JP5716730B2 - Silica glass containing TiO2 and optical member for EUV lithography - Google Patents
Silica glass containing TiO2 and optical member for EUV lithography Download PDFInfo
- Publication number
- JP5716730B2 JP5716730B2 JP2012264731A JP2012264731A JP5716730B2 JP 5716730 B2 JP5716730 B2 JP 5716730B2 JP 2012264731 A JP2012264731 A JP 2012264731A JP 2012264731 A JP2012264731 A JP 2012264731A JP 5716730 B2 JP5716730 B2 JP 5716730B2
- Authority
- JP
- Japan
- Prior art keywords
- tio
- glass
- sio
- concentration
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 title claims description 30
- 238000001900 extreme ultraviolet lithography Methods 0.000 title claims description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 159
- 206010040925 Skin striae Diseases 0.000 claims description 40
- 239000002994 raw material Substances 0.000 claims description 9
- 238000007496 glass forming Methods 0.000 claims description 8
- 230000007062 hydrolysis Effects 0.000 claims description 8
- 238000006460 hydrolysis reaction Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 description 109
- 229910004298 SiO 2 Inorganic materials 0.000 description 101
- 239000000203 mixture Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000002243 precursor Substances 0.000 description 10
- -1 SiCl 4 Chemical class 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 238000004017 vitrification Methods 0.000 description 6
- 238000005498 polishing Methods 0.000 description 5
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910003902 SiCl 4 Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 229910003691 SiBr Inorganic materials 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/40—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
- C03B2201/42—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
本発明は、TiO2を含有するシリカガラス(以下、本明細書では、TiO2−SiO2ガラスと記す)およびその製造方法に関し、特にEUVリソグラフィに使用される露光装置光学材として用いられるTiO2−SiO2ガラスおよびその製造方法に関する。なお、本発明でいうEUV(Extreme Ultra Violet)光とは、軟X線領域または真空紫外域の波長帯の光を指し、具体的には波長が0.2〜100nm程度の光のことである。 The present invention is a silica glass containing TiO 2 (hereinafter, in this specification, referred to as TiO 2 -SiO 2 glass) and relates to a manufacturing method thereof, TiO 2, particularly used as an exposure apparatus optical material for use in EUV lithography It relates to —SiO 2 glass and a method for producing the same. The EUV (Extreme Ultra Violet) light referred to in the present invention refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm. .
従来から、光リソグラフィ技術においては、ウェハ上に微細な回路パターンを転写して集積回路を製造するための露光装置が広く利用されている。集積回路の高集積化および高機能化に伴い、集積回路の微細化が進み、露光装置には深い焦点深度で高解像度の回路パターンをウェハ面上に結像させることが求められ、露光光源の短波長化が進められている。露光光源は、従来のg線(波長436nm)、i線(波長365nm)やKrFエキシマレーザ(波長248nm)から進んでArFエキシマレーザ(波長193nm)が用いられようとしている。また、さらに回路パターンの線幅が100nm以下となる次世代の集積回路に対応するため、露光光源としてF2レーザ(波長157nm)を用いることが有力視されているが、これも線幅が70nm世代までしかカバーできないと見られている。 Conventionally, in an optical lithography technique, an exposure apparatus for manufacturing an integrated circuit by transferring a fine circuit pattern onto a wafer has been widely used. As integrated circuits become highly integrated and highly functional, miniaturization of integrated circuits advances, and the exposure apparatus is required to form a high-resolution circuit pattern on the wafer surface with a deep focal depth. Short wavelength is being promoted. As an exposure light source, an ArF excimer laser (wavelength 193 nm) is going to be used, proceeding from conventional g-line (wavelength 436 nm), i-line (wavelength 365 nm) or KrF excimer laser (wavelength 248 nm). Further, in order to cope with a next-generation integrated circuit in which the line width of the circuit pattern is 100 nm or less, it is considered promising to use an F 2 laser (wavelength 157 nm) as an exposure light source, which also has a line width of 70 nm. It is considered that only generations can be covered.
このような流れにあって、露光光源としてEUV光(極端紫外光)のうち代表的には波長13nmの光を用いたリソグラフィ技術が、50nm以降の複数世代にわたって適用可能と見られ注目されている。EUVリソグラフィ(以下、「EUVL」と略する)の像形成原理は、投影光学系を用いてマスクパターンを転写する点では、従来のフォトリソグラフィーと同じである。しかし、EUV光のエネルギー領域では光を透過する材料がないために、屈折光学系は用いることができず、光学系はすべて反射光学系となる。 In such a flow, a lithography technique that typically uses light having a wavelength of 13 nm among EUV light (extreme ultraviolet light) as an exposure light source is considered to be applicable over a plurality of generations after 50 nm, and is attracting attention. . The image forming principle of EUV lithography (hereinafter abbreviated as “EUVL”) is the same as that of conventional photolithography in that a mask pattern is transferred using a projection optical system. However, since there is no material that transmits light in the energy region of EUV light, the refractive optical system cannot be used, and all the optical systems are reflective optical systems.
EUVLに用いられる露光装置光学材はフォトマスクやミラーなどであるが、(1)基材 (2)基材上に形成された反射多層膜 (3)反射多層膜上に形成された吸収体層 から基本的に構成される。多層膜は、Mo/Siが交互に層を形成することが検討され、吸収体層には、成膜材料として、TaやCrが検討されている。基板としては、EUV光照射の下においても歪みが生じないよう低熱膨張係数を有する材料が必要とされ、低熱膨張係数を有するガラス等が検討されている。 An exposure apparatus optical material used for EUVL is a photomask, a mirror, or the like. (1) Base material (2) Reflective multilayer film formed on the base material (3) Absorber layer formed on the reflective multilayer film It basically consists of As for the multilayer film, it is considered that Mo / Si alternately forms layers, and Ta and Cr are studied as film forming materials for the absorber layer. As the substrate, a material having a low thermal expansion coefficient is required so that distortion does not occur even under EUV light irradiation, and glass having a low thermal expansion coefficient has been studied.
TiO2−SiO2ガラスは、石英ガラスよりも小さい熱膨張係数(Coefficient of Thermal Expansion;CTE)を有する超低熱膨張材料として知られ、またガラス中のTiO2含有量によって熱膨張係数を制御できるために、熱膨張係数が0に近いゼロ膨張ガラスが得られる。したがって、TiO2−SiO2ガラスはEUVL用露光装置光学材に用いる材料としての可能性がある。 TiO 2 —SiO 2 glass is known as an ultra-low thermal expansion material having a smaller coefficient of thermal expansion (CTE) than quartz glass, and the coefficient of thermal expansion can be controlled by the TiO 2 content in the glass. In addition, a zero expansion glass having a thermal expansion coefficient close to 0 is obtained. Therefore, TiO 2 —SiO 2 glass has a possibility as a material used for the exposure apparatus optical material for EUVL.
従来のTiO2−SiO2ガラスの作製方法は、まず、シリカ前駆体とチタニア前駆体をそれぞれ蒸気形態に転化させてこれらを混合する。この蒸気形態となった混合物は、バーナーに導入され熱分解することでTiO2−SiO2ガラス粒子となる。このTiO2−SiO2ガラス粒子は耐火性容器中に堆積され、堆積と同時にそこで溶融されてTiO2−SiO2ガラスとなる。 In the conventional method for producing TiO 2 —SiO 2 glass, first, a silica precursor and a titania precursor are each converted into a vapor form and mixed. The mixture in the vapor form is introduced into a burner and thermally decomposed to become TiO 2 —SiO 2 glass particles. The TiO 2 —SiO 2 glass particles are deposited in a refractory container and melted there at the same time as the deposition to become TiO 2 —SiO 2 glass.
しかしこの方法で作製されるTiO2−SiO2ガラスは、TiO2/SiO2組成比の周期的変動が発生しており、これが100〜200μmピッチでの縞状の脈理として現れていた。 However, in the TiO 2 —SiO 2 glass produced by this method, periodic fluctuations in the TiO 2 / SiO 2 composition ratio occurred, which appeared as striped striae at a pitch of 100 to 200 μm.
なお、米国特許出願には、TiO2−SiO2多孔質ガラス体を形成し、ガラス体にした後、マスク基板を得る方法が開示されている(例えば、特許文献1参照。)。 Note that a method for obtaining a mask substrate after forming a TiO 2 —SiO 2 porous glass body into a glass body is disclosed in US Patent Application (for example, see Patent Document 1).
TiO2−SiO2ガラスの縞状の脈理は、硝材中のTiO2/SiO2組成比の周期的変動により屈折率差が大きくなるため発生すると考えられている。EUVL用の露光装置光学材として用いられる場合、TiO2−SiO2ガラスは、ガラス表面が超高平滑性を有するように研磨する必要がある。しかし、TiO2−SiO2ガラスにおいて、TiO2/SiO2組成比の異なる部位は、組成比によりガラスの機械的および化学的物性が異なるために、研磨レートが一定とならず、研磨後のガラス表面が超高平滑性を有するように仕上げることが困難である。また、100〜200μmピッチで縞状の脈理のあるTiO2−SiO2ガラスを研磨すると、ガラス表面に、脈理ピッチと同程度のピッチをもつ“うねり”が発生し、超高平滑性を得るのが非常に困難である。 The striped striae of TiO 2 —SiO 2 glass are considered to occur because the refractive index difference increases due to the periodic fluctuation of the TiO 2 / SiO 2 composition ratio in the glass material. When used as an exposure apparatus optical material for EUVL, TiO 2 —SiO 2 glass needs to be polished so that the glass surface has ultra-high smoothness. However, in the TiO 2 —SiO 2 glass, the portions having different TiO 2 / SiO 2 composition ratios are different in mechanical and chemical properties of the glass depending on the composition ratio. It is difficult to finish so that the surface has ultra-high smoothness. In addition, when TiO 2 —SiO 2 glass with stripe striae is polished at a pitch of 100 to 200 μm, “swell” having a pitch similar to the striae pitch is generated on the glass surface, and ultra high smoothness is achieved. It is very difficult to get.
近年、EUVL用露光装置光学材の極めて重要な要求特性として、10μm〜1mmのうねりのピッチをもつMSFR(Mid−Spatial Frequency Roughness)を低減させる必要があると言われるようになっている。従来のTiO2−SiO2ガラスを研磨した際には、前記の理由により100〜200μmピッチのうねりを有するため、MSFRを低減させることが非常に困難であった。 In recent years, it has been said that it is necessary to reduce MSFR (Mid-Spatial Frequency Roughness) having a waviness pitch of 10 μm to 1 mm as a very important required characteristic of an EUVL exposure apparatus optical material. When the conventional TiO 2 —SiO 2 glass is polished, it has undulations with a pitch of 100 to 200 μm for the above-described reason, and therefore it is very difficult to reduce the MSFR.
したがって、EUVL用露光装置光学材として、研磨後のガラス表面が超高平滑性を有するように仕上げるには、TiO2−SiO2ガラスのTiO2/SiO2組成比変動幅を小さくし、ガラス表面における研磨レートを一定とすることや脈理のピッチを10μm以下にしてMSFRの低減化することが有効と考えられる。 Therefore, as an exposure apparatus optical material for EUVL, in order to finish the polished glass surface so as to have ultra-high smoothness, the TiO 2 / SiO 2 composition ratio fluctuation range of the TiO 2 —SiO 2 glass is reduced, and the glass surface It is considered to be effective to make the polishing rate constant and to reduce the MSFR by making the striae pitch 10 μm or less.
また、同程度の平滑度(Roughness(rms))を有するTiO2−SiO2ガラス基板であっても、脈理ピッチの小さい方が、大きいものに比べ、短時間で効率良く凸部を研磨できるために、超高平滑性を有するように研磨することが容易となる。 Further, even in the case of a TiO 2 —SiO 2 glass substrate having the same level of smoothness (Roughness (rms)), the smaller striae pitch can polish the convex portion more efficiently in a shorter time than the larger one. Therefore, it becomes easy to polish so as to have ultra-high smoothness.
また、TiO2−SiO2ガラス中のTiO2/SiO2組成比を均一にすることは、ガラス内での熱膨張係数のばらつきを小さくするという点において重要である。従って、脈理と呼ばれるような微小領域のTiO2/SiO2組成比変動幅を小さくするのに加えて、その部材全域におけるTiO2/SiO2組成比変動幅を小さくすることが好ましい。 Further, making the TiO 2 / SiO 2 composition ratio uniform in the TiO 2 —SiO 2 glass is important in terms of reducing variation in the thermal expansion coefficient within the glass. Therefore, it is preferable to reduce the TiO 2 / SiO 2 composition ratio fluctuation range in the entire region in addition to reducing the TiO 2 / SiO 2 composition ratio fluctuation range of the minute region as called striae.
本発明の態様1は、TiO2濃度が1質量%以上であり、かつ、TiO2濃度の最大値と最小値との差が、少なくとも一つの面内における30mm×30mmの範囲で0.06質量%以下であることを特徴とするTiO2を含有するシリカガラスを提供する。 In aspect 1 of the present invention, the TiO 2 concentration is 1% by mass or more, and the difference between the maximum value and the minimum value of the TiO 2 concentration is 0.06 mass in the range of 30 mm × 30 mm in at least one plane. A silica glass containing TiO 2 is provided.
態様2は、態様1において、TiO2濃度の最大値と最小値との差が、直交する二つの面内における30mm×30mmの範囲でそれぞれ0.06質量%以下であるTiO2を含有するシリカガラスを提供する。 Aspect 2 is a silica containing TiO 2 in which the difference between the maximum value and the minimum value of the TiO 2 concentration is 0.06% by mass or less in a range of 30 mm × 30 mm in two orthogonal planes. Provide glass.
態様3は、TiO2濃度が1質量%以上であるTiO2を含有するシリカガラスからなり、光の入射方向に垂直な面において、TiO2濃度の最大値と最小値との差が、0.06質量%以下であるEUVリソグラフィ用光学部材を提供する。 Aspect 3 is made of silica glass containing TiO 2 having a TiO 2 concentration of 1% by mass or more, and the difference between the maximum value and the minimum value of TiO 2 concentration on the surface perpendicular to the light incident direction is 0. Provided is an optical member for EUV lithography that is 06 mass% or less.
態様4は、態様3において、光の入射方向に垂直な面において、0.06質量%を超えるTiO2濃度の最大値と最小値との差を生じさせる脈理が存在しないEUVリソグラフィ用光学部材を提供する。 Aspect 4 is an EUV lithography optical member according to aspect 3, wherein there is no striae that causes a difference between a maximum value and a minimum value of TiO 2 concentration exceeding 0.06 mass% on a plane perpendicular to the light incident direction. I will provide a.
態様5は、態様1または2のTiO2を含有するシリカガラスを用いたEUVリソグラフィ用光学部材を提供する。 Aspect 5 provides an optical member for EUV lithography using silica glass containing TiO 2 of aspect 1 or 2.
本発明によれば、面粗さの小さいTiO2−SiO2ガラスを得ることができる。したがって、EUVLに使用される光学系を構成する部材の素材としてきわめて好適である。 According to the present invention, TiO 2 —SiO 2 glass having a small surface roughness can be obtained. Therefore, it is extremely suitable as a material for members constituting an optical system used in EUVL.
TiO2−SiO2ガラスは、含有するTiO2濃度により、熱膨張係数が変化することが知られており、室温付近ではTiO2を約7質量%含むTiO2−SiO2ガラスの熱膨張係数がほぼゼロとなる。 TiO 2 —SiO 2 glass is known to have a coefficient of thermal expansion that varies depending on the concentration of TiO 2 contained, and the thermal expansion coefficient of TiO 2 —SiO 2 glass containing about 7% by mass of TiO 2 is near room temperature. Nearly zero.
本発明のTiO2−SiO2ガラスとはTiO2を1〜12質量%含有するシリカガラスのことが好ましい。TiO2の含有量が1質量%未満であるとゼロ膨張にならないおそれがあり、12質量%を超えると熱膨張係数が負となる可能性があるからである。TiO2の含有量は、より好ましくは5〜9質量%である。 The TiO 2 —SiO 2 glass of the present invention is preferably a silica glass containing 1 to 12% by mass of TiO 2 . This is because if the content of TiO 2 is less than 1% by mass, zero expansion may not occur, and if it exceeds 12% by mass, the thermal expansion coefficient may be negative. The content of TiO 2 is more preferably 5 to 9% by mass.
脈理ピッチは10μm以下にすることが好ましく、7μm以下にすることがさらに好ましい。脈理ピッチが10μmを超えると、研磨面のMSFRを低減させることが困難になるおそれがある。 The striae pitch is preferably 10 μm or less, and more preferably 7 μm or less. If the striae pitch exceeds 10 μm, it may be difficult to reduce the MSFR of the polished surface.
本明細書では、「TiO2濃度のばらつき」を1つの面におけるTiO2濃度の最大値と最小値の差と定義する。30mm×30mmの範囲において微小領域のTiO2濃度のばらつきが、0.06質量%以下、好ましくは0.04質量%以下にすることが好ましい。TiO2濃度のばらつきが0.06質量%を超えると、研磨した際に充分な平滑性を得ることが困難になるおそれがある。 In this specification, “variation in TiO 2 concentration” is defined as the difference between the maximum value and the minimum value of the TiO 2 concentration in one plane. In the range of 30 mm × 30 mm, the variation in the TiO 2 concentration in the minute region is 0.06% by mass or less, preferably 0.04% by mass or less. If the variation in the TiO 2 concentration exceeds 0.06% by mass, it may be difficult to obtain sufficient smoothness when polished.
TiO2濃度のばらつきを0.06質量%以内にしたTiO2−SiO2ガラスの製造方法としては、スート法により、ガラス形成原料となるSi前駆体とTi前駆体を火炎加水分解もしくは熱分解させて得られるTiO2−SiO2ガラス微粒子(スート)を、基材に堆積、成長させて、多孔質TiO2−SiO2ガラス体を得る。得られた多孔質TiO2−SiO2ガラス体を透明ガラス化温度まで加熱して透明TiO2−SiO2ガラス体を得る製造方法がある。前記基材としては石英ガラス製の種棒などが用いられる。 As a method for producing TiO 2 —SiO 2 glass with a variation in TiO 2 concentration within 0.06% by mass, a Si precursor and a Ti precursor, which are glass forming raw materials, are subjected to flame hydrolysis or thermal decomposition by a soot method. TiO 2 —SiO 2 glass fine particles (soot) obtained in this manner are deposited and grown on a substrate to obtain a porous TiO 2 —SiO 2 glass body. There is a production method in which the obtained porous TiO 2 —SiO 2 glass body is heated to a transparent vitrification temperature to obtain a transparent TiO 2 —SiO 2 glass body. As the substrate, a quartz glass seed rod or the like is used.
発明者は、多孔質TiO2−SiO2ガラス体を得る段階においての種棒の回転数と、透明TiO2−SiO2ガラス体の脈理ピッチの関係について詳細な検討を行った結果、種棒の回転数が大きくなるほど、透明TiO2−SiO2ガラス体におけるTiO2濃度ばらつきが小さくなり、脈理ピッチが縮小されることを見出した。 The inventor conducted a detailed study on the relationship between the rotational speed of the seed rod in the stage of obtaining the porous TiO 2 —SiO 2 glass body and the striae pitch of the transparent TiO 2 —SiO 2 glass body. It has been found that as the number of rotations increases, the variation in TiO 2 concentration in the transparent TiO 2 —SiO 2 glass body decreases and the striae pitch decreases.
具体的には、多孔質TiO2−SiO2ガラス体を形成する際の種棒の回転数を25回転/分以上で行うことが好ましく、50回転/分以上で行うことがより好ましく、100回転/分以上で行うことが特に好ましい。透明TiO2−SiO2ガラス体のTiO2濃度ばらつきは0.06質量%以下となり、脈理ピッチは10μm以下となる。 Specifically, the rotation speed of the seed rod when forming the porous TiO 2 —SiO 2 glass body is preferably 25 rpm or more, more preferably 50 rpm or more, and 100 rpm. It is particularly preferable to carry out at a rate of at least / min. The TiO 2 concentration variation of the transparent TiO 2 —SiO 2 glass body is 0.06% by mass or less, and the striae pitch is 10 μm or less.
この場合、ガラス形成原料の供給を安定化させると、脈理の強さやピッチを減少させるうえでより好ましい。 In this case, stabilizing the supply of the glass forming raw material is more preferable in reducing striae strength and pitch.
TiO2−SiO2ガラスにみられる脈理は、TiO2/SiO2組成比の変動によるものである。またTiO2/SiO2組成比が変動するとガラスの絶対屈折率が変動する。例えば、TiO2濃度が高い部位は、TiO2濃度が低い部位に比べ、屈折率が高くなる。 The striae seen in TiO 2 —SiO 2 glass is due to variations in the TiO 2 / SiO 2 composition ratio. Further, when the TiO 2 / SiO 2 composition ratio varies, the absolute refractive index of the glass varies. For example, the refractive index of a part with a high TiO 2 concentration is higher than that of a part with a low TiO 2 concentration.
発明者は、含有するTiO2濃度の異なる数種のTiO2−SiO2ガラスの絶対屈折率を測定することにより、TiO2濃度が12質量%以下の範囲において、TiO2濃度と屈折率との間に次の関係が成り立つことを見出した。 The inventors have, by measuring the absolute refractive index of several TiO 2 -SiO 2 glass having different TiO 2 concentrations containing, in a range TiO 2 concentration is less 12 mass%, of the TiO 2 concentration and the refractive index I found that the following relationship holds:
数1を用いることにより、TiO2−SiO2ガラスの屈折率の変動幅(Δn)から、TiO2濃度のばらつき(ΔTiO2)を算出することが可能になる。具体的には、屈折率の変動幅(Δn)が200ppmのとき、TiO2濃度ばらつき(ΔTiO2)は0.06質量%である。 By using Equation 1, it is possible to calculate the variation (ΔTiO 2 ) in the TiO 2 concentration from the fluctuation range (Δn) of the refractive index of the TiO 2 —SiO 2 glass. Specifically, when the refractive index fluctuation range (Δn) is 200 ppm, the TiO 2 concentration variation (ΔTiO 2 ) is 0.06% by mass.
脈理ピッチについて被測定面の屈折率の変動幅Δnを測定し、屈折率が高い部位から低い部位への間隔を顕微鏡を用いて計測することにより脈理ピッチを求める。 With respect to the striae pitch, the variation width Δn of the refractive index of the surface to be measured is measured, and the striae pitch is obtained by measuring the distance from the high refractive index part to the low part using a microscope.
屈折率の変動幅Δnの測定方法は、以下に示すように微小領域での屈折率の変動幅Δn1の場合と広範囲での屈折率の変動幅Δn2の場合とで測定方法が異なる。 The measurement method of the refractive index fluctuation range Δn is different depending on the refractive index fluctuation range Δn 1 in a minute region and the refractive index fluctuation range Δn 2 in a wide range as described below.
脈理と呼ばれるような微小領域での屈折率の変動幅Δn1は以下のように測定する。透明TiO2−SiO2ガラス体から、例えば40mm×40mm×40mm程度の立方体を切り出し、立方体の各面より厚さ1mmでスライスし、30mm×30mm×1mmの板状TiO2−SiO2ガラスブロックを得る。フィゾー干渉計にて、本ガラスブロックの30mm×30mmの面にヘリウムネオンレーザ光を垂直にあて、例えば2mm×2mmといった脈理が十分観察可能な倍率に拡大して、面内の屈折率分布を調べ、屈折率の変動幅Δnを測定する。 The refractive index fluctuation range Δn 1 in a microscopic area called striae is measured as follows. For example, a cube of about 40 mm × 40 mm × 40 mm is cut out from the transparent TiO 2 —SiO 2 glass body, sliced at a thickness of 1 mm from each surface of the cube, and a plate-like TiO 2 —SiO 2 glass block of 30 mm × 30 mm × 1 mm is obtained. obtain. With a Fizeau interferometer, helium neon laser light is vertically applied to the 30 mm x 30 mm surface of this glass block, and the refractive index distribution in the surface is expanded to a magnification at which, for example, 2 mm x 2 mm can be observed sufficiently. The refractive index fluctuation range Δn is measured.
30mm×30mmの範囲を直接測定した場合、干渉計のCCDにおける1画素の大きさが脈理の幅に比べて十分小さくない可能性があり、脈理を検出できない可能性がある。従って、30mm×30mmの範囲全域を例えば2mm×2mm程度の複数の微小領域に分割し、各微小領域での屈折率の変動幅Δn1を測定し、その最大値を30mm×30mmの範囲での屈折率の変動幅Δnとする。 When a 30 mm × 30 mm range is directly measured, the size of one pixel in the interferometer CCD may not be sufficiently small compared to the width of the striae, and the striae may not be detected. Therefore, the entire range of 30 mm × 30 mm is divided into a plurality of minute regions of about 2 mm × 2 mm, for example, the refractive index fluctuation width Δn 1 in each minute region is measured, and the maximum value is in the range of 30 mm × 30 mm. It is assumed that the refractive index fluctuation range Δn.
例えば512×480の有効画素数を持つCCDを用いた場合、2mm×2mmの視野では1画素が約4μm角に相当することになる。従って、10μm以上のピッチの脈理は十分検出されるが、それ以下の脈理に対しては検出できないおそれがある。従って、10μm以下の脈理を測定する場合には、少なくとも1画素が1〜2μm角程度以下になるようにするのが望ましい。本明細書の実施例では、900×900の有効画素数を持つCCDを用いて2mm×2mmの領域を測定し、1画素が2μm角程度に相当するようにして屈折率の変動幅Δn1を測定した。 For example, when a CCD having an effective number of pixels of 512 × 480 is used, one pixel corresponds to about 4 μm square in a 2 mm × 2 mm visual field. Therefore, striae with a pitch of 10 μm or more are sufficiently detected, but there is a possibility that they cannot be detected for striae below that. Therefore, when measuring striae of 10 μm or less, it is desirable that at least one pixel is about 1 to 2 μm square or less. In the embodiment of the present specification, an area of 2 mm × 2 mm is measured using a CCD having an effective pixel number of 900 × 900, and the refractive index fluctuation range Δn 1 is set so that one pixel corresponds to about 2 μm square. It was measured.
一方、露光に用いられるEUV光が照射される領域など、広範囲での屈折率の変動幅Δn2は次のように測定する。160mm×160mm×150mmに成形した透明TiO2−SiO2ガラス体を、厚さ7mmのブロックにスライスし、160mm×160mm×7mmのTiO2−SiO2ガラスブロックとする。フィゾー干渉計にて、本ガラスブロックの160mm×160mmの面にヘリウムネオンレーザ光を垂直にあて、100mm×100mm面内での屈折率分布を調べ、屈折率の変動幅Δn2を測定する。 On the other hand, the fluctuation range Δn 2 of the refractive index in a wide range such as an area irradiated with EUV light used for exposure is measured as follows. A transparent TiO 2 —SiO 2 glass body molded into 160 mm × 160 mm × 150 mm is sliced into blocks having a thickness of 7 mm to obtain TiO 2 —SiO 2 glass blocks having a size of 160 mm × 160 mm × 7 mm. Using a Fizeau interferometer, helium neon laser light is perpendicularly applied to a 160 mm × 160 mm surface of the glass block, the refractive index distribution in the 100 mm × 100 mm plane is examined, and the variation width Δn 2 of the refractive index is measured.
本明細書の実施例では、320×240有効画素数を持つCCDを用いて100mm×100mmの領域を測定し、1画素が約300〜400μm角に相当するようにして屈折率の変動幅Δn2を測定した。この場合、1mm程度の領域の屈折率差について測定出来る。 In the embodiment of the present specification, an area of 100 mm × 100 mm is measured using a CCD having 320 × 240 effective pixels, and the refractive index fluctuation range Δn 2 so that one pixel corresponds to about 300 to 400 μm square. Was measured. In this case, a difference in refractive index in a region of about 1 mm can be measured.
上述の微小領域での屈折率の変動幅Δn1の測定方法は、屈折率の絶対値を測定することはできず、屈折率差を求めるだけであるため、露光に用いられるEUV光が照射される領域全域を測定して直接比較せずに微小領域に分割して測定すると、部材の両端の屈折率を比較することができず、屈折率の変動幅を小さく見積もってしまう可能性がある。したがって、露光に用いられるEUV光が照射される全域で屈折率の変動幅を測定し、その値を入射方向に垂直な面における屈折率の変動幅Δnとする。 The above-described measuring method of the refractive index fluctuation range Δn 1 in the minute region cannot measure the absolute value of the refractive index, but only obtains the refractive index difference. Therefore, the EUV light used for exposure is irradiated. If the entire region is measured and divided into minute regions without direct comparison, the refractive indexes at both ends of the member cannot be compared, and the fluctuation range of the refractive index may be estimated small. Therefore, the fluctuation range of the refractive index is measured over the entire area irradiated with the EUV light used for exposure, and the value is set as the fluctuation width Δn of the refractive index in the plane perpendicular to the incident direction.
同じ面において前述の方法で微小領域の屈折率の変動幅を測定した場合に、微小領域での屈折率の変動幅Δn1が全域での屈折率の変動幅Δn2より大きい場合は、微小領域での屈折率の変動幅Δn1を入射方向に垂直な面における屈折率の変動幅Δnとする。 When the refractive index variation width of the minute region is measured by the above-described method on the same surface, if the refractive index variation width Δn 1 in the minute region is larger than the refractive index variation width Δn 2 in the entire region, the minute region the variation range [Delta] n of the refractive index in a plane perpendicular to the incident direction of fluctuation width [Delta] n 1 of the refractive index at.
なお、TiO2−SiO2ガラスをEUVL用露光装置部材として使用するときに、露光に用いられるEUV光が照射される領域など、広範囲におけるTiO2/SiO2組成比を均一にすることは、部材内での熱膨張係数のばらつきを小さくするという点で極めて重要である。このTiO2/SiO2組成比の変動は、ガラスの屈折率に影響を及ぼすので、TiO2−SiO2組成均一性の指標として、屈折率の変動幅を用いることができる。 When TiO 2 —SiO 2 glass is used as an exposure apparatus member for EUVL, it is possible to make the TiO 2 / SiO 2 composition ratio uniform over a wide range such as a region irradiated with EUV light used for exposure. It is extremely important in reducing variation in the thermal expansion coefficient. Since the variation of the TiO 2 / SiO 2 composition ratio affects the refractive index of the glass, the variation range of the refractive index can be used as an index of TiO 2 —SiO 2 composition uniformity.
光の入射方向に垂直な面におけるΔnは2×10−4以内が好ましく、1.5×10−4以内がより好ましく、1.0×10−4以内が特に好ましい。 Δn in the plane perpendicular to the light incident direction is preferably within 2 × 10 −4 , more preferably within 1.5 × 10 −4 , and particularly preferably within 1.0 × 10 −4 .
また、30mm×30mmといった微小領域におけるTiO2/SiO2組成比を均一にすることは、ガラス表面を研磨により超高平滑にするという点で極めて重要である。30mm×30mmの範囲のΔnは2×10−4以内が好ましく、1.5×10−4以内がより好ましく、1.0×10−4以内が特に好ましく、0.5×10−4以内が最も好ましい。Δnが上記範囲を超えると、場所により研磨レートが一定とならず、研磨後のガラス表面を超高平滑性を有するように仕上げることが困難である。 Further, making the TiO 2 / SiO 2 composition ratio uniform in a minute region such as 30 mm × 30 mm is extremely important in terms of making the glass surface ultra-highly smooth by polishing. Δn in the range of 30 mm × 30 mm is preferably within 2 × 10 −4 , more preferably within 1.5 × 10 −4 , particularly preferably within 1.0 × 10 −4, and within 0.5 × 10 −4. Most preferred. When Δn exceeds the above range, the polishing rate is not constant depending on the location, and it is difficult to finish the polished glass surface to have ultrahigh smoothness.
本発明により得られた脈理ピッチが10μm以下のTiO2−SiO2ガラス、またはTiO2濃度ばらつきが0.06質量%以下のTiO2−SiO2ガラスを160mm×160mm×7mmのサイズに切断した後、160mm×160mm面を研磨すると、研磨面において平滑性をあらわす指標である10μm〜1mmの範囲内にうねりのピッチをもつMSFR(Mid−Spatial Frequency Roughness)の値はRoughness(rms)で1.5nm以下となり、EUVL用露光装置光学材として好適である。 Striae pitch obtained by the present invention was cut 10μm following TiO 2 -SiO 2 glass, or TiO 2 concentration variation of 0.06 mass% or less of TiO 2 -SiO 2 glass to a size of 160 mm × 160 mm × 7 mm Thereafter, when a 160 mm × 160 mm surface is polished, the value of MSFR (Mid-Spatial Frequency Roughness) having a waviness pitch within the range of 10 μm to 1 mm, which is an index representing smoothness on the polished surface, is set to 1. It becomes 5 nm or less and is suitable as an exposure apparatus optical material for EUVL.
また、脈理ピッチが10μm以上のTiO2−SiO2ガラス、またはTiO2濃度ばらつきが0.06質量%以上のTiO2−SiO2ガラスでは、研磨面のMSFRを1.5nm以下にすることは困難であり、EUVL用露光装置光学材して不充分になるおそれがある。 Also, the striae pitch is 10μm or more TiO 2 -SiO 2 glass or TiO 2 concentration variation 0.06 mass% or more TiO 2 -SiO 2 glass, making the MSFR the polished surface 1.5nm or less This is difficult and may be insufficient as an optical material for an EUVL exposure apparatus.
なお、脈理の入ったTiO2−SiO2ガラスにおいて、組成変動やΔnは、通常、脈理の入っている部分で最も大きくなる。したがって、このような場合、すくなくとも一つの面における30mm×30mmの範囲で屈折率の変動幅やTiO2濃度のばらつきを脈理の強さを減少させることにより減少させれば、同時に直交する二つの面内でそれぞれ屈折率の変動幅やTiO2濃度のばらつきを減少させることができることになる。 In the TiO 2 —SiO 2 glass with striae, the composition variation and Δn are usually the largest in the striae. Therefore, in such a case, if the variation width of the refractive index and the variation in the TiO 2 concentration are reduced by reducing the strength of the striae in the range of 30 mm × 30 mm on at least one surface, In this case, the fluctuation range of the refractive index and the variation of the TiO 2 concentration can be reduced in the plane.
本発明のTiO2−SiO2ガラスを用いることにより、TiO2−SiO2ガラスからなり、屈折率の変動幅Δnが、光の入射方向に垂直な面において2×10−4以下であるEUVリソグラフィ用光学部材を得ることが容易となる。 By using the TiO 2 —SiO 2 glass of the present invention, EUV lithography made of TiO 2 —SiO 2 glass and having a refractive index variation width Δn of 2 × 10 −4 or less in a plane perpendicular to the light incident direction. It becomes easy to obtain the optical member for use.
また、本発明では脈理の強さ自体を低減するので、TiO2−SiO2ガラスからなり、光の入射方向に垂直な面において、2×10−4を超える屈折率の変動幅Δnを生じさせる脈理が存在しないEUVリソグラフィ用光学部材を容易に得ることができる。 Further, in the present invention, since the strength of the striae is reduced, a refractive index fluctuation range Δn exceeding 2 × 10 −4 is generated on a plane made of TiO 2 —SiO 2 glass and perpendicular to the light incident direction. It is possible to easily obtain an optical member for EUV lithography that does not have a striae to cause.
さらに、本発明のTiO2−SiO2ガラスを用いることにより、TiO2濃度が1質量%以上であるTiO2−SiO2ガラスからなり、光の入射方向に垂直な面において、TiO2濃度の最大値と最小値との差が、0.06質量%以下である、EUVリソグラフィ用光学部材を容易に得ることができる。 Furthermore, the maximum by using the TiO 2 -SiO 2 glass of the present invention consists of TiO 2 -SiO 2 glass TiO 2 concentration is not less than 1 wt%, in a plane perpendicular to the incident direction of light, TiO 2 concentration An optical member for EUV lithography in which the difference between the value and the minimum value is 0.06% by mass or less can be easily obtained.
また、同様に、TiO2濃度が1質量%以上であるTiO2−SiO2ガラスからなり、光の入射方向に垂直な面において、0.06質量%を超えるTiO2濃度の最大値と最小値との差を生じさせる脈理が存在しないEUVリソグラフィ用光学部材を容易に得ることができる。 Similarly, the maximum value and the minimum value of the TiO 2 concentration exceeding 0.06% by mass in a plane perpendicular to the incident direction of light is made of TiO 2 —SiO 2 glass having a TiO 2 concentration of 1% by mass or more. It is possible to easily obtain an optical member for EUV lithography that does not have any striae that cause a difference from the above.
さらに、0〜100℃の広い温度域においてTiO2−SiO2ガラスを熱膨張係数が0±200ppb/℃の範囲内であるゼロ膨張ガラスとなし得る。またTiO2−SiO2ガラスの仮想温度が1100℃以下の場合は、熱膨張係数がほぼゼロを示す温度域がより広くなり、−50〜150℃の範囲において、熱膨張係数を0±200ppb/℃の範囲内となし得る。 Furthermore, in a wide temperature range of 0 to 100 ° C., the TiO 2 —SiO 2 glass can be made into a zero expansion glass having a thermal expansion coefficient in the range of 0 ± 200 ppb / ° C. When the fictive temperature of TiO 2 —SiO 2 glass is 1100 ° C. or lower, the temperature range where the thermal expansion coefficient is almost zero becomes wider, and in the range of −50 to 150 ° C., the thermal expansion coefficient is 0 ± 200 ppb / Within the range of ° C.
なお、EUVL用光学部材を作製する際、パターン描画面に脈理が平行に入るようにすることによって、光の入射方向に垂直な面における屈折率の変動幅やTiO2濃度ばらつきを減少させ、MSFRを低減することも可能である。 When manufacturing an optical member for EUVL, by making the striae parallel to the pattern drawing surface, the variation width of the refractive index and the TiO 2 concentration variation on the surface perpendicular to the light incident direction are reduced. It is also possible to reduce the MSFR.
熱膨張係数は、レーザー干渉式熱膨張計(ULVAC理工社製レーザー膨張計LIX−1)を用いて−150〜+200℃の範囲で測定する。 The coefficient of thermal expansion is measured in the range of −150 to + 200 ° C. using a laser interference type thermal dilatometer (Laser dilatometer LIX-1 manufactured by ULVAC Riko Co., Ltd.).
熱膨張係数のばらつきは以下のように測定する。160mm×160mm×150mmのTiO2−SiO2ガラスブロックを、20mm×20mm×10mmのTiO2−SiO2ガラス小片に分割するよう切断する。この各小片について前述の方法に従い、熱膨張係数の測定を行うことで、160mm×160mm×30mmのTiO2−SiO2ガラスブロックの熱膨張係数のばらつきを求める。 The variation of the thermal expansion coefficient is measured as follows. A 160 mm × 160 mm × 150 mm TiO 2 —SiO 2 glass block is cut into 20 mm × 20 mm × 10 mm TiO 2 —SiO 2 glass pieces. By measuring the thermal expansion coefficient of each small piece according to the above-described method, the variation of the thermal expansion coefficient of the 160 mm × 160 mm × 30 mm TiO 2 —SiO 2 glass block is obtained.
なお、EUVリソグラフィ用光学部材は、熱膨張係数のばらつきが小さいことが要求されている。本発明のTiO2−SiO2ガラスは、TiO2濃度の最大値と最小値との差が0.06質量%以下であり、検量線により本発明のTiO2−SiO2ガラスの熱膨張係数のばらつきを求めると、室温で約±5ppb/℃以下となる。したがって、本発明のTiO2−SiO2ガラスは、熱膨張係数のばらつきを例えば室温で±5ppb/℃以下となし得、EUVリソグラフィ用光学部材に好適である。 The EUV lithography optical member is required to have a small variation in thermal expansion coefficient. TiO 2 -SiO 2 glass of the present invention, the difference between the maximum value and the minimum value of the TiO 2 concentration is at most 0.06 mass%, the thermal expansion coefficient of the TiO 2 -SiO 2 glass of the present invention a calibration curve When the variation is obtained, it becomes about ± 5 ppb / ° C. or less at room temperature. Therefore, the TiO 2 —SiO 2 glass of the present invention can achieve a variation in thermal expansion coefficient of, for example, ± 5 ppb / ° C. or less at room temperature, and is suitable for an optical member for EUV lithography.
本発明のTiO2−SiO2ガラスを製造するためには、以下の製法が採用できる。 In order to produce the TiO 2 —SiO 2 glass of the present invention, the following production method can be employed.
(a)工程
ガラス形成原料であるSi前駆体およびTi前駆体を火炎加水分解させて得られるTiO2−SiO2ガラス微粒子を、ある一定の速度で、軸を中心として回転する石英ガラス製の種棒(例えば特公昭63−24937号公報記載の種棒)を基材として用い、この基材に堆積、成長させて多孔質TiO2−SiO2ガラス体を形成させる。ガラス形成原料としては、ガス化可能な原料であれば特に限定されないが、Si前駆体としては、SiCl4、SiHCl3、SiH2Cl2、SiH3Clなどの塩化物、SiF4、SiHF3、SiH2F2などのフッ化物、SiBr4、SiHBr3などの臭化物、SiI4などのヨウ化物といったハロゲン化ケイ素化合物、またRnSi(OR)4−n(ここにRは炭素数1〜4のアルキル基、nは0〜3の整数)で示されるアルコキシシランが挙げられ、またTi前駆体としては、TiCl4、TiBr4などのハロゲン化チタン化合物、またRnTi(OR)4−n(ここにRは炭素数1〜4のアルキル基、nは0〜3の整数)で示されるアルコキシチタンが挙げられる。また、Si前駆体およびTi前駆体として、シリコンチタンダブルアルコキシドなどのSiとTiの化合物を使用することもできる。また前記基材としては棒状に限らず板状の基材を使用してもよい。
(A) Step TiO 2 —SiO 2 glass fine particles obtained by flame hydrolysis of Si precursor and Ti precursor, which are glass forming raw materials, are seeds made of quartz glass rotating around a shaft at a certain speed. A rod (for example, a seed rod described in Japanese Patent Publication No. 63-24937) is used as a base material, and is deposited and grown on the base material to form a porous TiO 2 —SiO 2 glass body. The glass forming raw material is not particularly limited as long as it is a gasifiable raw material. Examples of the Si precursor include chlorides such as SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , and SiH 3 Cl, SiF 4 , SiHF 3 , fluorides such as SiH 2 F 2, SiBr 4, bromides such as SiHBr 3, halogenated silicon compounds such as iodide such as SiI 4, R n Si (OR) 4- n ( wherein R is 1 to 4 carbon atoms In addition, the Ti precursor includes titanium halide compounds such as TiCl 4 and TiBr 4, and R n Ti (OR) 4 -n. (Wherein R is an alkyl group having 1 to 4 carbon atoms, and n is an integer of 0 to 3). In addition, Si and Ti compounds such as silicon titanium double alkoxide can be used as the Si precursor and the Ti precursor. The substrate is not limited to a rod shape, and a plate-like substrate may be used.
(b)工程
多孔質TiO2−SiO2ガラス体を透明ガラス化温度まで昇温して透明ガラス化し、透明TiO2−SiO2ガラス体を得る。本明細書では、透明ガラス化とは、光学顕微鏡で空隙が確認できなくなるまで多孔質ガラス体が緻密化した状態をいい、透明ガラス化温度とは、光学顕微鏡で空隙が確認できなくなるまで多孔質ガラス体を緻密化できる温度をいう。透明ガラス化温度は、通常は1400〜1700℃であり、特に1450〜1650℃であることが好ましい。雰囲気としては、ヘリウムなどの不活性ガス100%の雰囲気、またはヘリウムなどの不活性ガスを主成分とする雰囲気であることが好ましい。圧力については、減圧または常圧であればよい。特に常圧の場合はヘリウムガスを用いることができる。また、減圧の場合は13000Pa以下が好ましい。なお、本明細書における「Pa」は、ゲージ圧ではなく絶対圧の意である。
(B) step the porous TiO 2 -SiO 2 glass body was heated to a transparent vitrification temperature for transparent vitrification to obtain a transparent TiO 2 -SiO 2 glass body. In this specification, transparent vitrification means a state in which the porous glass body is densified until no voids can be confirmed with an optical microscope, and the transparent vitrification temperature means porous until no voids can be confirmed with an optical microscope. The temperature at which the glass body can be densified. The transparent vitrification temperature is usually 1400 to 1700 ° C, and particularly preferably 1450 to 1650 ° C. The atmosphere is preferably an atmosphere of 100% inert gas such as helium or an atmosphere mainly composed of an inert gas such as helium. The pressure may be reduced pressure or normal pressure. In particular, helium gas can be used at normal pressure. Moreover, in the case of pressure reduction, 13000 Pa or less is preferable. In the present specification, “Pa” means not a gauge pressure but an absolute pressure.
(c)工程
工程(b)で得られた透明TiO2−SiO2ガラス体を軟化点以上の温度に加熱して所望の形状に成形し、成形TiO2−SiO2ガラス体を得る。成形加工の温度としては、1500〜1800℃が好ましい。1500℃以下では、TiO2−SiO2ガラスの粘度が高いため、実質的に自重変形が行われず、またSiO2の結晶相であるクリストバライトの成長またはTiO2の結晶相であるルチルもしくはアナターゼの成長が起こり、いわゆる失透が生じる。1800℃以上では、SiO2の昇華が無視できなくなる。
(C) Step The transparent TiO 2 —SiO 2 glass body obtained in step (b) is heated to a temperature equal to or higher than the softening point and formed into a desired shape to obtain a formed TiO 2 —SiO 2 glass body. The molding process temperature is preferably 1500 to 1800 ° C. Below 1500 ° C., the viscosity of the TiO 2 —SiO 2 glass is high, so that substantially no self-weight deformation occurs, and the growth of cristobalite, which is the crystalline phase of SiO 2 , or the growth of rutile or anatase, which is the crystalline phase of TiO 2. Occurs, so-called devitrification occurs. Above 1800 ° C., SiO 2 sublimation cannot be ignored.
(d)工程
(c)工程で得られた成形TiO2−SiO2ガラス体を、600〜1200℃の温度にて5時間以上保持した後、10℃/hr以下の降温速度で500℃以下まで降温するアニール処理を行い、TiO2−SiO2ガラスの仮焼温度を制御する。500℃以下まで降温した後は放冷できる。この場合の雰囲気は、ヘリウム、アルゴン、窒素などの不活性ガス100%の雰囲気下、これらの不活性ガスを主成分とする雰囲気下、または空気雰囲気下で、圧力は減圧または常圧が好ましい。
The formed TiO 2 -SiO 2 glass body obtained in step (d) (c) step, after 5 hours or more at a temperature of 600 to 1200 ° C., until 500 ° C. or less in the following cooling rate 10 ° C. / hr An annealing process for lowering the temperature is performed to control the calcination temperature of the TiO 2 —SiO 2 glass. After cooling down to 500 ° C. or lower, it can be allowed to cool. The atmosphere in this case is preferably an atmosphere of 100% inert gas such as helium, argon or nitrogen, an atmosphere containing such an inert gas as a main component, or an air atmosphere, and the pressure is preferably reduced or normal pressure.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されない。なお、以下の実施例のガラス組成は全てTiO2=7.4質量%、SiO2=92.6質量%である。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these. Note that all the glass compositions of the following examples TiO 2 = 7.4 mass%, SiO 2 = 92.6 wt%.
[例1]
TiO2−SiO2ガラスのガラス形成原料であるTiCl4とSiCl4を、それぞれガス化させた後に混合させ、酸水素炎中で加熱加水分解(火炎加水分解)させることで得られるTiO2−SiO2ガラス微粒子を、25回転/分の速度で回転する石英ガラス製の種棒に堆積・成長させて、直径約80mm、長さ約100mmの多孔質TiO2−SiO2ガラス体を形成した(工程(a))。
[Example 1]
TiCl 4 and SiCl 4 as glass-forming raw material for TiO 2 -SiO 2 glass, was mixed after each is gasified, TiO 2 -SiO to subjecting the mixture to heat hydrolysis in an oxyhydrogen flame (flame hydrolysis) Two glass fine particles were deposited and grown on a seed rod made of quartz glass rotating at a speed of 25 rotations / minute to form a porous TiO 2 —SiO 2 glass body having a diameter of about 80 mm and a length of about 100 mm (process) (A)).
得られた多孔質TiO2−SiO2ガラス体をHe100%雰囲気下で1550℃まで昇温し、この温度で10時間保持し透明ガラス化し、透明TiO2−SiO2ガラス体を得た(工程(b))。 The obtained porous TiO 2 —SiO 2 glass body was heated to 1550 ° C. in a He 100% atmosphere, and kept at this temperature for 10 hours to form a transparent glass to obtain a transparent TiO 2 —SiO 2 glass body (step ( b)).
得られた透明TiO2−SiO2ガラス体を、軟化点以上の1650℃に加熱して自重変形を行わせ、50mm×50mm×10mmのブロック形状に成形した後(工程(c))、得られたブロックを電気炉内に設置し、950℃にて100時間保持した後、500℃まで5℃/hrで降温し、その後室温まで放冷し(工程(d))、TiO2−SiO2ガラスを得た。 The obtained transparent TiO 2 —SiO 2 glass body is heated to 1650 ° C. above the softening point to be deformed by its own weight and formed into a block shape of 50 mm × 50 mm × 10 mm (step (c)), and then obtained. The block was placed in an electric furnace, held at 950 ° C. for 100 hours, then cooled to 500 ° C. at 5 ° C./hr, then allowed to cool to room temperature (step (d)), and TiO 2 —SiO 2 glass Got.
[例2]
例1における工程(a)において、TiO2−SiO2ガラス微粒子を100回転/分の速度で回転する石英ガラス製の種棒に堆積・成長させた。これ以外は例1と全く同様の方法により、TiO2−SiO2ガラスを得た。
[Example 2]
In step (a) in Example 1, TiO 2 —SiO 2 glass fine particles were deposited and grown on a quartz glass seed rod rotating at a speed of 100 revolutions / minute. A TiO 2 —SiO 2 glass was obtained in the same manner as in Example 1 except for this.
[例3]
例1における工程(a)において、TiO2−SiO2ガラス微粒子を250回転/分の速度で回転する石英ガラス製の種棒に堆積・成長させた。これ以外は例1と全く同様の方法により、TiO2−SiO2ガラスを得た。
[Example 3]
In the step (a) in Example 1, TiO 2 —SiO 2 glass fine particles were deposited and grown on a quartz glass seed rod rotating at a speed of 250 rpm. A TiO 2 —SiO 2 glass was obtained in the same manner as in Example 1 except for this.
[例4]
例1における工程(a)において、TiO2−SiO2ガラス微粒子を5回転/分の速度で回転する石英ガラス製の種棒に堆積・成長させた。これ以外は例1と全く同様の方法により、TiO2−SiO2ガラスを得た。
[Example 4]
In step (a) in Example 1, TiO 2 —SiO 2 glass fine particles were deposited and grown on a quartz glass seed rod rotating at a speed of 5 revolutions / minute. A TiO 2 —SiO 2 glass was obtained in the same manner as in Example 1 except for this.
[例5]
TiO2−SiO2ガラスのガラス形成原料であるTiCl4とSiCl4を、それぞれガス化させた後に混合させ、酸水素炎中で加熱加水分解(火炎加水分解)させることで得られるTiO2−SiO2ガラス微粒子を、25回転/分の速度で回転する石英ガラス製の種棒に堆積・成長させて、直径30cm、長さ80cmの多孔質TiO2−SiO2ガラス体を形成した(工程(a))。得られた多孔質TiO2−SiO2ガラス体をHe100%雰囲気下で1430℃まで昇温し、この温度で2時間保持して、透明ガラス体を得た(工程(b))。さらに大気雰囲気で、軟化点以上の1680℃に加熱して自重変形を行わせ、160mm×160mm×150mmのブロック形状に成形した(工程(c))。その後、厚さ7mmのブロックにスライスして得られた160mm×160mm×7mmのブロックを電気炉内に設置し、950℃にて100時間保持した後、500℃まで5℃/hrで降温し、その後室温まで放冷し(工程(d))、TiO2−SiO2ガラスを得た。
[Example 5]
TiCl 4 and SiCl 4 as glass-forming raw material for TiO 2 -SiO 2 glass, was mixed after each is gasified, TiO 2 -SiO to subjecting the mixture to heat hydrolysis in an oxyhydrogen flame (flame hydrolysis) 2 Glass fine particles were deposited and grown on a seed rod made of quartz glass rotating at a speed of 25 rotations / minute to form a porous TiO 2 —SiO 2 glass body having a diameter of 30 cm and a length of 80 cm (step (a )). The obtained porous TiO 2 —SiO 2 glass body was heated to 1430 ° C. in a He 100% atmosphere and kept at this temperature for 2 hours to obtain a transparent glass body (step (b)). Further, in an air atmosphere, the sample was heated to 1680 ° C. above the softening point to be deformed by its own weight, and formed into a 160 mm × 160 mm × 150 mm block shape (step (c)). Thereafter, a 160 mm × 160 mm × 7 mm block obtained by slicing into a 7 mm thick block was placed in an electric furnace, held at 950 ° C. for 100 hours, and then cooled to 500 ° C. at 5 ° C./hr, Thereafter, the mixture was allowed to cool to room temperature (step (d)) to obtain TiO 2 —SiO 2 glass.
評価方法については、それぞれ前述の測定法に従って行った。これら例1から例5の評価結果を表1にまとめる。なお、ここで、例1、例2、例3、例5は実施例、例4は比較例である。 About the evaluation method, it carried out according to the above-mentioned measuring method, respectively. The evaluation results of Examples 1 to 5 are summarized in Table 1. Here, Example 1, Example 2, Example 3, and Example 5 are examples, and Example 4 is a comparative example.
例1および例2は、脈理ピッチが10μm以下であり、少なくとも1つの面内において、微小領域における屈折率の変動幅が200ppm以下であり、かつTiO2濃度ばらつきが0.06質量%以下である。この屈折率の変動幅やTiO2濃度ばらつきは、脈理に起因するものであり、その脈理の強さは例1および例2では低減されているので、研磨によりMSFRを容易に低減でき、超高平滑性を有することが可能になる。 In Examples 1 and 2, the striae pitch is 10 μm or less, the fluctuation range of the refractive index in a minute region is 200 ppm or less, and the TiO 2 concentration variation is 0.06% by mass or less in at least one plane. is there. This fluctuation range of refractive index and TiO 2 concentration variation are caused by striae, and the strength of the striae is reduced in Example 1 and Example 2. Therefore, MSFR can be easily reduced by polishing, It becomes possible to have ultra-high smoothness.
また、これらのサンプルでは、これと直交する少なくとも一つの面内においてもそれぞれ屈折率の変動幅が200ppm以下であり、TiO2濃度ばらつきがそれぞれ0.06質量%以下であることが見て取れる。 Further, it can be seen that in these samples, the fluctuation range of the refractive index is 200 ppm or less and the variation in TiO 2 concentration is 0.06% by mass or less in at least one plane orthogonal thereto.
例3は目視にて脈理の存在が確認でき、顕微鏡測定により脈理ピッチが1μmであることが確認できたが、前述の方法で屈折率の変動を検出することができなかったので、屈折率の変動幅が50ppm以下であり、TiO2濃度ばらつきが0.06質量%以下であると考えることができる。従って、例3はより容易にMSFRを低減でき、超高平滑性を有することが可能となる。 In Example 3, the presence of striae was confirmed by visual observation, and it was confirmed by microscopic measurement that the striae pitch was 1 μm. However, since the change in the refractive index could not be detected by the above-described method, It can be considered that the fluctuation range of the rate is 50 ppm or less and the TiO 2 concentration variation is 0.06 mass% or less. Therefore, Example 3 can more easily reduce the MSFR and can have ultra-high smoothness.
例4は脈理ピッチが10μm以上であり、微小領域における屈折率の変動幅が200ppm以上であり、かつTiO2濃度ばらつきが0.06質量%以上である。脈理の強さは非常に強く、研磨によりMSFRを低減することは困難であった。 In Example 4, the striae pitch is 10 μm or more, the fluctuation range of the refractive index in the minute region is 200 ppm or more, and the TiO 2 concentration variation is 0.06% by mass or more. The striae is very strong, and it has been difficult to reduce MSFR by polishing.
例5は広範囲での屈折率の変動幅が200ppm以下となっており、屈折率の変動幅Δnが、光の入射方向に垂直な面において2×10−4以下であるEUVリソグラフィ用光学部材を得ることが可能となる。 In Example 5, an optical member for EUV lithography in which the refractive index fluctuation range in a wide range is 200 ppm or less and the refractive index fluctuation range Δn is 2 × 10 −4 or less in a plane perpendicular to the light incident direction. Can be obtained.
Claims (5)
材。 The optical member for EUV lithography according to claim 3, wherein there is no striae that causes a difference between the maximum value and the minimum value of TiO 2 concentration exceeding 0.06% by mass on a plane perpendicular to the incident direction of light.
ィ用光学部材。 An optical member for EUV lithography using the silica glass containing TiO 2 according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012264731A JP5716730B2 (en) | 2003-04-03 | 2012-12-03 | Silica glass containing TiO2 and optical member for EUV lithography |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003100798 | 2003-04-03 | ||
JP2003100799 | 2003-04-03 | ||
JP2003100799 | 2003-04-03 | ||
JP2003100798 | 2003-04-03 | ||
JP2012264731A JP5716730B2 (en) | 2003-04-03 | 2012-12-03 | Silica glass containing TiO2 and optical member for EUV lithography |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004076312A Division JP5367204B2 (en) | 2003-04-03 | 2004-03-17 | Silica glass containing TiO2 and optical member for EUV lithography |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013079191A JP2013079191A (en) | 2013-05-02 |
JP5716730B2 true JP5716730B2 (en) | 2015-05-13 |
Family
ID=43422500
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010162846A Pending JP2010275189A (en) | 2003-04-03 | 2010-07-20 | SILICA GLASS CONTAINING TiO2 AND OPTICAL MEMBER FOR EUV LITHOGRAPHY |
JP2012264731A Expired - Lifetime JP5716730B2 (en) | 2003-04-03 | 2012-12-03 | Silica glass containing TiO2 and optical member for EUV lithography |
JP2013080380A Withdrawn JP2013177299A (en) | 2003-04-03 | 2013-04-08 | METHOD OF MANUFACTURING SILICA GLASS CONTAINING TiO2 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010162846A Pending JP2010275189A (en) | 2003-04-03 | 2010-07-20 | SILICA GLASS CONTAINING TiO2 AND OPTICAL MEMBER FOR EUV LITHOGRAPHY |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013080380A Withdrawn JP2013177299A (en) | 2003-04-03 | 2013-04-08 | METHOD OF MANUFACTURING SILICA GLASS CONTAINING TiO2 |
Country Status (1)
Country | Link |
---|---|
JP (3) | JP2010275189A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013084978A1 (en) * | 2011-12-09 | 2013-06-13 | 信越石英株式会社 | Photomask substrate for titania-silica glass euv lithography |
JP6184825B2 (en) * | 2013-09-30 | 2017-08-23 | ユニ・チャーム株式会社 | Kit for preparing skin cleansing composition, skin cleansing composition, and method for preparing skin cleansing composition |
CN111003934A (en) * | 2019-12-31 | 2020-04-14 | 成都光明光电有限责任公司 | Substrate glass for optical communication, glass preform, optical element and optical instrument |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2524174B2 (en) * | 1986-10-16 | 1996-08-14 | セイコーエプソン株式会社 | Method for producing quartz glass having optical functionality |
JPS63162538A (en) * | 1986-12-24 | 1988-07-06 | Fujikura Ltd | Production of quartz rod lens |
JPH05178632A (en) * | 1991-12-26 | 1993-07-20 | Asahi Glass Co Ltd | Optical quartz glass having high heat resistance and its production |
JP3770542B2 (en) * | 1999-07-22 | 2006-04-26 | コーニング インコーポレイテッド | Deep ultraviolet soft X-ray projection lithography method and mask apparatus |
JP4453939B2 (en) * | 1999-09-16 | 2010-04-21 | 信越石英株式会社 | Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof |
US6776006B2 (en) * | 2000-10-13 | 2004-08-17 | Corning Incorporated | Method to avoid striae in EUV lithography mirrors |
US8047023B2 (en) * | 2001-04-27 | 2011-11-01 | Corning Incorporated | Method for producing titania-doped fused silica glass |
-
2010
- 2010-07-20 JP JP2010162846A patent/JP2010275189A/en active Pending
-
2012
- 2012-12-03 JP JP2012264731A patent/JP5716730B2/en not_active Expired - Lifetime
-
2013
- 2013-04-08 JP JP2013080380A patent/JP2013177299A/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
JP2013177299A (en) | 2013-09-09 |
JP2013079191A (en) | 2013-05-02 |
JP2010275189A (en) | 2010-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5367204B2 (en) | Silica glass containing TiO2 and optical member for EUV lithography | |
JP4792705B2 (en) | Silica glass containing TiO2 and method for producing the same | |
JP4792706B2 (en) | Silica glass containing TiO2 and method for producing the same | |
JP4487783B2 (en) | Method for producing silica glass containing TiO2 and optical member for EUV lithography using silica glass containing TiO2 | |
JP5754482B2 (en) | Silica glass containing TiO2 | |
JP5365247B2 (en) | Silica glass containing TiO2 and optical member for lithography using the same | |
JP5644058B2 (en) | Silica glass containing TiO2 | |
JP5365248B2 (en) | Silica glass containing TiO2 and optical member for EUV lithography | |
KR20100099211A (en) | Tio2-containing silica glass | |
KR20100118125A (en) | Tio2-containing silica glass and optical member for lithography using the same | |
KR20100116639A (en) | Tio2-containing silica glass and optical member for euv lithography using high energy densities as well as special temperature controlled process for its manufacture | |
WO2009145288A1 (en) | Tio2-containing silica glass and optics for lithography which comprise with the glass | |
WO2011068064A1 (en) | Silica glass containing tio2 | |
JP2009227573A (en) | TiO2-CONTAINING SILICA GLASS AND OPTICAL MEMBER FOR LITHOGRAPHY USING THE SAME | |
JP5716730B2 (en) | Silica glass containing TiO2 and optical member for EUV lithography | |
JP5417889B2 (en) | Silica glass containing TiO2 and optical member for lithography using the same | |
JP5733350B2 (en) | Silica glass containing TiO2 and method for producing the same | |
JP5050458B2 (en) | Silica glass and optical member | |
JP5402975B2 (en) | Silica glass containing TiO2 and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5716730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |