JP5720216B2 - Boiler room efficiency calculation method and power generation end efficiency calculation method - Google Patents
Boiler room efficiency calculation method and power generation end efficiency calculation method Download PDFInfo
- Publication number
- JP5720216B2 JP5720216B2 JP2010272259A JP2010272259A JP5720216B2 JP 5720216 B2 JP5720216 B2 JP 5720216B2 JP 2010272259 A JP2010272259 A JP 2010272259A JP 2010272259 A JP2010272259 A JP 2010272259A JP 5720216 B2 JP5720216 B2 JP 5720216B2
- Authority
- JP
- Japan
- Prior art keywords
- boiler
- heat
- amount
- steam
- efficiency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
本発明は、火力発電所のボイラ室効率を算出するボイラ室効率計算方法及び火力発電所の発電効率を計算する発電端効率算出方法に関する。 The present invention relates to a boiler room efficiency calculation method for calculating boiler room efficiency of a thermal power plant and a power generation end efficiency calculation method for calculating power generation efficiency of a thermal power plant.
一般に、火力発電所において効率良く火力発電プラントを運転させるためには、火力発電プラントの発電端効率を正確に把握しておくことが必要である。発電端効率ηpは、(1)式に示すように、タービン室効率ηtとボイラ室効率ηbとの積で求められる。 Generally, in order to operate a thermal power plant efficiently in a thermal power plant, it is necessary to accurately grasp the power generation end efficiency of the thermal power plant. The power generation end efficiency ηp is obtained by the product of the turbine chamber efficiency ηt and the boiler chamber efficiency ηb as shown in the equation (1).
ηp=ηt×ηb …(1)
また、タービン室効率ηt(%)は入出熱法により、(2)式に示すように、タービン出熱Qmをタービン入熱Qiで除算して求められる。
ηp = ηt × ηb (1)
Further, the turbine chamber efficiency ηt (%) is obtained by dividing the turbine heat output Qm by the turbine heat input Qi as shown in the equation (2) by the heat input / output method.
ηt(%)=(Qm÷Qi)×100 …(2)
一方、ボイラ室効率ηb(%)は入出熱法あるいは損失法で計算される。入出熱法でのボイラ室効率ηb1(%)は、(3)式に示すように、ボイラ出熱Qoをボイラ入熱Qfで除算して求められ、損失法でのボイラ室効率ηb2(%)は、(4)式に示すように、ボイラ入熱Qfからボイラ損失Qrを減算した値(Qf−Qr)をボイラ入熱Qfで除算して求められる。
ηt (%) = (Qm ÷ Qi) × 100 (2)
On the other hand, the boiler room efficiency ηb (%) is calculated by the heat input / output method or the loss method. The boiler room efficiency ηb1 (%) in the heat input / output method is obtained by dividing the boiler heat output Qo by the boiler heat input Qf, as shown in Equation (3). The boiler room efficiency ηb2 (%) in the loss method Is obtained by dividing a value (Qf−Qr) obtained by subtracting the boiler loss Qr from the boiler heat input Qf by the boiler heat input Qf, as shown in the equation (4).
ηb1(%)=(Qo÷Qf)×100…(3)
ηb2(%)={(Qf−Qr)÷Qf}×100
={1−(Qr÷Qf)}×100 …(4)
従って、発電端効率ηpを求める場合には、ボイラ室効率ηbが(3)式で示される入出熱法のボイラ室効率ηb1(%)である場合には、(5)式に示す入出熱法による発電端効率ηp1となり、ボイラ室効率ηbが(4)式で示される損失法のボイラ室効率ηb2(%)である場合には、(6)式に示す損失法による発電端効率ηp2となる。
ηb1 (%) = (Qo ÷ Qf) × 100 (3)
ηb2 (%) = {(Qf−Qr) ÷ Qf} × 100
= {1- (Qr ÷ Qf)} × 100 (4)
Therefore, when the power generation end efficiency ηp is obtained, when the boiler chamber efficiency ηb is the boiler chamber efficiency ηb1 (%) of the input / output heat method shown by the equation (3), the input / output heat method shown by the equation (5) When the boiler chamber efficiency ηb is the loss chamber efficiency ηb2 (%) of the loss method expressed by the equation (4), the generation end efficiency ηp2 by the loss method expressed by the equation (6) is obtained. .
ηp1(%)=ηt(%)×ηb1(%)÷100 …(5)
ηp2(%)=ηt(%)×ηb2(%)÷100 …(6)
入出熱法による発電端効率ηp1と損失法による発電端効率ηp2とは、理論上、同じ値になるはずであるが、計測精度上の問題や入出熱法と損失法との基本的な熱量計算の考え方の違いにより必ずしも同じ値にならない。
ηp1 (%) = ηt (%) × ηb1 (%) ÷ 100 (5)
ηp2 (%) = ηt (%) × ηb2 (%) ÷ 100 (6)
The power generation end efficiency ηp1 by the heat input / output method and the power generation end efficiency ηp2 by the loss method should theoretically be the same value, but there are problems in measurement accuracy and the basic calorific value calculation between the input / output heat method and the loss method It is not always the same value due to the difference in the way of thinking.
ボイラ室効率はJISにも記載があるように、損失法のほうが測定誤差は小さく精度が高い。また、石炭火力ではボイラ投入熱量の測定誤差が大きく入出熱法では精度が低下してしまう。そこで、現状では(6)式に示す発電端効率ηp2を求めることが多い。 As described in JIS, boiler room efficiency has a smaller measurement error and higher accuracy in the loss method. In addition, the measurement error of the boiler heat input is large in coal-fired power, and the accuracy is reduced in the heat input / output method. Therefore, at present, the power generation end efficiency ηp2 shown in equation (6) is often obtained.
ここで、燃料を燃焼させるボイラのボイラ効率を損失法で算出し、ボイラからの蒸気で駆動される蒸気タービンのタービン効率をヒートバランス解析法で算出して、ボイラ効率とタービン効率とを乗算して火力発電プラントのプラント効率を精度良く算出するようにしたものがある(例えば、特許文献1参照)。
Here, the boiler efficiency of the boiler that burns the fuel is calculated by the loss method, the turbine efficiency of the steam turbine driven by the steam from the boiler is calculated by the heat balance analysis method, and the boiler efficiency and the turbine efficiency are multiplied. In other words, the plant efficiency of a thermal power plant is calculated with high accuracy (see, for example, Patent Document 1).
しかし、特許文献1のものは、入出熱法と損失法との基本的な熱量計算の考え方の違いを是正するものではない。また、熱量計算の考え方違いによる入出熱法の発電端効率ηp1と損失法の発電端効率ηp2とが相違するのは石炭火力に限定だけでなく、ガス火力と石油火力にも当てはまる。それは以下の理由による。
However, the thing of
いま、蒸気式空気予熱器(SAH)などの蒸気使用機器で使用する蒸気の蒸気供給源がタービン室側にあり、蒸気を使用している箇所がボイラ室側だった場合を考える。入出熱法で考えると、入出熱法のボイラ出熱Qo1は(7)式で示される。 Consider a case where the steam supply source of steam used in steam-using equipment such as a steam air preheater (SAH) is on the turbine chamber side and the location where steam is used is on the boiler chamber side. Considering the heat input / output method, boiler heat output Qo1 of the heat input / output method is expressed by equation (7).
Qo1=(QMS+QHR−QCR−QFW )−Qsah+Qsahd +Qmc …(7)
QMS:主蒸気熱量、QHR:高温再熱蒸気熱量、QCR:低温再熱蒸気熱量、QFW:給水熱量、Qsah:SAH蒸気熱量、Qsahd:SAHドレン熱量、Qmc:補給水熱量
すなわち、入出熱法ではボイラ出熱Qo1はタービン入熱Qiであり、蒸気式空気予熱器(SAH)の蒸気はタービン抽気から取っているので、タービン入熱Qi(ボイラ出熱Qo1)からSAH蒸気熱量Qsahを減算している。また、SAHドレン熱量Qsahd、補給水熱量Qmcは、タービン室に戻されるのでタービン入熱Qi(ボイラ出熱Qo1)に加算している。
Qo1 = (QMS + QHR-QCR-QFW) -Qsah + Qsahd + Qmc (7)
QMS: Main steam calorie, QHR: High temperature reheat steam calorie, QCR: Low temperature reheat steam calorie, QFW: Feed water calorie, Qsah: SAH steam calorie, Qsahd: SAH drain calorie, Qmc: Supply water calorie The boiler heat output Qo1 is the turbine heat input Qi, and the steam of the steam air preheater (SAH) is taken from the turbine bleed, so the SAH steam heat quantity Qsah is subtracted from the turbine heat input Qi (boiler output heat Qo1). Yes. Further, since the SAH drain heat quantity Qsahd and the makeup water heat quantity Qmc are returned to the turbine chamber, they are added to the turbine heat input Qi (boiler output heat Qo1).
従って、入出熱法のボイラ室効率ηb1(%)は、(7)式のボイラ出熱Qo1を(3)式のボイラ出熱Qoに代入して(8)式で示される。 Therefore, the boiler chamber efficiency ηb1 (%) of the heat input / output method is expressed by equation (8) by substituting the boiler heat output Qo1 in equation (7) for the boiler heat output Qo in equation (3).
ηb1(%)=[{(QMS+QHR−QCR−QFW )−Qsah+Qsahd+Qmc}÷Qf]×100 …(8)
このように、入出熱法では、蒸気使用機器で使用する蒸気の蒸気供給源がタービン室側にある場合、ボイラ出熱Qo1(タービン入熱Qi)からその分の熱量を減算している。
ηb1 (%) = [{(QMS + QHR−QCR−QFW) −Qsah + Qsahd + Qmc} ÷ Qf] × 100 (8)
Thus, in the heat input / output method, when the steam supply source of the steam used in the steam using device is on the turbine chamber side, the amount of heat is subtracted from the boiler heat output Qo1 (turbine heat input Qi).
一方、損失法で考えると、これらの熱量は熱量回収として扱われるので、損失法のボイラ室効率ηb2(%)は(9)式で示される。 On the other hand, considering the loss method, these heat amounts are treated as heat recovery, so the boiler room efficiency ηb2 (%) of the loss method is expressed by equation (9).
ηb2(%)=100−(L1+L2+…−L11…) …(9)
L1:乾き排ガス損失、L2:燃料中水素損失、〜L11:SAH熱量回収。
ηb2 (%) = 100− (L1 + L2 + ...− L11 ...) (9)
L1: Dry exhaust gas loss, L2: Hydrogen loss in fuel, ~ L11: SAH heat recovery.
このように、損失法では、蒸気使用機器で使用する蒸気の蒸気供給源がタービン室側にある場合、その熱量をボイラが回収したとしてボイラ出熱Qo2を増加させている。すなわち、損失法では、SAH蒸気がタービン室から供給されるならばボイラにとっては入熱だから損失ではなく逆に熱量の回収として扱っている。 Thus, in the loss method, when the steam supply source of the steam used in the steam-using device is on the turbine chamber side, the boiler output heat Qo2 is increased assuming that the amount of heat is recovered by the boiler. That is, in the loss method, if SAH steam is supplied from the turbine chamber, it is treated not as a loss but as a recovery of the amount of heat because heat is input to the boiler.
従って、発電端熱効率ηpを(1)式で求める場合、入出熱法だけで考えると、タービン室効率ηtやボイラ室効率ηbが計算の仕方によって変動しても、全体としての入出熱が保たれているので問題はない。 Therefore, when the power generation end thermal efficiency ηp is obtained by the equation (1), considering only the input / output heat method, the overall input / output heat is maintained even if the turbine chamber efficiency ηt and the boiler chamber efficiency ηb vary depending on the calculation method. Because there is no problem.
例えば、SAH蒸気がタービン室から供給されている状態で、その蒸気量が増加(=SAH蒸気熱量が増加)した場合を考えると、SAH蒸気熱量の増加はタービン入熱Qiの減少を意味し、それはボイラ室のボイラ出熱Qoの減少をも意味する。発電機出力が一定(タービン出熱Qmが一定)であるとき、タービン入熱Qiの減少は、(2)式からタービン室効率ηtの上昇となって現れる。逆に燃料消費熱量が一定(ボイラ入熱Qfが一定)でボイラ出熱Qoが減少するため、(3)式からボイラ室効率ηb1が低下する。このように、入出熱法だけで考えると、これらの現象が起こっても発電端効率ηp1は一定となるから、その意味では問題ない。 For example, in the state where SAH steam is supplied from the turbine chamber and the amount of steam increases (= SAH steam heat amount increases), an increase in SAH steam heat amount means a decrease in turbine input heat Qi, It also means a reduction in boiler heat output Qo in the boiler room. When the generator output is constant (turbine heat output Qm is constant), the decrease in turbine heat input Qi appears as an increase in turbine chamber efficiency ηt from equation (2). On the other hand, since the amount of heat consumed by the fuel is constant (the boiler heat input Qf is constant) and the boiler output heat Qo is reduced, the boiler chamber efficiency ηb1 is reduced from the equation (3). Thus, considering only the heat input / output method, the power generation end efficiency ηp1 is constant even if these phenomena occur, and there is no problem in that sense.
ところが、損失法の考え方では計算が成り立たないことになる。現在の損失法の計算だと、SAH蒸気熱量L11を熱量回収として扱うため、SAH蒸気の増加によって、ボイラ入熱Qfが増加することになる。従って、(4)式に示すように、損失法のボイラ室効率ηb2が上昇することになる。前述の入出熱法だけで考えたときの現象、つまりSAH蒸気の増加によってボイラ室効率ηb1が低下することの逆の結果になってしまう。損失法の発電端効率ηp2は大きめの値となってしまう。 However, the calculation based on the idea of the loss method is not valid. According to the current loss method calculation, the SAH steam calorie L11 is treated as heat recovery, so that the boiler heat input Qf increases as the SAH steam increases. Therefore, as shown in the equation (4), the boiler chamber efficiency ηb2 of the loss method increases. The phenomenon considered only by the above-mentioned heat input / output method, that is, the opposite result of the decrease in the boiler chamber efficiency ηb1 due to the increase of the SAH steam is brought about. The power generation efficiency ηp2 of the loss method becomes a large value.
本発明の目的は、損失法で計算したボイラ室効率であってもタービン室効率と乗算して入出熱法と同一となる発電端効率を求めることができるボイラ室効率計算方法及び発電端効率算出方法を提供することである。 An object of the present invention is a boiler chamber efficiency calculation method and a power generation end efficiency calculation capable of obtaining a power generation end efficiency which is the same as the heat input / output method by multiplying the turbine chamber efficiency even with the boiler chamber efficiency calculated by the loss method. Is to provide a method.
請求項1の発明に係るボイラ室効率計算方法は、ボイラで発生した蒸気をタービンに導き前記タービンに連結された発電機を駆動して発電を行う火力発電所のタービン室側からボイラ室側に供給される熱量も前記ボイラへの入熱として前記ボイラへの入熱量を求め、前記ボイラへの入熱量から損失量を減算してボイラ室効率を計算する損失法によるボイラ室効率計算方法において、前記タービン室側から見て前記タービン室側への入熱はプラスとして前記ボイラへの入熱量であるとし、前記タービン室側からのボイラ室側への出熱はマイナスとして前記ボイラの損失量とし、前記タービン室側からのボイラ室側への出熱を前記ボイラへの入熱量から減算して前記ボイラ室効率を計算することを特徴とする。
The boiler room efficiency calculation method according to the invention of
請求項2の発明に係るボイラ室効率計算方法は、請求項1の発明において、前記火力発電所がガス火力発電所である場合は、前記ボイラの損失量とする前記タービン室側から供給された熱量は、再熱器の温度調整を行う再熱器スプレー水熱量であることを特徴とする。
The boiler room efficiency calculation method according to the invention of
請求項3の発明に係るボイラ室効率計算方法は、請求項1の発明において、前記火力発電所が石油火力発電所である場合は、前記ボイラの損失量とする前記タービン室側から供給された熱量は、空気を予熱する蒸気式空気予熱器蒸気熱量、燃料油を温める蒸化器加熱用蒸気熱量、燃料油を噴霧するアトマイズ蒸気熱量、再熱器の温度調整を行う再熱器スプレー水熱量であることを特徴とする。
The boiler room efficiency calculation method according to the invention of claim 3 is supplied from the turbine chamber side as a loss amount of the boiler when the thermal power plant is an oil thermal power plant in the invention of
請求項4の発明に係るボイラ室効率計算方法は、請求項1の発明において、前記火力発電所が石炭火力発電所である場合は、前記ボイラの損失量とする前記タービン室側から供給された熱量は、スートブロアー蒸気熱量、排ガスの温度調整を行うガスガス熱交換器用蒸気熱量、再熱器の温度調整を行う再熱器スプレー水熱量であることを特徴とする。
The boiler room efficiency calculation method according to the invention of claim 4 is supplied from the turbine chamber side as the loss amount of the boiler when the thermal power plant is a coal-fired power plant in the invention of
請求項5の発明に係る発電端効率計算方法は、ボイラで発生した蒸気をタービンに導き前記タービンに連結された発電機を駆動して発電を行う火力発電所の発電端効率を計算する発電端効率計算方法において、前記タービンからの出熱量を前記タービンへの入熱量で除算してタービン室効率を求め、請求項1乃至請求項4のボイラ室効率計算方法で計算したボイラ室効率に前記タービン室効率を乗じて、前記火力発電所の発電端効率を計算することを特徴とする。
The power generation end efficiency calculation method according to the invention of claim 5 is a power generation end for calculating the power generation end efficiency of a thermal power plant that generates electricity by driving steam generated in a boiler to a turbine and driving a generator connected to the turbine. In the efficiency calculation method, the turbine chamber efficiency is obtained by dividing the amount of heat output from the turbine by the amount of heat input to the turbine, and the turbine chamber efficiency calculated by the boiler chamber efficiency calculation method according to
請求項1の発明によれば、損失法でボイラ室効率を求める場合に、タービン室側から見てタービン室側への入熱はプラスとし、タービン室側からのボイラ室側への出熱はマイナスとし、タービン室側からのボイラ室側への出熱はボイラの損失量としてボイラへの入熱量から減算してボイラ室効率を計算するので、入出熱法で計算したボイラ室効率と同等となる。これにより、入出熱法で計算したボイラ室効率との比較が容易に行える。 According to the first aspect of the present invention, when the boiler chamber efficiency is obtained by the loss method, the heat input to the turbine chamber side is positive as viewed from the turbine chamber side, and the heat output from the turbine chamber side to the boiler chamber side is Since the heat output from the turbine chamber side to the boiler chamber side is subtracted from the heat input to the boiler as the amount of boiler loss and the boiler chamber efficiency is calculated, it is equivalent to the boiler chamber efficiency calculated by the input / output heat method. Become. This makes it easy to compare with the boiler room efficiency calculated by the heat input / output method.
請求項2の発明によれば、ガス火力発電所である場合は、タービン室側から供給される再熱器の温度調整を行う再熱器スプレー水熱量をボイラの損失量とするので、入出熱法で計算したガス火力発電所のボイラ室効率と同等のボイラ室効率を得ることができる。
According to the invention of
請求項3の発明によれば、石油火力発電所である場合は、タービン室側から供給される空気を予熱する蒸気式空気予熱器蒸気熱量、燃料油を温める蒸化器加熱用蒸気熱量、燃料油を噴霧するアトマイズ蒸気熱量、再熱器の温度調整を行う再熱器スプレー水熱量をボイラの損失量とするので、石油火力発電所の入出熱法で計算したボイラ室効率と同等のボイラ室効率を得ることができる。 According to the invention of claim 3, in the case of an oil thermal power plant, the steam air preheater steam heat amount for preheating the air supplied from the turbine chamber side, the steam heat amount for heating the evaporator for heating the fuel oil, the fuel The boiler room efficiency is equivalent to the boiler room efficiency calculated by the heat input / output heat method of the oil-fired thermal power plant because the amount of heat of atomized steam spraying oil and the amount of heat of the reheater spray water adjusting the temperature of the reheater are used as the loss amount of the boiler. Efficiency can be obtained.
請求項4の発明によれば、石炭火力発電所である場合は、タービン室側から供給されるスートブロアー蒸気熱量、排ガスの温度調整を行うガスガス熱交換器用蒸気熱量、再熱器の温度調整を行う再熱器スプレー水熱量をボイラの損失量とするので、石炭火力発電所の入出熱法で計算したボイラ室効率と同等のボイラ室効率を得ることができる。 According to the invention of claim 4, in the case of a coal-fired power plant, the soot blower steam heat supplied from the turbine chamber side, the steam heat amount for the gas gas heat exchanger for adjusting the temperature of the exhaust gas, and the temperature adjustment of the reheater are adjusted. Since the amount of reheater spray water to be used is the loss amount of the boiler, the boiler room efficiency equivalent to the boiler room efficiency calculated by the input / output heat method of the coal-fired power plant can be obtained.
請求項5の発明によれば、請求項1乃至請求項4のボイラ室効率計算方法で計算したボイラ室効率にタービン室効率を乗じて発電端効率を計算するので、発電端効率について、燃料種別によらず、横並びの発電端効率の評価が可能となる。
According to the invention of claim 5, since the power generation end efficiency is calculated by multiplying the boiler chamber efficiency calculated by the boiler chamber efficiency calculation method of
以下、本発明の実施形態を説明する。本発明は、入出熱法によるボイラ室効率ηb1、損失法によるボイラ効率ηb2のいずれであっても、(1)式を用いて発電端効率ηpを計算し評価できるようにすることである。 Embodiments of the present invention will be described below. It is an object of the present invention to calculate and evaluate the power generation end efficiency ηp using the equation (1) regardless of whether the boiler room efficiency ηb1 based on the heat input / output method or the boiler efficiency ηb2 based on the loss method.
そのために、損失法の発電端効率ηp2を求める(6)式で計算した場合であっても、入出熱法の発電端効率ηp1を求める(5)式で計算した場合と同等の値が得られるように、損失法のボイラ室効率ηb2の計算の仕方を見直す。 For this reason, even when the power generation end efficiency ηp2 of the loss method is calculated by the equation (6), the same value as that obtained by the equation (5) of determining the power generation end efficiency ηp1 of the heat input / output method is obtained Thus, the method of calculating the boiler room efficiency ηb2 of the loss method will be reviewed.
入出熱法のボイラ室効率ηb1では、例えば、蒸化器や蒸化式空気予熱器SAHの蒸気は、タービン抽気からとっているのでタービン入熱Qiから引いている。つまり、入出熱法のボイラ室効率ηb1の計算では、タービン入熱Qiとボイラ出熱Qoとが等しくなるようにしている。従って、入出熱法の発電端効率ηp1は、(2)式及び(3)式を(5)式に代入し、Qi=Qoとすると、(10)式で示される。 In the boiler room efficiency ηb1 of the heat input / output method, for example, the steam of the evaporator or the steam-type air preheater SAH is taken from the turbine bleed air, and is therefore drawn from the turbine heat input Qi. That is, in the calculation of the boiler room efficiency ηb1 of the heat input / output method, the turbine heat input Qi and the boiler heat output Qo are made equal. Accordingly, the power generation end efficiency ηp1 of the heat input / output method is expressed by the equation (10) when the equations (2) and (3) are substituted into the equation (5) and Qi = Qo.
