JP5718219B2 - Vibration sensor - Google Patents

Vibration sensor Download PDF

Info

Publication number
JP5718219B2
JP5718219B2 JP2011283581A JP2011283581A JP5718219B2 JP 5718219 B2 JP5718219 B2 JP 5718219B2 JP 2011283581 A JP2011283581 A JP 2011283581A JP 2011283581 A JP2011283581 A JP 2011283581A JP 5718219 B2 JP5718219 B2 JP 5718219B2
Authority
JP
Japan
Prior art keywords
vibration sensor
support
movable electrode
spring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011283581A
Other languages
Japanese (ja)
Other versions
JP2013134108A (en
Inventor
島村 俊重
俊重 島村
森村 浩季
浩季 森村
原田 充
充 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011283581A priority Critical patent/JP5718219B2/en
Publication of JP2013134108A publication Critical patent/JP2013134108A/en
Application granted granted Critical
Publication of JP5718219B2 publication Critical patent/JP5718219B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、可動構造体に発生する容量変化によって振動を検知する振動センサに関する。   The present invention relates to a vibration sensor that detects vibration by a change in capacitance generated in a movable structure.

図9は、振動検知を行うセンサノードシステムの構成例を示す(特許文献1)。
図9において、センサノードシステムは、振動センサノード50と受信装置60で構成される。振動センサノード50で検知した振動検知データは、無線電波を介して受信装置60に送信される。無線電波は、比較的微弱な無線信号であり、数十cmから数十m離れた距離を通信できる。
FIG. 9 shows a configuration example of a sensor node system that performs vibration detection (Patent Document 1).
In FIG. 9, the sensor node system includes a vibration sensor node 50 and a receiving device 60. The vibration detection data detected by the vibration sensor node 50 is transmitted to the receiving device 60 via a radio wave. A radio wave is a relatively weak radio signal and can communicate over a distance of several tens of centimeters to several tens of meters.

振動センサノード50は、振動センサ51、センサ回路部52、A/D変換部53、制御部54、メモリ部55、無線部56、および電源部57により構成され、電源部57から各ブロックへ電力が供給される。電源部57は、例えば振動エネルギーを電気エネルギーに変換する発電機構や2次電池等で構成されており、長時間の動作が可能になっている。   The vibration sensor node 50 includes a vibration sensor 51, a sensor circuit unit 52, an A / D conversion unit 53, a control unit 54, a memory unit 55, a wireless unit 56, and a power supply unit 57. Power is supplied from the power supply unit 57 to each block. Is supplied. The power supply unit 57 includes, for example, a power generation mechanism that converts vibration energy into electric energy, a secondary battery, and the like, and can operate for a long time.

振動センサ51で得られた差動の電圧信号は、センサ回路部52で差動検出された後、後段のA/D変換部53でA/D変換され、制御部54でデータ処理された振動検知データがメモリ部55に保存される。その後、振動検知データは、所定のタイミングでメモリ部55から読み出され、無線部56から無線電波により受信装置60へ送信される。   The differential voltage signal obtained by the vibration sensor 51 is differentially detected by the sensor circuit unit 52, then A / D converted by the A / D conversion unit 53 in the subsequent stage, and data processed by the control unit 54 Detection data is stored in the memory unit 55. Thereafter, the vibration detection data is read from the memory unit 55 at a predetermined timing, and transmitted from the wireless unit 56 to the receiving device 60 by wireless radio waves.

