JP5721306B2 - Fan speed linear compensation method - Google Patents

Fan speed linear compensation method Download PDF

Info

Publication number
JP5721306B2
JP5721306B2 JP2008150154A JP2008150154A JP5721306B2 JP 5721306 B2 JP5721306 B2 JP 5721306B2 JP 2008150154 A JP2008150154 A JP 2008150154A JP 2008150154 A JP2008150154 A JP 2008150154A JP 5721306 B2 JP5721306 B2 JP 5721306B2
Authority
JP
Japan
Prior art keywords
compensation
fan
straight line
curve
pwm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008150154A
Other languages
Japanese (ja)
Other versions
JP2009296839A (en
Inventor
林 招慶
招慶 林
林 祝
林 祝
秀興 林
秀興 林
有康 林
有康 林
炳達 曾
炳達 曾
Original Assignee
陞達科技股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陞達科技股▲ふん▼有限公司 filed Critical 陞達科技股▲ふん▼有限公司
Priority to JP2008150154A priority Critical patent/JP5721306B2/en
Publication of JP2009296839A publication Critical patent/JP2009296839A/en
Application granted granted Critical
Publication of JP5721306B2 publication Critical patent/JP5721306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は一種のファン回転速度直線補償方法に関する。特にICにより補償後のPWM信号を提供し、ファン回転速度を制御し、ファンの回転速度は曲線補償を経た後、直線かつ線性を呈するファン回転速度直線補償方法に係る。   The present invention relates to a kind of fan rotational speed linear compensation method. In particular, the present invention relates to a fan rotational speed linear compensation method in which a compensated PWM signal is provided by an IC, the fan rotational speed is controlled, and the rotational speed of the fan is linear and linear after undergoing curve compensation.

電子パーツの高速化と複雑化は、電子パーツ作動時に発生する熱エネルギーを増大させている。よって多くの電子パーツ上或いはその作動環境中には散熱ファンを設置し、電子パーツを冷却し正常に作動させるよう確保しなければならない。
現在コンピュータ、グラフィクスカード或いはノート型コンピュータ(パソコン)においてファンが使用される時、一般的に重視される点は散熱ファンの回転速度制御等の問題である。散熱ファンの運転方式制御においては、オン/オフ(ON/OFF)以外に、主なものはPWM(Pulse Width Modulation)を用いたファン運転を制御することで、各単位時間内において作動周期(duty cycle)の差異を調整し、これによりファン回転速度を制御する。
Increasing the speed and complexity of electronic parts increases the thermal energy generated when electronic parts are operating. Therefore, a heat-dissipating fan must be installed on many electronic parts or in the operating environment to ensure that the electronic parts are cooled and operate normally.
When a fan is currently used in a computer, a graphics card, or a notebook computer (personal computer), the point that is generally emphasized is a problem such as the rotational speed control of the heat dissipation fan. In heat dissipation fan operation system control, in addition to on / off (ON / OFF), the main thing is to control the fan operation using PWM (Pulse Width Modulation), so that the operation cycle (duty) Cycle) is adjusted to control the fan speed.

図1、2に示すように、公知のファン速度制御が、オープンループ(Open Loop)測定回転速度制御を行う時は、IC(Integrated Circut)により受信した入力PWM(Pulse width modulation)信号を出力PWM信号に転換する。
図1中PWM信号の作動周期は0%〜100%で、しかも前記PWM信号の入力信号は出力信号に対応し、前記作動周期範囲内の曲線は直線A1を呈する。しかも1:1の比率で、前記ICは出力PWM信号に基づきファン運転を制御し、ファンの回転速度曲線は図2に示すように上放物線F1を呈する。前記図2では、ファン回転速度がPWM作動周期に対応する曲線は上放物線F1を呈する。上記公知のファン回転速度制御には以下の三つの欠点が存在する。
1.ファン回転速度のPWM作動周期に対応する曲線は上放物線であるため、ファン回転速度の不安定を招き易い。
2.もし、オープンループの制御曲線(すなわち、ファン回転速度とPWM作動周期の曲線図)を直線性に設計するなら、回路を別に増設しなければならず、パーツコストの増加を招いてしまう。
3.各ファンモーターの特性は異なるため、ファン回転速度の規格も制定しにくい。
特開2007−124853公報
As shown in FIGS. 1 and 2, when a known fan speed control performs an open loop measurement rotational speed control, an input PWM (Pulse width modulation) signal received by an IC (Integrated Circut) is output PWM. Switch to signal.
In FIG. 1, the operation period of the PWM signal is 0% to 100%, and the input signal of the PWM signal corresponds to the output signal, and the curve within the operation period range exhibits a straight line A1. In addition, at a ratio of 1: 1, the IC controls the fan operation based on the output PWM signal, and the rotational speed curve of the fan exhibits an upper parabola F1 as shown in FIG. In FIG. 2, the curve in which the fan rotation speed corresponds to the PWM operation cycle exhibits the upper parabola F1. The known fan rotation speed control has the following three drawbacks.
1. Since the curve corresponding to the PWM operation period of the fan rotation speed is an upper parabola, the fan rotation speed is likely to be unstable.
2. If the open loop control curve (that is, the curve diagram of the fan rotation speed and the PWM operation cycle) is designed to be linear, an additional circuit must be added, resulting in increased part costs.
3. Because the characteristics of each fan motor are different, it is difficult to establish a standard for fan rotation speed.
JP 2007-124853 A

本発明が解決しようとする課題は、上記公知技術の欠点を解決し、ICを通して補償後のPWM信号を提供し、ファン回転速度を制御し、ファンの回転速度曲線は補償を経た後、直線かつ帯ではなく線性を呈する効果を達成するファン回転速度直線補償方法を提供するものである。   The problem to be solved by the present invention is to solve the above-mentioned disadvantages of the known technique, provide a compensated PWM signal through the IC, control the fan rotation speed, and the fan rotation speed curve is linear and The present invention provides a fan rotational speed linear compensation method that achieves the effect of exhibiting linearity instead of a belt.

上記課題を解決するため、本発明は下記のファン回転速度直線補償方法を提供する。
ファン回転速度直線補償方法は以下を含み、
IC(Integrated Circut)によりPWM(Pulse width modulation)信号を読取り、補償演算を行い、補償を求め、
前記PWM信号から補償値をマイナス或いはプラスし、得られた補償後のPWM信号は上放物線を呈し、
前記ICは前記補償後のPWM信号に基づき、ファンの回転速度を制御し、ファンの回転速度は曲線補償を経た後、直線かつ線性を呈する。
In order to solve the above problems, the present invention provides the following fan rotational speed linear compensation method.
Fan speed linear compensation method includes:
Read PWM (Pulse width modulation) signal by IC (Integrated Circut), perform compensation calculation, find compensation value ,
The minus or plus a compensation value from the PWM signal, the PWM signal after compensation obtained exhibits on the parabola,
The IC controls the rotational speed of the fan based on the compensated PWM signal, and the rotational speed of the fan is linear and linear after undergoing curve compensation.

上記のように、本発明はICにより補償後のPWM信号を提供し、ファン回転速度を制御し、ファンの回転速度は曲線補償を経た後、直線かつ帯ではなく線性を呈するのでファン回転速度を安定させ、オープンループの制御曲線(すなわち、ファン回転速度とPWM作動周期の曲線図)を直線性に設計するので回路を別に増設しなくてもよくパーツコストも増加せず、各ファンモーターの特性は異なるがファン回転速度の規格に対して設計しやすい。   As described above, the present invention provides a PWM signal compensated by the IC, controls the fan rotation speed, and after the fan rotation speed undergoes curve compensation, the fan rotation speed exhibits a linearity instead of a belt. Stabilize and design the open loop control curve (i.e., curve diagram of fan rotation speed and PWM operation cycle) to be linear, so there is no need to add a separate circuit and the parts cost does not increase, and the characteristics of each fan motor Although it is different, it is easy to design to the standard of fan rotation speed.

本発明の上記目的及びその構造と機能上の特性について、図を参照して本発明の最適実施例に対して説明を行う。
図3、4、5に示すように、本発明ファン回転速度直線補償方法の最適実施例は以下のステップを含む。
(300)スタート。
(301)IC(Integrated Circuit)によりPWM(Pulse Width Modulation)信号を読取り、補償演算を行い、補償を求める。
(302)前記PWM信号から補償値をマイナス或いはプラスし、得られた補償後のPWM信号は下放物線A2を呈する。
(303)前記ICは前記補償後のPWM信号に基づき、ファンの回転速度を制御し、ファンの回転速度は曲線補償を経た後は直線かつ線性を呈する。
(304)終了。
上記のように、本発明の実施例のファン回転速度はPWM作動周期の線性に対応し(すなわち直線)曲線F2は明確に公知ファンの上放物線F1に比べスムーズで、しかも線性である。
The above objects and the characteristics of the structure and function of the present invention will be described with reference to the drawings with respect to the optimum embodiment of the present invention.
As shown in FIGS. 3, 4 and 5, the optimum embodiment of the fan rotational speed linear compensation method of the present invention includes the following steps.
(300) Start.
(301) A PWM (Pulse Width Modulation) signal is read by an IC (Integrated Circuit), a compensation operation is performed, and a compensation value is obtained.
(302) the minus or plus a compensation value from the PWM signal, the PWM signal after compensation obtained exhibits a lower parabolic A2.
(303) The IC controls the rotational speed of the fan based on the compensated PWM signal, and the rotational speed of the fan is linear and linear after the curve compensation.
(304) End.
As described above, the fan rotation speed in the embodiment of the present invention corresponds to the linearity of the PWM operation cycle (ie, a straight line), and the curve F2 is clearly smoother and more linear than the known parabola F1.

さらに、図4、5、6に示すように、ファンがオープンループ(Open Loop)測定回転速度制御を行う時、該ICを通して前記PWM信号を読取り補償算を行った後、前記補償を求める。次に該ICはPWM信号より前記補償値をマイナス或いはプラスし、これにより補償後のPWM信号を求める(図4参照)。こうして前記ICは補償後のPWM信号に基づきファンの回転速度を制御し、ファン回転速度はPWM作動周期に対応する曲線補償を経た後、直線でかつ帯ではなく線性の効果を呈し(図5参照)、しかもファン回転速度の安定が達成できる。 Furthermore, as shown in FIG. 4, 5 and 6, the fans when performing open loop (Open Loop) measuring the rotational speed control, after the reading compensating computation the PWM signal through the IC, obtaining the compensation value . The IC then subtracts or adds the compensation value from the PWM signal, thereby obtaining a compensated PWM signal (see FIG. 4). Thus, the IC controls the rotational speed of the fan based on the compensated PWM signal, and the fan rotational speed is linear and exhibits a linearity effect instead of a band after undergoing curve compensation corresponding to the PWM operation cycle (see FIG. 5). ) In addition, stable fan rotation speed can be achieved.

以下に例を挙げ説明する。
9センチのファンがオープンループ測定回転速度制御を行う時、測定を経て、ファンのPWM作動周期100%時の回転速度が5000RPM(すなわち全速)であることが分かる。つまり、それは50%における理想の回転速度値は2500RPMであるべきだが、ファンモーターの素因により、実際にはPWM作動周期50%時のファンの回転速度は3000RPMであるため、前記理想的回転速度値が必要なPWM作動周期は40%であるはずで、補償が必要である。もとのPWM作動周期50%からPWM作動周期10% (すなわち前記補償値) をマイナスし、必要なPWM作動周期40%を求める。こうしてファン回転速度はPWMに対応し作動周期の曲線補償を経た後、直線かつ線性の効果を呈する。
An example will be described below.
When a 9 cm fan performs open loop measurement rotational speed control, it can be seen that the rotational speed when the PWM operating period of the fan is 100% is 5000 RPM (ie, full speed). In other words, the ideal rotation speed value at 50% should be 2500RPM, but due to the premise of the fan motor, the rotation speed of the fan at the PWM operation cycle of 50% is actually 3000RPM. The required PWM operating period should be 40% and compensation is required. The PWM operation cycle of 10% (that is, the compensation value) is subtracted from the original PWM operation cycle of 50% to obtain a necessary PWM operation cycle of 40%. In this way, the fan rotation speed corresponds to PWM, and after performing the curve compensation of the operation cycle, exhibits a linear and linear effect.

ファン回転速度とPWM作動周期の曲線指示図である図6、7に示すように、図中では補償前の回転速度曲線B1(すなわち公知の上放物線F1)をセクション分割方式により(三セクション、四セクション等に分ける)補償演算を行い、その後に補償後の回転速度曲線B2(すなわち本最適実施の線性(すなわち直線)曲線F2)を得る。前記補償演算を行うステップを以下に説明する。
(400)スタート
(401)前記補償前の回転速度曲線B1をPWM作動周期0%からPWM作動周期100%までの間を三セクションに分け補償演算を行う。図6中から分かるように、第一セクションはPWM作動周期0%からX%までの間で補償演算を行い、第二セクションはPWM作動周期X%からY%までの間で補償演算を行い、第三セクションはPWM作動周期Y%から100%までの間で補償演算を行う。前記X%とY%の値は、X%は30%、Y%は70%のように、事前に予知する数値であり、且つ該数値は補償前の回転速度曲線の変化により分かる。
(402)先ず、該第一セクションは直角三角形を区画し、その斜率(m=Δy/Δx:傾斜率)に対して補償演算後、第一直線L1を求める。前記斜率の補償演算は、既知の0%とX%の
2点の内挿法(補間法)によって斜率を求める。(即ち、前記第一直線L1)
(403)次に、該第二セクションは平行四辺形を区画し、その斜率に対して補償演算後、第二直線L2を求める。前記斜率の補償演算は、既知のX%とY%の2点の内挿法によって
斜率を求める。(即ち、前記第二直線L2)
(404)該第三セクションは直角三角形を区画し、その斜率に対して補償演算後、第三直線L3を求める。前記斜率の補償演算は、既知のY%と100%の2点の内挿法によって斜
率を求める。(即ち、前記第三直線L3)
(405)前記第一直線、第二直線及び第三直線を統合後、補償後曲線B2を求める。
(406)終了
上述は、本発明の好適な実施例であり、本発明を実施する時、前記PWM作動周期0% 〜100%間の補償演算を三段階に分けて行うことを限定せず、四段、五段、六段、七段・・・等に分けて補償演算することも可能であり、分段数を多くするほど、補償後の回転速度曲線は直線に近づき、更に好適な線性化を得られる。
したがって、前実施例と同様に、本発明の本実施例のファン回転速度はPWM作動周期の線性に対応し(すなわち直線)曲線B2は明確に公知ファンの上放物線B1に比べスムーズで、しかも、帯状でなない線性である。
As shown in FIGS. 6 and 7 which are curve indication diagrams of the fan rotation speed and the PWM operation cycle, the rotation speed curve B1 before compensation (that is, a known upper parabola F1) is divided into sections (three sections, four). Compensation calculation (divided into sections and the like) is performed, and then a rotational speed curve B2 after compensation (that is, the linearity (ie, straight line) curve F2 of the optimum implementation) is obtained. The step of performing the compensation calculation will be described below.
(400) Start
(401) The rotational speed curve B1 before compensation is divided into three sections from 0% PWM operation period to 100% PWM operation period, and compensation calculation is performed. As can be seen from FIG. 6, the first section performs a compensation operation between 0% and X% of the PWM operation cycle, and the second section performs a compensation operation between the PWM operation cycle of X% and Y%. The third section performs a compensation calculation between the PWM operation period Y% and 100%. The values of X% and Y% are numerical values that are predicted in advance, such as 30% for X% and 70% for Y%, and the numerical values can be understood from changes in the rotational speed curve before compensation.
(402) First, the first section divides a right triangle, and after the compensation calculation for the inclination rate (m = Δy / Δx: inclination rate), the first straight line L1 is obtained. In the compensation calculation of the oblique rate, the oblique rate is obtained by a known interpolation method (interpolation method) of two points of 0% and X%. (That is, the first straight line L1)
(403) Next, the second section defines a parallelogram, and after the compensation calculation for the oblique rate, a second straight line L2 is obtained. In the compensation operation of the oblique rate, the oblique rate is obtained by an interpolation method of two known points of X% and Y%. (That is, the second straight line L2)
(404) The third section divides a right triangle, and after the compensation calculation for the oblique rate, a third straight line L3 is obtained. In the compensation operation of the oblique rate, the oblique rate is obtained by an interpolation method of two known points of Y% and 100%. (That is, the third straight line L3)
(405) After the first straight line, the second straight line and the third straight line are integrated, a post-compensation curve B2 is obtained.
(406) EndThe above is a preferred embodiment of the present invention, and when implementing the present invention, it is not limited to performing the compensation calculation between the PWM operation period 0% to 100% in three stages, Compensation calculation can be divided into four stages, five stages, six stages, seven stages, etc., and the more the number of stages, the closer the rotational speed curve after compensation becomes to a straight line, and more suitable linearity. Can be obtained.
Therefore, as in the previous embodiment, the fan rotation speed of this embodiment of the present invention corresponds to the linearity of the PWM operating cycle (i.e., a straight line), and the curve B2 is clearly smoother than the known parabola B1, and moreover, Linearity that is not strip-shaped.

以上のように、本発明の各実施例は、ICにより補償後のPWM信号を提供し、ファン回転速度を制御し、ファンの回転速度は曲線補償を経た後、直線かつ帯ではなく線性を呈するのでファン回転速度が安定し、オープンループの制御曲線(すなわち、ファン回転速度とPWM作動周期の曲線図)を直線性に設計するので回路を別に増設しなくてもよくパーツコストも増加せず、各ファンモーターの特性は異なるがファン回転速度の規格に対して設計しやすい。
なお、上記の各実施例は本発明を限定するものではない。当該技術を熟知する者なら誰でも、本発明が掲示する技術内容に基づき、本発明の製品と領域を脱しない範囲内で各種の変動や潤色を加えることができ、したがって本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。
As described above, each embodiment of the present invention provides a PWM signal after compensation by an IC, controls the fan rotation speed, and the fan rotation speed exhibits linearity instead of a straight line and a band after curve compensation. Therefore, the fan rotation speed is stable, and the open loop control curve (i.e., the curve diagram of the fan rotation speed and PWM operation cycle) is designed to be linear, so there is no need to add another circuit and the part cost does not increase. Although the characteristics of each fan motor are different, it is easy to design for fan speed standards.
In addition, each said Example does not limit this invention. Anyone who is familiar with the technology can add various variations and colours within the scope of the product and area of the present invention based on the technical contents posted by the present invention. Based on the contents specified in the claims.

公知のPWM出力とPWM入力の曲線指示図である。It is a curve indication figure of a well-known PWM output and PWM input. 公知のファン回転速度と作動周期の曲線指示図である。It is a curve indication figure of a well-known fan rotational speed and an operation period. 本発明の主要フローチャートである。It is a main flowchart of the present invention. 本発明のPWM出力とPWM入力の曲線指示図である。It is a curve instruction | indication figure of the PWM output and PWM input of this invention. 本発明のファン回転速度と作動周期の曲線指示図である。It is a curve instruction | indication figure of the fan rotational speed and operation | movement period of this invention. 本発明のファン回転速度と作動周期の補償曲線指示図である。It is a compensation curve instruction | indication figure of the fan rotational speed and operation | movement period of this invention. 本発明の補償演算のフローチャートである。It is a flowchart of the compensation calculation of this invention.

A2 下放物線
F2 線性曲線
B1 補償前曲線
B2 補償後曲線
L1 第一直線
L2 第二直線
L3 第三直線
A2 Lower parabola
F2 linearity curve
B1 Pre-compensation curve
B2 Curve after compensation
L1 first straight line
L2 2nd straight line
L3 3rd straight line

Claims (2)

ICを経由し、ファンの回転に関するPWM信号を読取り、当該PWM信号の作動周期に対する前記ファンの回転速度が示す曲線関係における複数の作動周期の範囲ごとに補償演算を行って、作動周期が100%のときの最大回転速度(R(MAX))に対する、当該範囲内の所定の作動周期のときの前記曲線関係を近似する直線関係に基づく理想回転速度(R1)から当該曲線関係に基づく回転速度(R2)までの増分(ΔR=R2-R1)の比率(ΔR/R(MAX)×100%)である補償値を求め、
前記複数の作動周期の範囲ごとに、補償後のPWM信号が、出力が小さくなる方向を下方向とした場合の下放物線関係を示すように、前記PWM信号の作動周期(%)から補償値たる前記比率(%)をマイナスし
前記複数の作動周期の範囲ごとに、前記補償後のPWM信号の作動周期に対する前記ファンの回転速度が前記直線関係を示すべく、前記ICは前記補償後のPWM信号に基づき、ファンの回転速度をオープンループ制御する
ことを特徴とするファン回転速度直線補償方法。
The PWM signal related to the rotation of the fan is read via the IC, and the compensation operation is performed for each of a plurality of operation cycle ranges in the curve relationship indicated by the rotation speed of the fan with respect to the operation cycle of the PWM signal, and the operation cycle is 100%. Rotation speed based on the curve relationship from the ideal rotation speed (R1) based on the linear relationship that approximates the curve relationship at the predetermined operation cycle within the range with respect to the maximum rotation speed (R (MAX)) at the time ( R2) to find a compensation value that is the ratio of the increment (ΔR = R2-R1) (ΔR / R (MAX) × 100%)
For each range of the plurality of operation period, the PWM signal after compensation, as shown below parabolic relationship when the direction in which the output is reduced to the lower direction, serving as compensation value from the operating cycle of the PWM signal (%) the ratios (%) were minus,
For each range of the plurality of operation period, to the rotational speed of the fan for the operating cycle of the PWM signal after the compensation showing the linear relationship, the IC based on the PWM signal after the compensation, the rotational speed of the fan A fan rotational speed linear compensation method characterized by open loop control.
前記補償演算は、
補償前の前記PWM信号の作動周期に対する前記ファンの回転速度の関係を示す曲線をPWM作動周期0%〜100%の間でセクション分割し、
分割された第一セクションは直角三角形で近似し、当該直角三角形の斜率に対して補償演算して第一直線を求め、
分割された第二セクションは平行四辺形で近似し、当該平行四辺形の斜率に対して補償演算して第二直線を求め、
分割された第三セクションは直角三角形で近似し、当該直角三角形の斜率に対して補償演算して第三直線を求め、
該第一直線、該第二直線及び該第三直線を統合して補償後の回転速度曲線を求める
ことを特徴とする請求項1記載のファン回転速度直線補償方法。
The compensation operation is
A curve indicating the relationship of the rotation speed of the fan to the operation period of the PWM signal before compensation is divided into sections between 0% and 100% of the PWM operation period,
The divided first section is approximated by a right triangle, and the first straight line is obtained by performing a compensation operation on the slope of the right triangle,
The divided second section is approximated by a parallelogram, and a compensation calculation is performed on the slope of the parallelogram to obtain a second straight line.
The divided third section is approximated by a right triangle, and the third straight line is obtained by performing a compensation operation on the slope of the right triangle,
The fan rotational speed straight line compensation method according to claim 1, wherein the first rotational straight line, the second straight line, and the third straight line are integrated to obtain a compensated rotational speed curve.
JP2008150154A 2008-06-09 2008-06-09 Fan speed linear compensation method Active JP5721306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008150154A JP5721306B2 (en) 2008-06-09 2008-06-09 Fan speed linear compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008150154A JP5721306B2 (en) 2008-06-09 2008-06-09 Fan speed linear compensation method

Publications (2)

Publication Number Publication Date
JP2009296839A JP2009296839A (en) 2009-12-17
JP5721306B2 true JP5721306B2 (en) 2015-05-20

Family

ID=41544422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008150154A Active JP5721306B2 (en) 2008-06-09 2008-06-09 Fan speed linear compensation method

Country Status (1)

Country Link
JP (1) JP5721306B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784474B2 (en) * 2011-12-07 2015-09-24 株式会社東芝 Motor drive circuit and motor drive system
GB2536195A (en) * 2015-02-18 2016-09-14 Melexis Technologies Nv A single phase motor drive circuit and a method of driving a single phase motor
CN106208828B (en) 2015-05-27 2020-09-29 罗姆股份有限公司 Motor drive device, motor drive IC, and cooling device and electronic apparatus using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1266377B1 (en) * 1993-05-31 1996-12-27 Merloni Antonio Spa POWER SUPPLY OF INDUCTION ELECTRIC MOTORS BY MEANS OF ELECTRONIC INVERTERS
JPH07337065A (en) * 1994-06-10 1995-12-22 Omron Corp Dc motor control circuit
JPH09252593A (en) * 1996-03-14 1997-09-22 Sharp Corp Inverter device
JP3967012B2 (en) * 1998-08-24 2007-08-29 カルソニックカンセイ株式会社 Brushless motor control device
TWI282208B (en) * 2005-05-19 2007-06-01 Delta Electronics Inc Fan control device and method
JP2007124853A (en) * 2005-10-31 2007-05-17 Toshiba Corp Information processor and fan control method

Also Published As

Publication number Publication date
JP2009296839A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US7375486B2 (en) Method and circuit for controlling motor speed
US10164557B2 (en) Motor driving circuit
US20120329377A1 (en) Fan control system, computer system, and method for controlling fan speed thereof
US7844170B2 (en) Method for controlling fan speed
JP5721306B2 (en) Fan speed linear compensation method
US7949233B2 (en) Method and device for controlling a heat-dissipating fan for an electronic component
US8513908B2 (en) Fan speed control circuit
GB2434007A (en) Controlling the speed of a cooling fan in a computer by generating temperature-load curves and then fan speed-temperature curves
JP6718287B2 (en) Motor drive device, motor drive circuit, motor drive IC and cooling device using the same, electronic device
US20130033213A1 (en) Fan controlling circuit for server computer
US20110077794A1 (en) Sensor-Based Thermal Specification Enabling a Real-Time Metric for Compliance
US20150118017A1 (en) Electronic device and fan controlling method
US20150326153A1 (en) Motor Driving Circuit, Cooling Apparatus and Electronic Device Using the Same
US20060285575A1 (en) Thermal sensing apparatus and computer system incorporating the same
US20080306633A1 (en) Optimized power and airflow multistage cooling system
US8947035B2 (en) Heat dissipation system, rotation speed control circuit and method thereof
US9030146B2 (en) Driving apparatus and motor
JP6043167B2 (en) Sensorless fan motor driving device, cooling device using the same, and sensorless fan motor control method
CN101603544B (en) Linear compensation method of rotating speed of fan
US8803464B2 (en) Fan speed control circuit
JP5647427B2 (en) Motor drive circuit, cooling device using the same, and electronic equipment
JP5513949B2 (en) Timing detection circuit, motor drive circuit using the same, cooling device, electronic equipment
JP5237921B2 (en) LED control device and LED control method
CN106095019A (en) Information processor and POS terminal device
WO2020240744A1 (en) Parallel driving device and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250