ηp1=Qm÷Qf …(10)
一方、損失法のボイラ室効率ηb2では、これらのタービン抽気は、(9)式に示すように、ボイラ室側への熱回収として扱われるので、ボイラ室効率ηb2が高めに出てしまう。そのため、損失法のボイラ室効率ηb2の計算の仕方を見直すに当たっては、タービン抽気は熱回収ではなく熱損失とするのが妥当である。
ηp1 = Qm ÷ Qf (10)
On the other hand, in the boiler chamber efficiency ηb2 of the loss method, these turbine bleeds are handled as heat recovery to the boiler chamber side as shown in the equation (9), so that the boiler chamber efficiency ηb2 is increased. Therefore, when reviewing the method of calculating the boiler chamber efficiency ηb2 in the loss method, it is appropriate that the turbine extraction is not heat recovery but heat loss.
そこで、本発明では、タービン室側から見てタービン室側への入熱はプラスとし、タービン室側からのボイラ室側への出熱はマイナスとし、タービン室側からのボイラ室側への出熱はボイラの損失量としてボイラへの入熱量から減算してボイラ室効率を計算する。これを数式化すると、以下のようになる。 Therefore, in the present invention, the heat input to the turbine chamber side as viewed from the turbine chamber side is positive, the heat output from the turbine chamber side to the boiler chamber side is negative, and the heat output from the turbine chamber side to the boiler chamber side is negative. Heat is subtracted from the heat input to the boiler as the amount of boiler loss, and the boiler room efficiency is calculated. This can be expressed as follows.
ボイラ入熱Qf、ボイラ出熱Qo、ボイラ損失Qrとの関係は、(11)式で示される。 The relationship between the boiler heat input Qf, the boiler heat output Qo, and the boiler loss Qr is expressed by equation (11).
Qo=Qf−Qr …(11)
また、前述したように、蒸気式空気予熱器(SAH)などの蒸気使用機器で使用する蒸気の蒸気供給源がタービン室側にあり、蒸気を使用している箇所がボイラ室側だった場合には、入出熱法のボイラ出熱Qo1は(7)式で示され、ボイラ出熱QoからSAH蒸気熱量Qsahが減算されてボイラ出熱Qo1が求められる。
Qo = Qf−Qr (11)
In addition, as described above, when the steam supply source of steam used in steam-using equipment such as a steam air preheater (SAH) is on the turbine chamber side, and the location where steam is used is on the boiler chamber side The boiler heat output Qo1 of the heat input / output method is expressed by equation (7), and the boiler heat output Qo1 is obtained by subtracting the SAH steam heat quantity Qsah from the boiler heat output Qo.
入出熱法でのボイラ室効率ηb1は、(3)式に示すように、ボイラ出熱Qoをボイラ入熱Qfで除算して求められる。ボイラ室側の蒸気式空気予熱器(SAH)で使用する蒸気の蒸気供給源がタービン室側にある場合、(3)式のボイラ出熱Qoに、ボイラ出熱QoからSAH蒸気熱量Qsahを減算したボイラ出熱Qo1(=Qo−Qsah)を代入し、さらに(11)式を代入すると(12)式が得られる。 The boiler room efficiency ηb1 in the heat input / output method is obtained by dividing the boiler heat output Qo by the boiler heat input Qf, as shown in equation (3). When the steam supply source of steam used in the steam air preheater (SAH) on the boiler chamber side is on the turbine chamber side, the SAH steam heat quantity Qsah is subtracted from the boiler heat output Qo to the boiler heat output Qo in (3). Substituting the boiler heat output Qo1 (= Qo−Qsah) and further substituting the equation (11), the equation (12) is obtained.
ηb1=Qo÷Qf
=(Qo−Qsah)÷Qf
=(Qf−Qr−Qsah)÷Qf
=1−(Qr+Qsah)÷Qf …(12)
ここで、(12)式と損失法のボイラ室効率ηb2を示す(4)式とを対比すると、ボイラ損失QrについてはSAH蒸気熱量Qsahを加算し、熱回収ではなく熱損失とするのが妥当であることが分かる。こうした状況を見て損失法のボイラ室効率ηb2の損失の計上方法について、まずは、燃料別のボイラ出熱Qo(=タービン入熱Qi)を下記のように定める。
ηb1 = Qo ÷ Qf
= (Qo−Qsah) ÷ Qf
= (Qf-Qr-Qsah) / Qf
= 1- (Qr + Qsah) / Qf (12)
Here, when comparing the equation (12) with the equation (4) showing the boiler chamber efficiency ηb2 of the loss method, it is appropriate to add the SAH steam calorie Qsah to the boiler loss Qr and not to recover heat but to use heat loss. It turns out that it is. In view of this situation, the loss calculation method for the loss of boiler room efficiency ηb2 is as follows. First, boiler output heat Qo (= turbine heat input Qi) for each fuel is determined as follows.
火力発電所がガス火力発電所である場合は、ボイラ出熱Qo(ガス)は(13)式で示すように定める。 When the thermal power plant is a gas thermal power plant, the boiler heat output Qo (gas) is determined as shown by equation (13).
Qo(ガス)=(QMS+QHR−QCR−QFW )−Qrhs+Qmc …(13)
QMS:主蒸気熱量、QHR:高温再熱蒸気熱量、QCR:低温再熱蒸気熱量、QFW:給水熱量、Qrhs:再熱器スプレー水熱量、Qmc:補給水熱量
図1は、本発明の実施形態に係るボイラ室効率計算方法をガス火力発電所に適用する場合のボイラ出熱Qo(ガス)の説明図である。ガス火力発電所のボイラ11は、火炉12でガス燃料を燃焼させ給水ポンプ13からの給水流量FWを蒸気にして、過熱器(SH)14から高圧タービン15に主蒸気流量MSとして供給する。高圧タービン15で仕事を終えた低温再熱蒸気流量CRはボイラ11の再熱器(RH)16に供給され、高温再熱蒸気流量HRとして中圧タービン17に導かれ、中圧タービン17で仕事を終えた蒸気は低圧タービン18に導かれる。そして、低圧タービン18で仕事を終えた蒸気は復水器19で水に戻され、給水ポンプ13によりボイラに供給される。なお、低圧タービン18には図示省略の発電機が連結されている。
Qo (gas) = (QMS + QHR-QCR-QFW) -Qrhs + Qmc (13)
QMS: main steam calorie, QHR: high temperature reheat steam calorie, QCR: low temperature reheat steam calorie, QFW: feed water calorie, Qrhs: reheater spray water calorie, Qmc: makeup water calorie FIG. It is explanatory drawing of the boiler heat output Qo (gas) in the case of applying the boiler room efficiency calculation method which concerns on a gas thermal power plant. The
ここで、ボイラ11には燃料の熱量がボイラ入熱Qfとして入熱され、(11)式に示すように、ボイラ入熱Qfからボイラ損失Qrを減算した熱量がボイラ出熱Qoとなる。そして、ボイラ出熱Qo(ガス)がタービン入熱Qiと等しくなるように、ボイラ出熱Qo(ガス)の±を定める。つまり、タービン室側から見て、タービン室側への入熱は+とし、タービン室側からのボイラ室側への出熱は−とする。
Here, the amount of heat of the fuel is input to the
まず、ボイラ11からタービン室側には、主蒸気熱量QMS及び高温再蒸気熱量QHRが出熱され、タービン室側への入熱となるので、(13)式に示すように、主蒸気熱量QMS及び高温再蒸気熱量QHRは+とする。また、低温再熱蒸気熱量QCR及び給水熱量QFWは、タービン室側からボイラ室側に出熱されるので、(13)式に示すように、低温再熱蒸気熱量QCR及び給水熱量QFWは−とする。同様に、再熱器スプレー水熱量Qrhsはタービン室側からボイラ室側に出熱されるので−とし、補給水熱量Qmcはタービン室側に入熱されるので+とする。
First, since the main steam calorie QMS and the high-temperature re-steam calorie QHR are output from the
給水流量FWは、基本的に復水流量基準で計算した高圧ヒータ出口給水流量を使用する。高圧ヒータ出口給水流量を計算していない場合には、節炭器Eco入口給水オリフィスで計測した給水流量を使用する。 The feed water flow rate FW basically uses the high pressure heater outlet feed water flow rate calculated based on the condensate flow rate standard. When the high-pressure heater outlet feed water flow rate is not calculated, the feed water flow rate measured at the economizer Eco inlet feed water orifice is used.
主蒸気流量MSは、(給水流量FW+再熱器スプレー水流量rhs−ボイラ給水ポンプタービン(BFP)の高圧駆動蒸気量)とし、ボイラ室側で使用している蒸気流量(アトマイズ、SAH等)は計算しない。SHスプレー水流量は、その取り出し点が給水流量計測点より前であれば加算する。一方、取り出し点が後であれば計算しない。BFPの高圧駆動蒸気量に関しては、ある設備のみ計算する。最新鋭火力には無いところが多い。 The main steam flow rate MS is (feed water flow rate FW + reheater spray water flow rate rhs-boiler feed water pump turbine (BFP) high pressure drive steam amount), and the steam flow rate used in the boiler room (atomization, SAH, etc.) is Do not calculate. The SH spray water flow rate is added if the extraction point is before the feed water flow rate measurement point. On the other hand, if the extraction point is later, it is not calculated. For the high-pressure drive steam volume of BFP, only certain facilities are calculated. There are many places that are not in the latest firepower.
低温再熱蒸気流量CRは、(主蒸気流量MS−高圧タービンからの抽気による高圧ヒータドレン流量)とし、高圧タービン15からの抽気量を差し引く。このラインにBFPの低圧駆動蒸気の取り出しがある場合には差し引く。また、高温再熱蒸気流量HRは(低温再熱蒸気流量CR+RHスプレー水流量rhs)とする。
The low temperature reheat steam flow rate CR is (main steam flow rate MS−high pressure heater drain flow rate by extraction from the high pressure turbine), and the amount of extraction from the
次に、火力発電所が石油火力発電所である場合は、ボイラ出熱Qo(油)は(14)式で示すように定める。 Next, when the thermal power plant is an oil thermal power plant, the boiler heat output Qo (oil) is determined as shown by the equation (14).
Qo(油)=(QMS+QHR−QCR−QFW )−Qsah−Qev−Qba
−Qrhs+Qsahd+Qevd+Qmc …(14)
QMS:主蒸気熱量、QHR:高温再熱蒸気熱量、QCR:低温再熱蒸気熱量、QFW:給水熱量、Qsah:SAH蒸気熱量、Qev:蒸化器加熱用蒸気熱量、Qba:アトマイズ蒸気熱量、Qrhs:再熱器スプレー水熱量、Qsahd:SAHドレン熱量、Qevd:蒸化器ドレン熱量、Qmc:補給水熱量
図2は、本発明の実施形態に係るボイラ室効率計算方法を石油火力発電所に適用する場合のボイラ出熱Qo(油)の説明図である。図1と同一要素には同一符号を付し重複する説明は省略する。
Qo (oil) = (QMS + QHR-QCR-QFW)-Qsah-Qev-Qba
-Qrhs + Qsahd + Qevd + Qmc (14)
QMS: Main steam calorie, QHR: High temperature reheat steam calorie, QCR: Low temperature reheat steam calorie, QFW: Feed water calorie, Qsah: SAH steam calorie, Qev: Steam calorie for heating evaporator, Qba: Atomized steam calorie, Qrhs : Reheater spray water calorie, Qsahd: SAH drain calorie, Qevd: Evaporator drain calorie, Qmc: Supply water calorie Figure 2 shows the boiler room efficiency calculation method according to the embodiment of the present invention applied to a petroleum thermal power plant It is explanatory drawing of the boiler heat output Qo (oil) in the case of carrying out. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
石油火力発電所の場合には、ガス火力発電所の場合に加え、蒸気式空気予熱器(SAH)に供給するSAH蒸気熱量Qsah、燃料の石油を温める蒸化器に供給する蒸化器加熱用蒸気熱量Qev、油バーナーに供給して石油を霧化させるアトマイズ蒸気熱量Qbaが追加される。これに伴い、SAHドレン熱量Qsahd、蒸化器ドレン熱量Qevdが発生する。 In the case of oil-fired power plants, in addition to gas-fired power plants, SAH steam heat quantity Qsah supplied to a steam air preheater (SAH), and evaporator heating supplied to a evaporator that heats fuel oil Steam heat quantity Qev and atomized steam heat quantity Qba for adding oil to the oil burner to atomize the oil are added. Along with this, the SAH drain heat quantity Qsahd and the evaporator drain heat quantity Qevd are generated.
まず、ボイラ11からタービン室側には、主蒸気熱量QMS及び高温再蒸気熱量QHRが出熱され、タービン室側への入熱となるので、(14)式に示すように、主蒸気熱量QMS及び高温再蒸気熱量QHRは+とする。また、低温再熱蒸気熱量QCR及び給水熱量QFWは、タービン室側からボイラ室側に出熱されるので、(14)式に示すように、低温再熱蒸気熱量QCR及び給水熱量QFWは−とする。
First, since the main steam calorie QMS and the high-temperature re-steam calorie QHR are output from the
また、アトマイズ蒸気熱量Qba、SAH蒸気熱量Qsah、蒸化器加熱用蒸気熱量Qev、再熱器スプレー水熱量Qrhsは、タービン室側からボイラ室側に出熱されるので、(14)式に示すように−とし、SAHドレン熱量Qsahd、蒸化器ドレン熱量Qevd、補給水熱量Qmcはタービン室側に入熱されるので+とする。 Further, since the atomized steam calorie Qba, SAH steam calorie Qsah, evaporator heating steam calorie Qev, and reheater spray water calorie Qrhs are output from the turbine chamber side to the boiler chamber side, as shown in equation (14) It is assumed that the SAH drain calorie Qsahd, the evaporator drain calorie Qevd, and the makeup water calorie Qmc are + because they are input to the turbine chamber side.
次に、火力発電所が石炭火力発電所である場合は、ボイラ出熱Qo(石炭)は(15)式で示すように定める。 Next, when the thermal power plant is a coal thermal power plant, the boiler heat output Qo (coal) is determined as shown by the equation (15).
Qo(石炭)=(QMS +QHR−QCR−QFW )−Qsb−Qggh
−Qrhs+Qgghd+Qmc …(15)
QMS:主蒸気熱量、QHR:高温再熱蒸気熱量、QCR:低温再熱蒸気熱量、QFW:給水熱量、Qsb:スートブロアー蒸気熱量、Qggh:GGH用蒸気熱量、Qrhs:再熱器スプレー水熱量、Qgghd:GGHドレン熱量、Qmc:補給水熱量
図3は、本発明の実施形態に係るボイラ室効率計算方法を石炭火力発電所に適用する場合のボイラ出熱Qo(石炭)の説明図である。図1と同一要素には同一符号を付し重複する説明は省略する。
Qo (Coal) = (QMS + QHR-QCR-QFW)-Qsb-Qggh
-Qrhs + Qgghd + Qmc (15)
QMS: Main steam heat, QHR: High temperature reheat steam heat, QCR: Low temperature reheat steam heat, QFW: Feed water heat, Qsb: Sootblower steam heat, Qggh: Steam heat for GGH, Qrhs: Reheater spray water heat, Qgghd: GGH drain heat quantity, Qmc: makeup water heat quantity FIG. 3 is an explanatory diagram of boiler output heat Qo (coal) when the boiler room efficiency calculation method according to the embodiment of the present invention is applied to a coal-fired power plant. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
石炭火力発電所の場合には、ガス火力発電所の場合に加え、石炭灰を吹き飛ばすためのスートブロアー蒸気熱量Qsb、石炭排煙設備の電気集塵機EPの温度を調整するためのガスガス熱交換器(GGH)用蒸気熱量Qgghが追加される。これに伴いGGHドレン熱量Qgghdが発生する。 In the case of a coal-fired power plant, in addition to the case of a gas-fired power plant, a soot blower steam heat quantity Qsb for blowing off coal ash, a gas gas heat exchanger (for adjusting the temperature of the electric dust collector EP of the coal flue equipment) GGH) steam heat quantity Qggh is added. Along with this, a GGH drain heat quantity Qgghd is generated.
まず、ボイラ11からタービン室側には、主蒸気熱量QMS及び高温再蒸気熱量QHRが出熱され、タービン室側への入熱となるので、(15)式に示すように、主蒸気熱量QMS及び高温再蒸気熱量QHRは+とする。また、低温再熱蒸気熱量QCR及び給水熱量QFWは、タービン室側からボイラ室側に出熱されるので、(15)式に示すように、低温再熱蒸気熱量QCR及び給水熱量QFWは−とする。
First, since the main steam calorie QMS and the high-temperature re-steam calorie QHR are output from the
また、スートブロアー蒸気熱量Qsb、GGH用蒸気熱量Qggh、再熱器スプレー水熱量Qrhsは、タービン室側からボイラ室側に出熱されるので、(15)式に示すように−とし、GGHドレン熱量Qgghd、補給水熱量Qmcはタービン室側に入熱されるので+とする。 Further, the soot blower steam calorie Qsb, the GGH steam calorie Qggh, and the reheater spray water calorie Qrhs are output from the turbine chamber side to the boiler chamber side. Qgghd and makeup water heat quantity Qmc are set to + because they are input to the turbine chamber side.
次に、タービン室側からのボイラ室側への出熱、主蒸気熱量QMS及び高温再蒸気熱量QHR以外のタービン室側への入熱について説明する。タービン室側からのボイラ室側への出熱には、SAH蒸気熱量Qsah、蒸化器加熱用蒸気熱量Qev、アトマイズ蒸気熱量Qba、スートブロアー蒸気熱量Qsb、GGH用蒸気熱量Qggh、再熱器スプレー水熱量Qrhs等がある。また、主蒸気熱量QMS及び高温再蒸気熱量QHR以外のタービン室側への入熱には、補給水熱量Qmc、GGHドレン熱量Qgghd、SAHドレン熱量Qsahd、蒸化器ドレン熱量Qevd等がある。 Next, heat output from the turbine chamber side to the boiler chamber side, heat input to the turbine chamber side other than the main steam heat quantity QMS and the high temperature re-steam heat quantity QHR will be described. For heat output from the turbine chamber to the boiler chamber, SAH steam calorie Qsah, steamer heating steam Qev, atomized steam calorie Qba, sootblower steam calorie Qsb, GGH steam calorie Qggh, reheater spray Hydrothermal quantity Qrhs etc. The heat input to the turbine chamber other than the main steam heat quantity QMS and the high temperature re-steam heat quantity QHR includes a makeup water heat quantity Qmc, a GGH drain heat quantity Qgghd, a SAH drain heat quantity Qsahd, and a evaporator drain heat quantity Qevd.
(1)SAH蒸気熱量Qsah
従来、タービン室からボイラ室にSAH蒸気を供給しているときは、「SAH蒸気熱量−SAHドレン熱量」をボイラ室への入熱として考えていたが、本発明では、この考え方を改める。
(1) SAH steam calorie Qsah
Conventionally, when SAH steam is supplied from the turbine chamber to the boiler chamber, “SAH steam heat amount−SAH drain heat amount” is considered as heat input to the boiler chamber, but the present invention changes this idea.
実際のボイラの排熱を考えると、蒸気式空気予熱器(SAH)で予熱された空気は最終的に排ガスとなってボイラ系外に排出される。予熱器(AH)の出口の排ガスは一定の熱量を有しており、その熱量はボイラの損失となる。 Considering the actual exhaust heat of the boiler, the air preheated by the steam air preheater (SAH) is finally exhausted and discharged outside the boiler system. The exhaust gas at the outlet of the preheater (AH) has a certain amount of heat, and the amount of heat becomes a loss of the boiler.
図4は予熱器(AH)の出口の排ガス熱量の説明図である。図4に示すように、予熱器(AH)の出口の排ガス熱量は、燃料の燃焼による燃焼熱量だけでなく、ボイラに空気を送り込む押込通風機(FDF)での受熱量、蒸気式空気予熱器(SAH)による空気の予熱量、蒸化器による燃料の予熱量を含んでいる。 FIG. 4 is an explanatory diagram of the amount of exhaust gas heat at the outlet of the preheater (AH). As shown in FIG. 4, the amount of exhaust gas heat at the outlet of the preheater (AH) is not only the amount of combustion heat due to the combustion of fuel, but also the amount of heat received by a forced air blower (FDF) that sends air to the boiler, a steam air preheater This includes the preheating amount of air by (SAH) and the preheating amount of fuel by the evaporator.
従来は、ボイラ単体の効率をタービン室側と切り離して考えていたため、蒸気式空気予熱器(SAH)による空気の予熱量と蒸化器による燃料の予熱量とを外部からの入熱(受熱)と考えていたが、上述の理由から、本発明ではそれを損失として考える。 Conventionally, the efficiency of the boiler itself was separated from the turbine chamber side, so the amount of air preheated by the steam air preheater (SAH) and the amount of fuel preheated by the evaporator were externally input (heat received). However, for the reason described above, the present invention considers it as a loss.
蒸気式空気予熱器(SAH)の蒸気損失は、図4の「SAHによる空気の予熱量」部分に相当する。そして、損失法のボイラ室効率ηb2の計算では、AH出口から排出される排ガス熱量を様々な損失として計算している。すなわち、乾き排ガス損失L1、燃料中水素分による損失L2、燃料中水分による損失L3、空気中の湿分損失L4、空気予熱器漏えい損失L5として計算している。 The steam loss of the steam air preheater (SAH) corresponds to the “preheating amount of air by SAH” portion of FIG. And in the calculation of the boiler room efficiency ηb2 of the loss method, the amount of exhaust gas heat discharged from the AH outlet is calculated as various losses. That is, it is calculated as dry exhaust gas loss L1, loss L2 due to hydrogen in fuel, loss L3 due to moisture in fuel, moisture loss L4 in air, and air preheater leakage loss L5.
図4から分かるように、SAH蒸気損失はL1〜L5までの損失にすでに含まれているため、新たに計算して損失として計上するのは、損失の二重計上になってしまう。よって、損失法のボイラ室効率ηb2としては損失に計上しなくてよいと考える。なお、押込通風機FDFによる空気の受熱はタービン室と無関係に発生する事象であるため、従来どおり「受熱」として扱っていく。 As can be seen from FIG. 4, since the SAH vapor loss is already included in the losses from L1 to L5, newly calculating and accounting for the loss results in double counting of the loss. Therefore, the boiler room efficiency ηb2 of the loss method is considered not to be included in the loss. In addition, since the heat reception of the air by the forced air blower FDF is an event that occurs regardless of the turbine chamber, it is treated as “heat reception” as usual.
(2)蒸化器加熱用蒸気熱量Qev
蒸化器蒸気の損失もSAH蒸気と同じ考え方が適用できる。SAHと同様、蒸化器による損失を個別に評価したいときに使用し、そうでないときは損失L1〜L5に含まれると考えて 蒸化器による蒸気損失としては損失法のボイラ室効率ηb2に計上しない。
(2) Steam calorie Qev for heating the evaporator
The same idea as SAH steam can be applied to the loss of evaporator steam. Like SAH, it is used when the loss due to the evaporator is individually evaluated, otherwise it is considered to be included in the losses L1 to L5. The steam loss due to the evaporator is included in the boiler room efficiency ηb2 of the loss method do not do.
(3)アトマイズ蒸気熱量Qba
アトマイズ蒸気での損失は「アトマイズ蒸気がボイラの外へ捨てられることによる熱量」と考える。図5はアトマイズ蒸気の熱量の説明図である。図5に示すように、補給水をアトマイズ蒸気にする熱量が損失分L9(1)であり、(16)式で示される。
(3) Atomized steam calorie Qba
The loss due to the atomized steam is considered to be “the amount of heat generated when the atomized steam is thrown out of the boiler”. FIG. 5 is an explanatory diagram of the amount of heat of the atomized steam. As shown in FIG. 5, the amount of heat that makes the makeup water atomized steam is the loss L9 (1), and is expressed by the equation (16).
L9(1)(%)=(N÷F×Hn)÷Hh …(16)
N:アトマイズ蒸気量(kg/h)、F:燃料流量(kg/h)、Hn:燃料発熱量(kJ/kg)、Hh:アトマイズ蒸気のエンタルピ(kJ/kg)
また、アトマイズ蒸気の熱量回収分L9(2)は、ボイラの外へ捨てられるアトマイズ蒸気熱量であり、(17)式で示される。
L9 (1) (%) = (N ÷ F × Hn) ÷ Hh (16)
N: Atomized steam volume (kg / h), F: Fuel flow rate (kg / h), Hn: Fuel heat value (kJ / kg), Hh: Atomized steam enthalpy (kJ / kg)
Further, the heat recovery amount L9 (2) of the atomized steam is the amount of atomized steam heat discarded to the outside of the boiler, and is expressed by the equation (17).
L9(2)(%)=(N÷F×cw×Hn)÷Tg …(17)
cw:蒸気の比熱(kJ/kgK)、Tg:AH出口の排ガス温度
ここで、350MWクラスのボイラにおけるアトマイズ蒸気温度は約200℃、AH出口排ガス温度は約140℃であるので、その温度差分による熱量差(回収分)については回収され、トータルのアトマイズ蒸気損失は「損失分L9(1)−回収分L9(2)」となる。なお、回収熱量は損失熱量に対して微少であるため、考慮しなくてもよい。
L9 (2) (%) = (N ÷ F × cw × Hn) ÷ Tg (17)
cw: specific heat of steam (kJ / kgK), Tg: exhaust gas temperature at outlet of AH Here, the atomized steam temperature in the 350MW class boiler is about 200 ° C, and the exhaust gas temperature at AH outlet is about 140 ° C. The heat difference (recovered part) is recovered, and the total atomized steam loss is “loss L9 (1) −recovered part L9 (2)”. Note that the amount of recovered heat is very small with respect to the amount of heat lost, and therefore need not be considered.
(4)スートブロアー蒸気熱量Qsb
スートブロア蒸気に関しても、アトマイズ蒸気と同じ考え方となる。
(4) Sootblower steam calorie Qsb
The sootblower steam is the same as the atomized steam.
(5)GGH用蒸気熱量Qggh
ガスガス熱交換器(GGH)で使用する蒸気熱量は、ボイラ室効率に直接的に影響を与える熱量ではないが、本発明の考え方では、蒸気供給源がボイラでもタービンでも損失法のボイラ室効率ηb2の損失として計算する。
(5) Steam heat quantity for GGH Qggh
The amount of steam heat used in the gas gas heat exchanger (GGH) is not the amount of heat that directly affects the boiler chamber efficiency. However, in the concept of the present invention, the loss chamber efficiency ηb2 is used regardless of whether the steam supply source is a boiler or a turbine. Calculate as loss.
(6)再熱器スプレー水熱量Qrhs
再熱器スプレーは、タービン室の出熱であり、流量の増加はタービン室への入熱低下となる。タービン室入熱とボイラ室入熱は等しいと考えるため、−Qrhsとしてボイラ出熱に計上すると共に、損失法のボイラ室効率ηb2でも「損失」として計上する。
(6) Reheater spray water heat quantity Qrhs
The reheater spray is heat output from the turbine chamber, and an increase in flow rate results in a decrease in heat input to the turbine chamber. Since it is considered that the turbine chamber heat input and the boiler chamber heat input are equal, they are counted as -Qrhs in the boiler heat output, and are also counted as "loss" in the boiler room efficiency ηb2 of the loss method.
(7)補給水熱量Qmc
補給水はタービン室の入熱であり、流量の増加はタービン室への入熱増加となる。タービン室入熱とボイラ室入熱は等しいと考えるため、+Qmcとしてボイラ出熱に計上すると共に、損失法のボイラ室効率ηb2でも「回収」として計上する。
(7) Supply water calorie Qmc
The makeup water is heat input to the turbine chamber, and an increase in the flow rate increases heat input to the turbine chamber. Since it is considered that the turbine chamber heat input and the boiler chamber heat input are equal, they are counted as + Qmc in the boiler heat output, and are also counted as “recovery” in the loss method boiler room efficiency ηb2.
(8)GGHドレン熱量Qgghd、SAHドレン熱量Qsahd、蒸化器ドレン熱量Qevd
SAHドレン、蒸化器ドレン、GGHドレンの熱量については、タービン室の入熱であり、それらの熱量はボイラ出熱に計上すると共に、損失法のボイラ室効率ηb2でも「回収」として計上する。
(8) GGH drain heat Qgghd, SAH drain heat Qsahd, evaporator drain heat Qevd
The heat amounts of the SAH drain, the evaporator drain, and the GGH drain are the heat input of the turbine chamber, and the heat amount is counted as the boiler heat output, and is also counted as “recovery” even in the boiler chamber efficiency ηb2 of the loss method.
次に、以上述べた内容を集約して、最終的な燃料別「損失法のボイラ室効率ηb2」の計算式を示す。ガス火力発電所の場合の損失法のボイラ室効率ηb2を(18)式に、石油火力発電所の場合の損失法のボイラ室効率ηb2を(19)式に、石炭火力発電所の場合の損失法のボイラ室効率ηb2を(20)式に示す。 Next, the above-mentioned contents are summarized, and the final calculation formula for the “loss method boiler room efficiency ηb2” for each fuel is shown. Loss method boiler room efficiency ηb2 in the case of gas-fired power plant is given by equation (18), loss method boiler room efficiency ηb2 in case of oil-fired power plant is given by equation (19), and loss in the case of coal-fired power plant. The boiler room efficiency ηb2 of the method is shown in equation (20).
(a)ガス火力発電所
ηb2=100−(L1+L2+L3+L4+L5+L6+L7+L8
−L16+L18−L19) …(18)
(b)石油火力発電所
ηb2=100−(L1+L2+L3+L4+L5+L6+L7+L8
+L9+L11+L12−L16+L18−L19) …(19)
(c)石炭火力発電所
ηb2=100−(L1+L2+L3+L4+L5+L6+L7+L8+L10+L13
+L14+L15−L16−L17+L18−L19+L20) …(20)
L1:乾き排ガス損失、L2:燃料中水素分損失、L3:燃料中水分損失、L4:空気中湿分損失、L5:空気予熱器漏えい損失、L6:CO損失、L7:放射・伝熱損失、L8:配管損失、L9:アトマイズ蒸気損失、L10:GGH蒸気損失、L11:SAH蒸気損失、L12:蒸化器蒸気損失、L13:灰中未燃損失、L14:フライアッシュ持ち出し顕熱損失、L15:クリンカホッパ放射熱損失、L16:FDF動力回収、L17:PAF動力回収、L18:RHスプレー水損失、L19:補給水熱量回収、L20:スートブロア蒸気損失
このように、損失法でボイラ室効率を求める場合に、タービン室側から見てタービン室側への入熱はプラスとし、タービン室側からのボイラ室側への出熱はマイナスとしてボイラ室効率を計算するので、入出熱法で計算したボイラ室効率と同等となる。これにより、入出熱法で計算したボイラ室効率との比較が容易に行える。また、入出熱法によるボイラ室効率ηb1、損失法によるボイラ効率ηb2のいずれであっても、(1)式を用いて発電端効率ηpを計算し評価できる。
(A) Gas-fired power plant ηb2 = 100− (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8
-L16 + L18-L19) (18)
(B) Oil-fired power plant ηb2 = 100− (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8
+ L9 + L11 + L12-L16 + L18-L19) (19)
(C) Coal-fired power plant ηb2 = 100− (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L10 + L13
+ L14 + L15-L16-L17 + L18-L19 + L20) (20)
L1: Dry exhaust gas loss, L2: Fuel hydrogen loss, L3: Fuel moisture loss, L4: Air moisture loss, L5: Air preheater leakage loss, L6: CO loss, L7: Radiation / heat transfer loss, L8: Pipe loss, L9: Atomized steam loss, L10: GGH steam loss, L11: SAH steam loss, L12: Evaporator steam loss, L13: Unburned ash loss, L14: Fly ash sensible heat loss, L15: Clinker hopper radiant heat loss, L16: FDF power recovery, L17: PAF power recovery, L18: RH spray water loss, L19: Makeup water calorie recovery, L20: Soot blower steam loss In addition, since the heat input to the turbine chamber side when viewed from the turbine chamber side is positive and the heat output from the turbine chamber side to the boiler chamber side is negative, the boiler chamber efficiency is calculated. Equivalent to efficiency. This makes it easy to compare with the boiler room efficiency calculated by the heat input / output method. Further, the power generation end efficiency ηp can be calculated and evaluated using the equation (1) regardless of whether the boiler room efficiency ηb1 by the heat input / output method or the boiler efficiency ηb2 by the loss method.
11…ボイラ、12…火炉、13…給水ポンプ、14…過熱器、15…高圧タービン、16…再熱器、17…中圧タービン、18…低圧タービン、19…復水器
DESCRIPTION OF
Claims (5)
前記タービン室側から見て前記タービン室側への入熱はプラスとして前記ボイラへの入熱量であるとし、
前記タービン室側からのボイラ室側への出熱はマイナスとして前記ボイラの損失量とし、前記タービン室側からのボイラ室側への出熱を前記ボイラへの入熱量から減算して前記ボイラ室効率を計算することを特徴とするボイラ室効率計算方法。 The amount of heat supplied from the turbine chamber side to the boiler chamber side of the thermal power plant that generates power by guiding steam generated in the boiler to the turbine and driving the generator connected to the turbine is also input to the boiler as the boiler. In the boiler room efficiency calculation method by the loss method, which calculates the boiler room efficiency by subtracting the loss amount from the heat input amount to the boiler,
Assuming that the heat input to the turbine chamber side as seen from the turbine chamber side is a positive amount of heat input to the boiler ,
Heat output of the boiler chamber side from the turbine chamber side is a loss of the boiler as a negative, said heat output of the boiler chamber side from the turbine chamber side is subtracted from the amount of heat input to the boiler A boiler room efficiency calculation method characterized by calculating boiler room efficiency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272259A JP5720216B2 (en) | 2010-12-07 | 2010-12-07 | Boiler room efficiency calculation method and power generation end efficiency calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010272259A JP5720216B2 (en) | 2010-12-07 | 2010-12-07 | Boiler room efficiency calculation method and power generation end efficiency calculation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012122640A JP2012122640A (en) | 2012-06-28 |
JP5720216B2 true JP5720216B2 (en) | 2015-05-20 |
Family
ID=46504263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010272259A Active JP5720216B2 (en) | 2010-12-07 | 2010-12-07 | Boiler room efficiency calculation method and power generation end efficiency calculation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5720216B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103195522B (en) * | 2013-04-09 | 2015-07-15 | 上海吴泾第二发电有限责任公司 | Frequency conversion control method of circulating water pumps of two steam turbine generator sets |
JP6946060B2 (en) * | 2017-06-01 | 2021-10-06 | 三菱パワー株式会社 | Control device for coal-fired boiler |
CN107315908A (en) * | 2017-06-12 | 2017-11-03 | 中国计量大学 | A kind of coal-fired boiler combustion efficiency online rapid calculation method |
CN107464065B (en) * | 2017-08-22 | 2020-05-12 | 青岛鸿瑞电力工程咨询有限公司 | Method for calculating pipeline thermal efficiency of large-scale thermal power plant |
CN108520336B (en) | 2018-03-22 | 2019-05-10 | 西安交通大学 | A kind of coal unit peak regulation transient process coal consumption analysis method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231808A (en) * | 2006-02-28 | 2007-09-13 | Tokyo Electric Power Co Inc:The | Plant efficiency calculating device and method of thermal power generation plant |
JP2009068798A (en) * | 2007-09-14 | 2009-04-02 | Toshiba Corp | System for optimal operation of thermal power plant |
-
2010
- 2010-12-07 JP JP2010272259A patent/JP5720216B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012122640A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4917555B2 (en) | Modular oxygen fuel boiler | |
US8104283B2 (en) | Steam temperature control in a boiler system using reheater variables | |
JP5720216B2 (en) | Boiler room efficiency calculation method and power generation end efficiency calculation method | |
JP4854422B2 (en) | Control method for once-through exhaust heat recovery boiler | |
Stevanovic et al. | Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation | |
US9404393B2 (en) | Combined cycle power plant | |
RU2662257C2 (en) | Integrated system of flue gas heat utilization | |
CN207778402U (en) | The subcritical gas generating system of superhigh temperature | |
US9151185B2 (en) | Steam power plant with steam turbine extraction control | |
US7861527B2 (en) | Reheater temperature control | |
WO2013132994A1 (en) | Coal-fired thermal power plant | |
CN105953216A (en) | Temperature lowering structure for waste incineration boiler reheater | |
CN105224817B (en) | The determining method of efficiency of generating unit | |
JP6516993B2 (en) | Combined cycle plant and boiler steam cooling method | |
CN205825003U (en) | The desuperheat structure of garbage burning boiler reheater | |
JP5766527B2 (en) | Method and apparatus for controlling once-through boiler | |
CA2894371C (en) | Multi-stage duct fired heat recovery steam generator and methods of use | |
Febriani et al. | Analysis of Boiler Engine Efficiency Unit 2 PT. PJB UP Paiton | |
CN110207081A (en) | A kind of subcritical superhigh temperature reheat boiler therrmodynamic system of dry coke quenching | |
Forman et al. | Reference Case Lignite-Fired Power Station | |
NL1015730C2 (en) | Refuse burning installation is provided with steam generator, multi stage turbine, to which electrical generator is coupled, condenser and feed water reservoir | |
CN114233404A (en) | Efficient waste incineration waste heat utilization power generation system | |
CN109958486A (en) | High-efficiency refuse power generation by waste combustion system | |
JP2007327661A (en) | Exhaust heat recovery boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150309 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5720216 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |