butyrate N-butyl butyrate, ethyl hydroxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, N-propyl pyruvate, methyl acetoacetate, acetoacetate , Other esters such as ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutyrate and ethyl 2-oxobutyrate; aromatic hydrocarbons such as toluene and xylene; N-methylpyrrolidone Amides such as N, N-dimethylformamide and N, N-dimethylacetamide. The solvent can be used alone or in combination of two or more.

溶媒の含有量としては限定されないが、得られる当該組成物の塗布性、安定性等の観点から当該組成物の溶媒を除いた各成分の合計固形分濃度が、5質量%〜50質量%となる量が好ましく、10質量%〜40質量%となる量がより好ましい。このようにして調製された組成物溶液は、孔径0.5μm程度のミリポアフィルタ等を用いて濾過した後、使用に供することができる。   Although it is not limited as content of a solvent, the total solid content density | concentration of each component except the solvent of the said composition from viewpoints of the applicability | paintability of the said composition obtained, stability, etc. is 5 mass%-50 mass%. The quantity which becomes 10 mass%-40 mass% is more preferable. The composition solution thus prepared can be used after being filtered using a Millipore filter or the like having a pore diameter of about 0.5 μm.

<レジストパターンの形成方法>
当該組成物を用いたレジストパターンの形成方法としては、
(1)当該組成物を用いて基板上に塗膜を形成する工程
(2)上記形成された塗膜に液浸露光用液体を配置し、液浸露光用液体を介して液浸露光する工程、
(3)液浸露光された塗膜を現像してレジストパターンを形成する工程
を有する。
<Method for forming resist pattern>
As a method of forming a resist pattern using the composition,
(1) The process of forming a coating film on a board | substrate using the said composition (2) The process of arrange | positioning the liquid for immersion exposure to the said formed coating film, and performing the immersion exposure via the liquid for immersion exposure ,
(3) A step of developing a coating film subjected to immersion exposure to form a resist pattern.

工程(1)では、当該組成物の溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の基板上に塗布することにより、塗膜を形成する。また、所望の膜厚となるように当該組成物溶液を塗布した後、必要に応じてプレベークすることにより塗膜中の溶媒を揮発させる。塗膜の膜厚としては、10nm〜500nm程度が好ましい。プレベークの加熱条件としては、感放射線性樹脂組成物の配合組成によって変わるが、30℃〜200℃程度が好ましく、50℃〜150℃がより好ましい。   In the step (1), the solution of the composition is applied onto a substrate such as a silicon wafer or a wafer coated with aluminum by an appropriate application means such as spin coating, cast coating, roll coating, and the like. Form a coating film. Moreover, after apply | coating the said composition solution so that it may become a desired film thickness, the solvent in a coating film is volatilized by prebaking as needed. The thickness of the coating film is preferably about 10 nm to 500 nm. Although prebaking heating conditions change with composition of a radiation sensitive resin composition, about 30 to 200 degreeC is preferable and 50 to 150 degreeC is more preferable.

工程(2)では、工程(1)で形成された塗膜に液浸露光用液体を配置し、液浸露光用液体を介して放射線を照射し液浸露光する。上記液浸露光用液体としては、例えば純水、長鎖又は環状の脂肪族化合物、フッ素系不活性液体等が挙げられる。上記放射線としては、使用される[C]酸発生体の種類に応じて、可視光線、紫外線、遠紫外線、X線、荷電粒子線等から適宜選定されて使用されるが、ArFエキシマレーザー(波長193nm)又はKrFエキシマレーザー(波長248nm)に代表される遠紫外線が好ましく、ArFエキシマレーザー(波長193nm)がより好ましい。露光量等の露光条件は、感放射線性樹脂組成物の配合組成や添加剤の種類等に応じて適宜選定することができる。   In the step (2), an immersion exposure liquid is disposed on the coating film formed in the step (1), and immersion exposure is performed by irradiating radiation through the immersion exposure liquid. Examples of the immersion exposure liquid include pure water, long-chain or cyclic aliphatic compounds, and fluorine-based inert liquids. The radiation is appropriately selected from visible rays, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, etc., depending on the type of [C] acid generator to be used. ArF excimer laser (wavelength 193 nm) or KrF excimer laser (wavelength 248 nm) is preferred, and ArF excimer laser (wavelength 193 nm) is more preferred. The exposure conditions such as the exposure amount can be appropriately selected according to the blending composition of the radiation-sensitive resin composition, the type of additive, and the like.

また、露光後にポストベークを行うことが好ましい。ポストベークにより、樹脂成分中の酸解離性基の解離反応を円滑に進行できる。ポストベークの加熱条件としては、感放射線性樹脂組成物の配合組成によって適宜調整されるが、通常30℃〜200℃、50℃〜170℃が好ましい。   Moreover, it is preferable to perform post-baking after exposure. By post-baking, the dissociation reaction of the acid dissociable group in the resin component can proceed smoothly. The post-baking heating condition is appropriately adjusted depending on the composition of the radiation-sensitive resin composition, but is usually preferably 30 ° C to 200 ° C and 50 ° C to 170 ° C.

本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば塗膜上に保護膜を設けることもできる。さらに、液浸露光においてフォトレジスト膜からの[C]酸発生体等の流出を防止するため、例えば塗膜上に液浸用保護膜を設けることもできる。また、これらの技術は併用できる。   In the present invention, in order to maximize the potential of the radiation-sensitive resin composition, for example, an organic or inorganic antireflection film can be formed on the substrate to be used. Moreover, in order to prevent the influence of the basic impurity etc. which are contained in environmental atmosphere, a protective film can also be provided, for example on a coating film. Furthermore, in order to prevent the [C] acid generator and the like from flowing out of the photoresist film during the immersion exposure, an immersion protective film can be provided on the coating film, for example. Moreover, these techniques can be used together.

工程(3)では、液浸露光された塗膜を現像してレジストパターンを形成する。現像工程に使用される現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液が好ましい。   In step (3), the immersion-exposed coating film is developed to form a resist pattern. Examples of the developer used in the development step include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, and di-n-propylamine. , Triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4.3.0] An alkaline aqueous solution in which at least one of alkaline compounds such as 5-nonene is dissolved is preferable.

上記アルカリ性水溶液の濃度としては、非露光部が現像液に溶解しにくいという観点から10質量%以下が好ましい。   The concentration of the alkaline aqueous solution is preferably 10% by mass or less from the viewpoint that the non-exposed portion is hardly dissolved in the developer.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。なお、化合物のH−NMR分析、重合体のフッ素原子含有率を求めるための13C−NMR分析は、核磁気共鳴装置(日本電子製、JNM−ECX400)を使用した。 EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this invention is not interpreted limitedly based on description of this Example. Incidentally, 1 H-NMR analysis of the compound, 13 C-NMR analysis to determine the fluorine atom content of the polymer, nuclear magnetic resonance apparatus (manufactured by JEOL, JNM-ECX400) was used.

<単量体の合成>
[合成例1]
オキサリルクロリドのトルエン溶液を準備し、前駆体として下記式で表されるモノマー(M−1−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、下記式で表される酸クロリド(M−1−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を1時間かけて滴下、1時間攪拌した後、tert−ブチルアルコールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−1)を得た(収率70%)。
<Synthesis of monomer>
[Synthesis Example 1]
A toluene solution of oxalyl chloride was prepared, and a toluene solution (0.25 mol / L) of a monomer (M-1-1) represented by the following formula as a precursor was added dropwise at room temperature over 10 minutes. After the dropwise addition, several drops of DMF were added and stirred for 2 hours to prepare acid chloride (M-1-2) represented by the following formula. In an ice bath, a toluene solution of triethylamine (2.0 mol / L) was added dropwise over 1 hour, stirred for 1 hour, and then a toluene solution of tert-butyl alcohol (1.5 mol / L) was added dropwise over 30 minutes. did. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with a toluene / sodium hydrogen carbonate aqueous solution to obtain a monomer (M-1) represented by the following formula (yield: 70%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl):δ6.33(1H,dd),6.07(1H,m),3.49(1H,br),3.01(1H,br),2.62(1H,dd),1.50(2H,m),1.42(1H,s),1.39(9H,s) 1 H-NMR (400 MHz, CDCl 3 ): δ 6.33 (1H, dd), 6.07 (1H, m), 3.49 (1H, br), 3.01 (1H, br), 2.62 (1H, dd), 1.50 (2H, m), 1.42 (1H, s), 1.39 (9H, s)

[合成例2]
オキサリルクロリドのトルエン溶液を準備し、上記前駆体モノマー(M−1−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、上記式で表される酸クロリド(M−1−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を1時間かけて滴下、1時間攪拌した後、2,2,2−トリフルオロエタノールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−2)を得た(収率75%)。
[Synthesis Example 2]
A toluene solution of oxalyl chloride was prepared, and the toluene solution (0.25 mol / L) of the precursor monomer (M-1-1) was added dropwise at room temperature over 10 minutes. After the dropwise addition, several drops of DMF were added and stirred for 2 hours to prepare acid chloride (M-1-2) represented by the above formula. In an ice bath, a toluene solution of triethylamine (2.0 mol / L) was dropped over 1 hour and stirred for 1 hour, and then a toluene solution of 2,2,2-trifluoroethanol (1.5 mol / L) was added. It was added dropwise over 30 minutes. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with an aqueous toluene / sodium hydrogen carbonate solution to obtain a monomer (M-2) represented by the following formula (yield: 75%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ6.38(1H,dd),6.14(1H,m),4.60(2H,m),3.49(1H,br),3.01(1H,br),2.62(1H,dd),1.50(2H,m),1.42(1H,s) 1 H-NMR (400 MHz, CDCl 3): δ 6.38 (1H, dd), 6.14 (1H, m), 4.60 (2H, m), 3.49 (1H, br), 3.01 ( 1H, br), 2.62 (1H, dd), 1.50 (2H, m), 1.42 (1H, s)

[合成例3]
オキサリルクロリドのトルエン溶液を準備し、上記前駆体モノマー(M−1−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、上記酸クロリド(M−1−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を一時間かけて滴下、1時間攪拌した後、ヘキサフルオロイソプロピルアルコールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−3)を得た(収率73%)。
[Synthesis Example 3]
A toluene solution of oxalyl chloride was prepared, and the toluene solution (0.25 mol / L) of the precursor monomer (M-1-1) was added dropwise at room temperature over 10 minutes. After dropping, several drops of DMF were added and stirred for 2 hours to prepare the acid chloride (M-1-2). Toluene solution of triethylamine (2.0 mol / L) was dropped over 1 hour in an ice bath, stirred for 1 hour, and then a toluene solution of hexafluoroisopropyl alcohol (1.5 mol / L) was dropped over 30 minutes. did. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separating and purifying with an aqueous toluene / sodium hydrogen carbonate solution, a monomer (M-3) represented by the following formula was obtained (yield 73%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ6.38(1H,dd),6.14(1H,m),5.59(1H,m),3.49(1H,br),3.01(1H,br),2.62(1H,dd),1.50(2H,m),1.42(1H,s) 1 H-NMR (400 MHz, CDCl 3): δ 6.38 (1H, dd), 6.14 (1H, m), 5.59 (1H, m), 3.49 (1H, br), 3.01 ( 1H, br), 2.62 (1H, dd), 1.50 (2H, m), 1.42 (1H, s)

[合成例4]
オキサリルクロリドのトルエン溶液を準備し、上記前駆体モノマー(M−1−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、上記酸クロリド(M−1−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を一時間かけて滴下、1時間攪拌した後、m−トリフルオロメチルフェノールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−4)を得た(収率75%)。
[Synthesis Example 4]
A toluene solution of oxalyl chloride was prepared, and the toluene solution (0.25 mol / L) of the precursor monomer (M-1-1) was added dropwise at room temperature over 10 minutes. After dropping, several drops of DMF were added and stirred for 2 hours to prepare the acid chloride (M-1-2). A toluene solution of triethylamine (2.0 mol / L) was dropped in an ice bath over 1 hour and stirred for 1 hour, followed by a toluene solution of m-trifluoromethylphenol (1.5 mol / L) over 30 minutes. And dripped. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with an aqueous toluene / sodium hydrogen carbonate solution to obtain a monomer (M-4) represented by the following formula (yield: 75%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ8.23(2H,d),7.55(2H,d),6.38(1H,dd),6.14(1H,m),3.49(1H,br),3.01(1H,br),2.62(1H,dd),1.50(2H,m),1.42(1H,s) 1 H-NMR (400 MHz, CDCl 3): δ 8.23 (2H, d), 7.55 (2H, d), 6.38 (1H, dd), 6.14 (1H, m), 3.49 ( 1H, br), 3.01 (1H, br), 2.62 (1H, dd), 1.50 (2H, m), 1.42 (1H, s)

[合成例5]
オキサリルクロリドのトルエン溶液を準備し、前駆体として下記式で表されるモノマー(M−5−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、下記式で表される酸クロリド(M−5−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を1時間かけて滴下、1時間攪拌した後、2,2,2−トリフルオロエタノールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、単量体(M−5)を得た(収率72%)。
[Synthesis Example 5]
A toluene solution of oxalyl chloride was prepared, and a toluene solution (0.25 mol / L) of a monomer (M-5-1) represented by the following formula as a precursor was added dropwise at room temperature over 10 minutes. After the dropwise addition, several drops of DMF were added and stirred for 2 hours to prepare acid chloride (M-5-2) represented by the following formula. In an ice bath, a toluene solution of triethylamine (2.0 mol / L) was dropped over 1 hour and stirred for 1 hour, and then a toluene solution of 2,2,2-trifluoroethanol (1.5 mol / L) was added. It was added dropwise over 30 minutes. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with an aqueous toluene / sodium hydrogen carbonate solution to obtain a monomer (M-5) (yield 72%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ6.31(1H,dd),6.09(1H,m),4.53(2H,m),3.45(1H,br),3.06(1H,br),2.65(1H,dd),1.56(1H,m),1.50(1H,m)1.46(1H,s) 1 H-NMR (400 MHz, CDCl 3): δ 6.31 (1H, dd), 6.09 (1H, m), 4.53 (2H, m), 3.45 (1H, br), 3.06 ( 1H, br), 2.65 (1H, dd), 1.56 (1H, m), 1.50 (1H, m) 1.46 (1H, s)

[合成例6]
オキサリルクロリドのトルエン溶液を準備し、上記前駆体モノマー(M−5−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、上記酸クロリド(M−5−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を一時間かけて滴下、1時間攪拌した後、m−トリフルオロメチルフェノールのトルエン溶液(1.5モル/L)を30分かけて滴下した。さらに1,4−ジアザビシクロ[2.2.2]オクタンのトルエン溶液(0.075モル/L)を10分かけて滴下し12時間攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−6)を得た(収率68%)。
[Synthesis Example 6]
A toluene solution of oxalyl chloride was prepared, and a toluene solution (0.25 mol / L) of the precursor monomer (M-5-1) was added dropwise at room temperature over 10 minutes. After dropping, several drops of DMF were added and stirred for 2 hours to prepare the acid chloride (M-5-2). A toluene solution of triethylamine (2.0 mol / L) was dropped in an ice bath over 1 hour and stirred for 1 hour, followed by a toluene solution of m-trifluoromethylphenol (1.5 mol / L) over 30 minutes. And dripped. Further, a toluene solution of 1,4-diazabicyclo [2.2.2] octane (0.075 mol / L) was added dropwise over 10 minutes and stirred for 12 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with an aqueous toluene / sodium hydrogen carbonate solution to obtain a monomer (M-6) represented by the following formula (yield 68%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ8.23(2H,d),7.55(2H,d),6.31(1H,dd),6.09(1H,m),3.45(1H,br),3.06(1H,br),2.65(1H,dd),1.56(1H,m),1.50(1H,m)1.46(1H,s) 1 H-NMR (400 MHz, CDCl 3): δ 8.23 (2H, d), 7.55 (2H, d), 6.31 (1H, dd), 6.09 (1H, m), 3.45 ( 1H, br), 3.06 (1H, br), 2.65 (1H, dd), 1.56 (1H, m), 1.50 (1H, m) 1.46 (1H, s)

[合成例7]
オキサリルクロリドのトルエン溶液を準備し、下記式で表される前駆体モノマー(M−7−1)のトルエン溶液(0.25モル/L)を室温下、10分間かけて滴下した。滴下後DMFを数滴加え2時間攪拌し、下記式で表される酸クロリド(M−7−2)を調製した。氷浴中、トリエチルアミンのトルエン溶液(2.0モル/L)を1時間かけて滴下、1時間攪拌した後、2,2,2−トリフルオロエタノールのトルエン溶液(1.5モル/L)を30分かけて滴下、室温に戻し1時間半攪拌した。1N塩酸を加え30分間攪拌した後、有機層を取り出し溶剤留去した。トルエン/炭酸水素ナトリウム水溶液にて分液精製し、下記式で表される単量体(M−7)を得た(収率78%)。
[Synthesis Example 7]
A toluene solution of oxalyl chloride was prepared, and a toluene solution (0.25 mol / L) of a precursor monomer (M-7-1) represented by the following formula was added dropwise at room temperature over 10 minutes. After the dropwise addition, several drops of DMF were added and stirred for 2 hours to prepare acid chloride (M-7-2) represented by the following formula. In an ice bath, a toluene solution of triethylamine (2.0 mol / L) was dropped over 1 hour and stirred for 1 hour, and then a toluene solution of 2,2,2-trifluoroethanol (1.5 mol / L) was added. The mixture was added dropwise over 30 minutes, returned to room temperature, and stirred for 1.5 hours. After adding 1N hydrochloric acid and stirring for 30 minutes, the organic layer was taken out and the solvent was distilled off. Separation and purification were performed with an aqueous toluene / sodium hydrogen carbonate solution to obtain a monomer (M-7) represented by the following formula (yield 78%).

Figure 0005729079
Figure 0005729079

H−NMR(400MHz,CDCl3):δ7.20(2H,s),4.64(4H,q) 1 H-NMR (400 MHz, CDCl 3): δ 7.20 (2H, s), 4.64 (4H, q)

<[A]重合体の合成>
[合成例8]
温度計を備えた500mLの三つ口フラスコに単量体(M−1)50モル%、無水マレイン酸50モル%を仕込み30分間窒素パージを行った。その後、フラスコ内をマグネティックスターラーで攪拌しながら、80℃になるように加熱した。そこへ重合開始剤としてAIBNを加え6時間反応させた。その後、30℃以下になるまで冷却して重合体溶液を得た。なお、各単量体のモル%は単量体全量に対するモル%を表し、開始剤の使用割合は、単量体と開始剤の合計量に対して、2モル%とした。重合終了後、250gのヘキサンに投入して粘性のある白色固体を析出させた。その後、析出した白色固体をろ別した。ろ別された白色固体を50gのヘキサンを用い2回洗浄し、ろ別した。その後50℃にて17時間乾燥し、重合体(A−1)を得た(70g、収率70%)。重合体(A−1)のMwは4,500、Mw/Mnは1.44、13C−NMR分析の結果、各単量体に由来する各構造単位の含有率は、(M−1):無水マレイン酸=50:50(モル%)であった。フッ素原子含有率は、14.6モル%であった。
<[A] Synthesis of polymer>
[Synthesis Example 8]
A 500 mL three-necked flask equipped with a thermometer was charged with 50 mol% of monomer (M-1) and 50 mol% of maleic anhydride and purged with nitrogen for 30 minutes. Then, it heated so that it might become 80 degreeC, stirring the inside of a flask with a magnetic stirrer. AIBN was added thereto as a polymerization initiator and reacted for 6 hours. Then, it cooled until it became 30 degrees C or less, and obtained the polymer solution. In addition, mol% of each monomer represents mol% with respect to the whole monomer amount, and the usage ratio of the initiator was set to 2 mol% with respect to the total amount of the monomer and the initiator. After completion of the polymerization, the mixture was poured into 250 g of hexane to precipitate a viscous white solid. Thereafter, the precipitated white solid was filtered off. The filtered white solid was washed twice with 50 g of hexane and filtered. Thereafter, it was dried at 50 ° C. for 17 hours to obtain a polymer (A-1) (70 g, yield 70%). Mw of the polymer (A-1) is 4,500, Mw / Mn is 1.44, and as a result of 13 C-NMR analysis, the content of each structural unit derived from each monomer is (M-1). : Maleic anhydride = 50: 50 (mol%). The fluorine atom content was 14.6 mol%.

[合成例2〜13]
表1に示す種類、配合量の各単量体を混合したこと以外は、合成例8と同様に操作して各重合体を得た。また、それぞれの物性値についても表1にあわせて示す。なお、表1中の単量体(M−8)及び(M−9)はそれぞれ下記式で表される化合物である。
[Synthesis Examples 2 to 13]
Each polymer was obtained in the same manner as in Synthesis Example 8 except that the monomers of the types and blending amounts shown in Table 1 were mixed. The physical property values are also shown in Table 1. In addition, the monomers (M-8) and (M-9) in Table 1 are compounds represented by the following formulas, respectively.

