JP5720188B2 - Combined power system - Google Patents

Combined power system Download PDF

Info

Publication number
JP5720188B2
JP5720188B2 JP2010248354A JP2010248354A JP5720188B2 JP 5720188 B2 JP5720188 B2 JP 5720188B2 JP 2010248354 A JP2010248354 A JP 2010248354A JP 2010248354 A JP2010248354 A JP 2010248354A JP 5720188 B2 JP5720188 B2 JP 5720188B2
Authority
JP
Japan
Prior art keywords
power
input
voltage
cvcf inverter
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010248354A
Other languages
Japanese (ja)
Other versions
JP2012100500A (en
Inventor
松尾 浩之
浩之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010248354A priority Critical patent/JP5720188B2/en
Publication of JP2012100500A publication Critical patent/JP2012100500A/en
Application granted granted Critical
Publication of JP5720188B2 publication Critical patent/JP5720188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、モータからの回生電力を蓄電池に充電し、交流電源の停電時や電圧低下時に蓄電池からインバータへ直流電力を放出して有効利用する電源システムの回路構成技術に関する。   The present invention relates to a circuit configuration technique for a power supply system in which regenerative electric power from a motor is charged into a storage battery, and DC power is discharged from the storage battery to an inverter when an AC power supply is interrupted or when the voltage drops.

図5に、特許技術文献1に示された従来の技術に無停電電源回路を付加した電源システムを示す。回生電力を蓄積する蓄電池から無停電の電源(制御電源)を作る従来技術は特許文献2に記載されている。   FIG. 5 shows a power supply system in which an uninterruptible power supply circuit is added to the conventional technique disclosed in Patent Document 1. Japanese Patent Application Laid-Open No. 2004-228688 discloses a conventional technique for creating an uninterruptible power supply (control power supply) from a storage battery that stores regenerative power.

交流電源ACPをAC/DCコンバータCNVで直流に変換し、コンデンサC1で平滑した後、交流電動機ACMを制御するための可変電圧・可変周波数制御のVVVFインバータINV1に供給する一般的な電動機駆動用インバータにおける回生電力活用システムである。   The AC power source ACP is converted into direct current by the AC / DC converter CNV, smoothed by the capacitor C1, and then supplied to the variable voltage / variable frequency control VVVF inverter INV1 for controlling the AC motor ACM. This is a regenerative power utilization system.

直流中間回路のコンデンサC1と並列に、ダイオードD1を逆並列接続したIGBTT1とダイオードD2を逆並列接続したIGBTT2との直列回路と、一端が前記直列回路の直列接続点に接続されたリアクトルL1とからなる第2の昇圧チョッパ回路が接続され、さらにリアクトルL1の他端とIGBTT2のエミッタとの間には蓄電池BATが接続される。ここで、蓄電池BATの電圧としては、コストパフォーマンスの観点から100V程度が選択される。   In parallel with the capacitor C1 of the DC intermediate circuit, a series circuit of IGBTTT1 in which the diode D1 is connected in antiparallel and IGBTTT2 in which the diode D2 is connected in antiparallel, and a reactor L1 having one end connected to the series connection point of the series circuit And a storage battery BAT is connected between the other end of the reactor L1 and the emitter of the IGBTTT2. Here, as the voltage of the storage battery BAT, about 100 V is selected from the viewpoint of cost performance.

また、ダイオードD3を逆並列接続したIGBTT3とダイオードD4を逆並列接続したIGBTT4との直列回路と、一端が前記直列回路の直列接続点に他端が蓄電池に各々接続されたリアクトルL2とからなる第1の昇圧チョッパ回路が、CVCFインバータINV2の直流入力及びコンデンサC2と並列に接続される。CVCFインバータINV2は蓄電池BATから無停電化された定電圧・定周波数の交流電圧を作り出す。CVCFインバータINV2の出力は、交流入力が停電した場合や電圧低下した場合にも安定な電力を要求される負荷LDに供給される。特許文献2では、蓄電池から専用のインバータで制御回路の電源を供給している。   In addition, a series circuit of an IGBTTT3 having a diode D3 connected in antiparallel and an IGBTTT4 having an antiparallel connection of a diode D4, and a reactor L2 having one end connected to the series connection point of the series circuit and the other end connected to a storage battery, respectively. One boost chopper circuit is connected in parallel with the DC input of the CVCF inverter INV2 and the capacitor C2. The CVCF inverter INV2 generates a constant voltage / constant frequency AC voltage that is uninterrupted from the storage battery BAT. The output of the CVCF inverter INV2 is supplied to a load LD that requires stable power even when the AC input fails or when the voltage drops. In patent document 2, the power supply of a control circuit is supplied from a storage battery by a dedicated inverter.

このような電源システムにおいて、電動機からの回生電力は昇降圧チョッパ2の降圧動作により、蓄電池BATに蓄積される。また、交流電源ACPが停電した時は、昇降圧チョッパ2を昇圧動作させてVVVFインバータINV1に直流電力を供給し、無停電化を達成する。   In such a power supply system, the regenerative power from the electric motor is stored in the storage battery BAT by the step-down operation of the step-up / step-down chopper 2. Further, when the AC power supply ACP fails, the step-up / step-down chopper 2 is boosted to supply DC power to the VVVF inverter INV1, thereby achieving uninterruptible operation.

このような構成における各部の電圧変動範囲は以下となる。交流電源ACPとしてAC200V系の電源に対応する場合、直流中間電圧(コンデンサC1の電圧)変動範囲は例えばDC240V〜430V程度、交流電源ACPとしてAC400V系の電源に対応する場合、例えばDC480V〜860V程度になる。また、CVCFインバータINV2の直流入力電圧は、交流出力電圧としてAC200Vを確保するため、例えばDC350V程度が選択される。
上述の電圧変動範囲に対応するための、昇降圧チョッパ回路2の昇降圧比は下記となる。
交流電源ACPがAC200V系の時、降圧動作では降圧比が0.42〜0.23、昇圧動作では約2.7となる。また、交流電源ACPがAC400V系の時、降圧動作では降圧比が約0.21〜0.12、昇圧動作では昇圧比が約5.4となる。
The voltage fluctuation range of each part in such a configuration is as follows. When the AC power source ACP corresponds to an AC 200V system power source, the DC intermediate voltage (capacitor C1 voltage) fluctuation range is, for example, about DC 240V to 430V, and when the AC power source ACP corresponds to an AC 400V system power source, for example, about DC 480V to 860V. Become. Further, the DC input voltage of the CVCF inverter INV2 is selected to be, for example, about DC 350V in order to ensure AC 200V as the AC output voltage.
The step-up / step-down ratio of the step-up / step-down chopper circuit 2 corresponding to the above-described voltage fluctuation range is as follows.
When the AC power supply ACP is an AC 200V system, the step-down ratio is 0.42 to 0.23 in the step-down operation, and about 2.7 in the step-up operation. When the AC power supply ACP is an AC 400V system, the step-down ratio is about 0.21 to 0.12 in the step-down operation, and the step-up ratio is about 5.4 in the step-up operation.

特開2004−289950号公報JP 2004-289950 A 特開平7−232872号公報JP-A-7-232872

上述のように、半導体素子として2アーム入りのモジュールを使用する場合、降圧比が0.5程度、昇圧比が2程度が発生損失を各アームでバランスさせるのに適しており、コスト、冷却装置の小型化などの点で有利である。本発明が対象とする電源システムでは、蓄電池電圧は交流電源ACPの電圧に依存せず、コストの制約からDC100V程度に選択される。このため、従来回路では、交流電源電圧がAC400V系の場合、降圧比が約0.21〜0.12と小さく、かつ昇圧比が約5.4と大きく、昇降圧チョッパ回路の特定の半導体素子を大型化する必要がある。また、発生損失が特定の素子に偏り、半導体素子と冷却装置が大型で、電源装置が高価格となる。従って、本発明の課題は、交流電源電圧がAC400V系でも、小型化、低損失化が図れる電源システムを提供することである。   As described above, when a module with two arms is used as a semiconductor element, a step-down ratio of about 0.5 and a step-up ratio of about 2 are suitable for balancing the generated loss in each arm, and the cost, cooling device This is advantageous in terms of downsizing. In the power supply system targeted by the present invention, the storage battery voltage does not depend on the voltage of the AC power supply ACP, and is selected to be about DC 100 V due to cost restrictions. For this reason, in the conventional circuit, when the AC power supply voltage is 400V AC, the step-down ratio is as small as about 0.21 to 0.12, and the step-up ratio is as large as about 5.4. Need to be enlarged. Further, the generated loss is biased toward a specific element, the semiconductor element and the cooling device are large, and the power supply device is expensive. Accordingly, an object of the present invention is to provide a power supply system that can be reduced in size and reduced in loss even when the AC power supply voltage is AC400V.

上述の課題を解決するために、第の発明においては、交流入力を直流に変換するコンバータと、この直流を平滑する直流中間コンデンサと、この直流を可変電圧・可変周波数の交流に変換し負荷に供給するVVVFインバータと、負荷からの回生電力を蓄電する蓄電手段と、前記蓄電手段から無停電化された定電圧・定周波数の交流電圧を作り出すCVCFインバータとを有する電源システムにおいて、前記CVCFインバータの直流入力間に接続したそれぞれダイオードを逆並列接続した第1及び第2の半導体スイッチ同士を直列接続した第1の半導体スイッチ直列回路と、前記第1の半導体スイッチ直列回路内部の直列接続点に一端を、前記蓄電手段の一方の端子に他端を、各々接続した第1のリアクトルとからなる第の昇降圧チョッパと、前記直流中間コンデンサの正極と負極との間に接続したそれぞれダイオードを逆並列接続した第3及び第4の半導体スイッチ同士を直列接続した第2の半導体スイッチ直列回路と前記第2の半導体スイッチ直列回路内部の直列接続点に一端を、前記CVCFインバータの直流入力の一方の端子に他端を、各々接続した第2のリアクトルとからなる第2の昇降圧チョッパと、を備え、前記直流中間コンデンサに蓄積された前記負荷からの回生電力を前記第2の昇降圧チョッパで降圧して前記CVCFインバータの直流入力に放電し、さらにこの放電した電力を前記第1の昇降圧チョッパで降圧して前記蓄電手段に充電し、前記交流入力停電時又は電圧低下時、前記蓄電手段の電力を前記第1の昇降圧チョッパで昇圧して前記CVCFインバータの直流入力に供給し、さらにこの供給された電力を前記第2の昇降圧チョッパで昇圧して前記直流中間コンデンサに供給する。 In order to solve the above-mentioned problem, in the first invention, a converter for converting an alternating current input into a direct current, a direct current intermediate capacitor for smoothing the direct current, and converting the direct current into an alternating current of variable voltage / variable frequency to load A power supply system comprising: a VVVF inverter for supplying power to the power supply; a power storage means for storing regenerative power from a load; and a CVCF inverter for generating an uninterruptible constant voltage / constant frequency AC voltage from the power storage means. A first semiconductor switch series circuit in which first and second semiconductor switches connected in reverse parallel to each other connected between the DC inputs of the first and second semiconductor switches are connected in series; and a series connection point inside the first semiconductor switch series circuit. one end, a first buck Cho consisting either the other end to a terminal of said electrical storage means, the first reactor were each connected And a second semiconductor switch series circuit in which third and fourth semiconductor switches, each of which is connected in reverse parallel to each other and connected between the positive electrode and the negative electrode of the DC intermediate capacitor, are connected in series, and the second semiconductor one end to the series connection point of the internal switch series circuit, the other end to one terminal of the DC input of the CVCF inverter, includes a second buck-boost chopper comprising a second reactor which is connected respectively, wherein the DC The regenerative power stored in the intermediate capacitor from the load is stepped down by the second step-up / step-down chopper and discharged to the DC input of the CVCF inverter, and the discharged power is stepped down by the first step-up / step-down chopper. The power storage means is charged, and when the AC input power failure or voltage drop occurs, the power of the power storage means is boosted by the first step-up / step-down chopper and the CVCF current is increased. Was supplied to the DC input of the inverter, you still supplies the supplied power to the DC intermediate capacitor is boosted by the second buck-boost chopper.

第2の発明においては、第の発明における前記第2の昇降圧チョッパのリアクトルの他端を前記CVCFインバータの直流入力の一方の端子又は前記蓄電手段の一方の端子に接続変更する接続変更手段を備える。 In the second invention, the connection changing means for changing the connection of the other end of the reactor of the second step-up / step-down chopper in the first invention to one terminal of the DC input of the CVCF inverter or one terminal of the power storage means. Is provided.

第3の発明においては、第又は第2の発明における前記CVCFインバータの交流出力から制御回路の電源を得る。 In the third invention, the power supply of the control circuit is obtained from the AC output of the CVCF inverter in the first or second invention.

本発明では、交流電源の電圧が高い(例えば400V)場合、電動機からの回生電力を第2の昇降圧チョッパで一端CVCFインバータの直流入力に放電し、この放電した電力を第1の昇降圧チョッパで蓄電手段に充電する。また、交流電源が停電した時や電圧低下した時には、蓄電手段から第1の昇降圧チョッパでCVCFインバータの直流入力へ放電し、この直流電力を第2の昇降圧チョッパで直流中間コンデンサへ放出する構成としている。   In the present invention, when the voltage of the AC power supply is high (for example, 400 V), the regenerative power from the motor is discharged to the DC input of the CVCF inverter at one end by the second step-up / step-down chopper, and the discharged power is discharged to the first step-up / step-down chopper. To charge the storage means. Further, when the AC power supply fails or voltage drops, the power storage means discharges to the DC input of the CVCF inverter with the first step-up / step-down chopper and discharges the DC power to the DC intermediate capacitor with the second step-up / step-down chopper. It is configured.

この結果、従来に比べて、第2の昇降圧チョッパの降圧比を、より0.5に近い値に、昇圧比を、より2に近い値にすることが可能で、チョッパ回路を構成する半導体素子の発生損失を分散させることが可能となり、半導体素子と冷却装置の小型化と低コスト化が可能となる。   As a result, the step-down ratio of the second step-up / step-down chopper can be made closer to 0.5 and the step-up ratio can be made closer to 2, compared to the conventional case, and the semiconductor constituting the chopper circuit. It is possible to disperse the generated loss of the element, and the semiconductor element and the cooling device can be reduced in size and cost.

本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 本発明の第2の実施例を示す回路図である。It is a circuit diagram which shows the 2nd Example of this invention. 本発明の第3の実施例を示す回路図である。It is a circuit diagram which shows the 3rd Example of this invention. 本発明の第4の実施例を示す回路図である。It is a circuit diagram which shows the 4th Example of this invention. 従来例を示す回路図である。It is a circuit diagram which shows a prior art example.

本発明の要点は、交流電源の電圧が高い(例えば400V)場合、電動機からの回生電力を第2の昇降圧チョッパで一旦CVCFインバータの直流入力に放電し、この放電した電力を第1の昇降圧チョッパで蓄電手段に充電する。また、交流電源が停電した時や電圧が低下した時には、蓄電手段から第1の昇降圧チョッパでCVCFインバータの直流入力へ放電し、この直流電力を第2の昇降圧チョッパで直流中間コンデンサへ放出する点である。   The main point of the present invention is that when the voltage of the AC power supply is high (for example, 400V), the regenerative power from the motor is discharged to the DC input of the CVCF inverter once by the second step-up / down chopper, and this discharged power is first raised / lowered. Charge the power storage means with a pressure chopper. Also, when the AC power supply fails or when the voltage drops, the power storage means discharges to the DC input of the CVCF inverter with the first buck-boost chopper and discharges this DC power to the DC intermediate capacitor with the second buck-boost chopper. It is a point to do.

図1に、本発明の第の実施例を示す。交流電源ACPの交流をAC/DCコンバータCNVで直流に変換し、コンデンサC1で平滑した後、電動機ACMを制御するための可変電圧・可変周波数制御のVVVFインバータINV1に供給する一般的な電動機駆動用インバータにおける回生電力活用システムである。 Figure 1 shows a first embodiment of the present invention. The AC power source ACP is converted into direct current by an AC / DC converter CNV, smoothed by a capacitor C1, and then supplied to a variable voltage / variable frequency control VVVF inverter INV1 for controlling the motor ACM. This is a regenerative power utilization system in an inverter.

直流中間回路のコンデンサC1と並列に、ダイオードD1を逆並列接続したIGBTT1とダイオードD2を逆並列接続したIGBTT2との直列回路と、一端が前記直列回路内部の直列接続点に接続されたリアクトルL1とからなる第2の昇降圧チョッパ回路が接続され、さらにリアクトルL1の他端はCVCFインバータINV2の直流入力コンデンサC2の正極に接続される。   In parallel with the capacitor C1 of the DC intermediate circuit, a series circuit of IGBTTT1 in which the diode D1 is connected in antiparallel and IGBTTT2 in which the diode D2 is connected in antiparallel, and a reactor L1 having one end connected to a series connection point inside the series circuit, And the other end of the reactor L1 is connected to the positive electrode of the DC input capacitor C2 of the CVCF inverter INV2.

また、ダイオードD3を逆並列接続したIGBTT3とダイオードD4を逆並列接続したIGBTT4との直列回路と、一端が前記直列回路内部の直列接続点に他端が蓄電池に各々接続されたリアクトルL2とからなる第1の昇圧チョッパ回路が、CVCFインバータINV2の直流入力及びコンデンサC2と並列に接続される。CVCFインバータINV2は蓄電池BATから無停電化された定電圧・定周波数の交流電圧を作り出す。CVCFインバータINV2の出力は、交流入力が停電した場合や電圧低下した場合にも安定な電力を要求される負荷LDに供給される。   Moreover, it consists of a series circuit of IGBTTT3 which connected the diode D3 in antiparallel and IGBTTT4 which connected the diode D4 in antiparallel, and a reactor L2 in which one end is connected to the series connection point inside the series circuit and the other end is connected to the storage battery. A first boost chopper circuit is connected in parallel with the DC input of the CVCF inverter INV2 and the capacitor C2. The CVCF inverter INV2 generates a constant voltage / constant frequency AC voltage that is uninterrupted from the storage battery BAT. The output of the CVCF inverter INV2 is supplied to a load LD that requires stable power even when the AC input fails or when the voltage drops.

このような電源システムにおいて、電動機からの回生電力は昇降圧チョッパ2の降圧動作により、CVCFインバータINV2の直流入力のコンデンサC2に放出され、さらに昇降圧チョッパ1の降圧動作により、蓄電池BATに充電される。ここで、蓄電池BATの電圧としては、コストパフォーマンスの観点から100V程度が選択される。また、交流電源ACPが停電或いは電圧低下した時は、昇降圧チョッパ1を昇圧動作させて蓄電池BATからCVCFインバータINV2の直流入力コンデンサC2を充電し、さらに昇圧チョッパ2を昇圧動作させて、直流中間コンデンサC1に直流電力を供給し、無停電化を達成する。   In such a power supply system, the regenerative power from the motor is discharged to the DC input capacitor C2 of the CVCF inverter INV2 by the step-down operation of the step-up / step-down chopper 2, and further charged to the storage battery BAT by the step-down operation of the step-up / step-down chopper 1. The Here, as the voltage of the storage battery BAT, about 100 V is selected from the viewpoint of cost performance. When the AC power supply ACP is out of power or voltage drop, the step-up / step-down chopper 1 is boosted to charge the DC input capacitor C2 of the CVCF inverter INV2 from the storage battery BAT, and the boost chopper 2 is further boosted to DC power is supplied to the capacitor C1, and uninterruptible power is achieved.

このような構成における各部の電圧変動範囲は以下となる。交流電源ACPとしてAC400V系の電源に対応する場合、直流中間コンデンサC1の電圧変動範囲は例えばDC480V〜860V程度になる。また、CVCFインバータINV2の直流入力電圧は、交流出力電圧としてAC200Vを確保するため、例えばDC350V程度が選択される。
上述の電圧変動範囲に対応するための、昇降圧チョッパ回路2の昇降圧比は下記となる。
降圧動作では降圧比が約0.72〜0.41、昇圧動作では昇圧比が約1.54となる。
従来例では、降圧比が0.21〜0.12であったが、本実施例では0.72〜0.41で、より0.5に近い値であり、半導体素子の発生損失を分散させることができる。
また、昇圧比は従来例では5.4であったが、本実施例では1.54であり、より2に近い値となり、半導体素子の発生損失を分散させることができる。
The voltage fluctuation range of each part in such a configuration is as follows. When the AC power source ACP corresponds to an AC 400V system power source, the voltage fluctuation range of the DC intermediate capacitor C1 is, for example, about DC 480V to 860V. Further, the DC input voltage of the CVCF inverter INV2 is selected to be, for example, about DC 350V in order to ensure AC 200V as the AC output voltage.
The step-up / step-down ratio of the step-up / step-down chopper circuit 2 corresponding to the above-described voltage fluctuation range is as follows.
In step-down operation, the step-down ratio is about 0.72 to 0.41, and in step-up operation, the step-up ratio is about 1.54.
In the conventional example, the step-down ratio is 0.21 to 0.12, but in this example, it is 0.72 to 0.41, which is a value closer to 0.5 and disperses the generated loss of the semiconductor element. be able to.
Further, the step-up ratio was 5.4 in the conventional example, but in this embodiment, it is 1.54, which is closer to 2, and the generated loss of the semiconductor element can be dispersed.

図2に、本発明の第2の実施例を示す。第1の実施例との違いは、昇降圧チョッパ2のダイオードD1を逆並列接続したIGBTT1とダイオードD2を逆並列接続したIGBTT2との直列回路と、一端が前記直列回路内部の直列接続点に接続されたリアクトルL1の他端をCVCFインバータの直流入力の正極又は蓄電池BATの正極に切替えるための切替器S1が接続されている点である。この構成例は、運転開始前に交流電源ACPの電圧を検出し、交流電源電圧が200V系の場合には切替器を蓄電池BATの正極側に、400V系の場合にはCVCFインバータの直流入力の正極側に、各々切替える例である。CVCFインバータの直流入力の正極及び蓄電池BATの正極に構造的に端子を設けて、別の切替手段を接続しても同様の機能を達成できる。   FIG. 2 shows a second embodiment of the present invention. The difference from the first embodiment is that a series circuit of IGBTTT1 in which the diode D1 of the buck-boost chopper 2 is connected in antiparallel and IGBTTT2 in which the diode D2 is connected in antiparallel, and one end connected to the series connection point inside the series circuit. A switch S1 for switching the other end of the reactor L1 to the positive electrode of the DC input of the CVCF inverter or the positive electrode of the storage battery BAT is connected. In this configuration example, the voltage of the AC power supply ACP is detected before the operation is started, and when the AC power supply voltage is 200V system, the switch is connected to the positive side of the storage battery BAT, and in the case of 400V system, the DC input of the CVCF inverter is connected. This is an example of switching to the positive electrode side. The same function can be achieved even if a terminal is structurally provided on the positive electrode of the DC input of the CVCF inverter and the positive electrode of the storage battery BAT, and another switching means is connected.

図3に、本発明の第3の実施例を示す。第1の実施例は蓄電池の負極をCVCFインバータの直流入力の負極及びVVVFインバータの直流中間電圧の負極に、各々接続した場合の構成であるが、本実施例は蓄電池の正極をCVCFインバータの直流入力の正極及びVVVFインバータの直流中間電圧の正極に接続した場合の構成である。リアクトルL2はIGBTT3とT4の直列接続点と蓄電池BATの負極端子間に、リアクトルL1はIGBTT1とT2の直列接続点とCVCFインバータ直流入力の負極との間に、各々接続される。   FIG. 3 shows a third embodiment of the present invention. The first embodiment has a configuration in which the negative electrode of the storage battery is connected to the negative electrode of the DC input of the CVCF inverter and the negative electrode of the DC intermediate voltage of the VVVF inverter. In this embodiment, the positive electrode of the storage battery is connected to the DC of the CVCF inverter. This is a configuration in the case of being connected to the positive electrode of the input and the positive electrode of the DC intermediate voltage of the VVVF inverter. Reactor L2 is connected between the series connection point of IGBTTT3 and T4 and the negative electrode terminal of storage battery BAT, and reactor L1 is connected between the series connection point of IGBTTT1 and T2 and the negative electrode of the CVCF inverter DC input.

第1の実施例では、降圧動作では第2の昇降圧チョッパではIGBTT1が、第1の昇降圧チョッパではIGBTT3がオンオフ制御しているが、本発明の構成では、各々IGBTT2又はIGBTT4がオンオフ制御する点が違う。その他の動作は第1の実施例と同様である。   In the first embodiment, in the step-down operation, the IGBTTT1 is controlled in the second step-up / step-down chopper, and the IGBTTT3 is controlled in the first step-up / step-down chopper. The point is different. Other operations are the same as those in the first embodiment.

図4に、本発明の第4の実施例を示す。第2の実施例に第3の実施例を付加した構成である。第2の実施例は蓄電池の負極をCVCFインバータの直流入力の負極及びVVVFインバータの直流中間電圧の負極に、各々接続した場合の構成であるが、本実施例は蓄電池の正極をCVCFインバータの直流入力の正極及びVVVFインバータの直流中間電圧の正極に接続した場合の構成である。一端がIGBTT1とT2の直列接続点接続されたリアクトルL1は切替器S1を介して蓄電池BATの負極又はCVCFインバータ直流入力の負極に切替えることができる。第2の実施例では、降圧動作では第2の昇降圧チョッパではIGBTT1が、第2の昇降圧チョッパではIGBTT3がオンオフ制御しているが、本発明の構成では、各々IGBTT2又はIGBTT4がオンオフ制御する点が違う。
この構成例は、運転開始前に交流電源ACPの電圧を検出し、交流電源電圧が200V系の場合には切替器を蓄電池BATの負極側に、400V系の場合にはCVCFインバータの直流入力の負極側に、切替える例である。
尚、上記実施例には、蓄電手段として蓄電池を用いた例を示したが、蓄電池の代わりに大容量のキャパシタなどでも実現可能である。
FIG. 4 shows a fourth embodiment of the present invention. In this configuration, the third embodiment is added to the second embodiment. The second embodiment has a configuration in which the negative electrode of the storage battery is connected to the negative electrode of the DC input of the CVCF inverter and the negative electrode of the DC intermediate voltage of the VVVF inverter. In this embodiment, the positive electrode of the storage battery is connected to the DC of the CVCF inverter. This is a configuration in the case of being connected to the positive electrode of the input and the positive electrode of the DC intermediate voltage of the VVVF inverter. The reactor L1, one end of which is connected to the series connection point of IGBTTT1 and T2, can be switched to the negative electrode of the storage battery BAT or the negative electrode of the CVCF inverter DC input via the switch S1. In the second embodiment, in the step-down operation, the IGBTTT1 is controlled in the second buck-boost chopper, and the IGBTTT3 is controlled in the second buck-boost chopper. The point is different.
In this configuration example, the voltage of the AC power supply ACP is detected before the operation is started, and when the AC power supply voltage is 200V system, the switch is connected to the negative side of the storage battery BAT, and in the case of 400V system, the DC input of the CVCF inverter is connected. This is an example of switching to the negative electrode side.
In addition, although the example which used the storage battery as an electrical storage means was shown in the said Example, it is realizable also with a large capacity capacitor etc. instead of a storage battery.

本発明は、交流電源の入力電圧対応範囲が広く要求される場合の電動機回生電力の有効活用に関する発明であり、力行、回生を頻繁に繰り返す電動機駆動装置、無停電化の必要な電動機駆動装置などへの適用が可能である。   The present invention is an invention related to the effective use of electric motor regenerative power when the input voltage corresponding range of an AC power supply is widely required. Application to is possible.

ACP・・・交流電源 ACM・・・交流電動機 LD・・・負荷
BAT・・・蓄電池 CNV・・・AC/DCコンバータ
INV1・・・VVVFインバータ INV2・・・CVCFインバータ
S1・・・切替スイッチ L1、L2・・・リアクトル
T1〜T4・・・IGBT D1〜D4ダイオード
C1、C2・・・コンデンサ CNT・・・制御装置
ACP ... AC power supply ACM ... AC motor LD ... Load BAT ... Storage battery CNV ... AC / DC converter INV1 ... VVVF inverter INV2 ... CVCF inverter S1 ... Changeover switch L1, L2: Reactor T1-T4 ... IGBT D1-D4 Diode C1, C2 ... Capacitor CNT ... Control device

Claims (3)

交流入力を直流に変換するコンバータと、この直流を平滑する直流中間コンデンサと、この直流を可変電圧・可変周波数の交流に変換し負荷に供給するVVVFインバータと、負荷からの回生電力を蓄電する蓄電手段と、前記蓄電手段から無停電化された定電圧・定周波数の交流電圧を作り出すCVCFインバータとを有する電源システムにおいて、
前記CVCFインバータの直流入力間に接続したそれぞれダイオードを逆並列接続した第1及び第2の半導体スイッチ同士を直列接続した第1の半導体スイッチ直列回路と、前記第1の半導体スイッチ直列回路内部の直列接続点に一端を、前記蓄電手段の一方の端子に他端を、各々接続した第1のリアクトルとからなる第の昇降圧チョッパと、前記直流中間コンデンサの正極と負極との間に接続したそれぞれダイオードを逆並列接続した第3及び第4の半導体スイッチ同士を直列接続した第2の半導体スイッチ直列回路と前記第2の半導体スイッチ直列回路内部の直列接続点に一端を、前記CVCFインバータの直流入力の一方の端子に他端を、各々接続した第2のリアクトルとからなる第2の昇降圧チョッパと、を備え、前記直流中間コンデンサに蓄積された前記負荷からの回生電力を前記第2の昇降圧チョッパで降圧して前記CVCFインバータの直流入力に放電し、さらにこの放電した電力を前記第1の昇降圧チョッパで降圧して前記蓄電手段に充電し、前記交流入力停電時又は電圧低下時、前記蓄電手段の電力を前記第1の昇降圧チョッパで昇圧して前記CVCFインバータの直流入力に供給し、さらにこの供給された電力を前記第2の昇降圧チョッパで昇圧して前記直流中間コンデンサに供給することを特徴とする電源システム。
A converter that converts AC input into DC, a DC intermediate capacitor that smoothes the DC, a VVVF inverter that converts the DC into AC of variable voltage / variable frequency and supplies the AC to a load, and an electric storage that stores regenerative power from the load And a CVCF inverter that generates an AC voltage having a constant voltage and a constant frequency that is uninterrupted from the power storage means,
A first semiconductor switch series circuit in which first and second semiconductor switches connected in reverse parallel to each other and connected between DC inputs of the CVCF inverter are connected in series, and a series in the first semiconductor switch series circuit. One end is connected to the connection point, and the other end is connected to one terminal of the power storage unit, and the first step-up / step-down chopper including the first reactor connected to each other is connected between the positive and negative electrodes of the DC intermediate capacitor. One end is connected to a series connection point in the second semiconductor switch series circuit in which the third and fourth semiconductor switches each having a diode connected in antiparallel are connected in series, and the direct current of the CVCF inverter the other end to one terminal of the input comprises a second buck-boost chopper comprising a second reactor which is connected respectively, wherein the DC intermediate co The regenerative power accumulated in the loader from the load is stepped down by the second step-up / step-down chopper and discharged to the DC input of the CVCF inverter, and the discharged power is stepped down by the first step-up / step-down chopper. The power storage means is charged, and at the time of the AC input power failure or voltage drop, the power of the power storage means is boosted by the first step-up / step-down chopper and supplied to the DC input of the CVCF inverter, and the supplied power Is boosted by the second step-up / step-down chopper and supplied to the DC intermediate capacitor .
前記第2の昇降圧チョッパの第2のリアクトルの他端を前記CVCFインバータの直流入力の一方の端子又は前記蓄電手段の一方の端子に接続変更する接続変更手段を備えることを特徴とする請求項1に記載の電源システム。   A connection changing means for changing the connection of the other end of the second reactor of the second step-up / step-down chopper to one terminal of the DC input of the CVCF inverter or one terminal of the power storage means is provided. The power supply system according to 1. 前記CVCFインバータの交流出力から制御回路の電源を得ることを特徴とする請求項1又は2に記載の電源システム。
The power supply system according to claim 1 or 2, wherein a power supply of a control circuit is obtained from an AC output of the CVCF inverter.
JP2010248354A 2010-11-05 2010-11-05 Combined power system Active JP5720188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248354A JP5720188B2 (en) 2010-11-05 2010-11-05 Combined power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248354A JP5720188B2 (en) 2010-11-05 2010-11-05 Combined power system

Publications (2)

Publication Number Publication Date
JP2012100500A JP2012100500A (en) 2012-05-24
JP5720188B2 true JP5720188B2 (en) 2015-05-20

Family

ID=46391760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248354A Active JP5720188B2 (en) 2010-11-05 2010-11-05 Combined power system

Country Status (1)

Country Link
JP (1) JP5720188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911263B1 (en) * 2017-02-08 2018-10-24 엘지전자 주식회사 Power transforming apparatus and air conditioner including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07123515A (en) * 1993-10-29 1995-05-12 Aisin Seiki Co Ltd Controller for electric automobile
JP2005112598A (en) * 2003-10-10 2005-04-28 Meidensha Corp Control power supply device for controlling elevator
JP4701821B2 (en) * 2005-05-02 2011-06-15 トヨタ自動車株式会社 Load driving device and vehicle equipped with the same
JP2007082375A (en) * 2005-09-16 2007-03-29 Toyota Motor Corp Power supply device for vehicles
JP2008206317A (en) * 2007-02-20 2008-09-04 Institute Of National Colleges Of Technology Japan High-voltage power supply circuit
JP4978354B2 (en) * 2007-07-17 2012-07-18 株式会社明電舎 DC power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911263B1 (en) * 2017-02-08 2018-10-24 엘지전자 주식회사 Power transforming apparatus and air conditioner including the same

Also Published As

Publication number Publication date
JP2012100500A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5250915B2 (en) Control device for transformer coupled booster
KR101553747B1 (en) Inverter-charger combined device for electric vehicles
JP5082339B2 (en) Power converter
JP2016149921A (en) Charging system of electric automobile
JP2007236064A (en) Energy storage device
JP2009095149A (en) Direct ac-ac power converter
JP5556258B2 (en) Uninterruptible power system
JP2014099986A (en) Composite power storage system
TWI291282B (en) Power converter
KR20160128942A (en) Dual Battery Package and Operating Method of the Same
JP4626259B2 (en) Power converter control method
JP5720188B2 (en) Combined power system
De Caro et al. Low input current ripple converters for fuel cell power units
JP4370965B2 (en) Power converter
JP5701595B2 (en) Grid connection device
JP5332214B2 (en) Motor drive device
JP5941084B2 (en) Power system
Sreeshobha et al. Performance analysis and comparison of PI controller and ANN controller of bidirectional DC/DC converter for hybrid ElectricVehicle system
JP2011211797A (en) Step-up dc-dc converter
JP2004236384A (en) Power supply system for fuel cell vehicle
JP5452782B1 (en) Drive device
Srinithi et al. Symmetric multilevel inverter using DC-DC zeta converter
JP5664251B2 (en) Power supply stabilization device and power supply stabilization device control method
JP4411436B2 (en) Soft switching circuit for bidirectional DC-DC converter
JP2016077102A (en) Bidirectional dc-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150309

R150 Certificate of patent or registration of utility model

Ref document number: 5720188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250