JP5721152B2 - Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method - Google Patents

Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method Download PDF

Info

Publication number
JP5721152B2
JP5721152B2 JP2013149190A JP2013149190A JP5721152B2 JP 5721152 B2 JP5721152 B2 JP 5721152B2 JP 2013149190 A JP2013149190 A JP 2013149190A JP 2013149190 A JP2013149190 A JP 2013149190A JP 5721152 B2 JP5721152 B2 JP 5721152B2
Authority
JP
Japan
Prior art keywords
oil
catalyst
fat
decarboxylation
biodiesel fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013149190A
Other languages
Japanese (ja)
Other versions
JP2013241612A (en
Inventor
薫 藤元
薫 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2013149190A priority Critical patent/JP5721152B2/en
Publication of JP2013241612A publication Critical patent/JP2013241612A/en
Application granted granted Critical
Publication of JP5721152B2 publication Critical patent/JP5721152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Catalysts (AREA)

Description

本発明は、油脂や搾油原料から良質のバイオディーゼル燃料を効率よく製造する方法及びその製造装置に関するものである。また、その製造法及び製造装置に用いる、効率の優れた油脂脱炭酸分解触媒に関するものである。   The present invention relates to a method for efficiently producing a high-quality biodiesel fuel from fats and oils and a raw material for oil extraction and a production apparatus therefor. The present invention also relates to an oil and fat decarboxylation catalyst having excellent efficiency used in the production method and production apparatus.

バイオディーゼル燃料は、地球温暖化ガスと大気汚染物質の排出量を削減し、エネルギー循環型社会の構築のために極めて重要な技術である。このバイオディーゼル燃料の製造方法としては、脂肪酸メチルエステル(FAME:fatty acid methyl ester)化法が広く導入されつつある。脂肪酸メチルエステル化法は、原料油脂と低級アルコール(副原料)をエステル交換反応させることによって、ディーゼルエンジン用燃料を得るものである(非特許文献1)。
脂肪酸メチルエステル化法に関する技術として、(特許文献1)には、「油脂と低級アルコールとを、カルシウム系固体触媒の存在下で反応させることにより、脂肪酸アルキルエステルを製造する方法」が開示されている。
また、(特許文献2)には、「原料油脂とアルコールとを固体酸触媒の存在下で反応させ、原料油脂中に存在する遊離脂肪酸を脂肪酸アルキルエステルに変換する工程Aと、工程Aにて得られた反応混合物から水分を除去する工程Bと、工程Bにて得られた液とアルコールとを固体塩基触媒の存在下で反応させ、原料油脂の主成分であるトリアシルグリセリドをエステル交換反応させて脂肪酸アルキルエステルに変換する工程Cと、を備えたバイオディーゼル油の製造方法」が開示されている。
Biodiesel fuel is an extremely important technology for reducing the emissions of greenhouse gases and air pollutants and for building an energy recycling society. As a method for producing this biodiesel fuel, a fatty acid methyl ester (FAME) method has been widely introduced. In the fatty acid methyl esterification method, a diesel engine fuel is obtained by a transesterification reaction between a raw oil and fat and a lower alcohol (subsidiary raw material) (Non-patent Document 1).
As a technique relating to the fatty acid methyl esterification method, (Patent Document 1) discloses “a method for producing a fatty acid alkyl ester by reacting oil and fat with a lower alcohol in the presence of a calcium-based solid catalyst”. Yes.
Further, (Patent Document 2) states that “in the process A and the process A in which the raw oil and fat are reacted with alcohol in the presence of a solid acid catalyst, and the free fatty acid present in the raw oil and fat is converted into a fatty acid alkyl ester. Step B for removing moisture from the obtained reaction mixture, and the liquid obtained in Step B and the alcohol are reacted in the presence of a solid base catalyst to transesterify triacylglyceride, which is the main component of the raw oil and fat. And a process C for converting it into a fatty acid alkyl ester, and a method for producing a biodiesel oil.

他のバイオディーゼル燃料の製造方法として、(非特許文献1)に記載された水素化処理法が知られている。水素化処理法は、従来の石油精製プロセスである水素化技術を応用した方法で、10MPaといった高圧下に水素化処理することにより、原料油脂中の酸素が主として水として離脱し軽質化するとともに、原料油脂由来の不飽和結合を飽和化し、軽油の沸点範囲の炭化水素油を得るものである。
また、(特許文献3)には、「反応帯域,分離帯域,ストリッピング帯域及び再生帯域を有する流動接触分解装置を用い、出口温度480〜540℃の反応帯域において、バイオマスを含有する原料油を、超安定Y型ゼオライトやシリカアルミナ等の固体酸触媒に1〜3秒間接触させ、ガソリン基材やディーゼル燃料基材等を得るバイオマスの処理方法」が開示されている。
さらに(特許文献4)には、「固体酸触媒を反応容器中、350〜450℃の温度域に加熱し、該固体酸触媒に液状の油脂を接触させて前記油脂から含酸素成分を除去し、炭素数9〜24のオレフィンおよびパラフィンを主成分とする炭化水素混合物を合成するようにした油脂の接触分解方法」が開示されている。
As another method for producing biodiesel fuel, a hydrotreatment method described in (Non-patent Document 1) is known. The hydrotreating method is a method that applies the hydrotreating technology that is a conventional petroleum refining process, and by hydrotreating under high pressure such as 10 MPa, oxygen in the raw material fat is mainly removed as water and lightened. A unsaturated oil-derived unsaturated bond is saturated to obtain a hydrocarbon oil having a boiling point range of light oil.
In addition, (Patent Document 3) states that “a fluidized catalytic cracking apparatus having a reaction zone, a separation zone, a stripping zone, and a regeneration zone is used, and in a reaction zone at an outlet temperature of 480 to 540 ° C., a raw material oil containing biomass is added. In addition, a biomass processing method is disclosed in which a gasoline base material, a diesel fuel base material, or the like is obtained by contacting with a solid acid catalyst such as ultrastable Y-type zeolite or silica alumina for 1 to 3 seconds.
Further, (Patent Document 4) states that “a solid acid catalyst is heated to a temperature range of 350 to 450 ° C. in a reaction vessel, and liquid oil is contacted with the solid acid catalyst to remove oxygen-containing components from the oil. , A method for catalytic cracking of fats and oils that synthesizes a hydrocarbon mixture mainly composed of olefins and paraffins having 9 to 24 carbon atoms.

特開2008−143983号公報JP 2008-143983 A 特開2008−1856号公報JP 2008-1856 A 特開2007−177193号公報JP 2007-177193 A 特願2008−086034号Japanese Patent Application No. 2008-086034

ENEOS Technical Review 第49巻 第2号(2007年6月)ENEOS Technical Review Vol. 49, No. 2 (June 2007)

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)非特許文献1,特許文献1及び特許文献2に開示された脂肪酸メチルエステル化法では、大量の低級アルコールを必要とするため、高額のランニングコストを要すという課題を有していた。また、原料油脂中の不純物(例えばジエン類,水酸基,パーオキサイド等)が生成油中に残留し易いため、生成油は空気等に対して不安定であり貯蔵安定性に欠けるという課題を有していた。この課題を解決するため、活性白土等の吸着剤を用いてパーオキサイド等の不純物を吸着させ生成油から除去する工程が必要となり、処理工程が複雑化するという課題を有していた。
(2)脂肪酸メチルエステル化法では、非特許文献1に記載されているようにアルカリ触媒を使用するために、脂肪酸石鹸が副生するという問題が生ずる。脂肪酸石鹸の副生量が多くなると、脂肪酸エステル層とグリセリン層の分離が困難になり、グリセリン層に脂肪酸エステルが混入し、脂肪酸エステルの収率の低下が起こるからである。また、副生されたグリセリンにはアルカリ触媒(苛性ソーダ等)が溶けているため、この処理が問題となっている。副生物であるグリセリンの処理技術の確立が、脂肪酸メチルエステル化法の技術確立には不可欠だが、未だ有効な処理技術が確立されていない。
(3)特許文献1に記載の脂肪酸メチルエステル化法では、カルシウム系固体触媒の使用により脂肪酸石鹸の副生を低く抑えることができるが、他の問題点として、原料のトリグリセライドに含まれる遊離脂肪酸が固体触媒の活性を低下させるという問題が生ずる。この結果、固体触媒を大量に使用しなければならなくなり、大量の使用済み触媒が発生し、使用済み触媒の再活性化処理も必要となる等、付帯作業が増大しランニングコストを上昇させるとともに生産性が低下するという課題を有していた。
(4)遊離脂肪酸による固体塩基触媒の活性の低下を抑えるため、特許文献2には、前工程として固体酸触媒の存在下で遊離脂肪酸を処理することにより、原料油脂から遊離脂肪酸を除去する技術が開示されている。特許文献2に開示された技術は、工程Aにおいて固体酸触媒の存在下で遊離脂肪酸を処理し、その後、工程Cにおいてアルコールと固体塩基触媒の存在下で反応させるため、複数の工程を要し、処理工程が煩雑化するという課題を有していた。
(5)非特許文献1に記載された水素化処理法では、得られた炭化水素油の凝固点が+20℃と高く流動性が悪いという課題を有していた。また、得られた炭化水素油にグリセリンが混入し、安定性に欠けるという課題を有していた。炭化水素油の凝固点が高いことは、特に寒冷地で使用する場合に問題があり、現在は、軽油に5%以下の条件で混合されて使用されている程度である。
(6)特許文献3に開示された技術は、反応帯域,分離帯域,ストリッピング帯域及び再生帯域を有する流動接触分解装置を用いて、油脂からガソリン基材等を得る技術である。この技術では、集荷した原料油脂を、大規模な流動接触分解装置が存在する拠点まで輸送して処理を行なうことが必要である。しかし、油脂の原料となる植物系バイオマスは、広大な土地を生産拠点とする分散産出型資源のため、集荷及び流動接触分解装置までの輸送に多大なコストを要するという課題を有していた。また、輸送コスト等を削減するため、植物系バイオマスの生産拠点に、バイオディーゼル燃料を製造するだけの目的で大規模な流動接触分解装置を建設するのは、ランニングコストが上昇する等の課題を有していた。また、出口温度480〜540℃の反応帯域において原料油脂が固体酸触媒に接触すると、アルキル基の炭素間の結合が開裂し易く生成物が低分子化し、ガソリン燃料基材の製造量が多くなり、ディーゼル燃料基材の製造量が減少するという課題を有していた。また、固体酸触媒の反応では芳香族の生成が多いため、コーク(coke、石油などの炭化水素を処理する触媒上に生成する炭化物、コークスともいう)の生成量が多く、固体酸触媒の表面に析出して、早期に触媒の活性が低下するという問題や、複数の触媒が結合し塊状化するといった問題が生じ、収率の低下や操業が困難になるという課題を有していた。さらに、触媒の活性が低下すると脱炭酸能が低下してカルボン酸(遊離脂肪酸)等の不純物も副生され易く、生成油が黒変したり異臭が生じたりするという課題を有していた。酸が多く芳香族が多くセタン価が低い生成油は実際の使用には適さないという課題があった。
(7)特許文献4に開示された技術は、加熱された固体酸触媒と油脂を接触させて、接触分解により油脂から炭素数9〜24のオレフィンおよびパラフィンを主成分とするディーゼルエンジン用の燃料となる炭化水素混合物を得る技術である。固体酸触媒を用いているが特許文献3よりも低い反応温度を用いることでより温和な反応条件となっており、アルキル基の炭素間の切断比率は低い。しかし、やはり固体酸触媒の反応であるので、コークの生成量が多く、灯油・軽油分の収率が低くなることと、触媒の活性が低下しやすいという課題があった。さらに、触媒の活性が低下すると脱炭酸能が低下してカルボン酸(遊離脂肪酸)等の不純物も副生され易く、生成油が黒変したり異臭が生じたりするという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The fatty acid methyl esterification method disclosed in Non-Patent Document 1, Patent Document 1 and Patent Document 2 requires a large amount of lower alcohol, and thus has a problem of requiring high running costs. . In addition, impurities (such as dienes, hydroxyl groups, peroxides, etc.) in the raw oil and fat are likely to remain in the product oil, so that the product oil is unstable to air and has a problem of lacking storage stability. It was. In order to solve this problem, a process of adsorbing impurities such as peroxide by using an adsorbent such as activated clay and removing it from the produced oil is required, which has a problem that the processing process becomes complicated.
(2) In the fatty acid methyl esterification method, since an alkali catalyst is used as described in Non-Patent Document 1, there arises a problem that fatty acid soap is by-produced. This is because when the amount of fatty acid soap by-product increases, it becomes difficult to separate the fatty acid ester layer and the glycerin layer, and the fatty acid ester is mixed into the glycerin layer, resulting in a decrease in the yield of the fatty acid ester. Moreover, since the alkali catalyst (caustic soda etc.) is melt | dissolving in the glycerin byproduced, this process is a problem. Establishment of processing technology for glycerin, a by-product, is indispensable for establishing technology for fatty acid methyl esterification, but no effective processing technology has been established yet.
(3) In the fatty acid methyl esterification method described in Patent Document 1, by-product of fatty acid soap can be kept low by using a calcium-based solid catalyst, but as another problem, free fatty acid contained in the raw material triglyceride This causes a problem of reducing the activity of the solid catalyst. As a result, a large amount of solid catalyst must be used, a large amount of spent catalyst is generated, and reactivation treatment of the spent catalyst is required. It had the subject that a property fell.
(4) In order to suppress a decrease in the activity of the solid base catalyst due to free fatty acids, Patent Document 2 discloses a technique for removing free fatty acids from raw material fats and oils by treating the free fatty acids in the presence of a solid acid catalyst as a previous step. Is disclosed. The technique disclosed in Patent Document 2 requires a plurality of steps in order to treat a free fatty acid in the presence of a solid acid catalyst in Step A and then react the alcohol in the presence of a solid base catalyst in Step C. The problem is that the processing steps become complicated.
(5) The hydrotreating method described in Non-Patent Document 1 has a problem that the resulting hydrocarbon oil has a high freezing point of + 20 ° C. and poor fluidity. Moreover, glycerin mixed in the obtained hydrocarbon oil, and had the subject that it lacked stability. The high freezing point of hydrocarbon oils is problematic especially when used in cold regions, and is currently only used as a mixture with light oil at 5% or less.
(6) The technique disclosed in Patent Document 3 is a technique for obtaining a gasoline base material or the like from fats and oils using a fluid catalytic cracking apparatus having a reaction zone, a separation zone, a stripping zone and a regeneration zone. In this technology, it is necessary to transport the collected raw material fats and oils to a site where a large-scale fluid catalytic cracking apparatus is present for processing. However, plant-based biomass, which is a raw material for fats and oils, has a problem in that it requires a great deal of cost for collection and transportation to a fluid catalytic cracking device because it is a distributed production resource based on a vast land. Also, in order to reduce transportation costs, constructing a large-scale fluid catalytic cracker at the plant biomass production base simply for the purpose of producing biodiesel fuel has problems such as increased running costs. Had. In addition, when the raw oil / fat comes into contact with the solid acid catalyst in the reaction zone having an outlet temperature of 480 to 540 ° C., the bonds between the carbons of the alkyl groups are easily cleaved, resulting in a low molecular weight product and an increase in the production amount of gasoline fuel base materials. In addition, the production amount of the diesel fuel base material has been reduced. In addition, since the reaction of the solid acid catalyst generates a lot of aromatics, the amount of coke (carbide produced on the catalyst for treating hydrocarbons such as coke and petroleum, also called coke) is large, and the surface of the solid acid catalyst This causes a problem that the activity of the catalyst is lowered at an early stage and a problem that a plurality of catalysts are combined and agglomerated, resulting in a decrease in yield and difficulty in operation. Further, when the activity of the catalyst is lowered, the decarboxylation ability is lowered, and impurities such as carboxylic acid (free fatty acid) are easily produced as by-products, resulting in a problem that the produced oil turns black or has a bad odor. There was a problem that the product oil with many acids, many aromatics and low cetane number is not suitable for actual use.
(7) The technology disclosed in Patent Document 4 is a fuel for a diesel engine having a heated solid acid catalyst and fats and oils as a main component, and mainly containing olefins and paraffins having 9 to 24 carbon atoms from the fats and oils by catalytic cracking. This is a technique for obtaining a hydrocarbon mixture. Although a solid acid catalyst is used, the reaction temperature is lower by using a reaction temperature lower than that of Patent Document 3, and the carbon-to-carbon cleavage ratio of the alkyl group is low. However, since the reaction is still a solid acid catalyst, there are problems in that the amount of coke produced is large, the yield of kerosene / light oil is lowered, and the activity of the catalyst tends to be lowered. Further, when the activity of the catalyst is lowered, the decarboxylation ability is lowered, and impurities such as carboxylic acid (free fatty acid) are easily produced as by-products, resulting in a problem that the produced oil turns black or has a bad odor.

本発明は上記従来の課題を解決するもので、アルコール(副原料)を必要とせず、グリセリンを副生することがなく、また原料油脂中のジエン類や水酸基、パーオキサイド等の不純物が生成物中に残留し難く、コークの生成量が少なく、流動点も低く、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難く貯蔵安定性に優れ、また、副生された遊離脂肪酸によって触媒の活性が低下するという問題が生じ難いため、使用済み触媒の処理や再活性化等の付帯作業によってランニングコストを大幅に削減し生産性に優れ、さらに原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また反応を常圧下で行うことができるため、製造工程の簡略化及び反応装置の簡素化を図ることができ、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築でき、不飽和脂肪酸の多い原料でも収率のよいバイオディーゼル燃料の製造方法を提供することを目的とする。また、搾油原料や油脂から良質のバイオディーゼル燃料を収率よく得ることができるバイオディーゼル燃料の製造装置を提供することを目的とする。また、油脂の二重結合の切断を抑えて脱炭酸分解反応を進めることで効率よく油脂から良質のバイオディーゼル燃料を得ることができるバイオディーゼル燃料の製造方法に用いる油脂脱炭酸分解触媒を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, does not require alcohol (subsidiary raw material), does not by-produce glycerin, and is a product of impurities such as dienes, hydroxyl groups, and peroxides in the raw oil and fat Residual in the interior, low coke production, low pour point, and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product. In addition, it is difficult to cause a problem that the activity of the catalyst decreases due to the free fatty acid produced as a by-product.Therefore, incidental operations such as treatment and reactivation of the used catalyst greatly reduce running costs and increase productivity. In addition, pretreatment for removing free fatty acids from raw oils and fats is unnecessary, and the reaction can be carried out under normal pressure, which simplifies the production process and simplifies the reaction apparatus. Can build distributed energy supply system for supplying the energy needed in a place, and an object thereof is to provide a method for producing a good bio-diesel fuels yield in many raw materials that unsaturated fatty acids. Moreover, it aims at providing the manufacturing apparatus of the biodiesel fuel which can obtain a good-quality biodiesel fuel with high yield from oil extraction raw material and fats and oils. Further, the present invention provides an oil and fat decarboxylation catalyst for use in a method for producing biodiesel fuel that can efficiently obtain a good quality biodiesel fuel from fat and oil by advancing the decarboxylation decomposition reaction while suppressing the breakage of the double bond of the oil and fat. For the purpose.

上記従来の課題を解決するために本発明のバイオディーゼル燃料の製造方法は、以下の構成を有している。
本発明の請求項1に記載のバイオディーゼル燃料の製造方法は、350℃〜475℃において、反応容器内で油脂脱炭酸分解触媒と油脂が接触して、前記油脂脱炭酸分解触媒によって(化1)に示される脱炭酸分解反応でC8〜C24の炭化水素を主として生成し、前記油脂脱炭酸分解触媒はシリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体からなる混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたものを含む構成を有している。
In order to solve the above conventional problems, the biodiesel fuel production method of the present invention has the following configuration.
In the method for producing biodiesel fuel according to claim 1 of the present invention, at 350 ° C. to 475 ° C., the fat and oil decarboxylation decomposition catalyst and the fat contact with each other in the reaction vessel and ) To produce mainly C8-C24 hydrocarbons, and the fat and oil decarboxylation catalyst is an FCC waste whose acid sites are poisoned by one or more of silica, alkali metal and alkaline earth metal. One or more of the catalyst and the mixture composed of the composites include a composition coated with a weak alkaline compound composed of any one or more of magnesium hydroxide, oxide, and carbonate. Yes.

この構成により、以下のような作用が得られる。
(1)350℃〜475℃において、油脂脱炭酸分解触媒と油脂を接触させると、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂され、(化1)に示す脱炭酸分解が起こり、バイオディーゼル燃料となる分解ガス(炭化水素)を得ることができる。なお、油脂脱炭酸分解触媒の種類によっては、優先的に脱COが起こることも考えられる。(化1)に示す反応から明らかなようにグリセリンを副生しないので、グリセリンの処理技術の確立や処理工数等を必要としない。また、副生物として、プロパン、メタン、エタン、ブタンのガス状化合物が得られるので気体燃料として用いることができ、油脂脱炭酸分解触媒を加熱するための燃料とすることもできる。
(2)この脱炭酸分解は、アルコールが実質的に存在しない条件下で行なわれるため、ランニングコストを大幅に安くでき、また原料油脂中のジエン類やパーオキサイド等の不安定な不純物が油脂脱炭酸分解触媒表面上で容易に分解されるため、生成物中に残留し難く、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難い貯蔵安定性に優れたバイオディーゼル燃料を得ることができる。また、パーオキサイド等の不純物を、吸着剤を使って吸着・除去する工程も不要となり、経済性に優れる。さらに、コークの生成量が少ないため、コークが触媒の表面に析出することによる油脂脱炭酸分解触媒の活性低下や、油脂脱炭酸分解触媒が結合し塊状化するといった問題も生じ難く、高い収率で安定操業が可能となる。
(3)原料中に遊離脂肪酸が存在するが、油脂等のグリセリンのエステル結合部分が開裂され脱CO2が行なわれることにより、カルボン酸(遊離脂肪酸)等の不純物が副生され難く、反応中に遊離脂肪酸が副生されても容易に炭化水素と炭酸ガスに分解されるため、副生されたカルボン酸(遊離脂肪酸)によって触媒の活性が低下するという問題が生じ難い。このため、活性低下分を見込んで触媒を大量に使用する必要がなく、使用済み触媒の処理や再活性化等の付帯作業によって、ランニングコストが上昇したり生産性が低下したりすることがない。廃油や不飽和結合を多く持つ油脂(ヤトロファ油等)は酸化劣化により多くの遊離脂肪酸を含有するので非常に有効である。
(4)油脂脱炭酸分解触媒を用いた脱炭酸分解でグリセリンの脱CO2若しくは脱COが起こり、残りの炭素鎖を回収することにより、主に炭素数8〜24の炭化水素として凝固点が−20℃前後の流動性に優れたバイオディーゼル燃料を得ることができる。
(5)油脂脱炭酸分解触媒の活性の低下を防ぐための原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また接触分解工程は常圧下で行うことができるため、バイオディーゼル燃料の製造工程及び反応装置を簡素化することができ生産性に優れるとともに、バイオディーゼル燃料を低コストで製造できる。このため、反応装置を、植物系バイオマスの生産拠点や必要とされる場所に低コストで建設することができ、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築できる。
(6)油脂脱炭酸分解触媒が350〜475℃に加熱されているので、脱炭酸分解の反応速度が大きく、高い生産性で炭素数8〜24のオレフィン及びパラフィンを主成分とするバイオディーゼル燃料を製造できる。
(7)350〜475℃では油脂は液状であり、ほとんど蒸発しない。したがって反応容器から生成物だけがガスとなって導出される。
(8)350〜475℃では油脂はほとんど熱分解しない。したがって油脂がほとんど脱炭酸分解されるので、2重結合部分が熱的に切断され低分子化することを防ぐ。
(9)ガスとして生成物を導出するので原料中のリン酸が油脂脱炭酸分解触媒に沈着し分解油にほとんど移行しない。そのためエンジンのリン酸による性能低下や損傷事故が無く、分解油を安心して使用できる。特にリン酸含有量の高いヤトロファや魚滓(或いは魚油)、大豆等を原料とした場合に有効である。
(10)シリカ、酸化マグネシウム、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体の混合物は鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると鉱物油が搾油原料や残渣中に残った油脂の抽出剤として働き、さらに効率を上げることができる。
(11)アルカリ金属とアルカリ土類金属のうち1以上によって酸点を被毒され酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また脂肪酸の生成も抑えられる。そのため燃料の生成収率が高くなる。
(12)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅くなる。
(13)石油の流動接触分解で広く使用されているFCC触媒を使用できるので、触媒を得ることが容易である。
(14)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたシリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒は、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると油脂の抽出効率が上がり、分解油の収率を上げることができる。
With this configuration, the following effects can be obtained.
(1) At 350 ° C. to 475 ° C., when the fat and oil decarboxylation decomposition catalyst and the fat and oil are brought into contact with each other, the ester bond portion of glycerin is cleaved by the action of the fat and fat decarboxylation decomposition catalyst, and the decarboxylation decomposition shown in (Chemical Formula 1) occurs. The cracked gas (hydrocarbon) used as biodiesel fuel can be obtained. In addition, depending on the kind of fat and oil decarboxylation decomposition catalyst, it is also considered that de-CO occurs preferentially. As apparent from the reaction shown in (Chemical Formula 1), since glycerin is not by-produced, establishment of processing technology for glycerin, processing man-hours, and the like are not required. Moreover, since a gaseous compound of propane, methane, ethane, and butane is obtained as a by-product, it can be used as a gaseous fuel, and can also be used as a fuel for heating an oil and fat decarboxylation decomposition catalyst.
(2) Since this decarboxylation is carried out under conditions where alcohol is not substantially present, the running cost can be greatly reduced, and unstable impurities such as dienes and peroxides in the raw oil and fat can be removed. Since it is easily decomposed on the surface of the carbonic acid decomposition catalyst, it is difficult to remain in the product, and impurities such as carboxylic acid (free fatty acid) are also hardly produced as a by-product. Biodiesel fuel excellent in storage stability which is difficult can be obtained. In addition, a process for adsorbing and removing impurities such as peroxide using an adsorbent is not required, which is economical. Furthermore, since the amount of coke produced is small, it is difficult to cause problems such as a decrease in the activity of the fat decarboxylation catalyst due to precipitation of coke on the surface of the catalyst, and a problem that the fat decarboxylation decomposition catalyst binds and agglomerates, resulting in a high yield. With this, stable operation is possible.
(3) Although free fatty acids are present in the raw material, impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product due to cleavage of the ester bond portion of glycerin such as fat and oil and the removal of CO 2. Even if free fatty acids are by-produced, they are easily decomposed into hydrocarbons and carbon dioxide gas, so that the problem that the activity of the catalyst decreases due to the by-produced carboxylic acid (free fatty acids) hardly occurs. For this reason, it is not necessary to use a large amount of catalyst in anticipation of a decrease in activity, and there is no increase in running cost or productivity due to incidental work such as treatment or reactivation of the used catalyst. . Oils and fats with many unsaturated bonds (such as Jatropha oil) are very effective because they contain many free fatty acids due to oxidative degradation.
(4) takes place de CO 2 or removing CO glycerin in decarboxylation decomposition using oil decarboxylation decomposition catalyst, by collecting the remaining carbon chain, mostly the freezing point as the hydrocarbon having from 8 to 24 carbon atoms - A biodiesel fuel excellent in fluidity around 20 ° C. can be obtained.
(5) Pre-treatment for removing free fatty acids from raw oils and fats to prevent a decrease in the activity of fat and oil decarboxylation cracking catalyst is not necessary, and the catalytic cracking process can be carried out under normal pressure, thus producing biodiesel fuel. The process and the reaction apparatus can be simplified, the productivity is excellent, and the biodiesel fuel can be produced at a low cost. For this reason, the reaction apparatus can be constructed at a low cost at a plant biomass production base or a required place, and a distributed energy supply system that supplies necessary energy at a required place can be constructed.
(6) Since the fat and oil decarboxylation decomposition catalyst is heated to 350 to 475 ° C., the reaction rate of decarboxylation decomposition is large, and the biodiesel fuel mainly composed of olefins and paraffins having 8 to 24 carbon atoms with high productivity. Can be manufactured.
(7) At 350 to 475 ° C., the oil is in a liquid state and hardly evaporates. Therefore, only the product is led out as gas from the reaction vessel.
(8) Fats and oils hardly thermally decompose at 350 to 475 ° C. Therefore, most of the fats and oils are decarboxylated, so that the double bond portion is prevented from being thermally cut and reduced in molecular weight.
(9) Since the product is derived as a gas, phosphoric acid in the raw material is deposited on the oil and fat decarboxylation cracking catalyst and hardly transfers to the cracked oil. Therefore, there is no performance degradation or damage caused by engine phosphoric acid, and cracked oil can be used safely. This is particularly effective when the raw material is jatropha, fish salmon (or fish oil), soybeans or the like having a high phosphoric acid content.
(10) FCC waste catalyst whose acid sites are poisoned by one or more of silica, magnesium oxide, alkali metal and alkaline earth metal, and a mixture of these composites hardly reduces the molecular weight of mineral oil, When a mixture of the raw material for oil extraction and mineral oil is used as the raw material, the mineral oil can act as an extractant for the oil remaining in the raw material for oil extraction and the residue, and the efficiency can be further increased.
(11) The acid point is poisoned by one or more of alkali metal and alkaline earth metal and the acid point is weakened, so that the cleavage of the double bond portion in the oil and fat is suppressed, and decarboxylation is efficiently performed. Occur. Moreover, the production | generation of a fatty acid is also suppressed. Therefore, the production yield of fuel is increased.
(12) Generation of coke is suppressed, equipment maintenance is reduced, and catalyst deterioration is delayed.
(13) Since the FCC catalyst widely used in the fluid catalytic cracking of petroleum can be used, it is easy to obtain the catalyst.
(14) FCC in which acid sites are poisoned by at least one of silica, alkali metal and alkaline earth metal coated with a weak alkaline compound consisting of at least one of magnesium hydroxide, oxide and carbonate Since the waste catalyst hardly reduces the molecular weight of mineral oil, the use of a mixture of fats and oils and a raw material of mineral oil and mineral oil as raw materials increases the extraction efficiency of the fats and oils, and can increase the yield of cracked oil.

ここで、油脂としては、搾油して得られた菜種油,パーム油,パーム核油,オリーブ油,大豆油,エゴマ油,ひまし油,ヤトロファ油、コーン油等の植物油、テルペン類、魚油,豚脂,牛脂等の動物脂等、ある種の藻類から採取された油脂やこれらの混合物を用いることができる。また、天ぷら油等の廃食用油を用いることもできる。常温で固化する豚脂,牛脂等の油脂は、加熱された触媒や予熱により融けて液状化するため、油脂は液状,固形状のいずれも用いることができる。
油脂は、一種若しくは複数種の混合物を触媒と接触させて反応させることができる。また、油脂は、触媒に接触させる前に、475℃以下の温度で予熱することもできる。触媒と接触した後、速やかに加熱されるようにして、分解効率を高めるためである。
油脂はトリアシルグリセロール(3つのアシル基がグリセリンにエステル結合したもの)であるが、リン脂質や糖脂質や脂肪酸なども本発明の原料に用いることができる。
Here, oils and fats include rapeseed oil, palm oil, palm kernel oil, olive oil, soybean oil, sesame oil, castor oil, jatropha oil, corn oil and other vegetable oils, terpenes, fish oil, pork fat, and beef tallow Oils and fats collected from certain types of algae such as animal fats and the like, and mixtures thereof can be used. Moreover, waste cooking oils, such as tempura oil, can also be used. Oils and fats such as lard and beef tallow that solidify at room temperature are melted and liquefied by a heated catalyst or preheating, so that the oils and fats can be either liquid or solid.
The fats and oils can be reacted by bringing one or more kinds of mixtures into contact with the catalyst. In addition, the oil / fat can be preheated at a temperature of 475 ° C. or lower before being brought into contact with the catalyst. The reason is to increase the decomposition efficiency by heating quickly after contact with the catalyst.
Oils and fats are triacylglycerols (three acyl groups esterified to glycerin), but phospholipids, glycolipids, fatty acids, and the like can also be used as the raw material of the present invention.

油脂脱炭酸分解触媒には弱アルカリ性、中性、弱酸性のものが好ましい。具体的には、固体触媒のシリカ、アルカリ被毒した固体酸触媒の1以上が用いられる。また、多くのセラミックも触媒として用いることができる。
より具体的には、シリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体からなる混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたものを含むもので、MgO,CaO,SrO,BaO等のアルカリ土類金属酸化物、La23,Th23等のランタノイド,アクチノイドの酸化物、ZrO2やTiO2等の金属酸化物、アルカリ土類金属等の金属炭酸塩、SiO2−MgO,SiO2−CaO等の複合酸化物、RbやCs等のアルカリ金属イオンやアルカリ土類金属イオンで交換したゼオライト、アルカリ金属化合物やアルカリ土類金属化合物を添加し部分的あるいは全面的に被毒したFCC触媒やFCC廃触媒、Na,K等のアルカリ金属が蒸着されたNa/MgO,K/MgO等の金属蒸着金属酸化物、KF/Al23,LiCO3/SiO2等のアルカリ金属塩等の混合物や担持物(例えば、シリカ,コークス等に固体塩基を担持させた担持物)等を用いることができる。また、加熱されるとMgOとCaOの混合物となるドロマイト等の鉱物も好適に用いることができる。
これらのアンモニア昇温離脱温度はアルミナが50〜250℃、シリカゲルが30〜200℃、ゼオライト200〜600℃、活性炭が0〜100℃である。Na被毒したFCC触媒が30〜200℃、酸化マグネシウムを担持させた酸化ケイ素が0〜60℃、酸化マグネシウムを担持させた活性炭が0〜70℃である。アンモニア昇温離脱温度が400℃より高いものは、非常に強い酸触媒であり、油脂中のアルキル基の炭素間結合を切断して生成物が低分子化しやすく、また炭素間二重結合を攻撃して芳香族を多く生成するためにコークの生成が増える。このため、生成油の収率が下がり、さらに増加したコークにより触媒の活性低下が早まり、脱炭酸能が低下してカルボン酸の生成が多くなり生成油の品質が低下するため好ましくない。アンモニア昇温離脱温度が400℃より高いものを使用すると生成油中の芳香族が多いためセタン価が低い上に、酸が多く品質が低いためディーゼル燃料として実際に使用するには不適である。なお、触媒の内、活性炭、活性コークス等アンモニア昇温離脱温度が100℃以下の触媒を用いる場合には、油脂と鉱物油との混合物を、原料として用いることができる。活性炭、活性コークス等の触媒は鉱物油をほとんど低分子化しないからである。鉱物油としては、原油を蒸留して得られる常圧残油,常圧残油をさらに減圧蒸留して得られる減圧軽油,減圧残油,これらの水素化処理油、または熱分解油、及びそれらの混合物が挙げられる。また油脂の脱炭酸分解で生成した炭化水素も用いることができる。これらの鉱物油が残渣中に残った油脂の抽出剤として機能してさらに効率を上げることができる。
The oil and fat decarboxylation catalyst is preferably weakly alkaline, neutral, or weakly acidic. Specifically, at least one of solid catalyst silica and alkali-poisoned solid acid catalyst is used. Many ceramics can also be used as catalysts.
More specifically, at least one of a mixture of silica, an FCC waste catalyst whose acid sites are poisoned by one or more of alkali metals and alkaline earth metals, and a composite thereof is magnesium hydroxide. Including those coated with a weak alkaline compound consisting of at least one of an oxide, a carbonate, and an alkaline earth metal oxide such as MgO, CaO, SrO, BaO, La 2 O 3 , Th 2 Lanthanoids such as O 3 , oxides of actinides, metal oxides such as ZrO 2 and TiO 2 , metal carbonates such as alkaline earth metals, composite oxides such as SiO 2 —MgO and SiO 2 —CaO, Rb and Cs Such as zeolite exchanged with alkali metal ions or alkaline earth metal ions, alkali metal compounds or alkaline earth metal compounds, and partially or fully The FCC catalyst and FCC waste catalyst, Na, Na / MgO the alkali metal is deposited in K such, K / metal deposition metal oxides such as MgO, KF / Al 2 O 3 , LiCO 3 / alkali metal such as SiO 2 A mixture such as a salt or a support (for example, a support in which a solid base is supported on silica, coke, or the like) can be used. Also, a mineral such as dolomite that becomes a mixture of MgO and CaO when heated can be suitably used.
These ammonia temperature increase and desorption temperatures are 50 to 250 ° C for alumina, 30 to 200 ° C for silica gel, 200 to 600 ° C for zeolite, and 0 to 100 ° C for activated carbon. The FCC catalyst poisoned with Na is 30 to 200 ° C., the silicon oxide supporting magnesium oxide is 0 to 60 ° C., and the activated carbon supporting magnesium oxide is 0 to 70 ° C. Those with a temperature rise and desorption temperature higher than 400 ° C are very strong acid catalysts, and the product easily reduces the molecular weight of the alkyl group in fats and oils by breaking the carbon-carbon bond, and attacks the carbon-carbon double bond. As a result, the production of coke increases because more aromatics are produced. For this reason, the yield of the product oil is lowered, and further, the increased coke accelerates the decrease in the activity of the catalyst, the decarboxylation ability is lowered, the production of carboxylic acid is increased, and the quality of the product oil is lowered. When the one having a temperature rise and desorption temperature higher than 400 ° C. is used, since there are many aromatics in the produced oil, the cetane number is low and the quality is low and the quality is low, so it is unsuitable for actual use as a diesel fuel. In addition, when using a catalyst with a temperature rising / leaving temperature of ammonia of 100 ° C. or less, such as activated carbon and activated coke, a mixture of fats and oils and mineral oil can be used as a raw material. This is because catalysts such as activated carbon and activated coke hardly reduce the molecular weight of mineral oil. Mineral oil includes atmospheric residual oil obtained by distilling crude oil, vacuum gas oil obtained by further distillation of atmospheric residue under reduced pressure, vacuum residue, hydrotreated oil, or pyrolysis oil, and Of the mixture. Moreover, the hydrocarbon produced | generated by decarboxylation decomposition of fats and oils can also be used. These mineral oils can function as an extractant for the oils and fats remaining in the residue and can further increase efficiency.

酸点の被毒は50%以上が採用され、より好ましくは90%以上が採用される。酸点の被毒が50%未満であると、コークと軽質ガスの生成が増えて、好ましくない。
酸点が被毒されることでアンモニア昇温離脱温度は低下する。アンモニア昇温離脱温度は400℃未満が好ましく、より好ましくは200℃未満、さらに好ましくは100℃未満にまで被毒により下げたものが採用される。400℃以上では生成物を低分子化しやすい上に、芳香族が多く生成してコークとなり触媒活性が低下しやすいからである。100℃未満では炭素間結合をほとんど切断しないので、鉱物油などが混在している原料に対しても使用できる。
The acid point poisoning is 50% or more, more preferably 90% or more. If the acid point poisoning is less than 50%, the production of coke and light gas increases, which is not preferable.
As the acid sites are poisoned, the temperature rise and desorption temperature of ammonia decreases. The ammonia temperature rise and desorption temperature is preferably less than 400 ° C, more preferably less than 200 ° C, and even more preferably less than 100 ° C due to poisoning. When the temperature is 400 ° C. or higher, the product tends to have a low molecular weight, and a large amount of aromatics is formed to become coke, and the catalytic activity tends to decrease. When the temperature is lower than 100 ° C., the carbon-carbon bond is hardly broken, so that it can be used for raw materials in which mineral oil or the like is mixed.

FCC触媒とは石油の流動接触分解プロセスで使用される、40〜80μmの粒粉状に造粒された合成ゼオライト系の固体酸触媒である。FCC触媒のアルカリ金属による被毒には、様々な方法が用いうるが、例えばアルカリ金属塩水溶液にFCC触媒を浸漬して被毒させる方法が使用できる。
またFCC触媒として、産業廃棄物として処理されているFCC廃触媒も使用できる。FCC廃触媒とは石油の流動接触分解プロセスから排出されるものである。石油の流動接触分解プロセスでは触媒表面にコークが蓄積し触媒活性が徐々に低下する。そのため、このコークを加熱・焼却して触媒を再生する工程を石油の流動接触分解プロセスは有するが、触媒活性を一定に保つために新しい触媒を加える工程と古い触媒を抜き出す工程を有する。この抜き出された古い触媒がFCC廃触媒であり、多くは産業廃棄物として処理されている。FCC廃触媒は未だ触媒活性を十分に有している上に、非常に安価に入手できる。FCC廃触媒表面にコークが蓄積して触媒機能が低下した場合には、酸素雰囲気下で触媒を加熱することで、触媒表面のコークが焼却され触媒を再生することができる。
The FCC catalyst is a synthetic zeolitic solid acid catalyst granulated into 40 to 80 μm particles used in a fluid catalytic cracking process of petroleum. Various methods can be used for poisoning the FCC catalyst with an alkali metal. For example, a method in which the FCC catalyst is poisoned by immersing the FCC catalyst in an aqueous alkali metal salt solution can be used.
Moreover, the FCC waste catalyst currently processed as industrial waste can also be used as a FCC catalyst. The FCC waste catalyst is discharged from the fluid catalytic cracking process of petroleum. In the fluid catalytic cracking process of petroleum, coke accumulates on the catalyst surface and the catalytic activity gradually decreases. Therefore, although the fluid catalytic cracking process of petroleum has a step of regenerating the catalyst by heating and incinerating the coke, it has a step of adding a new catalyst and a step of extracting the old catalyst in order to keep the catalyst activity constant. This extracted old catalyst is an FCC waste catalyst, and many are treated as industrial waste. The FCC waste catalyst still has sufficient catalytic activity and can be obtained at a very low cost. When coke accumulates on the FCC waste catalyst surface and the catalyst function is lowered, the catalyst is heated in an oxygen atmosphere to incinerate the coke on the catalyst surface and regenerate the catalyst.

油脂脱炭酸分解触媒の加熱温度が350℃より低くなると、脱炭酸分解反応の進行が遅くなる上に油脂の重合固化が起こり炭化水素の生産性が低下する傾向がみられる。また、475℃より高くなると、炭素数4以下の軽質ガスやコークの生成量が増加し、炭素数8〜24のオレフィン及びパラフィンを主成分とする生成物の生成量が低下する傾向がみられるため、いずれも好ましくない。   When the heating temperature of the oil and fat decarboxylation decomposition catalyst is lower than 350 ° C., the progress of the decarbonation decomposition reaction is slowed, and the oil and fat is polymerized and solidified, and the hydrocarbon productivity tends to decrease. Moreover, when it becomes higher than 475 degreeC, the production | generation amount of the light gas and coke of 4 or less carbon atoms will increase, and the production | generation amount of the product which has a C8-C24 olefin and paraffin as a main component will be seen. Therefore, neither is preferable.

バイオディーゼル燃料を製造する反応装置としては、例えば、油脂脱炭酸分解触媒が収容された反応容器と、反応容器内の油脂脱炭酸分解触媒を加熱する加熱装置と、を備えたものが用いられる。反応容器は、固定床方式、流動床方式、ロータリキルン方式、撹拌方式等を用いることができる。なかでも、撹拌方式が好ましい。操業中に反応条件等が悪化すると、油脂脱炭酸分解触媒の表面に油脂等の分解物(芳香族化合物等)が重合して付着し、その重合物によって複数の油脂脱炭酸分解触媒が結合して反応容器内で塊状化して操業できなくなることがあるが、撹拌によって機械的に解砕し塊状化を防止できるからである。
脱炭酸分解工程において、油脂脱炭酸分解触媒を加熱し触媒が反応温度に達したら、搾油原料や油脂を噴霧,噴射,滴下,散布等によって反応容器内に導入し、油脂脱炭酸分解触媒と接触させる。連続式に処理を行なうことができ、バッチ式に処理を行なうこともできる。油脂は、加熱された油脂脱炭酸分解触媒と接触して分解され、可燃性ガスとして蒸気圧をもつようになる。窒素ガス,ヘリウムガス等の不活性ガスや水蒸気等のフローガスを連続的若しくは間欠的に導入することにより、生成された可燃性ガスを系外に排出させることができる。排出された可燃性ガスは冷却されバイオディーゼル燃料油となる。水蒸気をフローガスとして用いることにより、水溶成分を水蒸気に溶解させて可燃性ガスの洗浄効果を得ることができ、CaO等の触媒を用いる場合は、後述するように触媒の活性低下を防止できる。
失活した油脂脱炭酸分解触媒も、必要に応じて反応容器内で若しくは反応容器から抜き出した後、再生することができる。
As a reaction apparatus for producing biodiesel fuel, for example, an apparatus equipped with a reaction vessel in which an oil decarboxylation catalyst is accommodated and a heating device for heating the oil decarboxylation decomposition catalyst in the reaction vessel is used. As the reaction vessel, a fixed bed method, a fluidized bed method, a rotary kiln method, a stirring method, or the like can be used. Of these, the stirring method is preferable. If the reaction conditions deteriorate during operation, decomposition products (aromatic compounds, etc.) such as fat and oil are polymerized and adhered to the surface of the fat decarboxylation and decomposition catalyst, and a plurality of fat and oil decarboxylation decomposition catalysts are bonded by the polymer. This is because the agglomeration in the reaction vessel may result in the inability to operate, but the agglomeration can be prevented mechanically by stirring to prevent agglomeration.
In the decarbonation process, when the fat and oil decarbonization catalyst is heated and the catalyst reaches the reaction temperature, the raw material and fat are introduced into the reaction vessel by spraying, spraying, dripping, spraying, etc., and contacted with the fat and decarbonization catalyst. Let Processing can be performed continuously or batchwise. Oils and fats are decomposed in contact with a heated oil and fat decarboxylation decomposition catalyst, and have a vapor pressure as a combustible gas. By introducing an inert gas such as nitrogen gas or helium gas or a flow gas such as water vapor continuously or intermittently, the generated combustible gas can be discharged out of the system. The discharged combustible gas is cooled to become biodiesel fuel oil. By using water vapor as a flow gas, a water-soluble component can be dissolved in water vapor to obtain a cleaning effect of combustible gas. When a catalyst such as CaO is used, a decrease in the activity of the catalyst can be prevented as described later.
The deactivated fat decarboxylation catalyst can also be regenerated as needed in the reaction vessel or after being extracted from the reaction vessel.

油脂脱炭酸分解触媒と接触した油脂の反応の一例を示すと、MgO(触媒)は油脂のCO2と結合して油脂を分解し、炭酸マグネシウムとなる。炭酸マグネシウムは350〜450℃で分解して脱炭酸が起こるため、脱炭酸後のMgOは繰り返し油脂の分解に寄与する。
また、CaO(触媒)は、水分の存在下で油脂のCO2と結合して油脂を分解し、炭酸水素カルシウムとなる。炭酸水素カルシウムは300℃付近で分解して脱炭酸が起こるため、脱炭酸後のCaOは繰り返し油脂の分解に寄与する。
As an example of a reaction of a fat or oil in contact with the oil and fat decarboxylation decomposition catalyst, MgO (catalyst) is combined with CO 2 fat decomposing oil and fat, and magnesium carbonate. Since magnesium carbonate decomposes at 350 to 450 ° C. and decarboxylation occurs, MgO after decarboxylation repeatedly contributes to the decomposition of fats and oils.
In addition, CaO (catalyst) combines with CO 2 of fats and oils in the presence of moisture to decompose the fats and oils to become calcium hydrogen carbonate. Since calcium carbonate is decomposed and decarboxylated at around 300 ° C., CaO after decarboxylation repeatedly contributes to the decomposition of fats and oils.

反応容器内の圧力は、大気圧乃至は正圧に維持するのが好ましい。油脂等の脱炭酸分解により軽油や灯油等の可燃性ガスが生成されるため、負圧であると反応容器内に空気が導入され、生成された可燃性ガスに着火し爆発する可能性があるからである。   The pressure in the reaction vessel is preferably maintained at atmospheric pressure or positive pressure. Combustible gases such as light oil and kerosene are generated by decarboxylation and decomposition of fats and oils, so if the pressure is negative, air may be introduced into the reaction vessel, and the generated combustible gas may ignite and explode. Because.

脱炭酸分解工程において、油脂の油脂脱炭酸分解触媒(体積)に対する1時間当たりの投入量(体積)を示す液空間速度としては0.05/h〜2.0/h、好ましくは0.3/h〜1.0/hが好適に用いられる。液空間速度が0.05/h未満であると、処理効率が低い上に2次的な分解により生成油分が軽質ガス化して灯・軽油分の収率が低下するため好ましくない。また2.0/hを超えると、触媒と油脂等との接触時間が短くなり油脂分解率が低下するため好ましくない。   In the decarbonation and decomposition step, the liquid space velocity indicating the input amount (volume) per hour with respect to the fat and oil decarboxylation / decomposition catalyst (volume) is 0.05 / h to 2.0 / h, preferably 0.3. / H to 1.0 / h is preferably used. If the liquid space velocity is less than 0.05 / h, the treatment efficiency is low, and the product oil becomes light gas due to secondary decomposition, and the yield of lamp / light oil decreases, which is not preferable. On the other hand, if it exceeds 2.0 / h, the contact time between the catalyst and the oil and fat is shortened and the oil decomposition rate is lowered, which is not preferable.

本発明の請求項2に記載の発明は、請求項1に記載のバイオディーゼル燃料の製造方法であって、前記油脂脱炭酸分解触媒と前記油脂の内いずれか1あるいは両方が、接触して脱炭酸分解反応をするよりも前に350℃〜475℃に加熱されている構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)加熱された油脂脱炭酸分解触媒又は加熱された油脂の一方、あるいは双方が熱媒体となり、油脂脱炭酸分解触媒の表面で油脂と接触した部分の温度が上昇し、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂される反応が円滑に進行する。
Invention of Claim 2 of this invention is a manufacturing method of the biodiesel fuel of Claim 1, Comprising: Either one or both of the said fats and oils decarboxylation decomposition catalyst and the said fats and oils contacts and desorbs. It has the structure heated to 350 to 475 degreeC before performing a carbonic acid decomposition reaction.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Either one or both of the heated fat decarbonation catalyst and / or the heated fat serves as a heat medium, and the temperature of the portion in contact with the fat on the surface of the fat decarbonization catalyst increases, so that the fat decarbonization catalyst Due to the action, the reaction of cleaving the ester bond portion of glycerin proceeds smoothly.

ここで、運転開始時には油脂脱炭酸分解触媒と油脂の双方を加熱しておくことで、反応容器内の温度が均一に保たれ、円滑に反応が進行するので好ましい。反応が安定した後では、加熱するのを一方とすることで、エネルギー消費を下げることができる。   Here, it is preferable to heat both the fat decarbonation catalyst and the fat at the start of operation because the temperature in the reaction vessel is kept uniform and the reaction proceeds smoothly. After the reaction is stabilized, energy consumption can be reduced by heating one side.

本発明の請求項3に記載の発明は、請求項1又は2に記載のバイオディーゼル燃料の製造方法であって、前記油脂の代わりに搾油原料が用いられる構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)搾油原料は350℃〜475℃で油脂脱炭酸分解触媒に接触すると、搾油原料の内の殻等のセルロースが炭化されるとともに、搾油原料の油脂成分が溶出して油脂脱炭酸分解触媒に接触して油脂成分のエステル結合部分が開裂され、(化1)に示す脱CO2若しくは脱COが起こり、バイオディーゼル燃料となる分解ガス(炭化水素)を得ることができる。
(2)搾油原料は、加熱され分解される際に水蒸気を発生するため、CaO等のように水分の存在下で良好に機能する油脂脱炭酸分解触媒を用いる場合には好適である。
Invention of Claim 3 of this invention is a manufacturing method of the biodiesel fuel of Claim 1 or 2, Comprising: It has the structure by which an oil extraction raw material is used instead of the said fats and oils.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) When the raw material for oil extraction comes into contact with the fat and oil decarboxylation and decomposition catalyst at 350 ° C. to 475 ° C., cellulose such as shells in the raw material for oil extraction is carbonized, and the oil and fat component of the raw material for oil extraction elutes and the oil and fat decarboxylation and decomposition catalyst The ester bond portion of the oil / fat component is cleaved by contact with the gas, and de-CO 2 or de-CO shown in (Chemical Formula 1) occurs, so that cracked gas (hydrocarbon) serving as biodiesel fuel can be obtained.
(2) Since the raw material for oil extraction generates water vapor when heated and decomposed, it is suitable when using an oil decarboxylation and decomposition catalyst that functions well in the presence of moisture, such as CaO.

ここで、搾油原料としては、アブラヤシの果肉や種子,ココヤシの胚乳,菜種,オリーブの果実,エゴマやトウゴマ等の種子,ナンヨウアブラギリ(ヤトロフア)やコウヒジュの種子等の搾油前の植物の果実や種子等を用いることができる。またある種の藻類は油脂を細胞内に蓄えることが知られており、この藻類を脱水して濃縮したものを用いることもできる。搾油原料は乾燥させた後に用いるのが好ましい。水分を除去して加熱効率を高めるためである。また、油脂脱炭酸分解触媒による分解効率を高めるため、搾油原料は、粉砕若しくは破砕して表面積を広くしたものを用いるのが好ましい。圧搾等によって搾油された後の搾油原料も用いることができる。これらは搾油後であっても、まだ多くの油脂が残存していることが知られている。
なお、搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、残留した炭化物は必要に応じて反応容器内から抜き出せば良い。
Here, the raw materials for oil extraction include oil palm pulp and seeds, coconut endosperm, rapeseed, olive fruits, seeds such as sesame seeds and castor sesame seeds, and berries and seeds of plants before oil extraction, such as seeds of oilseed burdock (Yatrofa) and kohjiju Etc. can be used. In addition, certain types of algae are known to store oils and fats in cells, and the algae obtained by dehydrating and concentrating the algae can also be used. It is preferable to use the raw material for oil extraction after drying. This is to remove moisture and increase heating efficiency. In addition, in order to increase the decomposition efficiency of the fat and oil decarboxylation decomposition catalyst, it is preferable to use a material that has a large surface area by pulverization or crushing. An oil raw material after being oiled by pressing or the like can also be used. It is known that many oils and fats still remain after oil extraction.
In addition, since cellulose, such as a shell of the raw material for oil extraction, is carbonized and remains in the reaction vessel, the remaining carbide may be extracted from the reaction vessel as necessary.

油脂や搾油原料と鉱物油との混合物として、ヘキサンなどの鉱物油によって熱的に搾油した後の搾油原料なども使用できる。これらは搾油後であっても、まだ多くの油脂が残存していることが知られている。
この他、油脂の精製工程から排出されるアルカリ油滓や魚滓、畜産滓(内臓類)なども油脂や脂質が多く、原料として使用できる。
As a mixture of fats and oils or a raw material for extraction and mineral oil, a raw material for extraction after thermally extracting with a mineral oil such as hexane can be used. It is known that many oils and fats still remain after oil extraction.
In addition, alkaline oil candy, fish bream, and livestock shark (internal organs) discharged from the oil refining process are rich in oil and fat and can be used as raw materials.

また前記油脂脱炭酸分解触媒は500℃〜600℃に加熱し、酸素を含む雰囲気に晒すことで再生することができる。コークの付着などで活性の低下した油脂脱炭酸分解触媒を加熱しながら通気するだけで油脂脱炭酸分解触媒の表面に付着したコークが焼失し、再生できるので省資源性に優れる。
油脂脱炭酸分解触媒の再生には反応容器をそのまま使用することができる。再生のための加熱の温度は500℃〜600℃が好ましい。500℃未満では再生に時間が掛かり実用的でない。600℃を超えるとセラミック類の構造が変わるなど油脂脱炭酸分解触媒の変性が起こり活性の低下が起こる恐れがあり好ましくない。
The fat and oil decarboxylation catalyst can be regenerated by heating to 500 ° C. to 600 ° C. and exposing to an atmosphere containing oxygen. The coke adhering to the surface of the fat decarboxylation catalyst is burned out and regenerated simply by aeration while heating the fat decarbonation decomposition catalyst whose activity has been lowered due to adhesion of coke, etc., and is excellent in resource saving.
The reaction vessel can be used as it is for the regeneration of the fat and oil decarboxylation catalyst. The heating temperature for regeneration is preferably 500 ° C to 600 ° C. If it is less than 500 ° C., regeneration takes time and it is not practical. If the temperature exceeds 600 ° C., the structure of the ceramics may be changed and the fat decarboxylation / decomposition catalyst may be modified and the activity may be lowered.

原料油脂又は前記搾油原料に含まれている有機酸は触媒毒となり触媒の活性を下げるという課題があったが、油脂脱炭酸分解触媒によって有機酸が容易に炭化水素と炭酸ガスに分解されるため、触媒の活性が低下するという問題が生じ難い。このため、活性低下分を見込んで触媒を大量に使用する必要がなく、使用済み触媒の処理や再活性化等の付帯作業によって、ランニングコストが上昇したり生産性が低下したりすることがない。   The organic acid contained in the raw oil and fat or the raw material for oil extraction has a problem that it becomes a catalyst poison and lowers the activity of the catalyst, but the organic acid is easily decomposed into hydrocarbons and carbon dioxide by the fat and oil decarboxylation decomposition catalyst. The problem that the activity of the catalyst decreases is unlikely to occur. For this reason, it is not necessary to use a large amount of catalyst in anticipation of a decrease in activity, and there is no increase in running cost or productivity due to incidental work such as treatment or reactivation of the used catalyst. .

本発明の請求項4に記載の発明は、請求項3に記載のバイオディーゼル燃料の製造方法であって、前記油脂脱炭酸分解触媒がバイオディーゼル燃料の製造後に残った前記搾油原料由来の炭化物を酸素雰囲気下、加熱して活性化された炭素としたものを含有する構成を有している。
この構成により、請求項3で得られる作用に加え、以下のような作用が得られる。
(1)酸素雰囲気下で加熱することで、反応容器内の油脂脱炭酸分解触媒の表面に蓄積していたコークが燃焼され油脂脱炭酸分解触媒が再生される。
(2)搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、適宜抜き出し廃棄する必要があるが、活性化した炭素に変えるので、触媒として有効利用でき、廃棄する必要がなくなる。
(3)工業化や交通網の整備が進んでいない地域であっても、容易に油脂脱炭酸分解触媒を調達できる。
Invention of Claim 4 of this invention is the manufacturing method of the biodiesel fuel of Claim 3, Comprising: The said oil-fat decarboxylation decomposition | disassembly catalyst is the carbide | carbonized_material derived from the said extraction raw material which remained after manufacture of biodiesel fuel. It has a configuration containing carbon that has been activated by heating in an oxygen atmosphere.
With this configuration, in addition to the operation obtained in the third aspect, the following operation can be obtained.
(1) By heating in an oxygen atmosphere, the coke accumulated on the surface of the fat and oil decarboxylation decomposition catalyst in the reaction vessel is burned, and the fat and oil decarboxylation decomposition catalyst is regenerated.
(2) Cellulose such as shells of raw material for oil extraction is carbonized and remains in the reaction vessel. Therefore, it is necessary to extract and discard it appropriately. However, since it is changed to activated carbon, it can be effectively used as a catalyst and must be discarded. Disappear.
(3) Even in areas where industrialization and transportation network development are not progressing, it is possible to easily procure an oil decarboxylation catalyst.

ここで搾油原料由来の炭化物の活性化には反応容器をそのまま使用することができる。再生のための加熱の温度は500℃〜600℃が好ましい。500℃未満では触媒の再生及び炭素の活性化に時間が掛かり実用的でない。600℃を超えるとセラミック類の構造が変わるなど油脂脱炭酸分解触媒の変性が起こり活性の低下が起こる恐れがあり好ましくない。   Here, the reaction vessel can be used as it is for the activation of the carbide derived from the oil extraction raw material. The heating temperature for regeneration is preferably 500 ° C to 600 ° C. Below 500 ° C., it takes time to regenerate the catalyst and activate carbon, which is not practical. If the temperature exceeds 600 ° C., the structure of the ceramics may be changed and the fat decarboxylation / decomposition catalyst may be modified and the activity may be lowered.

本発明の請求項5に記載のバイオディーゼル燃料の製造方法は、請求項1乃至4の内いずれか1に記載のバイオディーゼル燃料の製造方法であって、前記脱炭酸分解反応においてモル比で1/10〜10/1(H2O/油脂)の水蒸気が共存する構成を有している。
この構成により、請求項1乃至4で得られる作用に加え、以下のような作用が得られる。
(1)エステル結合の加水分解を水蒸気が促進するので油脂の分解効率が向上する。
The method for producing biodiesel fuel according to claim 5 of the present invention is the method for producing biodiesel fuel according to any one of claims 1 to 4, wherein the molar ratio in the decarboxylation decomposition reaction is 1 / 10 to 10/1 (H 2 O / oil / fat) water vapor coexists.
With this configuration, in addition to the actions obtained in claims 1 to 4, the following actions are obtained.
(1) Since steam promotes hydrolysis of ester bonds, the decomposition efficiency of fats and oils is improved.

ここで本発明における油脂の脱炭酸分解反応では、副反応で必ず水が生成するので、別段、水蒸気を加えなくても反応は進行する。したがって水蒸気の量がモル比1/10以下ではその促進効果が明瞭でない。
原料中の水分がモル比で10/1を超えると生成油中に水分が多くなり品質低下をきたすので原料段階あるいは生成油からの水分除去(乾燥)が必要となる。搾油原料や魚滓等を利用した場合がこれに相当する。後述の実施例6の大豆の場合に表3に示したように水成分が多いのはこのためである。ただし、後段に生成油から水成分を除去する工程を加えれば格段の問題は生じない。
Here, in the decarboxylation decomposition reaction of fats and oils in the present invention, water is always generated as a side reaction, so that the reaction proceeds without adding water vapor. Therefore, when the amount of water vapor is 1/10 or less, the promoting effect is not clear.
If the water content in the raw material exceeds 10/1 in the molar ratio, the water content in the produced oil increases and the quality deteriorates. Therefore, it is necessary to remove (dry) the water from the raw material stage or from the produced oil. This corresponds to the case of using raw material for oil extraction or fish cake. This is the reason why there are many water components as shown in Table 3 in the case of soybean of Example 6 described later. However, if a process of removing the water component from the produced oil is added to the subsequent stage, no particular problem occurs.

本発明の請求項6に記載のバイオディーゼル燃料の製造装置は、請求項1乃至5の内いずれか1に記載のバイオディーゼル燃料の製造方法に用いるバイオディーゼル燃料の製造装置であって、前記油脂脱炭酸分解触媒を内部に有した第1反応容器と、前記油脂脱炭酸分解触媒又は前記油脂若しくは搾油原料を加熱する加熱部と、前記搾油原料や前記油脂を前記第1反応容器に投入する投入部と、生成したガス混合物を前記第1反応容器から導出する第1ガス導出部と、を有する構成を有している。
この構成により、以下のような作用が得られる。
(1)搾油原料や油脂が加熱された油脂脱炭酸分解触媒によって加熱されると同時に脱炭酸分解反応が進行するので、コークなどの発生が少なく、熱効率がよく、収率のよい燃料製造が行える。
(2)原料油脂又は搾油原料を加熱して投入することで連続運転ができ、反応容器の構造が簡潔となり管理し易くなる。
A biodiesel fuel production apparatus according to a sixth aspect of the present invention is a biodiesel fuel production apparatus used in the biodiesel fuel production method according to any one of the first to fifth aspects, wherein the oil or fat is used. A first reaction vessel having a decarboxylation decomposition catalyst therein, a heating unit that heats the fat decarboxylation decomposition catalyst or the fat or oil extraction raw material, and an input for charging the oil extraction raw material or the oil into the first reaction vessel And a first gas deriving unit for deriving the generated gas mixture from the first reaction vessel.
With this configuration, the following effects can be obtained.
(1) Since the decarboxylation decomposition reaction proceeds at the same time that the oil-decompressing raw material and oil are heated by the heated oil decarboxylation decomposition catalyst, there is little generation of coke, etc., heat efficiency is good, and high yield fuel production can be performed. .
(2) Continuous operation can be performed by heating and supplying the raw material fat or oiled raw material, and the structure of the reaction vessel becomes simple and easy to manage.

ここで第1反応容器には攪拌装置を設けることができる。特に搾油原料を用いる場合には、反応容器内の触媒と搾油原料とが十分接することができるように攪拌装置を設けることが好ましい。
脱炭酸分解工程において、油脂脱炭酸分解触媒を加熱し触媒が反応温度に達したら、搾油原料や油脂を噴霧,噴射,滴下,散布等によって反応容器内に投入し、油脂脱炭酸分解触媒と接触させる。油脂及び搾油原料の投入は連続式に行なうことができ、バッチ式に行なうこともできる。油脂は、加熱された油脂脱炭酸分解触媒と接触して分解され、可燃性ガスとして蒸気圧をもつようになる。窒素ガス,ヘリウムガス等の不活性ガスや水蒸気等のフローガスを連続的若しくは間欠的に導入することにより、生成された可燃性ガスを系外に排出させることができる。排出された可燃性ガスは冷却されバイオディーゼル燃料油となる。
Here, the first reaction vessel can be provided with a stirring device. In particular, when using an oil-extracted raw material, it is preferable to provide a stirring device so that the catalyst in the reaction vessel and the oil-extracted raw material can sufficiently come into contact with each other.
In the decarbonation process, when the fat and oil decarbonization catalyst is heated and the catalyst reaches the reaction temperature, the raw material and fat are put into the reaction vessel by spraying, spraying, dripping, spraying, etc., and contacted with the fat and decarboxylation catalyst. Let The fats and oil extraction raw materials can be charged continuously or batchwise. Oils and fats are decomposed in contact with a heated oil and fat decarboxylation decomposition catalyst, and have a vapor pressure as a combustible gas. By introducing an inert gas such as nitrogen gas or helium gas or a flow gas such as water vapor continuously or intermittently, the generated combustible gas can be discharged out of the system. The discharged combustible gas is cooled to become biodiesel fuel oil.

油脂脱炭酸分解触媒の量は5容量%以上が好ましく、より好ましくは20容量%以上が採用される。油脂脱炭酸分解触媒の量が5容量%未満では、触媒に接触できる油脂の比率が下がり、加熱により熱分解する油脂の比率が上がるので軽質ガスの生成が増え、生成油の収率が下がり好ましくない。また搾油原料を投入する場合は60容量%を超えると搾油原料など嵩の大きい原料を投入したときに触媒と接触できないで加熱される原料が増えることおよび、残渣の排出頻度が増えることから好ましくない。
搾油原料を投入する場合はより好ましくは油脂脱炭酸分解触媒の量は50容量%以下が採用される。
The amount of the oil and fat decarboxylation catalyst is preferably 5% by volume or more, more preferably 20% by volume or more. If the amount of the fat decarboxylation catalyst is less than 5% by volume, the ratio of fats and oils that can come into contact with the catalyst is reduced, and the ratio of fats and oils that are thermally decomposed by heating is increased. Absent. In addition, when the oil extraction raw material is added, if it exceeds 60% by volume, it is not preferable because the raw material to be heated without increasing contact with the catalyst increases when the raw material having a large volume such as the oil extraction raw material is supplied and the discharge frequency of the residue increases. .
More preferably, the amount of the oil / fatty acid decarboxylation / decomposition catalyst is 50% by volume or less when the raw material is input.

搾油原料や油脂を加熱して分解を行う場合はそれらが反応温度に達したら、搾油原料や油脂を噴霧,噴射,滴下,散布等によって反応容器内に投入し、油脂脱炭酸分解触媒と接触させる。加熱した油脂等によって触媒が加熱されるので連続処理を行なうことができる。バッチ式に処理を行なう場合には搾油原料や油脂を触媒の加熱に必要な熱量分を考慮して高めに加熱するか、触媒を予熱することが好ましい。   When decomposing by heating oil extraction raw materials and fats and oils, when they reach the reaction temperature, the oil extraction raw materials and oils and fats are put into the reaction vessel by spraying, spraying, dripping, spraying, etc., and brought into contact with the oil decarboxylation decomposition catalyst . Since the catalyst is heated by heated oil or the like, continuous treatment can be performed. In the case of processing in a batch system, it is preferable to heat the oil extraction raw material and fats or oils in consideration of the amount of heat necessary for heating the catalyst, or to preheat the catalyst.

本発明の請求項7に記載の発明は、請求項6に記載のバイオディーゼル燃料の製造装置であって、前記第1ガス導出部に接続され前記油脂脱炭酸分解触媒が充填された第2反応容器と、前記第1反応容器の生成ガス混合物を前記第2反応容器の内部に導入するガス導入部と、前記第2反応容器の前記油脂脱炭酸分解触媒で脱炭酸分解されたガス混合物を導出する第2ガス導出部を備えている構成を有している。
この構成により、請求項6で得られる作用に加え、以下のような作用が得られる。
(1)第1反応容器から生成したガス混合物を導入する第2の反応容器が前記油脂脱炭酸分解触媒を内部に充填しており、第1反応容器から生成したガス中の有機酸が第2反応容器の油脂脱炭酸分解触媒により脱炭酸分解されるので、生成物中の酸がさらに少なくなり品質が上がる。
(2)第1反応容器で生成した有機酸や原料油脂に含まれていた有機酸が第1反応器の上部を通じて、触媒に触れることなく第1反応器内で生成したガスと共に導出されても、第2反応容器によって脱炭酸分解されるので、生成物中の有機酸が少なくなり高品質が維持される。
(3)装置を長時間運転して、触媒の機能が低下してくると、第1反応容器で反応が不完全となり、反応しきれなかった有機酸が生成したガス混合物中に混入して、生成物の品質が下がる。この品質の低下を抑えるので、装置をさらに長時間運転できるようになり、運転効率を上げる。
The invention according to claim 7 of the present invention is the biodiesel fuel production apparatus according to claim 6, wherein the second reaction is connected to the first gas lead-out part and filled with the fat decarboxylation catalyst. A container, a gas introduction part for introducing the product gas mixture of the first reaction vessel into the second reaction vessel, and a gas mixture decarboxylated and decomposed by the oil decarboxylation catalyst of the second reaction vessel The second gas deriving unit is provided.
With this configuration, in addition to the operation obtained in the sixth aspect, the following operation can be obtained.
(1) A second reaction vessel for introducing the gas mixture produced from the first reaction vessel is filled with the oil decarboxylation catalyst, and the organic acid in the gas produced from the first reaction vessel is second. Since it is decarboxylated and decomposed by the fat and oil decarboxylation catalyst in the reaction vessel, the acid in the product is further reduced and the quality is improved.
(2) Even if the organic acid generated in the first reaction vessel or the organic acid contained in the raw oil / fat is led out together with the gas generated in the first reactor without touching the catalyst through the upper part of the first reactor. Since the carbonic acid is decomposed by the second reaction vessel, the organic acid in the product is reduced and the high quality is maintained.
(3) When the apparatus is operated for a long time and the function of the catalyst is lowered, the reaction becomes incomplete in the first reaction vessel, and the organic acid that could not be reacted is mixed in the generated gas mixture, Product quality is reduced. Since this deterioration in quality is suppressed, the device can be operated for a longer time, and the operating efficiency is increased.

ここで第1反応容器と第2反応容器に使用する油脂脱炭酸分解触媒は必ずしも同一である必要はない。また第1反応容器から導出され第2反応容器に導入されるガス混合物は高温であるので、必ずしも第2反応容器の油脂脱炭酸分解触媒を加温する必要はない。ただし、運転中の第2反応容器の油脂脱炭酸分解触媒の温度が350℃を下回る場合には第2反応容器の油脂脱炭酸分解触媒を加熱する加熱装置が必要となる。第2反応容器は単管若しくはラジアルフロー式等の充填層反応器が用いられる。   Here, the fat decarboxylation catalyst used in the first reaction vessel and the second reaction vessel is not necessarily the same. Further, since the gas mixture led out from the first reaction vessel and introduced into the second reaction vessel is at a high temperature, it is not always necessary to warm the fat decarboxylation decomposition catalyst in the second reaction vessel. However, when the temperature of the fat and oil decarboxylation decomposition catalyst in the second reaction vessel during operation is lower than 350 ° C., a heating device for heating the fat and oil decarboxylation decomposition catalyst in the second reaction vessel is required. As the second reaction vessel, a single tube or a packed bed reactor such as a radial flow type is used.

本発明の請求項8に記載の発明は、請求項1乃至5の内のいずれか1に記載のバイオディーゼル燃料の製造方法、又は請求項6若しくは7に記載のバイオディーゼル燃料の製造装置で使用する油脂脱炭酸分解触媒であって、シリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体による混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングしたものを含む構成を有している。
この構成により、以下のような作用が得られる。
(1)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたシリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体による混合物は、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると油脂の抽出効率が上がり、分解油の収率を上げることができる。
(2)アルカリ金属とアルカリ土類金属のうち1以上によって酸点を被毒され酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また脂肪酸の生成も抑えられる。そのため燃料の生成収率が高くなる。
(3)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅くなる。
(4)石油の流動接触分解で広く使用されているFCC触媒を使用できるので、触媒を得ることが容易である。
The invention according to claim 8 of the present invention is used in the biodiesel fuel production method according to any one of claims 1 to 5 or the biodiesel fuel production apparatus according to claim 6 or 7. An oil and fat decarboxylation decomposition catalyst, wherein at least one of silica, an FCC waste catalyst whose acid sites are poisoned by one or more of alkali metal and alkaline earth metal, and a mixture of these composites is magnesium. In other words, it has a configuration including a material coated with a weak alkaline compound consisting of at least one of hydroxide, oxide, and carbonate.
With this configuration, the following effects can be obtained.
(1) FCC in which acid sites are poisoned by at least one of silica, alkali metal and alkaline earth metal coated with a weak alkaline compound consisting of one or more of magnesium hydroxide, oxide and carbonate Since the mixture of waste catalyst and their composites hardly reduces the molecular weight of mineral oil, the use of a mixture of oil and fat or compressed raw material and mineral oil as raw materials increases the extraction efficiency of the oil and fat and increases the yield of cracked oil. Can be raised.
(2) The acid point is poisoned by one or more of alkali metal and alkaline earth metal and the acid point is weakened, so that the cleavage of the double bond portion in the oil and fat is suppressed, and the decarboxylation decomposition is efficiently performed. Occur. Moreover, the production | generation of a fatty acid is also suppressed. Therefore, the production yield of fuel is increased.
(3) Generation of coke is suppressed, equipment maintenance is reduced, and catalyst deterioration is delayed.
(4) Since an FCC catalyst widely used in fluid catalytic cracking of petroleum can be used, it is easy to obtain a catalyst.

以上のように、本発明のバイオディーゼル燃料の製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)従来のFAME法と違って、副原料のアルコールを必要としないため、ランニングコストを大幅に安くでき、また原料油脂中のジエン類や水酸基等の不純物が生成物中に残留し難く、コークの生成量が少なく、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難い貯蔵安定性に優れ、凝固点が−20℃前後の流動性にも優れたバイオディーゼル燃料が得られるバイオディーゼル燃料の製造方法を提供できる。
(2)従来のFAME法と違って、グリセリンを副生しないので、グリセリンの処理技術の確立や処理工数等を必要とせず、またパーオキサイド等の不純物を、吸着剤を使って吸着・除去する工程も不要となり、さらにコークが触媒の表面に析出することによる触媒の活性低下や、触媒が結合し塊状化するといった問題も生じ難く、高い収率で安定操業が可能となるバイオディーゼル燃料の製造方法を提供できる。
(3)原料中に遊離脂肪酸が存在するが、油脂等のグリセリンのエステル結合部分が開裂され脱CO2が行なわれることにより、カルボン酸(遊離脂肪酸)等の不純物が副生され難く、反応中に遊離脂肪酸が副生されても容易に炭化水素と炭酸ガスに分解されるため、副生されたカルボン酸(遊離脂肪酸)によって触媒の活性が低下するという問題が生じ難く、活性低下分を見込んで触媒を大量に使用する必要がないため、使用済み触媒の処理や再活性化等の付帯作業によって、ランニングコストが上昇したり生産性が低下したりすることがなく、生産効率及び生産性に優れたバイオディーゼル燃料の製造方法を提供できる。
(4)原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また反応を常圧下で行うことができるため、バイオディーゼル燃料の製造工程及び反応装置を簡素化することができ、生産性に優れるとともにバイオディーゼル燃料を低コストで製造でき、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築できるバイオディーゼル燃料の製造方法を提供できる。
(5)熱分解が抑えられるので、収率がよくなるとともに、生成物中の脂肪酸の濃度が下がり、生成物を安心して燃料として使用できるバイオディーゼル燃料の製造方法を提供できる。
(6)触媒が安定に活性を保つので繰り返し使用でき、低原価で良質なバイオディーゼル燃料の製造方法を提供できる。
(7)酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また有機酸の生成も抑えられる。そのため燃料の生成収率が高い油脂脱炭酸分解触媒を提供できる。
(8)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅い油脂脱炭酸分解触媒を提供できる。
(9)広く使用されているFCC触媒が簡単な操作で利用できるので、実施することが容易となる。またFCC触媒は触媒機能が低下しても簡単に再生できるので、大掛かりな再生装置が必要ない。また再生せずに処理するとしても処理方法が確立しているために、安心して施設運転ができる油脂脱炭酸分解触媒を提供できる。
(10)廃棄物として処理されているFCC廃触媒も利用できるので、運転コストが非常に安くなる油脂脱炭酸分解触媒を提供できる。
(11)シリカは鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると鉱物油が油脂の抽出剤として働き、効率の高いバイオディーゼル燃料の製造方法を提供できる。
(12)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたシリカは、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を、原料として用いると油脂の抽出効率が上がり、分解油の収率の高いバイオディーゼル燃料の製造方法を提供できる。
As described above, according to the method for producing biodiesel fuel of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Unlike the conventional FAME method, since no secondary raw material alcohol is required, the running cost can be greatly reduced, and impurities such as dienes and hydroxyl groups in the raw oil and fat hardly remain in the product. Since the amount of coke produced is small and impurities such as carboxylic acids (free fatty acids) are hardly produced as by-products, it is stable against air and has excellent storage stability with no blackening or off-flavor, and has a freezing point of around −20 ° C. It is possible to provide a method for producing a biodiesel fuel from which a biodiesel fuel excellent in fluidity can be obtained.
(2) Unlike conventional FAME methods, glycerin is not produced as a by-product, so it is not necessary to establish glycerin processing technology or processing man-hours, and to adsorb and remove impurities such as peroxide using an adsorbent. Production of biodiesel fuel that eliminates the need for a process and that does not cause problems such as reduced catalyst activity due to coke depositing on the surface of the catalyst and that the catalyst binds and agglomerates, enabling stable operation at a high yield. Can provide a method.
(3) Although free fatty acids are present in the raw material, impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product due to cleavage of the ester bond portion of glycerin such as fat and oil and the removal of CO 2. Even if free fatty acids are produced as by-products, they are easily decomposed into hydrocarbons and carbon dioxide gas, so that the problem that the activity of the catalyst is lowered due to the by-produced carboxylic acid (free fatty acids) is unlikely to occur. Because there is no need to use a large amount of catalyst at the same time, there is no increase in running cost or productivity due to incidental work such as treatment and reactivation of the used catalyst. An excellent method for producing biodiesel fuel can be provided.
(4) Pretreatment for removing free fatty acids from raw oils and fats is not necessary, and the reaction can be carried out under normal pressure, thus simplifying the biodiesel fuel production process and reactor, and improving productivity It is possible to provide a method for producing biodiesel fuel that is excellent and that can produce biodiesel fuel at a low cost and can construct a distributed energy supply system that supplies necessary energy at a necessary place.
(5) Since thermal decomposition is suppressed, the yield is improved, the concentration of fatty acid in the product is lowered, and a method for producing biodiesel fuel that can be used as a fuel with confidence can be provided.
(6) Since the catalyst maintains stable activity, it can be used repeatedly, and a method for producing a high-quality biodiesel fuel at a low cost can be provided.
(7) Since the acid point has been weakened, the cleavage of the double bond portion in the oil and fat is suppressed, and the decarboxylation decomposition occurs efficiently. Moreover, the production of organic acids can be suppressed. Therefore, an oil decarboxylation catalyst having a high production yield of fuel can be provided.
(8) The generation of coke is suppressed, the maintenance of the apparatus is reduced, and an oil and fat decarboxylation decomposition catalyst with a slow catalyst deterioration can be provided.
(9) Since a widely used FCC catalyst can be used with a simple operation, it is easy to implement. In addition, since the FCC catalyst can be easily regenerated even if the catalytic function is lowered, a large regenerator is not required. Moreover, since the processing method is established even if it processes without reproducing | regenerating, the fat-and-oil decarboxylation decomposition | disassembly catalyst which can carry out a facility operation safely can be provided.
(10) Since the FCC waste catalyst processed as waste can also be used, an oil decarboxylation catalyst that can be operated at a very low cost can be provided.
(11) Since silica hardly reduces the molecular weight of mineral oil, when a mixture of oil and fat or oiled raw material and mineral oil is used as a raw material, the mineral oil functions as an oil extractant, and a highly efficient method for producing biodiesel fuel. Can be provided.
(12) Silica coated with a weakly alkaline compound consisting of one or more of magnesium hydroxide, oxide, and carbonate hardly reduces the molecular weight of mineral oil, so a mixture of fats and oils and raw material and mineral oil When used as a raw material, the extraction efficiency of fats and oils is increased, and a method for producing biodiesel fuel with a high yield of cracked oil can be provided.

請求項2に記載の発明によれば、請求項1の効果に加え、
(1)加熱された油脂脱炭酸分解触媒又は加熱された油脂の一方が熱媒体となり、油脂脱炭酸分解触媒の表面で油脂と接触した部分の温度が上昇し、油脂脱炭酸分解触媒の作用によりグリセリンのエステル結合部分が開裂される反応が円滑に進行するので、加熱のためのエネルギー消費を下げることができるバイオディーゼル燃料の製造方法を提供できる。
(2)運転開始時には油脂脱炭酸分解触媒と油脂の双方を加熱しておくことで、反応容器内の温度が均一に保たれ、円滑に反応が進行するバイオディーゼル燃料の製造方法を提供できる。
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Either the heated fat decarbonation catalyst or the heated fat becomes a heat medium, and the temperature of the part in contact with the fat on the surface of the fat decarbonization catalyst rises. Since the reaction of cleaving the ester bond portion of glycerin proceeds smoothly, it is possible to provide a method for producing biodiesel fuel that can reduce energy consumption for heating.
(2) By heating both the oil and fat decarboxylation catalyst and the oil and fat at the start of operation, it is possible to provide a method for producing biodiesel fuel in which the temperature in the reaction vessel is kept uniform and the reaction proceeds smoothly.

請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)搾油原料は350℃〜475℃で油脂脱炭酸分解触媒に接触すると、搾油原料の内の殻等のセルロースが炭化されるとともに、搾油原料の油脂成分が溶出して油脂脱炭酸分解触媒に接触して油脂成分のエステル結合部分が開裂され、(化1)に示す脱CO2若しくは脱COが起こり、バイオディーゼル燃料となる分解ガス(炭化水素)を得ることができるので、搾油原料などの油脂分を多く含んだ有機物を乾燥するだけで、原料にできるバイオディーゼル燃料の製造方法を提供できる。
(2)搾油原料は、加熱され分解される際に水蒸気を発生するため、CaO等のように水分の存在下で良好に機能する油脂脱炭酸分解触媒を用いる場合には好適であるので、搾油原料を用いた効率のより高いバイオディーゼル燃料の製造方法を提供できる。
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) When the raw material for oil extraction comes into contact with the fat and oil decarboxylation and decomposition catalyst at 350 ° C. to 475 ° C., cellulose such as shells in the raw material for oil extraction is carbonized, and the oil and fat component of the raw material for oil extraction elutes and the oil and fat decarboxylation and decomposition catalyst The ester bond portion of the oil and fat component is cleaved by contact with the oil, and the de-CO 2 or de-CO shown in (Chemical Formula 1) occurs, and a cracked gas (hydrocarbon) that becomes a biodiesel fuel can be obtained. It is possible to provide a method for producing biodiesel fuel that can be used as a raw material simply by drying organic matter containing a large amount of oil and fat.
(2) Since the oil extraction raw material generates water vapor when heated and decomposed, it is suitable when using an oil decarboxylation and decomposition catalyst that functions well in the presence of moisture such as CaO. A method for producing biodiesel fuel with higher efficiency using raw materials can be provided.

請求項4に記載の発明によれば、請求項3の効果に加え、
(1)酸素雰囲気下で加熱することで、反応容器内の油脂脱炭酸触媒の表面に蓄積していたコークが燃焼され油脂脱炭酸触媒が再生されるので、触媒を繰り返し使用できるバイオディーゼル燃料の製造方法を提供できる。
(2)搾油原料の殻等のセルロースは、炭化して反応容器内に残留するため、適宜抜き出し廃棄する必要があるが、活性化した炭素に変えるので、触媒として有効利用でき、廃棄する必要がなくなるので、連続運転が可能なバイオディーゼル燃料の製造方法を提供できる。
(3)工業化の進んでいない地域であっても、連続運転できる油脂脱炭酸分解触媒を調達できるので、地域を選ばずに導入し易いバイオディーゼル燃料の製造方法を提供できる。
According to invention of Claim 4, in addition to the effect of Claim 3,
(1) By heating in an oxygen atmosphere, coke accumulated on the surface of the fat and oil decarboxylation catalyst in the reaction vessel is burned and the fat and oil decarboxylation catalyst is regenerated. A manufacturing method can be provided.
(2) Cellulose such as shells of raw material for oil extraction is carbonized and remains in the reaction vessel. Therefore, it is necessary to extract and discard it appropriately. However, since it is changed to activated carbon, it can be effectively used as a catalyst and must be discarded. Therefore, a method for producing biodiesel fuel capable of continuous operation can be provided.
(3) Since an oil and fat decarboxylation catalyst that can be continuously operated can be procured even in an area where industrialization has not progressed, a method for producing a biodiesel fuel that can be easily introduced regardless of the area can be provided.

請求項5に記載の発明によれば、請求項1乃至4の効果に加え、
(1)エステル結合の加水分解を水蒸気が促進するので油脂の分解効率が向上するバイオディーゼル燃料の製造方法を提供できる。
According to the invention of claim 5, in addition to the effects of claims 1 to 4,
(1) Since steam promotes hydrolysis of ester bonds, it is possible to provide a method for producing biodiesel fuel that improves the decomposition efficiency of fats and oils.

請求項6に記載の発明によれば、
(1)搾油原料や油脂が350℃〜475℃で油脂脱炭酸分解触媒と接触すると同時に脱炭酸分解反応が進行するので、コークなどの発生が少なく、熱効率がよく、収率のよいバイオディーゼル燃料の製造装置を提供できる。
(2)原料油脂又は搾油原料を加熱して投入されることで連続運転が容易で熱効率がよく、管理し易いバイオディーゼル燃料の製造装置を提供できる。
According to the invention of claim 6,
(1) Biodiesel fuel with low yield of coke, good thermal efficiency and good yield, because decarbonation and decomposition reactions proceed at the same time that the oil extraction raw materials and fats come into contact with the fat and oil decarboxylation cracking catalyst at 350 to 475 ° C. Manufacturing equipment can be provided.
(2) It is possible to provide a biodiesel fuel production apparatus that is easy to manage by being heated and charged with raw material fat or oiled raw material, being easily operated continuously, having good thermal efficiency.

請求項7に記載の発明によれば、請求項6の効果に加え、
(1)第1反応から生成したガス混合物を導入する第2の反応容器が前記油脂脱炭酸分解触媒を内部に充填しており、第1反応容器から生成したガス中の有機酸が第2反応容器の油脂脱炭酸分解触媒により脱炭酸分解されるので、生成物中の酸がさらに少なくなり生成油の品質がよいバイオディーゼル燃料の製造装置を提供できる。
(2)第1反応容器で生成した有機酸や原料油脂に含まれていた有機酸が第1反応器の上部を通じて、触媒に触れることなく第1反応器内で生成したガスと共に導出されても、第2反応器によって脱炭酸分解されるので、生成物中の有機酸が少なくなり生成油の高品質が維持されるバイオディーゼル燃料の製造装置を提供できる。
(3)装置を長時間運転して、触媒の機能が低下してくると、第1反応容器で反応が不完全となり、生成したガス混合物中の有機酸が増加して、生成油の品質が下がる。この品質の低下を抑えるので、装置をさらに長時間運転できるようになり、運転効率が高いバイオディーゼル燃料の製造装置を提供できる。
According to invention of Claim 7, in addition to the effect of Claim 6,
(1) A second reaction vessel for introducing the gas mixture produced from the first reaction is filled with the oil / fatty acid decarboxylation catalyst, and the organic acid in the gas produced from the first reaction vessel is subjected to the second reaction. Since it is decarboxylated and decomposed by the fat and oil decarboxylation catalyst in the container, it is possible to provide an apparatus for producing biodiesel fuel in which the acid in the product is further reduced and the quality of the product oil is good.
(2) Even if the organic acid generated in the first reaction vessel or the organic acid contained in the raw oil / fat is led out together with the gas generated in the first reactor without touching the catalyst through the upper part of the first reactor. Since the carbon dioxide is decomposed by the second reactor, an organic acid in the product is reduced, and a biodiesel fuel production apparatus that maintains the high quality of the produced oil can be provided.
(3) When the apparatus is operated for a long time and the function of the catalyst decreases, the reaction becomes incomplete in the first reaction vessel, the organic acid in the generated gas mixture increases, and the quality of the product oil is increased. Go down. Since this deterioration in quality is suppressed, the apparatus can be operated for a longer time, and a biodiesel fuel production apparatus with high operating efficiency can be provided.

請求項8に記載の発明によれば、
(1)マグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたシリカ、アルカリで修飾された非酸性型ゼオライト、及びそれらの複合による混合物は、鉱物油をほとんど低分子化しないので油脂や搾油原料と鉱物油との混合物を原料として用いると油脂の抽出効率が上がり、分解油の収率の高い油脂脱炭酸分解触媒を提供できる。
(2)酸点が弱められたことで、油脂中の二重結合部分の切断が抑えられ、効率的に脱炭酸分解が起こる。また有機酸の生成も抑えられる。そのため燃料の生成収率が高い油脂脱炭酸分解触媒を提供できる。
(3)コークの発生が抑えられ、装置のメンテナンスが少なくなり、触媒の劣化が遅い油脂脱炭酸分解触媒を提供できる。
(4)広く使用されているFCC触媒が簡単な操作で利用できるので、実施することが容易となる。またFCC触媒は触媒機能が低下しても簡単に再生できるので、大掛かりな再生装置が必要ない。また再生せずに処理するとしても処理方法が確立しているために、安心して施設運転ができる油脂脱炭酸分解触媒を提供できる。
(5)廃棄物として処理されているFCC廃触媒も利用できるので、運転コストが非常に安くなる油脂脱炭酸分解触媒を提供できる。
According to the invention described in claim 8,
(1) Silica coated with a weak alkaline compound consisting of any one or more of magnesium hydroxide, oxide and carbonate, non-acidic zeolite modified with alkali, and a mixture of these composites is a mineral oil Therefore, when a mixture of fats and oils or compressed raw materials and mineral oil is used as a raw material, the extraction efficiency of the fats and oils can be improved, and a fat and oil decarboxylation cracking catalyst with a high yield of cracked oil can be provided.
(2) Since the acid point is weakened, the cleavage of the double bond portion in the fat and oil is suppressed, and decarboxylation decomposition occurs efficiently. Moreover, the production of organic acids can be suppressed. Therefore, an oil decarboxylation catalyst having a high production yield of fuel can be provided.
(3) The generation of coke can be suppressed, the maintenance of the apparatus can be reduced, and the fat and oil decarboxylation cracking catalyst with a slow catalyst deterioration can be provided.
(4) Since a widely used FCC catalyst can be used with a simple operation, it is easy to implement. In addition, since the FCC catalyst can be easily regenerated even if the catalytic function is lowered, a large regenerator is not required. Moreover, since the processing method is established even if it processes without reproducing | regenerating, the fat-and-oil decarboxylation decomposition | disassembly catalyst which can carry out a facility operation safely can be provided.
(5) Since the FCC waste catalyst currently processed as a waste can also be utilized, the fat decarboxylation decomposition catalyst which becomes very cheap in operating cost can be provided.

実施の形態1の反応装置の構成図Configuration diagram of the reactor according to Embodiment 1 実施の形態2の反応装置の構成図Configuration diagram of reactor of embodiment 2 実施の形態3の反応装置の構成図Configuration diagram of reactor of embodiment 3 実施例2で得られた分解油の炭素数分布を示す図The figure which shows carbon number distribution of the cracked oil obtained in Example 2 実施例7で得られた分解油の炭素数分布を示す図The figure which shows carbon number distribution of the cracked oil obtained in Example 7 実施例8で得られた分解油の炭素数分布を示す図The figure which shows carbon number distribution of the cracked oil obtained in Example 8 実施例9で得られた分解油の炭素数分布を示す図The figure which shows carbon number distribution of the cracked oil obtained in Example 9 実施例10で得られた分解油の炭素数分布を示す図The figure which shows carbon number distribution of the cracked oil obtained in Example 10

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施の形態1)
まず、実施例1〜7及び実施例9〜14で使用した反応装置について説明する。
図1は実施の形態1の反応装置の構成図である。
図中、1は本発明の実施例で使用した実施の形態1の反応装置、2は反応容器、3は反応容器2に収容された粉粒状のシリカ,活性化された炭素,固体塩基、被毒されたFCC触媒などの油脂脱炭酸分解触媒、4は反応容器2に収容された触媒3を350〜475℃に加熱するヒータ、5は反応容器2に油脂や搾油原料を噴霧,滴下,散布等によって投入する原料投入部、6は反応容器2に窒素ガス等の不活性ガスや水蒸気等のフローガスを導入するフローガス導入部、7は触媒3を撹拌する撹拌装置、8は反応容器2内で生じた生成物をフローガスに同伴させて反応容器2の外へ導出する第一導出管、9は第一導出管8が接続され生成物の内で沸点が0℃〜反応容器の温度の分解生成物(以下、分解油という。)を貯留する分解油貯留部、10は一端が分解油貯留部9に接続された排出管、11は排出管10に配設され排出管10を0℃に冷却し生成物のうち分解油を液化させる冷却管、12は排出管10の他端が接続され−80℃に冷却され沸点が−80〜0℃の液化した分解生成物(以下、軽質油という。)を貯留する冷却トラップ装置、13は一端が冷却トラップ装置12に接続されたガス排出管である。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Embodiment 1)
First, the reactor used in Examples 1 to 7 and Examples 9 to 14 will be described.
FIG. 1 is a configuration diagram of the reactor according to the first embodiment.
In the figure, 1 is the reaction apparatus of Embodiment 1 used in the examples of the present invention, 2 is a reaction vessel, 3 is granular silica contained in the reaction vessel 2, activated carbon, solid base, Fat decarbonation cracking catalyst such as poisoned FCC catalyst, 4 is a heater for heating the catalyst 3 accommodated in the reaction vessel 2 to 350 to 475 ° C., 5 is spraying, dripping and spraying the fat and oil extraction raw material to the reaction vessel 2 The raw material input unit 6 is supplied by, for example, a flow gas introduction unit 6 for introducing an inert gas such as nitrogen gas or a flow gas such as water vapor into the reaction vessel 2, 7 is a stirring device for stirring the catalyst 3, and 8 is the reaction vessel 2. A first outlet pipe for entraining the product generated in the flow gas to the outside of the reaction vessel 2 and 9 is connected to the first outlet tube 8 and has a boiling point of 0 ° C. to the temperature of the reaction vessel. A cracked oil reservoir for storing a cracked product (hereinafter referred to as cracked oil) of 0 is a discharge pipe whose one end is connected to the cracked oil reservoir 9, 11 is a cooling pipe which is disposed in the discharge pipe 10 and cools the discharge pipe 10 to 0 ° C. to liquefy cracked oil in the product, and 12 is a discharge pipe 10 is connected to the other end of the cooling trap device for storing a liquefied decomposition product (hereinafter referred to as light oil) having a boiling point of −80 to 0 ° C. It is a connected gas exhaust pipe.

(実施の形態2)
次に、実施例8で使用した実施の形態2の反応装置について説明する。
図2はその実施の形態2の反応装置の構成図である。
図中、21は実施の形態2の反応装置である。図1と共通する部分については同一の符号を付し説明を省略する。22は原料油脂や搾油原料を加熱する加熱部である。23は運転開始時など触媒3の温度が低い場合に、加熱するための補助加熱部である。
(Embodiment 2)
Next, the reactor of Embodiment 2 used in Example 8 will be described.
FIG. 2 is a configuration diagram of the reactor according to the second embodiment.
In the figure, 21 is the reaction apparatus of the second embodiment. Portions common to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. Reference numeral 22 denotes a heating unit that heats the raw oil and fat and the raw material for oil extraction. Reference numeral 23 denotes an auxiliary heating unit for heating when the temperature of the catalyst 3 is low, such as at the start of operation.

(実施の形態3)
次に、実施例15で使用した実施の形態3の反応装置について説明する。
図3はその実施の形態3の反応装置の構成図である。
図中、31は実施の形態3の反応装置である。図1と共通する部分については同一の符号を付し説明を省略する。なお32は実施の形態3の第1反応容器であり、図1の反応容器2に相当する。33は第1反応容器32に収容された粉粒状のシリカなどの油脂脱炭酸触媒A、8は第1反応容器32内で生じた生成物をフローガスに同伴させて第1反応容器32の外へ導出する第1導出管、34は第2反応容器、35は第2反応容器34に収容された粉粒状のシリカ,活性化された炭素,固体塩基などの油脂脱炭酸分解触媒Bであり、38は第2反応容器34で脱炭酸分解されたガスを導出する第2導出管である。
(Embodiment 3)
Next, the reactor of Embodiment 3 used in Example 15 will be described.
FIG. 3 is a block diagram of the reactor according to the third embodiment.
In the figure, reference numeral 31 denotes a reactor according to the third embodiment. Portions common to those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. Reference numeral 32 denotes a first reaction vessel according to Embodiment 3, which corresponds to the reaction vessel 2 of FIG. 33 is an oil and fat decarboxylation catalyst A such as granular silica contained in the first reaction vessel 32, and 8 is a product produced in the first reaction vessel 32 accompanied by a flow gas to the outside of the first reaction vessel 32. 1 is a first outlet pipe, 34 is a second reaction vessel, 35 is an oil decarboxylation cracking catalyst B such as granular silica, activated carbon, solid base, etc. accommodated in the second reaction vessel 34, Reference numeral 38 denotes a second outlet pipe for leading the gas decarboxylated and decomposed in the second reaction vessel 34.

(実施例1)
油脂脱炭酸分解触媒(以下、触媒と略す。)3は、触媒用シリカ(冨士シリシア化学株式会社製、商品名:キャリアクトQ−15、粒径1.18〜2.36mm)を用い、この触媒50mLを、内容積150mLの反応容器2に収容し、撹拌装置7(50rpm)で撹拌させながら420℃まで加熱した。触媒3の加熱温度は、反応容器2内に入れた図示しない熱電対を触媒3に接触させて測定した。
触媒3が反応温度の420℃に上昇したのを確認し、原料投入部5からパーム油(油脂)を大気圧下の反応容器2内に滴下して投入した。油脂の投入量は0.25mL/分、フローガス導入部6からのフローガス(窒素ガス)の導入量は50mL/分とした。
油脂を合計75g投入することにより、生成物を得た。分解油貯留部9に貯留した分解油と、ガス排出管13から排出されたガス物質(一酸化炭素,二酸化炭素及び軽質炭化水素ガス)の成分分析を行った。分解油の分析はGC−MSを用いて行い、ガス物質の内、一酸化炭素,二酸化炭素の分析はGC−TCDを用いて行い、軽質炭化水素ガスの分析はGC−FIDを用いて行なった。また、実験後の触媒をTG−DTAで分析した。
Example 1
The oil and fat decarboxylation / decomposition catalyst (hereinafter abbreviated as catalyst) 3 is a catalyst silica (manufactured by Fuji Silysia Chemical Co., Ltd., trade name: Caractect Q-15, particle size 1.18 to 2.36 mm). 50 mL of the catalyst was accommodated in the reaction container 2 having an internal volume of 150 mL, and heated to 420 ° C. while being stirred by the stirring device 7 (50 rpm). The heating temperature of the catalyst 3 was measured by bringing a thermocouple (not shown) placed in the reaction vessel 2 into contact with the catalyst 3.
After confirming that the catalyst 3 had risen to the reaction temperature of 420 ° C., palm oil (oil and fat) was dropped from the raw material charging unit 5 into the reaction vessel 2 under atmospheric pressure and charged. The amount of oil and fat charged was 0.25 mL / min, and the amount of flow gas (nitrogen gas) introduced from the flow gas inlet 6 was 50 mL / min.
A product was obtained by adding a total of 75 g of fats and oils. Component analysis of the cracked oil stored in the cracked oil storage unit 9 and the gas substances (carbon monoxide, carbon dioxide, and light hydrocarbon gas) discharged from the gas discharge pipe 13 was performed. Analysis of cracked oil was performed using GC-MS. Among gas substances, analysis of carbon monoxide and carbon dioxide was performed using GC-TCD, and analysis of light hydrocarbon gas was performed using GC-FID. . Moreover, the catalyst after experiment was analyzed by TG-DTA.

(実施例2)
実施例1で用いた触媒用シリカにMgOを担持させた触媒を用い、反応温度を410℃とした以外は、実施例1と同様にした。
なお、シリカにMgOを担持させた触媒は、実施例1で用いた触媒用シリカに対して金属マグネシウムとして10質量%に相当する量の硝酸マグネシウム(Mg(NO32・6H2O)の水溶液を、Incipient Wetness法によりシリカに含浸させ、含浸後120℃で乾燥し、その後500℃で3時間、大気中で焼成することにより得た。
(Example 2)
The same procedure as in Example 1 was performed except that a catalyst in which MgO was supported on the catalyst silica used in Example 1 was used and the reaction temperature was 410 ° C.
The catalyst in which MgO is supported on silica is magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O) in an amount corresponding to 10% by mass as metal magnesium with respect to the catalyst silica used in Example 1. The aqueous solution was impregnated in silica by the Incipient Wetness method, dried at 120 ° C. after the impregnation, and then calcined in the air at 500 ° C. for 3 hours.

(実施例3)
油脂脱炭酸分解触媒として、活性コークス(三井鉱山株式会社製、破砕後の粒径1.18〜2.36mm)を用い、反応温度を400℃とした以外は、実施例1と同様にした。
(Example 3)
The same procedure as in Example 1 was performed except that active coke (manufactured by Mitsui Mining Co., Ltd., particle size after crushing: 1.18 to 2.36 mm) was used as the fat and carbonic acid decomposition catalyst, and the reaction temperature was 400 ° C.

(実施例4)
実施例3で用いた活性コークスにMgOを担持させた触媒を用い、反応温度を400℃とした以外は、実施例1と同様にした。
なお、活性コークスにMgOを担持させた触媒は、実施例3で用いた活性コークスに対して金属マグネシウムとして10質量%に相当する量の硝酸マグネシウム(Mg(NO32・6H2O)の水溶液を、Incipient Wetness法により活性コークスに含浸させ、含浸後120℃で乾燥し、その後350℃で3時間、窒素雰囲気中で焼成することにより得た。
Example 4
The same procedure as in Example 1 was performed except that a catalyst in which MgO was supported on the active coke used in Example 3 was used and the reaction temperature was 400 ° C.
The catalyst in which MgO was supported on active coke was magnesium nitrate (Mg (NO 3 ) 2 .6H 2 O) in an amount corresponding to 10% by mass as metal magnesium with respect to the active coke used in Example 3. The aqueous solution was impregnated into activated coke by the Incipient Wetness method, dried at 120 ° C. after impregnation, and then calcined at 350 ° C. for 3 hours in a nitrogen atmosphere.

(比較例1)
触媒として、FCC廃触媒を用い、反応温度を420℃とした以外は、実施例1と同様にした。
なお、FCC廃触媒は、石油の流動接触分解(FCC:fluid catalyst cracking)プロセスで使用された40〜80μmの粒粉状に造粒された合成ゼオライト系の固体酸触媒を再生したものである。
(Comparative Example 1)
The same procedure as in Example 1 was conducted, except that an FCC waste catalyst was used as the catalyst and the reaction temperature was 420 ° C.
The FCC waste catalyst is obtained by regenerating a solid zeolite catalyst based on a synthetic zeolite granulated into 40 to 80 μm particles used in a fluid catalytic cracking (FCC) process of petroleum.

以上の実施例及び比較例における生成物の分析結果を説明する。
表1は実施例1〜4及び比較例1における生成物の量と分解油の収率を示したものである。
The analysis results of the products in the above examples and comparative examples will be described.
Table 1 shows the amount of product and the yield of cracked oil in Examples 1 to 4 and Comparative Example 1.

表1から、実施例1〜4の分解油収率は、いずれも50%以上であり、比較例1は46%であることがわかった。残渣は、実施例1〜4が比較例1よりも少なかった。そこで、この残渣について検討する。
実験後の触媒のTG−DTA分析結果から、実施例1〜4の触媒にはコークが9%前後残存していたが、比較例1の触媒(FCC廃触媒)にはコークが30%程度も残存していることがわかった。また、分解油のGC−MSによる分析結果から、比較例1の分解油には約50%のパラフィン、約20%のオレフィン、約20%の芳香族化合物が存在するが、実施例1〜4の分解油には約50〜60%のパラフィン、約30〜40%のオレフィンが存在するが、芳香族化合物はほとんど存在しないことがわかった。この結果から、残渣は主にコークであり、コークは触媒(FCC廃触媒)の酸点により生成されたオレフィン由来の芳香族化合物の重合物であると推察された。実施例1〜4では、触媒として中性のシリカ又は固体塩基を用いているため、芳香族化合物がほとんど生成されず、このためコークの生成も少なく残渣の生成量が少なくなったものと推察された。
From Table 1, it was found that the cracked oil yields of Examples 1 to 4 were all 50% or more, and Comparative Example 1 was 46%. The residue was less in Examples 1 to 4 than in Comparative Example 1. Therefore, this residue is examined.
From the TG-DTA analysis results of the catalyst after the experiment, about 9% of coke remained in the catalysts of Examples 1 to 4, but about 30% of coke remained in the catalyst of Comparative Example 1 (FCC waste catalyst). It was found that it remained. Further, from the analysis result of the cracked oil by GC-MS, the cracked oil of Comparative Example 1 contains about 50% paraffin, about 20% olefin, and about 20% aromatic compound. Examples 1-4 It was found that about 50 to 60% paraffin and about 30 to 40% olefin were present in the cracked oil, but there were almost no aromatic compounds. From this result, it was surmised that the residue was mainly coke, and the coke was a polymer of an olefin-derived aromatic compound produced by the acid point of the catalyst (FCC waste catalyst). In Examples 1-4, since neutral silica or a solid base is used as a catalyst, it is presumed that almost no aromatic compound was produced, and therefore, the production of coke was small and the amount of residue produced was reduced. It was.

また、比較例1では、分解油に含酸素物質として少量のアルコールと脂肪酸が検出されたが、実施例1〜4ではそれらは検出されず、主にケトンが生成していた。比較例1の分解油は異臭が生じ、1週間程度放置すると目視で確認できるほど黒変したが、実施例1〜4の分解油は、黒変したり異臭が生じたりすることはなく、保存安定性に優れることがわかった。この原因は、比較例1の分解油に含まれるカルボン酸(脂肪酸)等の不純物の影響であると推察された。   In Comparative Example 1, a small amount of alcohol and fatty acid were detected as oxygen-containing substances in the cracked oil, but in Examples 1 to 4, they were not detected, and ketones were mainly produced. The cracked oil of Comparative Example 1 had a strange odor and turned black so that it could be visually confirmed when left for about a week. However, the cracked oils of Examples 1 to 4 did not turn black or have a bad odor and were stored. It was found to be excellent in stability. This cause was presumed to be the influence of impurities such as carboxylic acid (fatty acid) contained in the cracked oil of Comparative Example 1.

図4は実施例2で得られた分解油の結果炭素数分布を示す図である。一方、実験に用いた油脂(パーム油)の脂肪酸組成は、ラウリン酸(C12)0.2%、ミリスチン酸(C14)1.1%、パルミチン酸(C16)44.0%、ステアリン酸(C18)4.5%、オレイン酸(C18:1)39.2%、リノール酸(C18:2)10.1%、リノレン酸(C18:3)0.4%である。図4から、実施例2では、油脂に含まれる脂肪酸に対応する炭素数のパラフィン又はオレフィンが主に生成されることがわかった。他の実施例も同様の傾向であった。
得られた分解油の流動点を、JIS K2269(原油及び石油製品の流動点並びに石油製品曇り点試験方法)に基づき測定したところ、−12.5℃であった。市販されている一般の軽油の流動点は−7℃であるため、一般軽油程度に低い流動点の分解油を製造できることがわかった。
表2は実施例1〜4及び比較例1において生成したガス物質の一酸化炭素と二酸化炭素の量を示したものである。
二酸化炭素量を比較すると、比較例1、実施例1、実施例2〜4の順に増加していることがわかった。比較例1の触媒は固体酸、実施例1の触媒はシリカ(中性)、実施例2〜4の触媒は固体塩基であることから、実施例1〜4のようにシリカや固体塩基を触媒とすることにより、選択的にCO2を回収できることが確認できた。
表2及び図4の結果から、油脂の分解メカニズムは以下のように推察される。加熱された油脂脱炭酸分解触媒と接触した油脂はグリセリンが外れ、脂肪酸が生成される。生成された脂肪酸はカルボキシル基の部分がCO2として取り除かれ、残りの炭素鎖が分解油として回収される。グリセリン基は、プロパン等の軽質炭化水素ガスとして回収される。
FIG. 4 is a graph showing the carbon number distribution of the cracked oil obtained in Example 2. On the other hand, the fatty acid composition of the fats and oils (palm oil) used in the experiment is as follows: lauric acid (C12) 0.2%, myristic acid (C14) 1.1%, palmitic acid (C16) 44.0%, stearic acid (C18) ) 4.5%, oleic acid (C18: 1) 39.2%, linoleic acid (C18: 2) 10.1%, linolenic acid (C18: 3) 0.4%. From FIG. 4, it was found that in Example 2, paraffins or olefins having a carbon number corresponding to the fatty acids contained in the fats and oils were mainly generated. The other examples had the same tendency.
It was -12.5 degreeC when the pour point of the obtained cracked oil was measured based on JISK2269 (The pour point of crude oil and a petroleum product, and a petroleum product cloud point test method). Since the pour point of commercially available general light oil is -7 ° C, it was found that a cracked oil having a pour point as low as that of general light oil can be produced.
Table 2 shows the amount of carbon monoxide and carbon dioxide generated in Examples 1 to 4 and Comparative Example 1.
When the amount of carbon dioxide was compared, it turned out that it is increasing in order of the comparative example 1, Example 1, and Examples 2-4. Since the catalyst of Comparative Example 1 is a solid acid, the catalyst of Example 1 is silica (neutral), and the catalysts of Examples 2 to 4 are solid bases, the silica or solid base is catalyzed as in Examples 1 to 4. As a result, it was confirmed that CO 2 can be selectively recovered.
From the results of Table 2 and FIG. 4, the decomposition mechanism of fats and oils is inferred as follows. Glycerin is removed from the oil contacted with the heated oil decarboxylation decomposition catalyst, and fatty acid is produced. In the produced fatty acid, the carboxyl group portion is removed as CO 2 and the remaining carbon chain is recovered as cracked oil. The glycerin group is recovered as a light hydrocarbon gas such as propane.

以上の実施例により、コークの生成量が少なく、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難く貯蔵安定性に優れ、流動点の低い流動性に優れたバイオディーゼル燃料が得られることが明らかとなった。
なお、実施例3において、触媒である活性コークスに代えて活性化した炭素を用いた場合にも、同様の結果が得られた。
By the above examples, since the amount of coke produced is small and impurities such as carboxylic acid (free fatty acid) are hardly produced as by-products, it is stable against air etc. It was clarified that a biodiesel fuel excellent in low-point fluidity can be obtained.
In Example 3, similar results were obtained when activated carbon was used instead of the activated coke as the catalyst.

(実施例5)
触媒用シリカにMgOを担持させた触媒(実施例2と同様の触媒)を用い、大学食堂で実際に1週間使用された廃食用油(大豆油と菜種油の混合75g)を大気圧下の反応容器内に滴下して投入する(0.25mL/分)とともに、フローガスとしてHeガス(50mL/分)を用いた以外は、実施例1と同様にした。
(Example 5)
Using a catalyst in which MgO is supported on silica for catalyst (same catalyst as in Example 2), waste edible oil (75 g of soybean oil and rapeseed oil) actually used for one week in a university cafeteria is reacted under atmospheric pressure. The procedure was the same as in Example 1 except that it was dropped into the container (0.25 mL / min) and He gas (50 mL / min) was used as the flow gas.

(実施例6)
搾油原料として市販の大豆(乾燥大豆、北海道産)を用い、搾油原料から分解油を製造する実験を行なった。大豆は、分解を容易にするため、粒を約半分の大きさになるように破砕した。触媒用シリカにMgOを担持させた触媒(実施例2と同様の触媒)を用い、反応温度を410℃とし、大豆の破砕物(500g)を大気圧下の反応容器内にマイクロフィーダで少量ずつ投入した以外は、実施例1と同様にした。
(Example 6)
An experiment was conducted in which cracked oil was produced from the raw material for oil extraction, using commercially available soybeans (dried soybeans, produced in Hokkaido) as the raw material for oil extraction. Soybeans were crushed to approximately half the size to facilitate degradation. Using a catalyst in which MgO is supported on catalyst silica (the same catalyst as in Example 2), the reaction temperature is set to 410 ° C., and soybean crushed material (500 g) is put in a reaction vessel under atmospheric pressure little by little with a microfeeder. The procedure was the same as Example 1 except for the addition.

(実施例7)
原料油脂として精米所から排出された米ぬかを用い、搾油原料から分解油を製造する実験を行った。触媒用シリカにMgOを担持させた触媒(実施例2と同様の触媒)を用い、反応温度を410℃とし、米ぬか(500g)を大気圧下の反応容器内にマイクロフィーダで少量ずつ投入した以外は、実施例1と同様にした。
(Example 7)
Using rice bran discharged from a rice mill as a raw material fat, an experiment was conducted to produce cracked oil from the raw material. A catalyst in which MgO is supported on silica for catalyst (the same catalyst as in Example 2), the reaction temperature was set to 410 ° C., and rice bran (500 g) was added little by little with a microfeeder in a reaction vessel under atmospheric pressure. Was the same as in Example 1.

(実施例8)
原料油脂として不飽和脂肪酸が非常に多く、従来法では分解油の回収率が低かったヤトロファ油を原料油脂として実施の形態2の反応装置を用いて分解油を製造する実験を行った。
油脂脱炭酸分解触媒3は、実施例2と同じ触媒用シリカにMgOを担持させた触媒を用いた。この触媒50mLを、内容積150mLの反応容器2に収容した。原料油脂を加熱部22で450℃まで加熱した。原料油脂の加熱温度は、加熱部22内に入れた図示しない熱電対を原料油脂に接触させて測定した。
原料油脂が反応温度の450℃に上昇したのを確認し、原料投入部5からヤトロファ油(油脂)を大気圧下の反応容器2内に滴下して投入した。油脂の投入量は1.0mL/分、フローガス導入部6からのフローガス(窒素ガス)の導入量は50mL/分とした。
油脂を合計75g投入することにより、生成物を得た。
(Example 8)
An experiment was conducted to produce cracked oil using the reaction apparatus of Embodiment 2 using Jatropha oil, which has a large amount of unsaturated fatty acids as raw material fat and oil, and had a low recovery rate of cracked oil in the conventional method as raw material fat.
As the fat and oil decarboxylation / decomposition catalyst 3, the same catalyst in which MgO was supported on the same silica for catalyst as in Example 2 was used. 50 mL of this catalyst was accommodated in a reaction vessel 2 having an internal volume of 150 mL. The raw material fat was heated to 450 ° C. by the heating unit 22. The heating temperature of the raw material fat was measured by bringing a thermocouple (not shown) placed in the heating unit 22 into contact with the raw material fat.
After confirming that the raw material fat increased to 450 ° C. of the reaction temperature, Jatropha oil (fat) was dropped from the raw material charging unit 5 into the reaction vessel 2 under atmospheric pressure. The amount of oil and fat charged was 1.0 mL / min, and the amount of flow gas (nitrogen gas) introduced from the flow gas inlet 6 was 50 mL / min.
A product was obtained by adding a total of 75 g of fats and oils.

(実施例9)
動物油脂を原料に分解油を製造する実験を行った。原料油脂として食肉処理工場から排出された豚の脂肪(500g)を80℃に加熱して液状にして用いた以外は、実施例4と同様にした。
Example 9
An experiment was conducted to produce cracked oil from animal fats. Example 4 was the same as Example 4 except that pork fat (500 g) discharged from the meat processing plant as raw oil was heated to 80 ° C. and used in a liquid state.

(実施例10)
原料油脂として食肉処理工場から排出された牛の脂肪(500g)を80℃に加熱して液状にして用いた以外は、実施例4と同様にした。
(Example 10)
Example 4 was the same as Example 4 except that beef fat (500 g) discharged from a meat processing plant as a raw oil was heated to 80 ° C. and used in a liquid state.

表3は実施例5及び実施例6、実施例8における生成物の量と分解油の収率を示したものである。
なお、実施例6では、分解油に油性分、水性分、沈殿物、浮遊物が混在していた。搾油原料は、油脂以外の成分を豊富に含むからであると考えられる。そこで、実施例6の分解油収率は、沈殿物等の影響を除くため、実施例1〜5とは異なり、投入量に対する油性分の割合から換算した。また、実施例6ではガス物質の分析を行わなかった。油脂以外の成分の影響が大きいからである。
搾油原料を用いる場合など、原料中に水分が多い場合には実施例6のように生成する分解油中に水性分が多くなるので、燃料として使用するためには原料から又は分解油から水分を除去する工程が必要となる。
Table 3 shows the amount of product and the yield of cracked oil in Example 5, Example 6, and Example 8.
In Example 6, oily components, aqueous components, precipitates, and suspended matters were mixed in the cracked oil. It is considered that the raw material for oil extraction contains abundant components other than fats and oils. Therefore, the cracked oil yield of Example 6 was converted from the ratio of the oily component to the input amount, unlike Examples 1 to 5, in order to exclude the influence of precipitates and the like. In Example 6, the gas substance was not analyzed. This is because the influence of components other than fats and oils is great.
In the case of using a raw material for oil extraction, when the raw material has a large amount of water, the aqueous content increases in the cracked oil produced as in Example 6. Therefore, in order to use it as a fuel, the water is removed from the raw material or from the cracked oil. A process of removing is necessary.

表3において、実施例5に示すように、廃食用油からも60%以上の収率で分解油が得られることが確認された。これは、パーム油を原料油脂とした実施例1〜4とほぼ同様の結果である。廃食用油は、パーム油と比べて酸化の度合いが著しいと考えられるが、本実施例により、分解油が高収率で得られることが明らかとなった。
また、実施例6に示すように、搾油原料(大豆)からも5.7%の収率で油成分が得られることが確認された。国内産大豆の油脂の含有率は約10wt%といわれているので、油成分の収率5.7wt%は、かなりの高収率であるといえる。
In Table 3, as shown in Example 5, it was confirmed that cracked oil was obtained from waste edible oil in a yield of 60% or more. This is a result almost the same as Examples 1-4 which used palm oil as raw material fats and oils. Although it is considered that waste cooking oil has a higher degree of oxidation than palm oil, it was revealed that cracked oil was obtained in a high yield according to this example.
Moreover, as shown in Example 6, it was confirmed that an oil component was obtained with a yield of 5.7% from the raw material for oil extraction (soybean). Since it is said that the content of fats and oils in domestic soybeans is about 10 wt%, the oil component yield of 5.7 wt% can be said to be a considerably high yield.

図5に実施例7で米ぬかから得られた分解油の炭素数分布を示す。C5〜C34までの幅広い炭素数の炭化水素の生成が見られた。特に炭素数C10〜C20の灯・軽油分を多く含んでいた。また、分解油はC6〜C13の芳香族炭化水素を約2割含んだものであった。米ぬかにはリパーゼが多く遊離脂肪酸が多いが、酸化度0.35mgKOH/g、酸化安定度24h以上であり、バイオディーゼル燃料として十分に使用できるものであった。   FIG. 5 shows the carbon number distribution of cracked oil obtained from rice bran in Example 7. Production of hydrocarbons with a wide range of carbon numbers from C5 to C34 was observed. In particular, it contained a large amount of C10-C20 lamps and light oil. The cracked oil contained about 20% of C6-C13 aromatic hydrocarbons. Rice bran is rich in lipase and free fatty acids, but has an oxidation degree of 0.35 mg KOH / g and an oxidation stability of 24 h or more, and can be used as a biodiesel fuel.

表3に実施例8でヤトロファ油から得られた結果を示す。ヤトロファ油は、パルミチン酸(C16)14.9%、ステアリン酸(C18)6.9%、オレイン酸(C18:1)41.8%、リノール酸(C18:2)34.8%と不飽和脂肪酸の比率が高いため熱分解法では低い収率となっていたが、本発明の方法によると63.1%と高い分解油回収率を示した。図6に得られた分解油中の炭化水素の炭素数分布を示す。炭素数は幅広い範囲に分布しているが二重結合が保存されていることが示された。
さらにヤトロファ油はリン酸の含有量が高く、それが従来法で燃料化すると、燃料油に残留し、エンジンなどを損傷することが問題となっていた。IPCで実施例8の分解油と原料油脂としたヤトロフア油のリン酸濃度を測定したところ原料油脂では約10mg/Lであったのに対して、分解油では0.9mg/Lであった。原料油脂中のリン酸が分解油に移行せず、リン酸含有量の低い分解油を得られることが示された。
Table 3 shows the results obtained from Jatropha oil in Example 8. Jatropha oil is unsaturated with palmitic acid (C16) 14.9%, stearic acid (C18) 6.9%, oleic acid (C18: 1) 41.8%, linoleic acid (C18: 2) 34.8% Although the yield of the pyrolysis method was low due to the high fatty acid ratio, the method of the present invention showed a high cracked oil recovery rate of 63.1%. FIG. 6 shows the carbon number distribution of hydrocarbons in the cracked oil obtained. It was shown that the number of carbons is distributed over a wide range but the double bonds are conserved.
Further, Jatropha oil has a high phosphoric acid content, and when it is converted into fuel by the conventional method, it remains in the fuel oil and damages the engine and the like. When the phosphoric acid concentration of the cracked oil of Example 8 and the Jatropha oil used as the raw material fat was measured by IPC, it was about 10 mg / L for the raw fat and oil, and 0.9 mg / L for the cracked oil. It was shown that the phosphoric acid in the raw material fats and oils does not migrate to the cracked oil, and a cracked oil with a low phosphoric acid content can be obtained.

実施例9で豚脂から得られた分解油中の炭化水素の炭素数分布を図7で、実施例10で牛脂から得られた分解油中の炭化水素の炭素数分布を図8で示す。豚脂からはC5〜C34までの、牛脂からはC5〜C31までの幅広い炭素数の炭化水素が生成していた。分解油中の灯・軽油成分はどちらもおよそ65%であった。   The carbon number distribution of hydrocarbons in cracked oil obtained from lard in Example 9 is shown in FIG. 7, and the carbon number distribution of hydrocarbons in cracked oil obtained from beef tallow in Example 10 is shown in FIG. Hydrocarbons having a wide range of carbon numbers from C5 to C34 from beef tallow and C5 to C31 from beef tallow were produced. Both the kerosene and light oil components in the cracked oil were approximately 65%.

以上の実施例により、廃食用油や搾油原料、動物油脂からも、容易に油成分を採取できることが明らかとなった。本発明のバイオディーゼル燃料の製造方法は、アルコール(副原料)を必要とせず、グリセリンを副生することがないため、極めて有用性が高い。   From the above examples, it was revealed that oil components can be easily collected from waste edible oil, raw material for extraction, and animal fats and oils. The biodiesel fuel production method of the present invention is extremely useful because it does not require alcohol (a secondary raw material) and does not by-produce glycerin.

(実施例11)
比較例1で用いたFCC廃触媒をNaClで被毒させた触媒を用いた以外は、比較例1と同様にした。
なお、FCC廃触媒をNaClで被毒した触媒はFCC廃触媒50gに対して50g/LのNaCl水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。この方法で得られた触媒の酸点はおよそ90%被毒していた。この方法で得られた触媒の酸点をアンモニア昇温離脱法で評価したところ、およそ90%の酸点が被毒していた。
(Example 11)
The same procedure as in Comparative Example 1 was performed except that a catalyst obtained by poisoning the FCC waste catalyst used in Comparative Example 1 with NaCl was used.
The catalyst obtained by poisoning the FCC waste catalyst with NaCl was prepared by adding 1.0 L of 50 g / L NaCl aqueous solution to 50 g FCC waste catalyst and treating at 50 ° C. ± 5 ° C. for 1 hour. The acid point of the catalyst obtained by this method was poisoned by approximately 90%. When the acid point of the catalyst obtained by this method was evaluated by the ammonia temperature rising desorption method, about 90% of the acid point was poisoned.

(実施例12a)
触媒として、固体酸触媒であるシリカを用いた以外は、比較例1と同様にした。
Example 12a
The same procedure as in Comparative Example 1 was performed except that silica, which is a solid acid catalyst, was used as the catalyst.

(実施例12b)
実施例12aで用いたシリカを硝酸マグネシウム水溶液で被毒させた触媒を用いた以外は、比較例1と同様にした。
なお、シリカを硝酸マグネシウム水溶液で被毒した触媒はシリカ50gに対して50g/LのMg(NO3)2水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。この方法で得られた触媒の酸点をアンモニア昇温離脱法で評価したところ、およそ90%の酸点が被毒していた。
(Example 12b)
The same procedure as in Comparative Example 1 was performed except that a catalyst obtained by poisoning the silica used in Example 12a with an aqueous magnesium nitrate solution was used.
The catalyst in which silica was poisoned with an aqueous magnesium nitrate solution was prepared by adding 1.0 g of 50 g / L Mg (NO 3 ) 2 aqueous solution to 50 g of silica and treating at 50 ° C. ± 5 ° C. for 1 hour. When the acid point of the catalyst obtained by this method was evaluated by the ammonia temperature rising desorption method, about 90% of the acid point was poisoned.

(実施例13)
比較例1で用いたFCC廃触媒をMgで被毒し、さらに酸化マグネシウムを担持させた触媒を用いた以外は、比較例1と同様にした。
なお、FCC廃触媒をMgで被毒し、さらに酸化マグネシウムを担持させた触媒はFCC廃触媒50gに対して50g/LのMg(NO3)2水溶液1.0Lを加えて50℃±5℃で1時間処理して作成した。ここで担持とは酸点の被毒以上に酸化マグネシウムが触媒に含まれている状態をいう。
(Example 13)
The same procedure as in Comparative Example 1 was carried out except that the FCC waste catalyst used in Comparative Example 1 was poisoned with Mg and a catalyst carrying magnesium oxide was used.
The catalyst in which the FCC waste catalyst was poisoned with Mg and magnesium oxide was further supported was added at 50 ° C. ± 5 ° C. by adding 1.0 L of 50 g / L Mg (NO 3 ) 2 aqueous solution to 50 g FCC waste catalyst. And processed for 1 hour. Here, the term “supported” refers to a state in which magnesium oxide is contained in the catalyst in excess of the acid point poisoning.

表4は酸点を被毒させた場合の結果を示す。同表上部は比較例1、実施例11、実施例12a、実施例12b及び実施例13における生成物の量と分解油の収率を示したものである。
固体酸触媒をアルカリ被毒をすることでCO2の生成が増え、分解油の収率が上がっている。さらに酸化マグネシウムを担持させることでCO2の生成が増え、分解油の収率が上がる。収率が上がるとともに残渣の量が減っている。表4下部にその残渣の内訳を示している。固体酸触媒をアルカリ被毒することで油脂中の二重結合部分の切断が減少したため、比較例1及び2に比べて副成するコークの量が著しく減り、分解油の収率が上がったと考えられる。
Table 4 shows the results when the acid sites are poisoned. The upper part of the table shows the amount of product and the yield of cracked oil in Comparative Example 1, Example 11, Example 12a, Example 12b and Example 13.
Alkaline poisoning of the solid acid catalyst increases the production of CO 2 and increases the yield of cracked oil. Furthermore, by supporting magnesium oxide, the production of CO 2 increases and the yield of cracked oil increases. The yield increases and the amount of residue decreases. The breakdown of the residue is shown at the bottom of Table 4. It is thought that the amount of coke formed as a by-product was significantly reduced compared with Comparative Examples 1 and 2 and the yield of cracked oil was increased because the cleavage of double bond parts in fats and oils was reduced by alkaline poisoning of the solid acid catalyst. It is done.

(実施例14)
反応温度を350℃とした以外は実施例2と同様にした。
(Example 14)
Example 2 was repeated except that the reaction temperature was 350 ° C.

(実施例15)
反応温度を475℃とした以外は実施例2と同様にした。
(比較例2)
反応温度を300℃とした以外は実施例2と同様にした。
(比較例3)
反応温度を550℃とした以外は実施例2と同様にした。
(Example 15)
Example 2 was repeated except that the reaction temperature was 475 ° C.
(Comparative Example 2)
Example 2 was repeated except that the reaction temperature was 300 ° C.
(Comparative Example 3)
Example 2 was repeated except that the reaction temperature was 550 ° C.

表5は各温度における分解油収率への影響を示す表であり、比較例2、実施例14、実施例2、実施例15及び比較例3における生成物の量と分解油の収率を示したものである。
これより反応の温度範囲は350℃〜475℃が好ましいことが示された。300℃(比較例2)では反応が遅く、実用的でない。また油脂の重合固化が起こったため残渣量が増え、炭化水素の生産性が下がったものと考えられる。550℃(比較例3)では分解油の収率が低く、残渣量が多いことから熱分解が起こり、ガスやコークの生成量が増加したものと考えられる。
Table 5 is a table showing the influence on cracked oil yield at each temperature, and shows the amount of product and the yield of cracked oil in Comparative Example 2, Example 14, Example 2, Example 15 and Comparative Example 3. It is shown.
From this, it was shown that the temperature range of the reaction is preferably 350 ° C to 475 ° C. At 300 ° C. (Comparative Example 2), the reaction is slow and impractical. Moreover, it is considered that the residue amount increased due to the polymerization and solidification of fats and oils, and the productivity of hydrocarbons decreased. At 550 ° C. (Comparative Example 3), the yield of cracked oil is low, and the amount of residue is large. Therefore, it is considered that pyrolysis occurred and the amount of gas and coke produced increased.

(比較例4)
反応を多く繰り返すと触媒の活性は徐々に低下してくる。この活性が低下した触媒を使用した以外は実施例2と同様にした。この活性が低下した触媒の炭素含有率を空気雰囲気下800℃1時間の加熱減量分として測定したところ45重量%であった。
(Comparative Example 4)
If the reaction is repeated many times, the activity of the catalyst gradually decreases. The same procedure as in Example 2 was performed, except that a catalyst with reduced activity was used. The carbon content of the catalyst with reduced activity was measured as a weight loss after heating at 800 ° C. for 1 hour in an air atmosphere and found to be 45% by weight.

(実施例16)
比較例4で使用した触媒を入れた反応容器内に空気50%+窒素ガス50%の混合ガスを200ml/分で流しながら触媒を6時間500℃±20℃に加熱保持した。その後、比較例4と同様にして炭素含有量を測定した。再生中、攪拌翼を10回/分で回転しゆっくり攪拌した。次に再生した触媒を用いた以外は実施例2と同様にした。
(Example 16)
The catalyst was heated and held at 500 ° C. ± 20 ° C. for 6 hours while flowing a mixed gas of 50% air + 50% nitrogen gas at 200 ml / min into the reaction vessel containing the catalyst used in Comparative Example 4. Thereafter, the carbon content was measured in the same manner as in Comparative Example 4. During the regeneration, the stirring blade was rotated at 10 times / min and slowly stirred. Next, the same procedure as in Example 2 was performed except that the regenerated catalyst was used.

(実施例17)
再生時の保持温度を550℃±20℃にした以外は実施例16と同様にした。
(Example 17)
The same operation as in Example 16 was performed except that the holding temperature at the time of regeneration was 550 ° C. ± 20 ° C.

(実施例18)
再生時の保持温度を600℃±20℃にした以外は実施例16と同様にした。
(比較例5)
再生時の触媒の加熱保持温度を450℃±20℃とした以外は実施例16と同様にした。
(比較例6)
再生時の触媒の加熱保持温度を650℃±20℃とした以外は実施例12bと同様にした。
(Example 18)
The same operation as in Example 16 was performed except that the holding temperature at the time of regeneration was 600 ° C. ± 20 ° C.
(Comparative Example 5)
The same procedure as in Example 16 was performed except that the heating and holding temperature of the catalyst during regeneration was 450 ° C. ± 20 ° C.
(Comparative Example 6)
The same procedure as in Example 12b was performed except that the heating and holding temperature of the catalyst during regeneration was 650 ° C. ± 20 ° C.

表6は触媒の再生と再生温度の影響を示す表であり、実施例2と比較例4〜6、実施例16〜18の結果を示す。これより酸素を含む雰囲気下で500℃〜600℃に保つことで触媒の再生ができることが示された。450℃(比較例4)では再生が遅く、炭素が残っており活性が低かった。また、650℃では活性の低下が起こっており好ましくないことが示された。再生したもの(実施例16−18)の方が、新しい触媒(実施例2)よりも高い分解油回収率を示したのは、使用によって酸点が弱まっていることが寄与したものと考えられる。   Table 6 is a table showing the effects of catalyst regeneration and regeneration temperature, and shows the results of Example 2, Comparative Examples 4 to 6, and Examples 16 to 18. From this, it was shown that the catalyst can be regenerated by maintaining the temperature at 500 ° C. to 600 ° C. in an atmosphere containing oxygen. At 450 ° C. (Comparative Example 4), regeneration was slow, carbon remained, and activity was low. In addition, the activity decreased at 650 ° C., which was not preferable. The regenerated one (Examples 16-18) showed higher recovery of cracked oil than the new catalyst (Example 2). .

(実施例19)
液空間速度0.05/hとした以外は実施例2と同様にした。
(Example 19)
The procedure was the same as Example 2 except that the liquid space velocity was 0.05 / h.

(実施例20)
液空間速度2.0/hとした以外は実施例2と同様にした。
(比較例7)
液空間速度0.02/hとした以外は実施例2と同様にした。
(比較例8)
液空間速度4.0/hとした以外は実施例2と同様にした。
(Example 20)
The procedure was the same as Example 2 except that the liquid space velocity was 2.0 / h.
(Comparative Example 7)
The procedure was the same as Example 2 except that the liquid space velocity was 0.02 / h.
(Comparative Example 8)
The same as Example 2 except that the liquid space velocity was 4.0 / h.

表7は液空間速度の分解油収率への影響を示した表であり、比較例7、実施例19、実施例20及び比較例8における生成物の量と分解油の収率を示したものである。
これより液空間速度の範囲は0.05/h〜2.0/hが好ましいことが示された。0.02/h(比較例7)では処理速度が遅く、処理効率が低い上に2次的な分解により生成油分がガス化して収率が低下するため好ましくない。4.0/h(比較例8)では分解油の収率が低く、残渣量が多いことから触媒と油脂等との接触時間が短くなり油脂分解率が低下したものと考えられる。
Table 7 is a table showing the effect of liquid space velocity on cracked oil yield, showing the amount of product and cracked oil yield in Comparative Example 7, Example 19, Example 20, and Comparative Example 8. Is.
From this, it was shown that the range of liquid space velocity is preferably 0.05 / h to 2.0 / h. 0.02 / h (Comparative Example 7) is not preferable because the processing speed is low, the processing efficiency is low, and the product oil is gasified by secondary decomposition, resulting in a decrease in yield. In 4.0 / h (Comparative Example 8), the yield of cracked oil is low, and the amount of residue is large. Therefore, the contact time between the catalyst and the fat / oil is shortened, and the fat / oil decomposition rate is considered to be lowered.

(実施例21)
実施の形態3の反応装置を使用した以外は、比較例4と同様にした。反応装置Cの第1反応容器32には油脂脱炭酸触媒A33として酸化マグネシウムを担持させたシリカを使用した。第2反応容器34には油脂脱炭酸触媒B35としてNaで被毒したFCC廃触媒を使用した。
なお、酸化マグネシウムを担持させたシリカは実施例2と同様にして作成した。
Naで被毒したFCC廃触媒は実施例11と同様にして作成した。
(Example 21)
The same procedure as in Comparative Example 4 was performed except that the reactor according to Embodiment 3 was used. In the first reaction vessel 32 of the reactor C, silica carrying magnesium oxide was used as the fat and oil decarboxylation catalyst A33. In the second reaction vessel 34, an FCC waste catalyst poisoned with Na was used as an oil and fat decarboxylation catalyst B35.
The silica carrying magnesium oxide was prepared in the same manner as in Example 2.
The FCC waste catalyst poisoned with Na was prepared in the same manner as in Example 11.

表8に実施例21と比較例4の結果を示す。尚、表8中の酸化、ヨウ素価、酸化安定度の測定は資源エネルギー庁のBDF規格案によった。
第二反応炉が設置されたことで生成物中の酸が減少している。
Table 8 shows the results of Example 21 and Comparative Example 4. In Table 8, the oxidation, iodine value, and oxidation stability were measured according to the BDF standard draft of the Agency for Natural Resources and Energy.
The installation of the second reactor reduces the acid in the product.

本発明は、油脂や搾油原料から、アルコール(副原料)を必要とせず、グリセリンを副生することがなく、また原料油脂中のジエン類や水酸基等の不純物が生成物中に残留し難く、コークの生成量が少なく、生成油の流動点も低く、カルボン酸(遊離脂肪酸)等の不純物も副生され難いため、空気等に対して安定で黒変や異臭が生じ難く貯蔵安定性に優れるバイオディーゼル燃料の製造方法を提供できる。また、原料油脂から遊離脂肪酸を除去する前処理等が不要となり、また反応を常圧下で行うことができるため、製造工程の簡略化及び反応装置の簡素化を図ることができ、必要な場所で必要なエネルギーを供給する分散型のエネルギー供給システムを構築できるバイオディーゼル燃料の製造装置を提供できる。さらに、副生された遊離脂肪酸によって触媒の活性が低下するという問題が生じ難いため、使用済み触媒の処理や再活性化等の付帯作業によってランニングコストが上昇したり生産性が低下したりすることがなく生産効率及び生産性に優れるバイオディーゼル燃料の製造方法に用いる脱炭酸分解触媒を提供できる。   The present invention does not require alcohol (subsidiary raw material) from fats and oiled raw materials, does not by-produce glycerin, and impurities such as dienes and hydroxyl groups in the raw fats and oils hardly remain in the product, Since the amount of coke produced is small, the pour point of the produced oil is low, and impurities such as carboxylic acids (free fatty acids) are hardly produced as a by-product, so it is stable against air, etc. A method for producing biodiesel fuel can be provided. In addition, pretreatment and the like for removing free fatty acids from raw oils and fats are not necessary, and the reaction can be performed under normal pressure, so that the manufacturing process and the reaction apparatus can be simplified, and at the necessary place. It is possible to provide a biodiesel fuel production apparatus capable of constructing a distributed energy supply system that supplies necessary energy. Furthermore, it is difficult to cause a problem that the activity of the catalyst is reduced due to the free fatty acid produced as a by-product, so that the running cost increases or the productivity decreases due to incidental work such as treatment or reactivation of the used catalyst. The decarboxylation decomposition catalyst used for the manufacturing method of the biodiesel fuel which is excellent in production efficiency and productivity can be provided.

1 実施の形態1の反応装置
2 反応容器
3 油脂脱炭酸分解触媒
4 ヒータ
5 原料投入部
6 フローガス導入部
7 撹拌装置
8 第1導出管
9 分解油貯留部
10 排出管
11 冷却管
12 冷却トラップ装置
13 ガス排出管
21 実施の形態2の反応装置
22 原料油脂加熱部
23 補助加熱部
31 実施の形態3の反応装置
32 第1反応容器
33 油脂脱炭酸分解触媒A
34 第2反応容器
35 油脂脱炭酸分解触媒B
38 第2導出管
DESCRIPTION OF SYMBOLS 1 Reactor 2 of Embodiment 1 Reaction container 3 Fat decarbonation decomposition catalyst 4 Heater 5 Raw material input part 6 Flow gas introduction part 7 Stirrer 8 First outlet pipe 9 Decomposed oil storage part 10 Discharge pipe 11 Cooling pipe 12 Cooling trap Apparatus 13 Gas exhaust pipe 21 Reaction apparatus 22 of embodiment 2 Raw material oil heating section 23 Auxiliary heating section 31 Reaction apparatus 32 of embodiment 3 First reaction vessel 33 Oil decarboxylation decomposition catalyst A
34 Second reaction vessel 35 Fat and oil decarboxylation catalyst B
38 Second outlet tube

Claims (8)

350℃〜475℃において、反応容器内で油脂脱炭酸分解触媒と油脂が接触して、前記油脂脱炭酸分解触媒によって(化1)に示される脱炭酸分解反応でC8〜C24の炭化水素を主として生成し、前記油脂脱炭酸分解触媒はシリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体からなる混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングされたものを含むことを特徴とするバイオディーゼル燃料の製造方法。
At 350 ° C. to 475 ° C., the fat and oil decarboxylation decomposition catalyst and the fat contact with each other in the reaction vessel, and mainly the C8 to C24 hydrocarbons in the decarbonation decomposition reaction represented by (Chemical Formula 1) by the fat and oil decarboxylation decomposition catalyst. And the fat and oil decarboxylation decomposition catalyst is at least one of a mixture comprising silica, an FCC waste catalyst whose acid sites are poisoned by one or more of alkali metal and alkaline earth metal, and a mixture thereof. A method for producing biodiesel fuel, comprising a material coated with a weak alkaline compound consisting of one or more of magnesium hydroxide, oxide, and carbonate.
前記油脂脱炭酸分解触媒と前記油脂の内いずれか1あるいは両方が、接触して脱炭酸分解反応するよりも前に350℃〜475℃に加熱されていることを特徴とする請求項1に記載のバイオディーゼル燃料の製造方法。   2. One or both of the fat and oil decarboxylation catalyst and the fat and oil are heated to 350 ° C. to 475 ° C. before contacting and decarboxylating decomposition reaction. Of manufacturing biodiesel fuel. 前記油脂の代わりに搾油原料が用いられることを特徴とする請求項1又は2に記載のバイオディーゼル燃料の製造方法。   3. The method for producing biodiesel fuel according to claim 1 or 2, wherein an oiled raw material is used in place of the fats and oils. 前記油脂脱炭酸分解触媒がバイオディーゼル燃料の製造後に残った前記搾油原料由来の炭化物を酸素雰囲気下、加熱して活性化された炭素としたものを含有することを特徴とする請求項3に記載のバイオディーゼル燃料の製造方法。   The said fat and oil decarboxylation decomposition catalyst contains what turned into activated carbon by heating the carbide | carbonized_material derived from the said oil extraction raw material which remained after manufacture of the biodiesel fuel in oxygen atmosphere. Of manufacturing biodiesel fuel. 前記脱炭酸分解反応においてモル比で1/10〜10/1(H2O/油脂)の水蒸気が共存することを特徴とする請求項1乃至4の内いずれか1に記載のバイオディーゼル燃料の製造方法。 The biodiesel fuel according to any one of claims 1 to 4, wherein water vapor in a molar ratio of 1/10 to 10/1 (H 2 O / oil) coexists in the decarboxylation decomposition reaction. Production method. 請求項1乃至5の内いずれか1に記載のバイディーゼル燃料の製造方法に用いるバイオディーゼル燃料の製造装置であって、前記油脂脱炭酸分解触媒を内部に有した第1反応容器と、前記油脂脱炭酸分解触媒又は前記油脂若しくは搾油原料を加熱する加熱部と搾油原料や油脂を前記第1反応容器に投入する投入部と、生成したガス混合物を前記第1反応容器から導出する第1ガス導出部と、を有することを特徴とするバイオディーゼル燃料の製造装置。 An apparatus for producing a biodiesel fuel for use in the method of manufacturing biodiesel fuel according to any one of claims 1 to 5, a first reaction vessel having the oil decarboxylation decomposition catalyst therein, the An oil decarboxylation catalyst or a heating part for heating the oil or oil-squeezed raw material, an input part for introducing the oil-squeezed raw material or oil into the first reaction container, and a first gas for deriving the generated gas mixture from the first reaction container A biodiesel fuel production apparatus comprising: a deriving unit; 前記第1ガス導出部に接続され前記油脂脱炭酸分解触媒が充填された第2反応容器と、前記第1反応容器の生成ガス混合物を前記第2反応容器の内部に導入するガス導入部と、前記第2反応容器の前記油脂脱炭酸分解触媒で脱炭酸されたガス混合物を導出する第2ガス導出部を備えていることを特徴とする請求項6に記載のバイオディーゼル燃料の製造装置。   A second reaction vessel connected to the first gas deriving unit and filled with the fat decarboxylation catalyst, a gas introduction unit for introducing the product gas mixture of the first reaction vessel into the second reaction vessel, The biodiesel fuel production apparatus according to claim 6, further comprising a second gas deriving unit for deriving a gas mixture decarboxylated by the fat decarbonation catalyst of the second reaction vessel. 請求項1乃至5の内のいずれか1に記載のバイオディーゼル燃料の製造方法、又は請求項6若しくは7に記載のバイオディーゼル燃料の製造装置で使用する油脂脱炭酸分解触媒であって、シリカ、アルカリ金属とアルカリ土類金属のうち1以上によって酸点が被毒されたFCC廃触媒、及びそれらの複合体による混合物の内いずれか1以上がマグネシウムの水酸化物、酸化物、炭酸塩のいずれか1以上からなる弱アルカリ性化合物によってコーティングしたものを含むことを特徴とする油脂脱炭酸分解触媒。   An oil and fat decarboxylation catalyst for use in the biodiesel fuel production method according to any one of claims 1 to 5 or the biodiesel fuel production apparatus according to claim 6 or 7, comprising silica, FCC waste catalyst whose acid sites are poisoned by one or more of alkali metals and alkaline earth metals, and a mixture of those composites, any one of magnesium hydroxide, oxide and carbonate An oil / fatty acid decarboxylation catalyst comprising one or more of these coated with a weak alkaline compound.
JP2013149190A 2008-10-31 2013-07-18 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method Active JP5721152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013149190A JP5721152B2 (en) 2008-10-31 2013-07-18 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008282143 2008-10-31
JP2008282143 2008-10-31
JP2009213768 2009-09-15
JP2009213768 2009-09-15
JP2013149190A JP5721152B2 (en) 2008-10-31 2013-07-18 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010535661A Division JP5353893B2 (en) 2008-10-31 2009-10-27 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method

Publications (2)

Publication Number Publication Date
JP2013241612A JP2013241612A (en) 2013-12-05
JP5721152B2 true JP5721152B2 (en) 2015-05-20

Family

ID=42128557

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010535661A Active JP5353893B2 (en) 2008-10-31 2009-10-27 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method
JP2013149190A Active JP5721152B2 (en) 2008-10-31 2013-07-18 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010535661A Active JP5353893B2 (en) 2008-10-31 2009-10-27 Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method

Country Status (5)

Country Link
JP (2) JP5353893B2 (en)
KR (1) KR101391221B1 (en)
CN (1) CN102203218B (en)
MY (1) MY155384A (en)
WO (1) WO2010050186A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793288B2 (en) * 2010-09-30 2015-10-14 綱 秀 典 金 Bio-petroleum fuel production method and catalyst and production system used therefor
JP5623928B2 (en) * 2011-02-07 2014-11-12 株式会社タクマ Diesel fuel production system and diesel fuel production method
JP5628713B2 (en) * 2011-03-11 2014-11-19 株式会社タクマ Diesel fuel production refiner and purification method, diesel fuel production system and production method using the same
JP6004378B2 (en) * 2011-11-08 2016-10-05 公益財団法人北九州産業学術推進機構 Catalytic cracking catalyst
CN103614155B (en) * 2013-09-11 2016-08-10 浙江工业大学 A kind of algae oil produces the preparation method of HC fuel
CN103509587B (en) * 2013-09-26 2014-12-10 太原理工大学 Method for preparing coal flotation agent by using animal and plant grease and waste oil
CN103484143B (en) * 2013-09-29 2015-07-22 广西大学 Method for preparing biodiesel by using FCC spent catalyst loaded acid to catalyze cracking of black rosin
JP6332860B2 (en) * 2014-10-08 2018-05-30 公益財団法人北九州産業学術推進機構 Method for refining hydrocarbon oil
CN112189046B (en) * 2018-05-18 2023-03-28 一般社团法人HiBD研究所 Method for producing bio-jet fuel
CN110041978A (en) * 2019-04-30 2019-07-23 蔡国宇 A kind of preparation method of vapor-permeable type high burning efficiency biological particles
JP2021066860A (en) * 2019-10-23 2021-04-30 株式会社Rta Method for thermal decomposition liquefaction of waste plastics
WO2021193887A1 (en) * 2020-03-25 2021-09-30 バイオ燃料技研工業株式会社 Method for producing biodiesel fuel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7491858B2 (en) * 2005-01-14 2009-02-17 Fortum Oyj Method for the manufacture of hydrocarbons
PT1681337E (en) * 2005-01-14 2010-12-24 Neste Oil Oyj Method for the manufacture of hydrocarbons
JP4796401B2 (en) * 2005-11-30 2011-10-19 Jx日鉱日石エネルギー株式会社 Biomass treatment using fluid catalytic cracking

Also Published As

Publication number Publication date
WO2010050186A1 (en) 2010-05-06
JP2013241612A (en) 2013-12-05
JPWO2010050186A1 (en) 2012-03-29
KR20110093800A (en) 2011-08-18
CN102203218A (en) 2011-09-28
MY155384A (en) 2015-10-15
CN102203218B (en) 2015-03-25
KR101391221B1 (en) 2014-05-08
JP5353893B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5721152B2 (en) Biodiesel fuel production method and apparatus, and fat and oil decarboxylation catalyst used in the method
Fonseca et al. Biodiesel from waste frying oils: Methods of production and purification
Abdullah et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production
KR101484825B1 (en) A process for the production of bio-naphtha from complex mixtures of natural occurring fats and oils
KR101424897B1 (en) A process for the production of bio-naphtha from complex mixtures of natural occurring fats & oils
Ayoob et al. Valorization of waste tires in the synthesis of an effective carbon based catalyst for biodiesel production from a mixture of non-edible oils
Fadhil et al. Production of liquid fuels and activated carbons from fish waste
Arumugamurthy et al. Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: An activation and deactivation kinetic study
CA3023946C (en) Biorenewable kerosene, jet fuel, jet fuel blendstock, and method of manufacturing
Deeba et al. Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production
Ferrero et al. Towards sustainable biofuel production: design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol
KR20150110631A (en) Process for the production of bio-naphtha from complex mixtures of natural occurring fats & oils
BRPI0811661A2 (en) process of hydrotreating a liquid food and process for hydrodeoxygenation of a renewable resource
Girish Review of various technologies used for biodiesel production
Abdullah et al. Bifunctional biomass-based catalyst for biodiesel production via hydrothermal carbonization (HTC) pretreatment–Synthesis, characterization and optimization
Miladinović et al. Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash
JP6004378B2 (en) Catalytic cracking catalyst
JP2010539298A (en) Method and composition for controlling bulk density of caking coal
WO2007060993A1 (en) Process for producing fatty acid alkyl ester
Buyang et al. Dolomite catalyst for fast pyrolysis of waste cooking oil into hydrocarbon fuel
JP5628713B2 (en) Diesel fuel production refiner and purification method, diesel fuel production system and production method using the same
Hu et al. Effect of Ni, Mo and W on hydrothermal co-liquefaction of macroalgae and microalgae: Impact on bio-crude yield and composition
JP5896510B2 (en) Catalytic cracking method of fats and oils and decarboxylation / hydrogenation catalytic cracking catalyst used therefor
KR20110115793A (en) Method for producing renewable fuels from used cooking oil using supercritical fluid
Saputro et al. A Biodiesel Production Technology From Used Cooking Oil: A Review

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5721152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250