Figure 0005729079
Figure 0005729079

Figure 0005729079
Figure 0005729079

<[B]重合体の合成>
下記式で表される化合物(M−10)32g(50モル%)及び下記式で表される化合物(M−11)28g(50モル%)を2−ブタノン120gに溶解し、さらに重合開始剤としてAIBN20.94gを投入して単量体溶液を得た。一方、60gの2−ブタノンを投入した三口フラスコを30分窒素パージした。窒素パージの後、反応釜を攪拌しながら80℃に加熱し、上記単量体溶液を滴下漏斗を用いて3時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間行った。重合終了後、重合溶液は、水冷によって30℃以下に冷却し、1,200gのメタノールに投入して白色粉末を析出させた。その後、析出した白色粉末をろ別した。ろ別された白色粉末を240gのメタノールにてスラリー状で2回洗浄し、ろ別した。その後、50℃にて17時間乾燥し、白色粉末の重合体(B−1)を得た(42g、収率70%)。重合体(B−1)はMwが6,200、Mw/Mnは1.5であった。13C−NMR分析の結果、各単量体に由来する各構造単位の含有率は(M−10):(M−11)=47.5:52.5(モル%)であった。
<[B] Synthesis of polymer>
32 g (50 mol%) of the compound (M-10) represented by the following formula and 28 g (50 mol%) of the compound (M-11) represented by the following formula are dissolved in 120 g of 2-butanone, and further a polymerization initiator. As a result, 20.94 g of AIBN was added to obtain a monomer solution. On the other hand, a three-necked flask charged with 60 g of 2-butanone was purged with nitrogen for 30 minutes. After purging with nitrogen, the reaction kettle was heated to 80 ° C. with stirring, and the monomer solution was added dropwise using a dropping funnel over 3 hours. The polymerization start was carried out for 6 hours with the start of dropping as the polymerization start time. After completion of the polymerization, the polymerization solution was cooled to 30 ° C. or less by water cooling, and poured into 1,200 g of methanol to precipitate a white powder. Thereafter, the precipitated white powder was filtered off. The filtered white powder was washed twice with 240 g of methanol in the form of a slurry and filtered. Then, it dried at 50 degreeC for 17 hours, and obtained the polymer (B-1) of the white powder (42g, 70% of yield). The polymer (B-1) had Mw of 6,200 and Mw / Mn of 1.5. As a result of 13 C-NMR analysis, the content of each structural unit derived from each monomer was (M-10) :( M-11) = 47.5: 52.5 (mol%).

Figure 0005729079
Figure 0005729079

<液浸露光用感放射線性樹脂組成物の調製>
液浸露光用感放射線性樹脂組成物の調製に使用した[C]酸発生剤、[D]酸拡散制御剤を以下に示す。
<Preparation of radiation-sensitive resin composition for immersion exposure>
The [C] acid generator and the [D] acid diffusion controller used for the preparation of the radiation sensitive resin composition for immersion exposure are shown below.

<[C]酸発生剤>
下記式で表される化合物
<[C] acid generator>
Compound represented by the following formula

Figure 0005729079
Figure 0005729079

<[D]酸拡散制御剤>
D−1:t−ブチル−4−ヒドロキシ−1−ピペリジンカルボキシレート
<[D] Acid diffusion controller>
D-1: t-Butyl-4-hydroxy-1-piperidinecarboxylate

[実施例1]
重合体(A−1)5質量部、重合体(B−1)100質量部、酸発生剤(C−1)9.0質量部、酸拡散制御剤(D−1)5.6質量部並びに溶媒としてプロピレングリコールモノメチルエーテルアセテート2,800質量部及びシクロヘキサノン1,200質量部を混合し、液浸露光用感放射線性樹脂組成物を調製した。
[Example 1]
5 parts by mass of polymer (A-1), 100 parts by mass of polymer (B-1), 9.0 parts by mass of acid generator (C-1), 5.6 parts by mass of acid diffusion controller (D-1) In addition, 2,800 parts by mass of propylene glycol monomethyl ether acetate and 1,200 parts by mass of cyclohexanone were mixed as a solvent to prepare a radiation sensitive resin composition for immersion exposure.

[実施例2〜12及び比較例1]
表2に示す種類、配合量の各成分を混合したこと以外は、実施例1と同様に操作して各液浸露光用感放射線性樹脂組成物を得た。
[Examples 2 to 12 and Comparative Example 1]
Except having mixed each component of the kind and compounding quantity shown in Table 2, it operated similarly to Example 1 and obtained the radiation sensitive resin composition for each immersion exposure.

<評価>
調製した液浸露光用感放射線性樹脂組成物について以下のようにレジストパターンを形成し、以下の評価をした。評価結果を表2にあわせて示す。
<Evaluation>
A resist pattern was formed as follows for the prepared radiation-sensitive resin composition for immersion exposure, and the following evaluation was performed. The evaluation results are shown in Table 2.

[後退接触角(°)]
各液浸露光用感放射線性樹脂組成物を用いて基板上に塗膜を形成した。その後、形成した塗膜について、室温23℃、湿度45%、常圧の環境下で、KRUS製DSA−10を用いて以下の手順で後退接触角(°)を測定した。DSA−10の針を測定前にアセトンとイソプロピルアルコールで洗浄し、次いで針に水を注入し、ウェハステージ上にウェハをセットする。ウェハ表面と針の先端の距離が1mm以下になるようステージの高さを調整し、次に、針から水を排出してウェハ上に25μLの水滴を形成した後、針によって水滴を10μL/分の速度で180秒間吸引するとともに、接触角を毎秒測定した。接触角が安定した時点から計20点の接触角について平均値を算出して後退接触角とした。
8インチシリコンウェハ上に、各液浸露光用感放射線性樹脂組成物を塗布し、膜厚110nmの塗膜を形成し、120℃で50秒間ソフトベーク(SB)を行った基盤の後退接触角を表2中の「SB後」とした。
8インチシリコンウェハ上に、各液浸露光用感放射線性樹脂組成物を塗布し、膜厚110nmの塗膜を形成し、120℃で50秒間SBを行った。その後、現像装置(東京エレクトロン製、クリーントラックACT8)のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により10秒間現像し、15秒間純水によりリンスし2,000rpmで液振り切り乾燥した基盤の後退接触角を表2中の「10秒現像後」とした。
8インチシリコンウェハ上に、各液浸露光用感放射線性樹脂組成物を塗布し、膜厚110nmの塗膜を形成し、120℃で50秒間SBを行った。その後、現像装置(東京エレクトロン製、クリーントラックACT8)のGPノズルによって2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により30秒間現像し、30秒間純水によりリンスし2,000rpmで液振り切り乾燥した基盤の後退接触角を表2中の「30秒現像後」とした。
[Backward contact angle (°)]
A coating film was formed on the substrate using each radiation-sensitive resin composition for immersion exposure. Thereafter, the receding contact angle (°) of the formed coating film was measured in the following procedure using DSA-10 manufactured by KRUS under an environment of room temperature 23 ° C., humidity 45%, and normal pressure. The DSA-10 needle is cleaned with acetone and isopropyl alcohol before measurement, then water is injected into the needle, and the wafer is set on the wafer stage. The height of the stage is adjusted so that the distance between the wafer surface and the tip of the needle is 1 mm or less, and then water is discharged from the needle to form a 25 μL water droplet on the wafer. And a contact angle was measured every second. The average value was calculated for the contact angles of a total of 20 points from the time when the contact angle was stabilized, and was taken as the receding contact angle.
Each substrate was coated with a radiation-sensitive resin composition for immersion exposure on an 8-inch silicon wafer to form a 110 nm-thickness film, and then subjected to soft baking (SB) at 120 ° C. for 50 seconds. In Table 2 was “after SB”.
Each of the radiation-sensitive resin compositions for immersion exposure was applied onto an 8-inch silicon wafer to form a coating film having a thickness of 110 nm, and SB was performed at 120 ° C. for 50 seconds. Thereafter, development was performed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 10 seconds using a GP nozzle of a developing device (manufactured by Tokyo Electron Ltd., Clean Track ACT8), rinsed with pure water for 15 seconds, and then shaken off and dried at 2,000 rpm. The receding contact angle of the substrate was “after 10 seconds development” in Table 2.
Each of the radiation-sensitive resin compositions for immersion exposure was applied onto an 8-inch silicon wafer to form a coating film having a thickness of 110 nm, and SB was performed at 120 ° C. for 50 seconds. Thereafter, development was performed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution for 30 seconds using a GP nozzle of a developing device (manufactured by Tokyo Electron Ltd., Clean Track ACT8), rinsed with pure water for 30 seconds, and then shaken off and dried at 2,000 rpm. The receding contact angle of the substrate was “after 30 seconds development” in Table 2.

[現像欠陥]
下層反射防止膜(ARC66、日産化学製)を形成した12インチシリコンウェハ上に、各液浸露光用感放射線性樹脂組成物を塗布し、膜厚100nmの塗膜を形成した。次に、この塗膜をArFエキシマレーザー液浸露光装置(NSR S610C、NIKON製)を用い、NA=1.3、ratio=0.812、Crosspoleの条件により、マスクパターンを介して露光した。露光後、95℃で60秒間ポストベークを行った。その後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により現像し、水洗、乾燥してポジ型のレジストパターンを形成した。このとき、幅55nmのラインアンドスペースを形成する露光量を最適露光量とした。この最適露光量にてウェハ全面に線幅55nmのラインアンドスペースを形成し、欠陥検査用ウェハとした。なお、測長には走査型電子顕微鏡(S−9380、日立ハイテクノロジーズ製)を用いた。その後、欠陥検査用ウェハ上の欠陥数を、KLA−Tencor製KLA2810を用いて測定した。測定された欠陥を、レジスト由来と判断されるものと外部由来の異物とに分類した。分類後、レジスト由来と判断されるものの数(欠陥数)の合計が100個/wafer以下であった場合「A」(良好と判断)、100個/wafer以上であった場合「B」(不良と判断)とした。
[Development defects]
Each of the radiation-sensitive resin compositions for immersion exposure was applied onto a 12-inch silicon wafer on which a lower antireflection film (ARC66, manufactured by Nissan Chemical Industries) was formed, thereby forming a coating film having a thickness of 100 nm. Next, this coating film was exposed through a mask pattern using an ArF excimer laser immersion exposure apparatus (NSR S610C, manufactured by NIKON) under the conditions of NA = 1.3, ratio = 0.812, and Crosspore. After the exposure, post-baking was performed at 95 ° C. for 60 seconds. Thereafter, the resist film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution, washed with water and dried to form a positive resist pattern. At this time, the exposure amount for forming a line and space having a width of 55 nm was determined as the optimum exposure amount. A line and space having a line width of 55 nm was formed on the entire surface of the wafer with this optimum exposure amount to obtain a defect inspection wafer. Note that a scanning electron microscope (S-9380, manufactured by Hitachi High-Technologies) was used for length measurement. Thereafter, the number of defects on the defect inspection wafer was measured using a KLA-Tencor KLA2810. The measured defects were classified into those judged to be derived from the resist and foreign matters derived from the outside. After classification, “A” (determined as good) when the total number of defects determined from resist (number of defects) was 100 / wafer or less, “B” (defect) when 100 / wafer or more Judgment).

Figure 0005729079
Figure 0005729079

表2の結果から明らかなように、当該組成物を用いた場合には、比較例と比べSB後の後退接触角が10秒現像後及び30秒現像後において大きく低下していることが確認でき、後退接触角変化に優れることがわかった。また、当該組成物を用いた場合は現像欠陥を生じ難いことがわかった。   As is apparent from the results in Table 2, it can be confirmed that when the composition is used, the receding contact angle after SB is greatly reduced after 10 seconds development and after 30 seconds development as compared with the comparative example. It was found that the contact angle change is excellent. It was also found that development defects are less likely to occur when the composition is used.

本発明の液浸露光用感放射線性樹脂組成物は、液浸露光プロセスにおいて形成されたレジスト膜が、露光時には適度に大きい動的接触角を示す一方、アルカリ現像後は動的接触角が大きく低下する特性を発揮し、またその動的接触角の変化に要する時間も短縮できる。その結果、レジスト膜からの酸発生剤等の溶出が抑制されることに加えて、レジスト膜表面が優れた水切れ性を有することで高速スキャン露光を可能にすると共に、現像時には現像液に対する親和性が高まり現像欠陥の発生を抑制して、良好なレジストパターンを形成できる。従って、当該組成物は、半導体デバイス製造用の化学増幅型レジストとして好適に利用できる。   In the radiation-sensitive resin composition for immersion exposure according to the present invention, the resist film formed in the immersion exposure process exhibits a moderately large dynamic contact angle during exposure, while the dynamic contact angle is large after alkali development. Deteriorating characteristics can be exhibited, and the time required for changing the dynamic contact angle can be shortened. As a result, in addition to suppressing the elution of acid generators from the resist film, the resist film surface has excellent water drainage, enabling high-speed scan exposure and compatibility with the developer during development. Therefore, the occurrence of development defects can be suppressed and a good resist pattern can be formed. Accordingly, the composition can be suitably used as a chemically amplified resist for manufacturing semiconductor devices.

Claims (7)

[A]フッ素原子及びアルカリ解離性基を有し、主鎖に脂環式基を有する重合体、及び
[C]酸発生体
を含有し、
上記アルカリ解離性基は、[A]重合体が極性官能基を有し、この極性官能基中の水素原子を置換する基であって、23℃のテトラメチルアンモニウムヒドロキシド2.38質量%水溶液中で解離する基であり、
[A]重合体が、下記式(1)で表される構造単位(I)と、−C(=O)−O−C(=O)−を有する構造単位(III)とを含む(但し、下記式(a1)及び(a2)、(b1)及び(b2)、又は(c1)及び(c2)で表される構造単位からなるものを除く)液浸露光用感放射線性樹脂組成物。
Figure 0005729079
(式(1)中、R〜Rは、それぞれ独立して水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。但し、上記R〜Rの少なくとも1つは、フッ素原子又はトリフルオロメチル基であり、上記R〜Rの少なくとも1つは、下記式(2)で表される基である。aは、0又は1である。bは、0〜2の整数である。)
Figure 0005729079
(式(2)中、Rはアルカリ解離性基であり、炭素数1〜10の直鎖状若しくは分岐状のフッ素化アルキル基、又はフッ素原子若しくはフッ素化アルキル基で置換されていてもよい炭素数6〜20の芳香族基である。)
[A] a polymer having a fluorine atom and an alkali dissociable group and having an alicyclic group in the main chain, and [C] an acid generator,
The alkali-dissociable group is a group in which the [A] polymer has a polar functional group and replaces a hydrogen atom in the polar functional group, and a 2.38 mass% aqueous solution of tetramethylammonium hydroxide at 23 ° C. A group that dissociates in,
[A] The polymer includes a structural unit (I) represented by the following formula (1) and a structural unit (III) having —C (═O) —O—C (═O) —. A radiation-sensitive resin composition for immersion exposure, excluding those composed of structural units represented by the following formulas (a1) and (a2), (b1) and (b2), or (c1) and (c2).
Figure 0005729079
(In formula (1), R 1 to R 4 are each independently a hydrogen atom, a fluorine atom, or a monovalent organic group having 1 to 20 carbon atoms, provided that at least one of R 1 to R 4 above. Is a fluorine atom or a trifluoromethyl group, and at least one of R 1 to R 4 is a group represented by the following formula (2): a is 0 or 1. b is 0 It is an integer of ~ 2.)
Figure 0005729079
(In Formula (2), R 5 is an alkali-dissociable group and may be substituted with a linear or branched fluorinated alkyl group having 1 to 10 carbon atoms, or a fluorine atom or a fluorinated alkyl group. (It is an aromatic group having 6 to 20 carbon atoms.)
[A]重合体が、下記式(3)で表される構造単位(II)をさらに含む請求項1に記載の液浸露光用感放射線性樹脂組成物。
Figure 0005729079
(式(3)中、R及びRは、それぞれ独立して炭素数1〜20の1価の有機基である。R及びRは、それぞれ独立して2価の連結基である。)
[A] The radiation-sensitive resin composition for immersion exposure according to claim 1, wherein the polymer further comprises a structural unit (II) represented by the following formula (3).
Figure 0005729079
(In Formula (3), R 6 and R 7 are each independently a monovalent organic group having 1 to 20 carbon atoms. R 8 and R 9 are each independently a divalent linking group. .)
上記R及びRの少なくとも1つが酸素原子であり、この酸素原子と結合するR又はRがアルカリ解離性基である請求項2に記載の液浸露光用感放射線性樹脂組成物。 The radiation-sensitive resin composition for immersion exposure according to claim 2, wherein at least one of R 8 and R 9 is an oxygen atom, and R 6 or R 7 bonded to the oxygen atom is an alkali dissociable group. 上記酸素原子と結合するR又はRで表されるアルカリ解離性基が、炭素数1〜10の直鎖状若しくは分岐状のフッ素化アルキル基である請求項3に記載の液浸露光用感放射線性樹脂組成物。 4. The immersion exposure according to claim 3, wherein the alkali dissociable group represented by R 6 or R 7 bonded to the oxygen atom is a linear or branched fluorinated alkyl group having 1 to 10 carbon atoms. Radiation sensitive resin composition. 上記構造単位(III)が、無水マレイン酸に由来する構造単位である請求項1から請求項4のいずれか1項に記載の液浸露光用感放射線性樹脂組成物。 The radiation-sensitive resin composition for immersion exposure according to any one of claims 1 to 4, wherein the structural unit (III) is a structural unit derived from maleic anhydride. [B]酸解離性基を有し、[A]重合体よりもフッ素原子含有率が小さいベース重合体をさらに含有する請求項1から請求項5のいずれか1項に記載の液浸露光用感放射線性樹脂組成物。 [B] The liquid immersion exposure according to any one of claims 1 to 5 , further comprising a base polymer having an acid dissociable group and having a fluorine atom content smaller than that of the polymer [A]. Radiation sensitive resin composition. [D]酸拡散制御剤をさらに含有する請求項1から請求項6のいずれか1項に記載の液浸露光用感放射線性樹脂組成物。 [D] The radiation-sensitive resin composition for immersion exposure according to any one of claims 1 to 6 , further comprising an acid diffusion controller.
JP2011071242A 2011-03-28 2011-03-28 Radiation sensitive resin composition for immersion exposure Active JP5729079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071242A JP5729079B2 (en) 2011-03-28 2011-03-28 Radiation sensitive resin composition for immersion exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071242A JP5729079B2 (en) 2011-03-28 2011-03-28 Radiation sensitive resin composition for immersion exposure

Publications (2)

Publication Number Publication Date
JP2012203406A JP2012203406A (en) 2012-10-22
JP5729079B2 true JP5729079B2 (en) 2015-06-03

Family

ID=47184416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071242A Active JP5729079B2 (en) 2011-03-28 2011-03-28 Radiation sensitive resin composition for immersion exposure

Country Status (1)

Country Link
JP (1) JP5729079B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443898B2 (en) * 2003-11-13 2010-03-31 富士フイルム株式会社 Photosensitive composition and pattern forming method using the same
US20060008731A1 (en) * 2004-07-09 2006-01-12 Michael Van Der Puy Novel photoresist monomers and polymers
US20060008730A1 (en) * 2004-07-09 2006-01-12 Puy Michael V D Monomers for photoresists bearing acid-labile groups of reduced optical density
JP5338352B2 (en) * 2009-02-09 2013-11-13 日油株式会社 Positive photosensitive resin composition
JP5537829B2 (en) * 2009-03-31 2014-07-02 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, and pattern formation method using the composition
JP5629440B2 (en) * 2009-08-31 2014-11-19 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP5371868B2 (en) * 2010-03-31 2013-12-18 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP5569402B2 (en) * 2011-01-13 2014-08-13 Jsr株式会社 Radiation sensitive resin composition, polymer and compound

Also Published As

Publication number Publication date
JP2012203406A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5655855B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP5741297B2 (en) Radiation sensitive resin composition, resist pattern forming method, and polymer
JP5713012B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound
JP5655563B2 (en) Radiation sensitive resin composition and pattern forming method
JP5741287B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP5835319B2 (en) Resist pattern forming method, radiation-sensitive resin composition, and resist film
JP6264144B2 (en) Polymer, radiation-sensitive resin composition, and resist pattern forming method
JP2017122780A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP2017058421A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP5935910B2 (en) Polymer
KR102638582B1 (en) Radiation-sensitive resin composition, resist pattern formation method, and acid diffusion control agent
JP2017181697A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP2016170230A (en) Radiation-sensitive resin composition and method for forming resist pattern
JP5834985B2 (en) Resist composition for immersion exposure
JP5729114B2 (en) Radiation sensitive resin composition, pattern forming method, polymer and compound
JP6485240B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP2013075964A (en) Compound, polymer, and photoresist composition
JP6641905B2 (en) Lithographic composition and resist pattern forming method
JP2018049177A (en) Radiation-sensitive resin composition, method for forming resist pattern, radiation-sensitive acid generator, compound and production method of compound
JP2018040911A (en) Radiation-sensitive resin composition, resist pattern forming method, polymer and compound
JP5729079B2 (en) Radiation sensitive resin composition for immersion exposure
JP6451427B2 (en) Radiation-sensitive resin composition and resist pattern forming method
JP6398267B2 (en) Radiation-sensitive resin composition and resist pattern forming method
KR101881600B1 (en) Radiation-sensitive resin composition, pattern forming method, polymer and compound
JP6024633B2 (en) Radiation sensitive resin composition, resist pattern forming method, polymer and compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5729079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250