図10は、従来の振動センサ51の構成例を示す。
図10において、振動センサ51は、MEMS(Micro Electro Mechanical System )プロセスなどの微細加工技術により、支持基板510上に構成された2つの固定電極51P,51Nの間で、バネ511を介して支柱512に支持された可動電極51Mが振動する構成である。このような振動センサ51に対して外部から振動が加わり、可動電極51Mが固定電極51P,51Nの間で揺れた場合、可動電極51Mと固定電極51Pの距離と、可動電極51Mと固定電極51Nの距離が差動的に変化する。ここで、金属からなるバネ511および支柱512を介して可動電極51Mは接地電位GNDに接続されている。このため、可動電極51Mと固定電極51Pとの間に生じる容量CPと、可動電極51Mと固定電極51Nとの間に生じる容量CNは、互いに差動的に変化する。したがって、振動に伴う可変容量CP,CNから得られる逆位相の検知信号をセンサ回路部52に入力し、整流して容量素子に充電することにより、外部振動の大きさに応じて変化するセンサ出力電圧を得ることができる。
FIG. 10 shows a configuration example of a conventional vibration sensor 51.
In FIG. 10, the vibration sensor 51 includes a support column 512 via a spring 511 between two fixed electrodes 51 </ b> P and 51 </ b> N formed on a support substrate 510 by a microfabrication technique such as a MEMS (Micro Electro Mechanical System) process. The movable electrode 51M supported by the oscillating member vibrates. When vibration is applied to the vibration sensor 51 from the outside and the movable electrode 51M swings between the fixed electrodes 51P and 51N, the distance between the movable electrode 51M and the fixed electrode 51P, and the distance between the movable electrode 51M and the fixed electrode 51N. The distance changes differentially. Here, the movable electrode 51M is connected to the ground potential GND through a metal spring 511 and a support column 512. For this reason, the capacitance CP generated between the movable electrode 51M and the fixed electrode 51P and the capacitance CN generated between the movable electrode 51M and the fixed electrode 51N change differentially. Therefore, the sensor output which changes according to the magnitude | size of an external vibration by inputting into the sensor circuit part 52 the detection signal of the reverse phase obtained from variable capacity | capacitance CP and CN accompanying vibration, and rectifying and charging a capacitive element. A voltage can be obtained.

特開2011−160612号公報JP 2011-160612 A

従来の振動センサ51の固定電極51P,51Nは、金属薄板をL型に折り曲げ加工して支持基板510上に固定され、半田付けなどにより配線パターンに接続される。可動電極51Mとバネ511は、金属薄板を材料としてエッチング加工や打ち抜き加工して一体に形成した後、可動電極51Mの端部のうち、固定電極51P,51Nと対向する端部を曲げ加工し、下方へ壁状に突出した縁部を形成する。支柱512は、金属柱を支持基板510上に立設して配線パターンに接続し、その上部にバネ511の一端を半田付けなどにより固定する。   The fixed electrodes 51P and 51N of the conventional vibration sensor 51 are fixed on the support substrate 510 by bending a thin metal plate into an L shape and connected to the wiring pattern by soldering or the like. The movable electrode 51M and the spring 511 are integrally formed by etching or punching using a metal thin plate as a material, and then bending the end of the movable electrode 51M facing the fixed electrodes 51P and 51N, An edge that protrudes downward in a wall shape is formed. The column 512 is provided with a metal column standing on the support substrate 510 and connected to the wiring pattern, and one end of the spring 511 is fixed to the upper portion thereof by soldering or the like.

このように、振動センサ51は金属薄板を加工して形成した各構成部品を支持基板510上で組み立てることができるので、製造工程にメッキプロセスを必要とせず、短時間で安価に製造することができる。しかし、固定電極51P,51Nや支柱512を支持基板510に接着する際に位置合せが困難であった。そのため、可動電極51Mが固定電極51P,51Nに接触せずに可動できる範囲が減少し、可動構造体に生じる容量変化も減少する要因になっていた。   Thus, since the vibration sensor 51 can assemble each component formed by processing a thin metal plate on the support substrate 510, the manufacturing process does not require a plating process and can be manufactured at a low cost in a short time. it can. However, when the fixed electrodes 51P and 51N and the support column 512 are bonded to the support substrate 510, alignment is difficult. For this reason, the range in which the movable electrode 51M can move without contacting the fixed electrodes 51P and 51N is reduced, and the capacitance change generated in the movable structure is also a factor.

本発明は、金属薄板から形成される固定電極と可動電極を精度よく位置決めし、振動により可動構造体に生じる容量変化を 100フェムトファラッド以上確保することができる振動センサを提供することを目的とする。   It is an object of the present invention to provide a vibration sensor capable of accurately positioning a fixed electrode and a movable electrode formed of a thin metal plate and ensuring a capacitance change caused in the movable structure by vibration by 100 femtofarads or more. .

本発明は、支持基板に固定される固定電極および支柱と、当該支柱にバネを介して支持される可動電極とを備え、外部振動に伴う可動電極の変位により固定電極との間の静電容量が変位する振動センサにおいて、可動電極、バネ、および棒状の突起部を有する支柱が一体形成された部材と、棒状の突起部を有する固定電極が形成された部材とをそれぞれ所定の厚さの金属薄板で構成し、支柱に対して可動電極およびバネを一体で折り曲げ加工した後に、支柱および固定電極の突起部を支持基板上に形成された穴部に挿入して組み立てた構成であり、バネの付け根となる可動電極および支柱の位置に、バネの延長線上にそれぞれL字型の切り込みを形成し、当該切り込み部を折り曲げてバネが形成された構成であるThe present invention includes a fixed electrode and a support fixed to a support substrate, and a movable electrode supported by the support through a spring, and a capacitance between the fixed electrode and the fixed electrode due to displacement of the movable electrode due to external vibration. In a vibration sensor that displaces, a member having a movable electrode, a spring, and a column having a rod-shaped protrusion integrally formed therein, and a member having a rod-shaped protrusion having a fixed electrode formed therein are each a metal having a predetermined thickness. constituted by a thin plate, the movable electrode and the spring after bending integrally with respect to the column, Ri configuration der assembled by inserting the hole formed a protrusion on a supporting substrate of the strut and the fixed electrode, spring L-shaped cuts are formed on the extension lines of the springs at the positions of the movable electrodes and the pillars that are the bases of the springs, and the springs are formed by bending the cut portions .

本発明の振動センサにおいて、支柱および固定電極に設けられる突起部の間に、支持基板に対する支柱および固定電極の角度を固定する曲げ支持部を設けた構成である。   In the vibration sensor of the present invention, a bending support portion for fixing the angles of the support column and the fixed electrode with respect to the support substrate is provided between the protrusion portions provided on the support column and the fixed electrode.

本発明の振動センサにおいて、固定電極と対向する可動電極の端部を折り曲げた構成である。   In the vibration sensor of the present invention, the end portion of the movable electrode facing the fixed electrode is bent.

本発明の振動センサは、固定電極と可動電極を精度よく位置合せすることができるので、振動センサのサイズを小さくしながら 100フェムトファラッド以上の容量変化を可動構造体に生じさせることができる。また、振動センサのサイズを小さくできることから、本発明の振動センサを搭載した振動センサノードを小型化することができ、製造コストを低減できるとともに、当該振動センサノードの適用範囲を広げることができる。   Since the vibration sensor of the present invention can accurately align the fixed electrode and the movable electrode, it is possible to cause a change in capacitance of 100 femtofarads or more in the movable structure while reducing the size of the vibration sensor. In addition, since the size of the vibration sensor can be reduced, the vibration sensor node equipped with the vibration sensor of the present invention can be reduced in size, the manufacturing cost can be reduced, and the applicable range of the vibration sensor node can be expanded.

本発明の振動センサの実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the vibration sensor of this invention. 実施例1の振動センサの展開図である。FIG. 3 is a development view of the vibration sensor according to the first embodiment. 本発明の振動センサの実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of the vibration sensor of this invention. 実施例2の振動センサの展開図である。FIG. 6 is a development view of the vibration sensor of the second embodiment. 本発明の振動センサの実施例3の構成を示す図である。It is a figure which shows the structure of Example 3 of the vibration sensor of this invention. 実施例3の振動センサの展開図である。FIG. 6 is a development view of a vibration sensor according to a third embodiment. 本発明の振動センサの実施例4の構成を示す図である。It is a figure which shows the structure of Example 4 of the vibration sensor of this invention. 実施例4の振動センサの展開図である。FIG. 6 is a development view of a vibration sensor according to a fourth embodiment. 振動検知を行うセンサノードシステムの構成例を示す図である。It is a figure which shows the structural example of the sensor node system which performs a vibration detection. 従来の振動センサ51の構成例を示す図である。It is a figure which shows the structural example of the conventional vibration sensor 51. FIG.

図1は、本発明の振動センサの実施例1の構成を示す。ここでは、平面図、A−A′断面図、B−B′断面図を示す。   FIG. 1 shows a configuration of a vibration sensor according to a first embodiment of the present invention. Here, a plan view, an AA ′ sectional view, and a BB ′ sectional view are shown.

図1において、実施例1の振動センサを構成する固定電極11,12、可動電極13、バネ14、支柱15は、厚さ50μm〜1mmの金属薄板をエッチング加工や打ち抜き加工して形成する。なお、可動電極13とバネ14と支柱15が一体形成され、折り曲げ加工により成形する。振動センサの各構成部品の折り曲げ加工、組み立て前の展開図を図2に示す。   In FIG. 1, the fixed electrodes 11 and 12, the movable electrode 13, the spring 14, and the support 15 constituting the vibration sensor of the first embodiment are formed by etching or punching a thin metal plate having a thickness of 50 μm to 1 mm. In addition, the movable electrode 13, the spring 14, and the support | pillar 15 are integrally formed, and it shape | molds by a bending process. FIG. 2 is a development view before bending and assembling each component of the vibration sensor.

可動電極13およびバネ14は、支柱15に対して90度の角度を有する金属治具とプレス装置を用いて折り曲げられる。折り曲げ位置は、バネ14と支柱15の境界部または図2に破線で示した支柱15の先端部とする。   The movable electrode 13 and the spring 14 are bent using a metal jig and a press device having an angle of 90 degrees with respect to the support column 15. The bending position is the boundary between the spring 14 and the support 15 or the tip of the support 15 indicated by a broken line in FIG.

固定電極11,12と支柱15には、棒状の突起部16(図1ではそれぞれ3本)が形成されており、突起部16が支持基板に形成された穴部に差し込まれる。支持基板の穴部は、ガラスエポキシやセラミックの基板を用いた場合はドリル加工で容易に形成できる。また、支持基板が半導体チップの場合でも、TSV(Through Silicon Via )技術と呼ばれる貫通配線技術を応用すれば、穴部を形成できる。これらの穴部は、正確な位置決めが容易である。   The fixed electrodes 11 and 12 and the support column 15 are formed with rod-like protrusions 16 (three in FIG. 1), and the protrusions 16 are inserted into holes formed in the support substrate. The hole portion of the support substrate can be easily formed by drilling when a glass epoxy or ceramic substrate is used. Even when the support substrate is a semiconductor chip, the hole can be formed by applying a through wiring technique called TSV (Through Silicon Via) technique. These holes are easy to accurately position.

実施例1では、固定電極11,12と支柱15に形成された棒状の突起部16を、支持基板に位置決めして形成された穴部に挿入して組み立てるので、固定電極11,12と可動電極13の位置合せが容易であるとともにその精度を向上させることができる。これにより、可動構造体に生じる容量変化を 100フェムトファラッド以上確保することが可能になる。また、金属薄板を用いるので、サイズの制約なしに可動構造体の共振周波数の設定の自由度を向上させることができる。   In the first embodiment, the fixed electrodes 11 and 12 and the rod-shaped protrusions 16 formed on the support column 15 are assembled by being inserted into holes formed by positioning on the support substrate. The alignment of 13 is easy and the accuracy can be improved. As a result, it is possible to secure a capacity change of 100 femtofarads or more generated in the movable structure. Moreover, since a metal thin plate is used, the freedom degree of the setting of the resonant frequency of a movable structure can be improved without size restrictions.

図3は、本発明の振動センサの実施例2の構成を示す。ここでは、平面図、A−A′断面図、B−B′断面図を示す。   FIG. 3 shows a configuration of a vibration sensor according to a second embodiment of the present invention. Here, a plan view, an AA ′ sectional view, and a BB ′ sectional view are shown.

図3において、実施例2の振動センサを構成する固定電極11,12、可動電極13、バネ14、支柱15、突起部16は、厚さ50μm〜1mmの金属薄板をエッチング加工や打ち抜き加工した形成する。なお、固定電極11,12と突起部16、可動電極13とバネ14と支柱15と突起部16がそれぞれ一体形成され、折り曲げ加工により成形する。振動センサの各構成部品の折り曲げ加工、組み立て前の展開図を図4に示す。   In FIG. 3, the fixed electrodes 11, 12, the movable electrode 13, the spring 14, the support 15, and the protrusion 16 constituting the vibration sensor of Example 2 are formed by etching or punching a thin metal plate having a thickness of 50 μm to 1 mm. To do. The fixed electrodes 11 and 12 and the protrusion 16, the movable electrode 13, the spring 14, the support column 15 and the protrusion 16 are integrally formed, and are formed by bending. FIG. 4 shows a development view before bending and assembling each component of the vibration sensor.

実施例1との違いは、固定電極11,12と支柱15に形成した棒状の突起部16を両端の2本とし、その間に90度に折り曲げられる曲げ支持部17を形成するところにある。なお、断面図の位置では突起部16がないが、便宜的に破線で示している。折り曲げ方法は実施例1と同様である。この曲げ支持部17は、支持基板に対する固定電極11,12と支柱15の角度を90度に固定することができ、垂直方向の位置合せの精度を向上させることができる。   The difference from the first embodiment is that the rod-shaped protrusions 16 formed on the fixed electrodes 11 and 12 and the support column 15 are provided at two ends, and a bending support portion 17 that is bent 90 degrees therebetween is formed. In addition, although there is no projection part 16 in the position of sectional drawing, it has shown with the broken line for convenience. The bending method is the same as in Example 1. The bending support portion 17 can fix the angles of the fixed electrodes 11 and 12 and the support column 15 with respect to the support substrate to 90 degrees, and can improve the alignment accuracy in the vertical direction.

図5は、本発明の振動センサの実施例3の構成を示す。ここでは、平面図、A−A′断面図、B−B′断面図を示す。   FIG. 5 shows a configuration of a vibration sensor according to a third embodiment of the present invention. Here, a plan view, an AA ′ sectional view, and a BB ′ sectional view are shown.

図5において、実施例3の振動センサを構成する固定電極11,12、可動電極13、バネ14、支柱15、突起部16、曲げ支持部17は、厚さ50μm〜1mmの金属薄板をエッチング加工や打ち抜き加工した形成する。なお、固定電極11,12と突起部16、可動電極13とバネ14と支柱15と突起部16と曲げ支持部17がそれぞれ一体形成され、折り曲げ加工により成形する。振動センサの各構成部品の折り曲げ加工、組み立て前の展開図を図6に示す。   In FIG. 5, the fixed electrodes 11 and 12, the movable electrode 13, the spring 14, the support column 15, the protrusion 16, and the bending support portion 17 constituting the vibration sensor of Example 3 are formed by etching a thin metal plate having a thickness of 50 μm to 1 mm. Or stamped to form. The fixed electrodes 11 and 12 and the protrusion 16, the movable electrode 13, the spring 14, the support column 15, the protrusion 16, and the bending support portion 17 are integrally formed and formed by bending. FIG. 6 is a development view before bending and assembling each component of the vibration sensor.

実施例2との違いは、バネ14の形成方法にある。可動電極13とバネ14の付け根と、支柱15とバネ14の付け根の位置において、可動電極13および支柱15にそれぞれL字型の切り込みを形成し、バネ14を90度折り曲げて形成するところにある。バネ14の立ち上がり部は、金属薄板の厚さより厚くすることができる。折り曲げ方法は実施例1と同様である。これにより、支持基板に対する可動電極13の垂直方向の変位を抑制することができるので、支柱15の高さを低くし、支持基板と可動電極13との間隔を狭くして振動センサ全体の大きさをコンパクトにできる。なお、実施例1の構成に実施例3のバネ14の形成方法を適用してもよい。   The difference from the second embodiment is in the method of forming the spring 14. At the base of the movable electrode 13 and the spring 14 and the position of the base of the support 15 and the spring 14, L-shaped cuts are formed in the movable electrode 13 and the support 15, respectively, and the spring 14 is bent 90 degrees. . The rising portion of the spring 14 can be made thicker than the thickness of the thin metal plate. The bending method is the same as in Example 1. Thereby, since the displacement of the movable electrode 13 in the vertical direction with respect to the support substrate can be suppressed, the height of the support column 15 is reduced, the distance between the support substrate and the movable electrode 13 is narrowed, and the size of the entire vibration sensor. Can be made compact. Note that the method of forming the spring 14 of the third embodiment may be applied to the configuration of the first embodiment.

図7は、本発明の振動センサの実施例4の構成を示す。ここでは、平面図、A−A′断面図、B−B′断面図を示す。図8は、実施例4の振動センサの各構成部品の折り曲げ加工、組み立て前の展開図を示す。   FIG. 7 shows a configuration of a vibration sensor according to a fourth embodiment of the present invention. Here, a plan view, an AA ′ sectional view, and a BB ′ sectional view are shown. FIG. 8 is a development view before bending and assembling each component of the vibration sensor of the fourth embodiment.

図7において、実施例4の振動センサは実施例3の構成に加えて、固定電極11,12と対向する可動電極13の端部を折り曲げ加工し、下方へ壁状に突出した縁部18を形成する。なお、縁部18は、図10に示す従来の振動センサ51の可動電極51Mに形成されるものと同じである。これにより、固定電極11,12と可動電極13との間に生じる容量変化を大きくすることができる。なお、実施例1または実施例2の構成に実施例4の可動電極13の縁部18の形成方法を適用してもよい。   In FIG. 7, in addition to the configuration of the third embodiment, the vibration sensor of the fourth embodiment bends the end of the movable electrode 13 facing the fixed electrodes 11 and 12, and has an edge 18 that protrudes downward in a wall shape. Form. The edge portion 18 is the same as that formed on the movable electrode 51M of the conventional vibration sensor 51 shown in FIG. Thereby, the capacity | capacitance change produced between the fixed electrodes 11 and 12 and the movable electrode 13 can be enlarged. Note that the method of forming the edge 18 of the movable electrode 13 of the fourth embodiment may be applied to the configuration of the first or second embodiment.

以上説明した各実施例の振動センサは、発電素子で発生させた微弱な電流を容量素子に蓄電したエネルギーで動作させる振動センサノードの構成部品として用いることができる。また、当該振動センサノードは、振動検知に要する消費電力をサブナノワットレベルに低減できるので、振動センサノードの動作時間を延ばすことができる。   The vibration sensor of each embodiment described above can be used as a component part of a vibration sensor node that operates with the energy stored in the capacitor element by the weak current generated by the power generation element. Further, since the vibration sensor node can reduce the power consumption required for vibration detection to the sub-nanowatt level, the operation time of the vibration sensor node can be extended.

11,12 固定電極
13 可動電極
14 バネ
15 支柱
16 突起部
17 曲げ支持部
18 縁部
DESCRIPTION OF SYMBOLS 11, 12 Fixed electrode 13 Movable electrode 14 Spring 15 Prop 16 Protrusion part 17 Bending support part 18 Edge part

Claims (3)

支持基板に固定される固定電極および支柱と、当該支柱にバネを介して支持される可動電極とを備え、外部振動に伴う可動電極の変位により固定電極との間の静電容量が変位する振動センサにおいて、
前記可動電極、前記バネ、および棒状の突起部を有する前記支柱が一体形成された部材と、棒状の突起部を有する前記固定電極が形成された部材とをそれぞれ所定の厚さの金属薄板で構成し、
前記支柱に対して前記可動電極および前記バネを一体で折り曲げ加工した後に、前記支柱および前記固定電極の突起部を前記支持基板上に形成された穴部に挿入して組み立てた構成であり、
前記バネの付け根となる前記可動電極および前記支柱の位置に、前記バネの延長線上にそれぞれL字型の切り込みを形成し、当該切り込み部を折り曲げて前記バネが形成された構成である
ことを特徴とする振動センサ。
A vibration that includes a fixed electrode and a support fixed to the support substrate, and a movable electrode supported by the support via a spring, and the capacitance between the fixed electrode and the fixed electrode is displaced by the displacement of the movable electrode due to external vibration. In the sensor
A member in which the movable electrode, the spring, and the support column having a rod-shaped projection are integrally formed, and a member in which the fixed electrode having a rod-shaped projection is formed are each formed of a metal thin plate having a predetermined thickness. And
After bending integrally with the movable electrode and the spring to the strut, Ri configuration der assembled and inserted into the strut and the hole part a protrusion formed on the supporting substrate of the fixed electrode,
The spring is formed by forming L-shaped cuts on the extension lines of the springs at the positions of the movable electrode and the support that are the roots of the springs, and bending the cut parts. Vibration sensor.
請求項1に記載の振動センサにおいて、
前記支柱および前記固定電極に設けられる前記突起部の間に、前記支持基板に対する前記支柱および前記固定電極の角度を固定する曲げ支持部を設けた構成である
ことを特徴とする振動センサ。
The vibration sensor according to claim 1,
A vibration sensor, characterized in that a bending support portion for fixing an angle of the support column and the fixed electrode with respect to the support substrate is provided between the protrusions provided on the support column and the fixed electrode.
請求項1または請求項2に記載の振動センサにおいて、
前記固定電極と対向する前記可動電極の端部を折り曲げた構成である
ことを特徴とする振動センサ。
The vibration sensor according to claim 1 or 2 ,
A vibration sensor, wherein the end of the movable electrode facing the fixed electrode is bent.
JP2011283581A 2011-12-26 2011-12-26 Vibration sensor Expired - Fee Related JP5718219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283581A JP5718219B2 (en) 2011-12-26 2011-12-26 Vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283581A JP5718219B2 (en) 2011-12-26 2011-12-26 Vibration sensor

Publications (2)

Publication Number Publication Date
JP2013134108A JP2013134108A (en) 2013-07-08
JP5718219B2 true JP5718219B2 (en) 2015-05-13

Family

ID=48910908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283581A Expired - Fee Related JP5718219B2 (en) 2011-12-26 2011-12-26 Vibration sensor

Country Status (1)

Country Link
JP (1) JP5718219B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08221542A (en) * 1995-02-09 1996-08-30 Omron Corp Vibration sensor
JP5284993B2 (en) * 2010-02-03 2013-09-11 日本電信電話株式会社 Power generation sensor element and sensor node

Also Published As

Publication number Publication date
JP2013134108A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP6421239B2 (en) Composite spring MEMS resonator for oscillator and real-time clock applications
JP4641217B2 (en) Microphone and manufacturing method thereof
JP5687329B2 (en) Micromachined piezoelectric X-axis gyroscope
US8567246B2 (en) Integrated MEMS device and method of use
JP6481028B2 (en) Multi-coil spring MEMS resonator for oscillator and real-time clock applications
CN206341427U (en) Mems microphone
US9291638B2 (en) Substrate curvature compensation methods and apparatus
CN103823082A (en) Method of manufacturing capacitive acceleration sensor, and capacitive acceleration sensor
US10501310B2 (en) Microelectromechanical resonator with improved electrical features
WO2018040259A1 (en) Sensitive membrane and mems microphone
JP2007163244A (en) Acceleration sensor element and acceleration sensor
JP2015141184A (en) Angular velocity sensor, sensor element, and manufacturing method for sensor element
CN102620812A (en) Vibration detecting device
JP5718219B2 (en) Vibration sensor
JP2010216846A (en) Sensor device
CN113917186B (en) Acceleration sensor
JP4466283B2 (en) Gyro sensor
JP5718218B2 (en) Vibration sensor
JP5162206B2 (en) Oscillator, oscillator manufacturing method, and oscillator
CN112444238A (en) Acceleration gyro sensor
JP2016145762A (en) Gas sensor
US8111109B2 (en) Temperature compensated piezoelectric oscillator
JP2008014744A (en) Acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150318

R150 Certificate of patent or registration of utility model

Ref document number: 5718219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees