JP5717013B2 - AC potential treatment device - Google Patents

AC potential treatment device Download PDF

Info

Publication number
JP5717013B2
JP5717013B2 JP2013144238A JP2013144238A JP5717013B2 JP 5717013 B2 JP5717013 B2 JP 5717013B2 JP 2013144238 A JP2013144238 A JP 2013144238A JP 2013144238 A JP2013144238 A JP 2013144238A JP 5717013 B2 JP5717013 B2 JP 5717013B2
Authority
JP
Japan
Prior art keywords
coil
voltage
conduction control
wave
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013144238A
Other languages
Japanese (ja)
Other versions
JP2015016061A (en
Inventor
広志 北島
広志 北島
Original Assignee
ヘルスホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヘルスホールディングス株式会社 filed Critical ヘルスホールディングス株式会社
Priority to JP2013144238A priority Critical patent/JP5717013B2/en
Publication of JP2015016061A publication Critical patent/JP2015016061A/en
Application granted granted Critical
Publication of JP5717013B2 publication Critical patent/JP5717013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)

Description

本発明は、交流電位治療器に係り、特に昇圧トランスに入力する正弦波交流の発生手段の改良に関する。   The present invention relates to an AC potential treatment device, and more particularly to improvement of a means for generating a sine wave AC input to a step-up transformer.

従来の交流電位治療器としては、例えば特許第2609574号公報(特許文献1)に記載のような商用交流昇圧トランスの2次コイルに設けた正電圧ブリーダ回路により、生体印加交流の正電圧と負電圧との波高値比率を1対3に設定した交流電位治療器が周知であるし、実開昭61−118346号公報(特許文献2)・特開2006−239032号公報(特許文献3)のような、矩形波発振回路の増幅出力を昇圧トランスの1次コイルに供給し、このトランスの高圧2次コイルにダイオードと抵抗を接続して矩形波高電圧を得る電位治療器が周知である。   As a conventional AC potential treatment device, for example, a positive voltage bleeder circuit provided in a secondary coil of a commercial AC step-up transformer as described in Japanese Patent No. 2609574 (Patent Document 1) uses a positive voltage and a negative voltage applied to a living body. An AC potential treatment device in which the ratio of the peak value to the voltage is set to 1: 3 is well known, and Japanese Patent Application Laid-Open No. 61-118346 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2006-239032 (Patent Document 3). Such a potential therapy device is known in which an amplified output of a rectangular wave oscillation circuit is supplied to a primary coil of a step-up transformer, and a diode and a resistor are connected to the high voltage secondary coil of the transformer to obtain a rectangular wave high voltage.

前記特許文献1(特許第2609574号公報)は、交流高電圧を生体に印加して治療を実行する際に、交流正電圧と負電圧との波高値比率を1対3に設定した交流電位治療器であり、健康な人体内におけるイオンの理想的な存在比率に等しい割合で生体に交流電位を印加できるが、この特許文献1は、その段落0009における唯一の実施例記載のように、商用電源による交流を昇圧トランスの入力としているので、生体印加交流としても、我が国では50Hzまたは60Hz限定となる。   Patent Document 1 (Japanese Patent No. 2609574) discloses an alternating-current potential treatment in which a peak value ratio between an alternating positive voltage and a negative voltage is set to 1: 3 when an alternating high voltage is applied to a living body to perform treatment. Although an AC potential can be applied to a living body at a rate equal to the ideal abundance ratio of ions in a healthy human body, Patent Document 1 discloses a commercial power source as described in the only example in paragraph 0009 thereof. Since the alternating current is input to the step-up transformer, the biologically applied alternating current is limited to 50 Hz or 60 Hz in Japan.

近年、国内において、上記特許文献1の交流電位治療器による電位治療を実行している多数患者の中には、富士川と糸魚川を境として西の60Hz地域における複数患者から、「東の50Hz地域での電位治療よりも、こちらの方が治療効果の有効性と速効性に優れているようだ」という声がチラホラ聞こえつつ有るし、50Hz地域の複数患者のなかには、「今一つ物足りない」という声も多少出始めている。   In recent years, among a large number of patients who are performing potential therapy with the AC potential therapy device of Patent Document 1 in Japan, several patients in the 60 Hz region west of Fuji River and Itoi River have been described as “in the 50 Hz region in the east. It seems that this treatment is more effective and quicker than the potential treatment, ”and there are some voices saying“ I'm not satisfied with it ”among multiple patients in the 50Hz region. It is starting to appear.

一方、前記実開昭61−118346号公報および特開2006−239032号公報(特許文献2・3)は、共に発振回路を有する電位治療器だから、生体印加交流は商用電源周波数に限定されない反面、これら各文献は、それぞれ唯一の実施例記載のように、矩形波発振回路で得た矩形波信号をそのまま出力増幅して昇圧トランスの1次コイルに入力し、その2次コイルに生じた矩形波の高圧出力電圧からこれら各公報第2図のような矩形波に近い波形の生体印加交流電圧を得ている。   On the other hand, since the Japanese Utility Model Publication No. 61-118346 and Japanese Patent Application Laid-Open No. 2006-239032 (Patent Documents 2 and 3) are both potential treatment devices having an oscillation circuit, the living body applied alternating current is not limited to the commercial power supply frequency, In each of these documents, as described in the only examples, the rectangular wave signal obtained by the rectangular wave oscillation circuit is output and amplified as it is, and is input to the primary coil of the step-up transformer, and the rectangular wave generated in the secondary coil. The biologically applied AC voltage having a waveform close to a rectangular wave as shown in FIG.

したがって、これら各文献2・3における矩形波出力増幅回路にB級ブッシュプル増幅回路を用いたとしても、効率が最大で50%以下の低効率であるという本質的な問題点が有るし、各文献2・3の入・出力は、共に矩形波電圧だから、商用電源に対応した心材と捲線で作った現用一般安価な昇圧トランスを用いると、トランスに無用な唸り音が生じ易いし、トランスが過熱し易いという本質的な大きい問題点が有る。   Therefore, even if the class B bush-pull amplifier circuit is used for the rectangular wave output amplifier circuit in each of these documents 2 and 3, there is an essential problem that the efficiency is as low as 50% or less. Since the input and output of References 2 and 3 are both rectangular wave voltages, using a current general inexpensive booster transformer made of a core material and a stranded wire compatible with commercial power supplies can easily generate unwanted roaring noise. There is an essential big problem that it is easy to overheat.

さらに、上記各特許文献2・3の高圧矩形波出力による生体印加交流には、有害無用なリンギングとか、オーバーシュートやプリシュートが生じ易いので、滑らかに変化する正弦波を用いた生体印加交流による電位治療に比して、これら各特許文献2・3は、電位治療後に湯当たりのような不快感が残り易いし、電位治療効果の有効性と速効性に乏しく、生体拒否反応も生じるという根源的で切実な問題点が有る。   Furthermore, the living body impressed alternating current by the high-voltage rectangular wave output of each of the above-mentioned Patent Documents 2 and 3 is likely to cause harmful ringing, overshoot, and preshoot. Therefore, the living body impressed alternating current using a smoothly changing sine wave is used. Compared with potential treatment, each of these Patent Documents 2 and 3 has a tendency that unpleasant feeling like hot water is likely to remain after potential treatment, the effectiveness and rapid efficacy of the potential treatment effect are poor, and biological rejection occurs. There are specific and serious problems.

各特許文献1〜3による従来例の他に、特開2009−279024号公報(特許文献4)のように、スイッチングインバータにより高周波成分を含む交流波形を生成し、この交流出力をフィルタ回路を経て昇圧トランスの1次コイルに交互に供給するとした電位治療器とか、特開2011−24859号公報(特許文献5)のように、2系統の高周波パルスを2個の昇圧用パルストランスに各別入力し、各パルストランスの高圧2次コイルにそれぞれダイオードと平滑コンデンサと電極とを接続した電位治療器も周知である。   In addition to the conventional examples according to Patent Documents 1 to 3, an alternating current waveform including a high frequency component is generated by a switching inverter as disclosed in Japanese Patent Application Laid-Open No. 2009-279024 (Patent Document 4), and this alternating current output is passed through a filter circuit. An electric potential treatment device that alternately supplies the primary coil of the step-up transformer or two high-frequency pulses that are separately input to the two step-up pulse transformers as disclosed in Japanese Patent Application Laid-Open No. 2011-24859 (Patent Document 5). A potential treatment device in which a diode, a smoothing capacitor, and an electrode are connected to the high-voltage secondary coil of each pulse transformer is also well known.

前記特開2009−279024号公報(特許文献4)は、出願人が直接出願の公開特許公報であり、周知事項や願望事項を手書き漫画図面と共に、断片的に羅列しているだけで、この文献4の意図するところは、結局、その段落0011の記載から、昇圧トランスの1次コイルに加える交流出力回路として、パルス幅変調による現用一般のD級オーディオアンプを用いた電位治療器であると読み取れるが、肝心な具体回路に関する記載が一切無いから、これでは、当業者がこの特開2009−279024号公報を見ても、上記電位治療器を作れず、実施できないという本質的な大きい問題点が有る。   JP 2009-279024 A (Patent Document 4) is an open patent publication directly filed by the applicant, and is simply a fragmentary list of well-known matters and desires along with handwritten cartoon drawings. After all, the intention of 4 can be read from the description of paragraph 0011 as a potential treatment device using a current class D audio amplifier based on pulse width modulation as an AC output circuit applied to the primary coil of the step-up transformer. However, since there is no description about the important concrete circuit, even if this person sees this Unexamined-Japanese-Patent No. 2009-279024, this has the serious big problem that the said electric potential treatment device cannot be made and cannot be implemented. Yes.

D級オーディオアンプには、直列2個のパワーMOS・FETやバイポーラトランジスタ等の導通制御素子を2列用いたフルブリッジ回路構成のアンプと、直列2個の導通制御素子を1列だけ用いたハーフブリッジ回路構成のアンプが存在し、上記ハーフブリッジ構成のD級オーディオアンプは、部品点数少なく安価に使用できるが、復調用チョークコイルの自己誘導電流等による「バス・ポンピング」(Bass・Pumping)現象に起因する電源電圧変動が大きいという根源的で切実な問題点が有り、上記フルブリッジ回路構成のD級オーディオアンプは、上記問題点は軽減できるが、使用部品点数がハーフブリッジ構成の2倍要するという互いに相容れない根源的な問題点が有ることは、上記特許文献4には全く記載が無く、示唆すらも無いのである。   Class D audio amplifiers include an amplifier with a full-bridge circuit configuration using two series of conduction control elements such as two power MOS FETs and bipolar transistors in series, and a half using only one series of two series conduction control elements. There is an amplifier with a bridge circuit configuration, and the half-bridge class D audio amplifier can be used inexpensively with a small number of components. However, the “bus pumping” phenomenon due to the self-induced current of the demodulation choke coil, etc. The class D audio amplifier with the full bridge circuit configuration can alleviate the above problem but requires twice as many parts as the half bridge configuration. The above-mentioned patent document 4 has no description at all and suggests that there are fundamental problems that are incompatible with each other. Et al. Is also the no.

すなわち、ハーフブリッジ構成のD級オーディオアンプは、負荷(昇圧トランス)ドライブ時に、復調用チョークコイル出力側から流出しようとする自己誘導電流をコイル出力側から入力側に戻すことで、前記「バス・ポンピング」現象に起因する電源電圧変動を抑制するための通常、フリー・ホィーリング・ダイオード(Free・Wheelling・Diode)と称する高周波特性に優れたダイオードを音声その他の音響による低周波信号電流が流れるアンプ回路内に、この低周波信号に歪みを与えること無く接続できる箇所が無く、上記現象による電源電圧の変動を払拭できないという根源的で切実な問題点が有ることも、上記特許文献4には全く記載が無いのである。   That is, the class D audio amplifier having a half-bridge configuration returns the self-induction current, which is about to flow out from the demodulation choke coil output side, to the input side from the coil output side when driving a load (step-up transformer). An amplifier circuit in which a low-frequency signal current caused by sound or other sound flows through a diode having excellent high-frequency characteristics, usually called a free wheeling diode, to suppress fluctuations in power supply voltage caused by a "pumping" phenomenon The above-mentioned Patent Document 4 also has a fundamental and serious problem that there is no portion that can be connected without distorting the low-frequency signal, and the fluctuation of the power supply voltage due to the above phenomenon cannot be eliminated. There is no.

現用一般的なハーフブリッジ構成のD級オーディオアンプは、負荷(昇圧トランス)を200Hz以下の低域周波数でバスドライブ(Bass・Drive)する時には、前記「バス・ポンピング」現象による電源電圧の変動も大きくなり、その程度は、上記周波数が低い程・負荷インピーダンスが小さい程・バスコンデンサの値が小さい程・デューティ比が25%の時と75%の時に、それぞれ前記有害無用な「バス・ポンピング」現象による電源電圧の変動が増大し、電位治療器の動作が著しく不安定になることも、上記特許文献4には全く記載が無く、示唆すらも無い。   The class D audio amplifier of the current general half-bridge configuration is subject to fluctuations in the power supply voltage due to the “bus pumping” phenomenon when the load (step-up transformer) is bus-driven at a low frequency of 200 Hz or less. The higher the frequency, the lower the load impedance, the smaller the value of the bus capacitor, the less the bus capacitor value, and the duty-free “bus pumping” when the duty ratio is 25% and 75%, respectively. There is no description or suggestion in Patent Document 4 that the fluctuation of the power supply voltage due to the phenomenon increases and the operation of the potential treatment device becomes extremely unstable.

ただし、寄生ダイオードを有するパワーMOS・FET等の直列2個の導通制御素子を2列用いた一般的なフルブリッジ回路構成のD級オーディオアンプでは、前記「バス・ポンピング」現象を上記寄生ダイオードにより、ある程度抑制できるが、上記寄生ダイオードは、前記フリー・ホィーリング・ダイオードと大きく異なり、高周波特性が悪く、逆回復時間が長いので、復調用チョークコイルの自己誘導電流をその復調出力側から入力側に確実には戻せず、特に負荷(昇圧トランス)を60〜200Hz程度の低域周波数でバスドライブする時は、前記段落0012で述べたように、「バス・ポンピング」現象による電源電圧の変動を完全には払拭できないという根源的な問題点と、寄生ダイオード作用を有するパワーMOS・FETは、一般に発熱が大で、厳重な放熱が必要であるという問題点とは、上記特許文献4には全く記載が無いのである。   However, in a class D audio amplifier having a general full-bridge circuit configuration using two series conduction control elements such as power MOS / FET having a parasitic diode in two rows, the “bus pumping” phenomenon is caused by the parasitic diode. However, the parasitic diode is significantly different from the free wheeling diode in that the high frequency characteristics are poor and the reverse recovery time is long, so that the self-induced current of the demodulation choke coil is shifted from the demodulation output side to the input side. When the load (step-up transformer) is bus-driven at a low frequency of about 60 to 200 Hz, the fluctuation of the power supply voltage due to the “bus pumping” phenomenon is completely eliminated as described in the paragraph 0012. The fundamental problem that cannot be wiped out, and the power MOS FET with parasitic diode action is Generally exotherm large, the problem that it is necessary strict heat dissipation, have no described at all in Patent Document 4.

一方、特開2011−24859号公報(特許文献5)は、その段落0020と0022に記載のように、2系統の高周波スイッチングパルスをそれぞれ2個の昇圧用高周波パルストランスに各別入力し、一方のパルストランスの高圧2次コイルに接続したダイオードおよび抵抗と平滑コンデンサとの並列回路で正の高圧パルス電圧を得ると共に、他方のパルストランスの高圧2次コイルに接続したダイオードおよび抵抗と平滑コンデンサとの並列回路で負の高圧パルス電圧を得た後、これら各高圧パルス電圧を二つの電極にそれぞれ保護抵抗を経て各別供給する電位治療器である。   On the other hand, Japanese Patent Laid-Open No. 2011-24859 (Patent Document 5), as described in paragraphs 0020 and 0022, inputs two high-frequency switching pulses to two boosting high-frequency pulse transformers, respectively, A positive high voltage pulse voltage is obtained by a parallel circuit of a diode, a resistor and a smoothing capacitor connected to the high voltage secondary coil of the pulse transformer, and a diode, a resistor and a smoothing capacitor connected to the high voltage secondary coil of the other pulse transformer After the negative high voltage pulse voltage is obtained by the parallel circuit, each of these high voltage pulse voltages is supplied to the two electrodes through protective resistors, respectively, and is supplied separately.

したがって、この特許文献5は、単一電極では生体に対して高圧交流を印加できないという根源的な大きい問題点が有るし、滑らかに変化する正弦波を用いた生体印加交流による電位治療に比して、この特許文献5は、電位治療後に湯当たりのような不快感が残り易いという根源的で切実な問題点が有る。   Therefore, this Patent Document 5 has a fundamental problem that a single electrode cannot apply a high-voltage alternating current to a living body, and is compared with a potential treatment by a living body-applied alternating current using a sine wave that changes smoothly. Thus, Patent Document 5 has a fundamental and serious problem that unpleasant feeling such as hot water is likely to remain after electric potential treatment.

また、上記特許文献5では、単一電極の電位治療器に比して、パルス昇圧トランスを初めとして、その高圧2次コイルに接続したダイオード・平滑コンデンサとか、生体保護用ハイメグ抵抗や電極などの高価な高圧用電気部品をそれぞれ2倍数ずつ必要とするので、特許文献5は、加工性悪く高価になるという本質的かつ大きい問題点が有る。   Further, in Patent Document 5, as compared with a single-electrode potential treatment device, a pulse boosting transformer, a diode / smoothing capacitor connected to the high-voltage secondary coil, a Himmeg resistor for bioprotection, an electrode, etc. Since expensive high-voltage electric parts are required twice each, Patent Document 5 has an essential and large problem that it becomes expensive due to poor workability.

特許第2609574号公報Japanese Patent No. 2609574 実開昭61−118346号公報Japanese Utility Model Publication No. 61-118346 特開2006−239032号公報JP 2006-239032 A 特開2009−279024号公報JP 2009-279024 A 特開2011−24859号公報JP 2011-24859 A

本発明の目的は、位相が互いに180°異なる2系統の幅変調済増幅パルス出力の各復調済半波出力を半波毎に電流方向を反転させて昇圧トランスの1次コイルに交互に供給することで、トランス2次側から高圧の生体印加交流を得ることに有る。   An object of the present invention is to alternately supply the demodulated half-wave outputs of two systems of width-modulated amplified pulse outputs whose phases are 180 ° different from each other to the primary coil of the step-up transformer by inverting the current direction for each half-wave. Thus, a high-voltage living body applied alternating current is obtained from the secondary side of the transformer.

本発明の目的は、交流高電圧を生体に印加して治療を実行する電位治療器を構成するに当たり、周波数が60〜200Hz程度の正弦低周波電圧から、位相が互いに180°異なる2系統の正弦半波信号を得ると共に、これら各半波信号で各別にパルス幅変調した2系統の幅変調済増幅パルス出力により、前記信号電圧よりも充分高い電圧の直流電源に接続した2個のスイッチング素子を各別にスイッチング制御することで、位相が互いに180°異なる2系統の幅変調済増幅パルス出力を得た後、これら各パルス出力の復調時にチョークコイルに生じる自己誘導電流をコイル出力側からコイル入力側に戻せるダイオードとコンデンサとを有する2系統の復調回路により、前記各パルス出力を各別に復調することで、位相が互いに180°異なる2系統の復調済正弦半波出力を取り出せる。   An object of the present invention is to construct a potential treatment device that performs treatment by applying an alternating high voltage to a living body. From a sinusoidal low-frequency voltage having a frequency of about 60 to 200 Hz, two phases of sine differing in phase from each other by 180 °. Two switching elements connected to a DC power source having a voltage sufficiently higher than the signal voltage are obtained by obtaining two half-width-modulated amplified pulse outputs obtained by obtaining a half-wave signal and pulse-width-modulating each half-wave signal separately. By performing switching control separately, two width-modulated amplified pulse outputs whose phases are different from each other by 180 ° are obtained, and then self-induced current generated in the choke coil at the time of demodulation of each pulse output is changed from the coil output side to the coil input side. Each of the pulse outputs is demodulated separately by two systems of a demodulator circuit having a diode and a capacitor that can be returned to each other, so that the phases are 180 ° different from each other. Retrieve demodulated sine half wave output of two systems.

一方、前記各コイルの出力側と接地間には、それぞれ直列2個の導通制御素子を1列ずつ接続し、1列目のコイル側導通制御素子と2列目の接地側導通制御素子、および2列目のコイル側導通制御素子と1列目の接地側導通制御素子を、それぞれ前記各半波出力に同期させて交互に導通制御することで、前記各列の導通制御素子の相互接続部間に接続した昇圧トランスの1次コイルの電流方向を半波毎に反転させ、前記トランス2次コイルに発生した高圧正弦波交流を正電圧ブリーダ回路により、正電圧と負電圧との波高値比率が1対3の生体印加交流となしたことで達成できた。   On the other hand, between the output side of each coil and the ground, two series conduction control elements are connected one by one, and the first row coil side conduction control element and the second row ground side conduction control element, and The second row of coil-side conduction control elements and the first row of ground-side conduction control elements are alternately controlled in synchronism with the respective half-wave outputs, thereby connecting the conduction control elements in each row. The current direction of the primary coil of the step-up transformer connected between them is reversed every half wave, and the high voltage sine wave AC generated in the transformer secondary coil is converted into a peak value ratio between the positive voltage and the negative voltage by a positive voltage bleeder circuit. Can be achieved by a one-to-three biological application AC.

ただし、前記各幅変調済増幅パルス出力の復調回路として、前記スイッチング素子の出
力側に接続したチョークコイルと、これら各コイルの復調出力側に接続した1端接地のコ
ンデンサと、前記各素子の出力側に接続したアノード接地のフリー・ホィーリング・ダイ
オードとを有する2系統の復調回路を用いて前記幅変調済増幅パルス出力を各別に復調す
ることで、前記コイルの復調出力側から位相が互いに180°異なる2系統の復調済正弦
半波出力を得てもよい。
However, as a demodulating circuit for each width-modulated amplified pulse output, a choke coil connected to the output side of the switching element, a one-end grounded capacitor connected to the demodulation output side of each coil, and an output of each element By demodulating the width-modulated amplified pulse output separately using two systems of demodulating circuits having anode- grounded freewheeling diodes connected to the side, the phase is 180 ° from the demodulated output side of the coil. Two different demodulated sine half-wave outputs may be obtained.

本発明によれば、周波数が60〜200Hz程度の正弦低周波電圧から得た正弦半波信号で、100KHz程度の高周波パルスを幅変調して幅変調済高周波パルスを得る一方、前記電圧よりも充分高い電圧の直流電源に接続したスイッチング素子を前記幅変調済高周波パルスでスイッチング制御することで、効率約90%以上の高い効率で前記素子の出力側から幅変調済増幅パルス出力を取り出せる。   According to the present invention, a sine half-wave signal obtained from a sine low-frequency voltage having a frequency of about 60 to 200 Hz is obtained by width-modulating a high-frequency pulse of about 100 KHz to obtain a width-modulated high-frequency pulse. By switching control of the switching element connected to a high voltage DC power supply with the width-modulated high-frequency pulse, a width-modulated amplified pulse output can be extracted from the output side of the element with a high efficiency of about 90% or more.

上記各パルス出力の復調回路として本発明では、前記各素子のスイッチング動作時にお
ける素子のオフ期間に復調用チョークコイルに生じる自己誘導電流を、コイル出力側から
コイル入力側に戻せるダイオードとコンデンサとを有する2系統の復調回路、具体的には
、前記各スイッチング素子の出力側に接続したチョークコイルと、その復調出力側に接続
した1端接地のコンデンサと、前記素子の出力側に接続したアノード接地のダイオードと
を有する2系統の復調回路を用いたので、復調動作中コイルの復調出力側から交互に流出
しようとする各コイルの自己誘導電流を、このコイルに並列の上記コンデンサとフリー・
ホィーリング・ダイオードとの直列回路を経て、チョークコイルの入力側に効率よく戻せ
るので、負荷(昇圧トランス)を60〜120Hz程度の低域周波数でバスドライブする
時にも、有害無用な前記バス・ポンピング現象を阻止でき、この現象による電源電圧の変
動を抑制し払拭できたという優れた効果が有る。
In the present invention as the above-described demodulation circuit for each pulse output, a diode and a capacitor that can return the self-induced current generated in the demodulation choke coil from the coil output side to the coil input side during the off period of the element during the switching operation of each element. 2 systems of demodulation circuits, specifically, a choke coil connected to the output side of each switching element, a one-end grounded capacitor connected to the demodulation output side, and an anode ground connected to the output side of the element Since the two demodulator circuits having the diodes are used, the self-inductive current of each coil that is about to flow out alternately from the demodulation output side of the coil during the demodulation operation,
Since it can be efficiently returned to the input side of the choke coil through a series circuit with a wheeling diode, the bus pumping phenomenon that is harmful and useless even when driving the load (step-up transformer) at a low frequency of about 60 to 120 Hz. There is an excellent effect that the fluctuation of the power supply voltage due to this phenomenon can be suppressed and wiped off.

すなわち、上記スイッチング素子の動作時における素子のオン期間には、チョークコイル入力の一部をこのコイルに蓄積しつつ出力側への供給を抑え、上記素子のスイッチング動作時におけるオフ期間には、コンデンサとダイオードとを経て上記コイルの自己誘導電流をコイルの出力側から入力側に確実に戻せるし、本発明に用いた前記復調回路は、高周波パルスの方形波の変化分、つまり交流成分を小さくする本来のローパスフィルターとしても当然に動作するので、負荷(昇圧トランス)を60〜120Hz程度の低域周波数でバスドライブする時にも、バス・ポンピング現象による電源電圧変動を、より一層確実に抑制できるという優れた効果が有る。   That is, during the on-period of the element during the operation of the switching element, the supply to the output side is suppressed while accumulating a part of the choke coil input in the coil, and during the off-period during the switching operation of the element, the capacitor The self-induced current of the coil can be reliably returned from the output side of the coil to the input side through the diode and the diode, and the demodulation circuit used in the present invention reduces the change of the square wave of the high-frequency pulse, that is, the AC component. Naturally it also operates as an original low-pass filter, so that even when the load (step-up transformer) is bus-driven at a low frequency of about 60 to 120 Hz, power supply voltage fluctuations due to the bus pumping phenomenon can be more reliably suppressed. Has an excellent effect.

また本発明は、前記チョークコイルの復調出力側と接地間に直列2個の導通制御素子を1列ずつ接続し、1列目のコイル側導通制御素子と2列目の接地側導通制御素子、および2列目のコイル側導通制御素子と1列目の接地側導通制御素子を、それぞれ前記各半波出力に同期させて交互に導通制御することで、前記各列のスイッチング素子の相互接続部間に接続した昇圧トランスの1次コイルに、電流方向が半波毎に反転した正弦波交流を供給できるので、全体的な効率が約90%以上の高い効率でトランス2次コイルから高圧正弦波交流を得ることができ、ランニングコストを著減できたという効果も有る。   In the present invention, two series conduction control elements are connected one by one between the demodulation output side of the choke coil and the ground, the first row coil side conduction control element and the second row ground side conduction control element, And the second row of coil-side conduction control elements and the first row of ground-side conduction control elements are alternately controlled in synchronism with the respective half-wave outputs, thereby connecting the switching elements in each row. Since the sine wave alternating current with the current direction reversed every half wave can be supplied to the primary coil of the step-up transformer connected between the high voltage sine wave from the transformer secondary coil with a high efficiency of about 90% or more. There is also an effect that the exchange cost can be obtained and the running cost can be significantly reduced.

具体的には、昇圧トランスの1次コイルの電流方向を前記半波出力の半波毎に反転させて繰り返し供給することで、昇圧トランスの1次コイルに滑らかに変化する正弦波交流を供給でき、トランス2次コイルに10〜15キロボルト程度の高圧正弦波交流を発生させ得るから、周波数が前記60〜200Hz程度で滑らかに変化する高圧正弦波電圧を無理なく発生でき、健康な人体内におけるイオンの理想的な存在比率に等しい割合の正電圧と負電圧との波高値比率が1対3の生体印加交流を得て、これを生体に印加できるので、商用電源周波数に関係なく、何処でも常に治療効果の有効性と速効性とを大幅に促進でき、生体拒否反応も著減できるという優れた効果も有る。   Specifically, a sine wave alternating current that smoothly changes can be supplied to the primary coil of the step-up transformer by reversing and repeatedly supplying the current direction of the primary coil of the step-up transformer for each half wave of the half-wave output. Since a high voltage sine wave alternating current of about 10 to 15 kilovolts can be generated in the transformer secondary coil, a high voltage sine wave voltage whose frequency changes smoothly at about 60 to 200 Hz can be generated without difficulty, and ions in a healthy human body The ratio of positive voltage and negative voltage equal to the ideal existence ratio is obtained by applying a bio-applied alternating current of 1: 3 to the living body, so it can always be applied anywhere regardless of the commercial power supply frequency. There is also an excellent effect that the effectiveness and the rapid effect of the therapeutic effect can be greatly promoted and the biological rejection reaction can be remarkably reduced.

さらに、前記60〜200Hz程度の正弦低周波信号や低周波電圧の周波数範囲では、商用電源に対応して量産した安価な珪素鋼板をコア材とした現用一般の昇圧トランスや、低周波トランスをそのまま採用でき、オーディオ用のコア材を用いた高価なトランスが不要だから、本発明は、製造コストを削減できるという経済効果も有る。   Furthermore, in the frequency range of the sine low frequency signal or low frequency voltage of about 60 to 200 Hz, the current general boost transformer or low frequency transformer which is made of an inexpensive silicon steel plate mass-produced corresponding to a commercial power source is used as it is. Since an expensive transformer using a core material for audio is unnecessary, the present invention has an economic effect that the manufacturing cost can be reduced.

本発明による交流電位治療器の一例を示す系統回路図System circuit diagram showing an example of an AC potential treatment device according to the present invention 図1の回路における動作波形図Operation waveform diagram in the circuit of FIG. 図1の回路における動作波形図Operation waveform diagram in the circuit of FIG. 図1の回路における動作波形図Operation waveform diagram in the circuit of FIG.

次に、本発明を実施するための形態例を図面と共に説明すると、本発明の交流電位治療器は、交流高電圧を生体に印加して治療を実行する電位治療器を構成するに当たり、先ず、図1に示す系統回路図のように、直流電源DCで動作するC・R発振回路・正帰還発振回路などの現用一般的な正弦低周波発生回路1から得た周波数が60〜200Hz程度、例えば70〜120Hz程度で振幅が10ボルト程度の正弦低周波信号を初段低周波トランスT1の1次コイルに入力する。   Next, an example of an embodiment for carrying out the present invention will be described with reference to the drawings. An AC potential treatment device of the present invention is a potential treatment device that performs treatment by applying an alternating high voltage to a living body. As shown in the system circuit diagram of FIG. 1, the frequency obtained from the current general sine low frequency generation circuit 1 such as a C / R oscillation circuit and a positive feedback oscillation circuit operating with a DC power supply DC is about 60 to 200 Hz, for example, A sinusoidal low frequency signal having an amplitude of about 10 volts at about 70 to 120 Hz is input to the primary coil of the first stage low frequency transformer T1.

上記トランスT1における中点接地の2次コイルの中間タップA・Bに生じた位相が互いに180°異なる2系統の等レベル正弦波電圧を同方向に接続したダイオードdで半波整流して図2のC・Dのような振幅が7ボルト程度で位相が互いに180°異なる2系統の正弦半波信号を得た後、これら各信号をそれぞれ現用一般のパルス幅変調回路2の各入力端C・Dに図1のように各別入力する。   A half-wave rectification is performed by half-wave rectification of two systems of equal-level sine wave voltages generated at the intermediate taps A and B of the center-grounded secondary coil in the transformer T1 with 180 ° different from each other in the same direction. After obtaining two sinusoidal half-wave signals having amplitudes of about 7 volts and phases different from each other by 180 °, the signals are respectively input to the input terminals C · of the current general pulse width modulation circuit 2. Each input is input to D as shown in FIG.

一方、周波数が100KHz程度の三角波発振器等の現用一般的な前記直流電源DCで動作する高周波パルス発生回路3から得た波高値が5ボルト程度の高周波パルスを前記各パルス幅変調回路2で、前記各正弦半波信号により各別にパルス幅変調することで、上記各変調回路2の出力側からそれぞれ図2のE・Fのような波高値が5ボルト程度で、ほぼ櫛歯状波形の位相が互いに180°異なる2系統の幅変調済高周波パルスを得る。   On the other hand, a high-frequency pulse having a peak value of about 5 volts obtained from a high-frequency pulse generating circuit 3 operating with the current general-purpose DC power source DC such as a triangular wave oscillator having a frequency of about 100 KHz is generated in each of the pulse width modulation circuits 2. By performing pulse width modulation for each sine half-wave signal, the peak value as shown by E and F in FIG. Two systems of width-modulated high frequency pulses that are 180 ° different from each other are obtained.

次いで、図1のように直流電源DCから得た前記各正弦半波信号の電圧よりも充分高い、例えば130ボルト程度の直流電源+Vにドレインやコレクタを接続したパワーMOS・FETやバイポーラトランジスタ等の2個のスイッチング素子Sのゲートやベース等の各制御電極E・Fとソースやエミッタとの間に、パルストランスPTまたは現用一般的なゲートドライブIC(米国フェアーチャイルド社製のIC・FAN7382N等が有る)を経て、前記2系統の幅変調済高周波パルスを各別に入力し、上記各スイッチング素子Sを上記2系統の高周波パルスで各別にスイッチング制御することで、前記各素子Sのソース(エミッタ)等の各出力側G・Hから図2のG・Hのような波高値が130ボルト程度の位相が互いに180°異なる2系統の幅変調済増幅パルス出力を取り出す。   Next, as shown in FIG. 1, a power MOS / FET or bipolar transistor having a drain or collector connected to a DC power source + V of about 130 volts, for example, which is sufficiently higher than the voltage of each sine half-wave signal obtained from the DC power source DC. Between each of the control electrodes E and F such as the gates and bases of the two switching elements S and the source and emitter, a pulse transformer PT or a currently used general gate drive IC (such as IC FAN 7382N manufactured by Fairchild, USA) The two systems of width-modulated high frequency pulses are inputted separately, and the switching elements S are individually controlled by the two systems of high frequency pulses, whereby the source (emitter) of each element S is controlled. And the like. From each output side G · H, the phase where the peak value is about 130 volts as shown in G · H in FIG. Retrieve the width modulation already amplified pulse output of the system.

そして、上記2系統のパルス出力をそれぞれ各別に復調するには、前記スイッチング素
子Sの各出力側G・H(ソースやエミッタ)に各別に接続した180μH程度のチョーク
コイルLと、これら各コイルの出力側I・Jにそれぞれ1端を各別接続して他端を接地し
た0.1μF程度のセラミックコンデンサCと、前記素子Sの各出力側G・Hにカソード
を接続したアノード接地のフリー・ホィーリング・ダイオードDとを有する2系統の復調
回路4により、前記2系統の幅変調済増幅パルス出力をそれぞれ各別に復調することで、
上記各コイルLの復調出力側I・Jから図3のI・Jのような波高値が130ボルト程度
の復調済正弦半波出力を取り出せる。
In order to individually demodulate the two pulse outputs, the choke coil L of about 180 μH connected to each output side G · H (source or emitter) of the switching element S, and A ceramic capacitor C of about 0.1 μF having one end connected to each of output sides I and J and the other end grounded, and an anode having a cathode connected to each output side G and H of the element S By demodulating each of the two width-modulated amplified pulse outputs by the two demodulating circuits 4 each having a ground freewheeling diode D,
A demodulated sine half-wave output having a peak value of about 130 volts as shown by I · J in FIG. 3 can be taken out from the demodulation output side I · J of each coil L.

この復調動作は、上記各素子Sのスイッチング動作時のオフ期間に各チョークコイルLの出力側I・Jから交互に流出しようとするコイルの自己誘導電流を、それぞれコンデンサCとダイオードDとの直列回路を各別交互に経て、上記オフ期間内に各コイルLの入力側に効率よく戻せる復調動作だから、負荷(昇圧トランス)を60〜200Hz程度の低域周波数でバスドライブする時にも、有害無用な「バス・ポンピング現象」は生ぜず、電源電圧の変動を確実に抑制払拭できたので、前記チョークコイルLの復調出力側I・Jからは、それぞれ図3のI・Jのように滑らかに変化し、位相が互いに180°異なる2系統の復調済正弦半波出力を90%以上の変換効率で取り出せる。   In this demodulating operation, the self-inductive current of the coil that is going to flow alternately from the output side I · J of each choke coil L during the OFF period during the switching operation of each element S is connected in series with the capacitor C and the diode D, respectively. Since the demodulating operation can be efficiently returned to the input side of each coil L within the above-mentioned off period by passing through the circuits alternately, no harmful effects are required even when driving the load (step-up transformer) at a low frequency of about 60 to 200 Hz. Since the “bus pumping phenomenon” does not occur and the fluctuation of the power supply voltage can be surely suppressed and wiped away, the demodulation output side I and J of the choke coil L can smoothly move as shown by I and J in FIG. The two demodulated sine half-wave outputs that change and differ in phase by 180 ° can be extracted with a conversion efficiency of 90% or more.

一方、図1に示す前記低周波トランスT1の2次コイルの1端A1に生じた振幅が20ボルト程度の図3のA1のような正弦低周波信号を図1のように次段の低周波トランスT2の1次コイルに入力すると共に、その2次コイルに生じた正弦波交流をダイオードdで半波整流して図3のA2のよう振幅が20ボルト程度の正弦半波信号を作った後、この半波信号を抵抗RとツェナーダイオードZDとで構成した現用一般のスライス回路5や、コンパレータ等を用いた現用一般の矩形波整形回路により、図3のA3のようなほぼ矩形波状で前記正弦半波信号に同期した振幅が5ボルト程度の第1のオン信号を作る。   On the other hand, a sine low frequency signal such as A1 in FIG. 3 having an amplitude of about 20 volts generated at one end A1 of the secondary coil of the low frequency transformer T1 shown in FIG. After inputting to the primary coil of the transformer T2 and half-wave rectifying the sine wave alternating current generated in the secondary coil by the diode d, a sine half-wave signal having an amplitude of about 20 volts is created as shown by A2 in FIG. The half-wave signal is formed into a substantially rectangular wave shape as shown by A3 in FIG. 3 by a general-use slice circuit 5 composed of a resistor R and a Zener diode ZD, or a common-use rectangular wave shaping circuit using a comparator or the like. A first ON signal having an amplitude of about 5 volts synchronized with the half-sine wave signal is generated.

また、前記図3のA1の正弦低周波信号と同電圧で、位相が180°異なる図3のB1のような正弦低周波信号を前記トランスT1の2次コイルの他端B1から得て、この信号を前記のように半波整流して図3のB2のような正弦半波信号を作った後、この信号を前記と同様にほぼ矩形波状に整形し、前記第1のオン信号に対し位相が180°異なる図3のB3のような振幅が5ボルト程度で矩形波状の第2のオン信号を作る。   3 is obtained from the other end B1 of the secondary coil of the transformer T1 with the same voltage as the sine low frequency signal of A1 of FIG. The signal is half-wave rectified as described above to produce a sine half-wave signal such as B2 in FIG. 3, and then the signal is shaped into a substantially rectangular wave shape as described above, and is phase-shifted with respect to the first ON signal. A second ON signal having a rectangular wave shape with an amplitude of about 5 volts as shown in B3 of FIG.

また、図1における前記2個のチョークコイルLの各復調出力側I・Jと接地間には、それぞれ図1のように、パワーMOS・FETやバイポーラトランジスタ等を用いた直列2個の導通制御素子を1列ずつ接続して導通制御回路6を構成し、この回路における1列目のコイル側素子Q1のゲートやベース等の制御電極とソースやエミッタとの間に前記図3のA3のようなほぼ矩形波状の第1のオン信号を印加すると共に、2列目の接地側素子Q4の制御電極と接地間には、前記低周波トランスT1の2次コイルの1端B1に生じた図3のB1のような振幅が20ボルト程度の正弦半波信号自体を前記と同様に矩形波状に整形した図3のA3のような振幅が5ボルト程度の第1のオン信号を印加することで、上記コイル側素子Q1と接地側導素子Q4との導通をそれぞれ同期制御する。   In addition, as shown in FIG. 1, two series conduction controls using power MOS / FETs or bipolar transistors are provided between the demodulation output sides I and J of the two choke coils L and the ground in FIG. Elements are connected one by one to form a continuity control circuit 6, and between the control electrodes such as the gate and base of the coil side element Q1 and the source and emitter of the coil-side element Q1 in the first column as shown in A3 in FIG. 3 is generated between the control electrode of the ground element Q4 in the second row and the ground at the first end B1 of the secondary coil of the low frequency transformer T1. By applying a first ON signal having an amplitude of about 5 volts as shown in A3 of FIG. 3 in which the sine half-wave signal itself having an amplitude of about 20 volts such as B1 of FIG. Coil side element Q1 and ground side conductor Synchronously controls conduction between the child Q4 respectively.

次いで、図1における2列目のコイル側素子Q3の制御電極とソースやエミッタとの間、および1列目の接地側素子Q2の制御電極と接地間に、それぞれ前記のように整形した矩形波状の図3のB3のような第2のオン信号を印加し、上記コイル側素子Q3と接地側導素子Q2との導通をそれぞれ同期制御することで、前記直列2個の導通制御素子の各相互接続部K・L間に接続した昇圧トランスTの1次コイルt1に、図4のK・Lのような波高値が130ボルト程度で、電流方向が半波毎に反転する2系統の正弦半波出力を交互に供給できる。   Next, a rectangular wave shape shaped as described above is provided between the control electrode of the coil side element Q3 in the second row in FIG. 1 and the source and emitter, and between the control electrode of the ground side element Q2 in the first row and the ground, respectively. 3 is applied, and the conduction between the coil-side element Q3 and the ground-side conductive element Q2 is controlled synchronously, whereby each of the two conduction control elements in series is connected to each other. The primary coil t1 of the step-up transformer T connected between the connecting portions K and L has two systems of sine and half whose peak value is about 130 volts and the current direction is inverted every half wave as shown in K and L of FIG. Wave output can be supplied alternately.

その結果、昇圧トランスTの1次コイルt1に対し供給する上記2系統の正弦半波出力は、電流方向が半波毎に反転する正弦半波出力だから、この1次コイルt1には正弦波交流を供給できる結果となり、トランス2次コイルt2に図4のMのように滑らかに変化する10〜15キロボルト程度の高圧正弦波交流を発生させ得る。   As a result, the two sine half-wave outputs supplied to the primary coil t1 of the step-up transformer T are sinusoidal half-wave outputs whose current directions are inverted every half-wave. As a result, a high-voltage sine wave alternating current of about 10 to 15 kilovolts that smoothly changes as indicated by M in FIG. 4 can be generated in the transformer secondary coil t2.

具体的には、前記1列目の導通制御素子Q1・Q2の相互接続部Kに生じた図4のKのような正弦半波出力は、トランス1次コイルt1・相互接続部Lおよびオン状態の2列目の接地側導通制御素子Q4のドレイン・ソースを順次に経て接地側に流れ,上記接続部Kから接続部Lに向けて図4のKのような正弦半波出力を供給できる。   Specifically, the sine half-wave output, such as K in FIG. 4, generated in the interconnection K of the conduction control elements Q1 and Q2 in the first row is the transformer primary coil t1 and interconnection L and the ON state. 4 flows to the ground side sequentially through the drain and source of the ground side conduction control element Q4 in the second row, and a sine half-wave output as shown in K of FIG.

その直後、今度は、前記2列目の導通制御素子Q3・Q4の相互接続部Lに生じた図4のLのような正弦半波出力は、トランス1次コイルt1・相互接続部Kおよびオン状態の1列目の接地側導通制御素子Q2のドレイン・ソースを順次に経て接地側に流れる結果となり、トランス1次コイルt1には前記とは逆向きの半波出力を供給でき、これら各正弦半波出力の交互反転供給動作を順次に繰り返すことで、昇圧トランスTの1次コイルt1には正弦波交流を継続供給でき、トランス2次コイルt2に図4のMのように、滑らかに変化する10〜15キロボルト程度の高圧正弦波交流を発生させ得る。   Immediately thereafter, this time, the sine half-wave output such as L in FIG. 4 generated in the interconnection L of the conduction control elements Q3 and Q4 in the second row is converted into the transformer primary coil t1 and the interconnection K and ON. As a result, the current flows to the ground side sequentially through the drain and source of the ground side conduction control element Q2 in the first row in the state, and a half-wave output in the opposite direction can be supplied to the transformer primary coil t1. By sequentially repeating the half-wave output alternating inversion supply operation, a sinusoidal alternating current can be continuously supplied to the primary coil t1 of the step-up transformer T, and the transformer secondary coil t2 can be smoothly changed as indicated by M in FIG. High voltage sine wave alternating current of about 10 to 15 kilovolts can be generated.

上記昇圧トランスTにおける2次コイルt2の1端は、アース取りハイメグ抵抗R0を経て前記直流電源DCにおける現用一般の接地ラインに接続すると共に、上記2次コイルt2の両端間には、5〜10MΩ・10W程度の大型ハイメグ抵抗R1とダイオードd1 との並列回路と、この並列回路と直列のハイメグ抵抗R2とダイオードd2 とを用いた正電圧ブリーダ回路7を接続すると共に、上記抵抗R1と抵抗R2との抵抗値比率を2対1に設定することで、両者の相互接続部Nに図4のNのように生じた正電圧と負電圧との波高値比率が1対3の生体印加交流を大地と生体に対して絶縁配置した導電マットmに電流制限ハイメグ抵抗R3を経て供給できる。   One end of the secondary coil t2 in the step-up transformer T is connected to a common working ground line in the DC power source DC via a grounding Hi-Meg resistor R0, and 5-10 MΩ between both ends of the secondary coil t2. A large-scale high-Meg resistor R1 of about 10 W and a diode d1 are connected in parallel, and a positive voltage bleeder circuit 7 using the Hi-Meg resistor R2 and the diode d2 in series with the parallel circuit is connected, and the resistors R1 and R2 By setting the resistance value ratio to 2: 1, the biologically applied alternating current having a peak value ratio between the positive voltage and the negative voltage generated as indicated by N in FIG. Can be supplied to the conductive mat m insulated from the living body via the current limiting high-Meg resistor R3.

したがって、本発明による上記生体印加交流は、周波数が60〜200Hz程度で滑らかに変化する正弦波を用いた生体印加交流だから、生体拒否反応の発生を防止できると共に、健康な人体内におけるイオンの理想的な存在比率に等しい割合の正電圧と負電圧とのに、健康な人体内におけるイオンの理想的な存在比率に等しい割合の正電圧と負電圧との波高値比率が1対3の生体印加交流を前記導電マットm等を経て生体に印加できるので、商用電源周波数に関係なく、何処でも常時、滑らかに変化する生体印加交流で、交流電位治療が可能となった結果、治療効果の有効性と速効性とが大幅に促進できる。   Therefore, since the living body applied AC according to the present invention is a living body applied AC using a sine wave that smoothly changes at a frequency of about 60 to 200 Hz, it is possible to prevent the generation of a living body rejection reaction and the ideal of ions in a healthy human body. A biological application in which the peak value ratio between the positive voltage and the negative voltage equal to the ideal abundance ratio of ions in a healthy human body is 1 to 3 while the positive voltage and the negative voltage are equal to the typical abundance ratio. Since alternating current can be applied to the living body through the conductive mat m and the like, the AC potential treatment can be performed with the living body-applied alternating current that changes smoothly everywhere regardless of the commercial power supply frequency. And rapid action can be greatly promoted.

本発明による交流電位治療器は、前記導電マットmを用いる代わりに、生体患部に対して通電導子等により接触加電する交流電位治療器としても、当然に利用できる。   Naturally, the AC potential treatment device according to the present invention can also be used as an AC potential treatment device in which contact is applied to the affected part of the living body by a conducting conductor or the like instead of using the conductive mat m.

1…正弦低周波発生回路 L…チョークコイル
2…パルス幅変調回路 C…コンデンサ
3…高周波パルス発生回路 D…フリー・ホィーリング・ダイオード
4…復調回路 ZD…ツェナーダイオード
5…スライス回路 d・d1 ・d2 …ダイオード
6…導通制御回路 S…スイッチング素子
7…正電圧ブリーダ回路 Q1〜Q4…導通制御素子
T1・T2…低周波トランス R1〜R3・R0…ハイメグ抵抗
PT…パルストランス R…直列抵抗
T…昇圧トランス m…導電マット
t1…昇圧トランスの1次コイル DC…直流電源
t2…昇圧トランスの2次コイル
DESCRIPTION OF SYMBOLS 1 ... Sine low frequency generation circuit L ... Choke coil 2 ... Pulse width modulation circuit C ... Capacitor 3 ... High frequency pulse generation circuit D ... Free wheeling diode 4 ... Demodulation circuit ZD ... Zener diode 5 ... Slice circuit d * d1 * d2 ... Diode 6 ... Conduction control circuit S ... Switching element 7 ... Positive voltage bleeder circuit Q1 to Q4 ... Conduction control elements T1 and T2 ... Low frequency transformer R1 to R3 and R0 ... High Meg resistance PT ... Pulse transformer R ... Series resistance T ... Boost Transformer m ... Conductive mat t1 ... Primary coil of the step-up transformer DC ... DC power supply t2 ... Secondary coil of the step-up transformer

Claims (2)

交流高電圧を生体に印加して治療を実行する電位治療器において、周波数が60〜200Hz程度の正弦低周波電圧から、位相が互いに180°異なる2系統の正弦半波信号を得ると共に、これら各半波信号で各別にパルス幅変調した2系統の幅変調済高周波パルスにより、前記信号電圧よりも充分高い電圧の直流電源に接続した2個のスイッチング素子を各別にスイッチング制御することで、位相が互いに180°異なる2系統の幅変調済増幅パルス出力を得た後、これら各パルス出力の復調時にチョークコイルに生じる自己誘導電流をコイル出力側からコイル入力側に戻せるダイオードとコンデンサとを有する2系統の復調回路により、前記各パルス出力を各別に復調することで、位相が互いに180°異なる2系統の復調済正弦半波出力を得る一方、前記各コイルの出力側と接地間には、それぞれ直列2個の導通制御素子を1列ずつ接続して導通制御回路を構成し、この回路における1列目のコイル側導通制御素子と2列目の接地側導通制御素子、および2列目のコイル側導通制御素子と1列目の接地側導通制御素子を、それぞれ前記各半波出力に同期させて交互に導通制御することで、前記各列の導通制御素子の相互接続部間に接続した昇圧トランスの1次コイルの電流方向を半波毎に反転させ、前記トランス2次コイルに発生した高圧正弦波交流を正電圧ブリーダ回路により、正電圧と負電圧との波高値比率が1対3の生体印加交流となした交流電位治療器。   In an electric potential treatment device that performs treatment by applying an alternating high voltage to a living body, two sinusoidal half-wave signals having phases different from each other by 180 ° are obtained from a sinusoidal low-frequency voltage having a frequency of about 60 to 200 Hz. By switching control of two switching elements connected to a DC power source having a voltage sufficiently higher than the signal voltage by two systems of width-modulated high-frequency pulses that are individually pulse-width-modulated with half-wave signals, the phase becomes Two systems having a diode and a capacitor capable of returning the self-induced current generated in the choke coil from the coil output side to the coil input side after demodulating each of the pulse outputs after obtaining two width-modulated amplified pulse outputs different from each other by 180 ° By demodulating each pulse output separately by the demodulating circuit, two systems of demodulated sine half-wave outputs that are 180 degrees out of phase with each other On the other hand, between the output side of each coil and the ground, two series conduction control elements are connected one by one to form a conduction control circuit, and the coil side conduction control element in the first column in this circuit The second row ground side conduction control element, the second row coil side conduction control element, and the first row ground side conduction control element are alternately conducted in synchronization with the respective half-wave outputs, The current direction of the primary coil of the step-up transformer connected between the interconnecting portions of the conduction control elements in each row is reversed every half wave, and the high-voltage sine wave AC generated in the transformer secondary coil is converted by a positive voltage bleeder circuit. An alternating-current potential treatment device in which the crest value ratio between the positive voltage and the negative voltage is a living body applied alternating current of 1 to 3. 交流高電圧を生体に印加して治療を実行する電位治療器において、周波数が60〜20
0Hz程度の正弦低周波電圧から、位相が互いに180°異なる2系統の正弦半波信号を
得ると共に、これら各半波信号で各別にパルス幅変調した2系統の幅変調済高周波パルス
により、前記信号電圧よりも充分高い電圧の直流電源に接続した2個のスイッチング素子
を各別にスイッチング制御することで、位相が互いに180°異なる2系統の幅変調済増
幅パルス出力を得た後、これら各パルス出力の復調回路として、前記各素子の出力側に接
続したチョークコイルと、これら各コイルの復調出力側に接続した1端接地のコンデンサ
と、前記各素子の出力側に接続したアノード接地のフリー・ホィーリング・ダイオードと
を有する2系統の復調回路により、前記各パルス出力を各別に復調することで、位相が互
いに180°異なる2系統の復調済正弦半波出力を得る一方、前記各コイルの出力側と接
地間には、それぞれ直列2個の導通制御素子を1列ずつ接続して導通制御回路を構成し、
この回路における1列目のコイル側導通制御素子と2列目の接地側導通制御素子、および
2列目のコイル側導通制御素子と1列目の接地側導通制御素子を、それぞれ前記各半波出
力に同期させて交互に導通制御することで、前記各列の導通制御素子の相互接続部間に接
続した昇圧トランスの1次コイルの電流方向を半波毎に反転させ、前記トランス2次コイ
ルに発生した高圧正弦波交流を正電圧ブリーダ回路により、正電圧と負電圧との波高値比
率が1対3の生体印加交流となした交流電位治療器。
In an electric potential treatment device that performs treatment by applying an alternating high voltage to a living body, the frequency is 60 to 20
Two systems of sinusoidal half-wave signals having phases different from each other by 180 ° are obtained from a sinusoidal low-frequency voltage of about 0 Hz, and the signals are obtained by two systems of width-modulated high-frequency pulses that are individually pulse-width modulated by these half-wave signals. After switching control of two switching elements connected to a DC power source having a voltage sufficiently higher than the voltage, two width-modulated amplified pulse outputs whose phases differ from each other by 180 ° are obtained. As a demodulating circuit, a choke coil connected to the output side of each element, a one-end grounded capacitor connected to the demodulated output side of each coil, and an anode grounded freewheeling connected to the output side of each element By demodulating each pulse output separately by two demodulating circuits having a diode, two systems having a phase difference of 180 ° from each other. While obtaining a finished half-sine output, said between ground and the output side of each coil, constitute a conduction control circuit are connected respectively in series two conduction control element column by column,
In this circuit, the first-row coil-side conduction control element, the second-row ground-side conduction control element, the second-row coil-side conduction control element, and the first-row ground-side conduction control element are respectively connected to the half-waves. By conducting conduction control alternately in synchronism with the output, the current direction of the primary coil of the step-up transformer connected between the interconnecting portions of the conduction control elements in each column is reversed every half wave, and the transformer secondary coil AC high-voltage sine wave alternating current generated in 1 by a positive voltage bleeder circuit, and the wave potential ratio of the positive voltage and the negative voltage is a living body applied alternating current of 1: 3.
JP2013144238A 2013-07-10 2013-07-10 AC potential treatment device Active JP5717013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013144238A JP5717013B2 (en) 2013-07-10 2013-07-10 AC potential treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144238A JP5717013B2 (en) 2013-07-10 2013-07-10 AC potential treatment device

Publications (2)

Publication Number Publication Date
JP2015016061A JP2015016061A (en) 2015-01-29
JP5717013B2 true JP5717013B2 (en) 2015-05-13

Family

ID=52437709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144238A Active JP5717013B2 (en) 2013-07-10 2013-07-10 AC potential treatment device

Country Status (1)

Country Link
JP (1) JP5717013B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079564B2 (en) * 1990-11-24 2000-08-21 日本電気株式会社 Inverter power circuit
JP2609574B2 (en) * 1994-04-19 1997-05-14 株式会社ヘルス AC potential therapy device
JP3006744U (en) * 1994-04-21 1995-01-31 株式会社ヘルス AC potential therapy device
JP3015674U (en) * 1995-03-10 1995-09-05 浜須 秀夫 Potential therapy device

Also Published As

Publication number Publication date
JP2015016061A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5717010B2 (en) AC potential treatment device
JP6378354B2 (en) High frequency series AC voltage regulator
JP2017130997A (en) Insulated bidirectional dc-dc converter and control method of the same
JP2019118234A (en) Isolated bidirectional dc/dc converter and control method of the same
JP2007068392A (en) Multiphase buck converter having a plurality of coupling inductors
JP2005065497A (en) Pulse-width modulation soft switching control
CN111342735A (en) Stepless speed regulating circuit and speed regulating method for single-phase motor
JP5892172B2 (en) Inverter device
JP2020108196A (en) Insulated bidirectional dc/dc converter and control method therefor
JP5717013B2 (en) AC potential treatment device
JP3196922U (en) AC potential treatment device
JP5717014B1 (en) AC potential treatment device
JP2020053137A (en) Electromagnetic induction heating device
CN114070034A (en) Power conversion device
JP3198093U (en) AC potential treatment device
El Iysaouy et al. Impact of flyback transformer and switch parameters on efficiency of single stage photovoltaic microinverter
JP3196923U (en) AC potential treatment device
JP3198094U (en) AC potential treatment device
TW200425622A (en) Power supply circuit and electronic machine
JP2014183912A (en) Alternating current potential treatment device
JP2014223234A (en) Ac potential therapy device
JP2014171637A (en) Ac potential curing instrument
JP2014200612A (en) Alternating current potential treatment device
US9729136B2 (en) Circuit arrangement and method for controlling semiconductor switching element
JP3196924U (en) AC potential treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150305

R150 Certificate of patent or registration of utility model

Ref document number: 5717013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250