JP5716476B2 - Bearing structure of internal combustion engine - Google Patents

Bearing structure of internal combustion engine Download PDF

Info

Publication number
JP5716476B2
JP5716476B2 JP2011064143A JP2011064143A JP5716476B2 JP 5716476 B2 JP5716476 B2 JP 5716476B2 JP 2011064143 A JP2011064143 A JP 2011064143A JP 2011064143 A JP2011064143 A JP 2011064143A JP 5716476 B2 JP5716476 B2 JP 5716476B2
Authority
JP
Japan
Prior art keywords
lubricating oil
bearing
heat exchange
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011064143A
Other languages
Japanese (ja)
Other versions
JP2012197922A (en
Inventor
志満津 孝
孝 志満津
三田 修三
修三 三田
康裕 大宮
康裕 大宮
堀田 義博
義博 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2011064143A priority Critical patent/JP5716476B2/en
Publication of JP2012197922A publication Critical patent/JP2012197922A/en
Application granted granted Critical
Publication of JP5716476B2 publication Critical patent/JP5716476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • F16C17/243Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety related to temperature and heat, e.g. for preventing overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

本発明は、内燃機関の軸受構造に関し、特に、内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造に関する。   The present invention relates to a bearing structure for an internal combustion engine, and more particularly, to a bearing structure for an internal combustion engine in which a rotary shaft of the internal combustion engine is supported by a radial slide bearing via lubricating oil and the radial slide bearing is held by a bearing holding portion.

内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持する軸受構造の関連技術が下記特許文献1に開示されている。特許文献1では、オイルパン内のオイルをメインポンプによってエンジン各部へ供給する第1オイル通路と、蓄熱タンク内のオイルをサブポンプによってクランクシャフト周辺へ供給する第2オイル通路とが設けられている。エンジンの冷間始動時には、蓄熱タンク内の高温のオイルをサブポンプによってクランクシャフト周辺(主としてジャーナル)へ向けて吐出することで、クランクシャフト周辺の暖機を促進してフリクションの低減を図る。エンジンの暖機完了後は、サブポンプによって蓄熱タンク内に高温のオイルを貯留する。   Patent Document 1 below discloses a related art of a bearing structure in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil. In Patent Document 1, a first oil passage for supplying oil in an oil pan to each part of the engine by a main pump and a second oil passage for supplying oil in a heat storage tank to the periphery of the crankshaft by a sub pump are provided. When the engine is cold started, the hot oil in the heat storage tank is discharged by the sub pump toward the crankshaft area (mainly the journal), thereby promoting warm-up around the crankshaft and reducing friction. After the engine is warmed up, high temperature oil is stored in the heat storage tank by the sub pump.

特開2009−144623号公報JP 2009-144623 A 特開平6−74237号公報JP-A-6-74237 特開平6−74230号公報JP-A-6-74230 特開2010−127375号公報JP 2010-127375 A

内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持する場合に、低温時には、潤滑油の粘度が高いため、回転軸が回転するときの粘性摩擦損失が大きくなる。粘性摩擦損失を小さくするためには、潤滑油の温度を速やかに上昇させて潤滑油の粘度を速やかに低くすることが望ましい。   When the rotary shaft of the internal combustion engine is supported by a radial slide bearing through the lubricating oil, the viscosity of the lubricating oil is high at low temperatures, so that the viscous friction loss when the rotating shaft rotates increases. In order to reduce the viscous friction loss, it is desirable to quickly raise the temperature of the lubricating oil to quickly lower the viscosity of the lubricating oil.

特許文献1では、エンジンの冷間始動時に、蓄熱タンク内の高温の潤滑油をクランクシャフト周辺へ向けて吐出することで、粘性摩擦損失の低減を図っている。しかし、クランクシャフト部では熱容量が非常に大きく、クランクシャフト周辺の暖機を促進するためには大きな熱量が必要となる。そのため、クランクシャフト周辺への潤滑油の吐出では、熱効率が低く、クランクシャフト周辺の暖機が不十分となる。また、潤滑油の顕熱容量は小さく、クランクシャフト周辺の暖機を促進するのに十分な熱量を蓄熱するためには、膨大な潤滑油を蓄熱タンク内に貯留する必要がある。   In Patent Document 1, the viscous friction loss is reduced by discharging high-temperature lubricating oil in the heat storage tank toward the periphery of the crankshaft when the engine is cold started. However, the crankshaft portion has a very large heat capacity, and a large amount of heat is required to promote warm-up around the crankshaft. For this reason, the discharge of lubricating oil around the crankshaft has low thermal efficiency and insufficient warm-up around the crankshaft. Further, the sensible heat capacity of the lubricating oil is small, and in order to store a sufficient amount of heat to promote warm-up around the crankshaft, it is necessary to store an enormous amount of lubricating oil in the heat storage tank.

本発明は、内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持する場合に、低温時に潤滑油の昇温を効率よく行うことを目的とする。   An object of the present invention is to efficiently raise the temperature of a lubricating oil at low temperatures when the rotating shaft of an internal combustion engine is supported by a radial slide bearing via the lubricating oil.

本発明に係る内燃機関の軸受構造は、上述した目的を達成するために以下の手段を採った。   The internal combustion engine bearing structure according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る内燃機関の軸受構造は、内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、を有することを要旨とする。   A bearing structure for an internal combustion engine according to the present invention is a bearing structure for an internal combustion engine in which a rotating shaft of the internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial sliding bearing is held by a bearing holding portion. A lubricating oil supply passage for supplying the oil to the clearance between the radial slide bearing and the rotary shaft, and a lubricating oil outlet formed in the radial slide bearing for allowing the lubricating oil to flow out from the clearance between the radial slide bearing and the rotary shaft. A heat exchange oil passage formed in the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. The gist of the present invention is to have an exchange oil passage and a lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage.

上記構成によれば、潤滑油の粘度が高い低温時に、回転軸とラジアルすべり軸受の摺動摩擦により発熱した潤滑油を利用して、熱交換油路を通る発熱した潤滑油と軸受保持部との熱交換により軸受保持部を暖機することで、回転軸とラジアルすべり軸受間の隙間に供給される潤滑油を効率よく昇温させて粘度を低くすることができる。   According to the above configuration, when the lubricating oil has a high viscosity and the temperature is low, the heat generated by the sliding friction between the rotary shaft and the radial slide bearing is used to generate heat between the heated lubricating oil passing through the heat exchange oil passage and the bearing holder. By warming up the bearing holding portion by heat exchange, it is possible to efficiently raise the temperature of the lubricating oil supplied to the gap between the rotary shaft and the radial slide bearing and to reduce the viscosity.

本発明の一態様では、潤滑油供給路は軸受保持部に形成され、潤滑油排出路を通る潤滑油が潤滑油供給路を通る潤滑油と熱交換するように、潤滑油排出路が潤滑油供給路に近接して配置されていることが好適である。   In one aspect of the present invention, the lubricating oil supply path is formed in the bearing holder, and the lubricating oil discharge path is lubricated so that the lubricating oil passing through the lubricating oil discharge path exchanges heat with the lubricating oil passing through the lubricating oil supply path. It is preferable that it is arranged close to the supply path.

さらに、本発明では、ラジアルすべり軸受と回転軸間の隙間は、回転軸方向に関して両端部が他の部分よりも狭い。 Furthermore, in this onset Ming, the gap between the radial sliding bearing rotation axis, both end portions with respect to the rotation axis direction is not narrower than the other portions.

また、本発明では、軸受保持部は、軸受保持部本体にキャップを締結して構成され、熱交換油路は、キャップにおけるラジアルすべり軸受の外周囲に形成されている。 Further, in this onset bright, bearing holding portion is formed by fastening the cap to the bearing holder body, the heat exchange fluid path, that is formed on the outer circumference of the radial slide bearing in the cap.

また、本発明では、軸受保持部は、軸受保持部本体にキャップを締結して構成され、熱交換油路は、軸受保持部本体におけるラジアルすべり軸受の外周囲に形成され、軸受保持部本体における熱交換油路より外周側の位置に断熱層が設けられている。 Further, in this onset bright, bearing holding portion is formed by fastening a cap to the bearing holder body, the heat exchange fluid passage is formed in the outer periphery of the radial slide bearing in the bearing holder body, the bearing holder heat insulating layer that has been formed at a position of the outer peripheral side of the heat exchanger fluid passage in the main body.

本発明の一態様では、潤滑油供給路は軸受保持部に形成され、潤滑油を予熱装置で予熱してから潤滑油供給路へ供給可能であることが好適である。   In one aspect of the present invention, it is preferable that the lubricating oil supply path is formed in the bearing holding portion, and the lubricating oil can be supplied to the lubricating oil supply path after being preheated by the preheating device.

また、本発明では、潤滑油供給路は軸受保持部に形成され、潤滑油を冷却装置で冷却してから潤滑油供給路へ供給可能であり、冷却装置は、内燃機関の冷却液との熱交換を利用するものである。 Further, in this onset bright, lubricating oil supply passage is formed in the bearing holding portion, the lubricating oil Ri supply available Der was cooled in the refrigerator into the lubricating oil supply passage, the cooling device, the cooling liquid of the internal combustion engine Ru der utilizes the heat exchange with the.

また、本発明では、熱交換油路を通る潤滑油と熱交換するための熱交換流体が供給可能な熱交換流路が軸受保持部におけるラジアルすべり軸受の外周囲にさらに形成されている。本発明の一態様では、熱交換流体は内燃機関の冷却液であることが好適である。
Further, in this onset bright, heat exchange fluid heat exchange passage can be supplied for lubricating oil and heat exchange through the heat exchange fluid path that is further formed on the outer periphery of the radial slide bearing in the bearing holder . In one aspect of the present invention , the heat exchange fluid is preferably a coolant for an internal combustion engine.

以上説明したように、本発明によれば、内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持する場合に、低温時に潤滑油の昇温を効率よく行うことができる。   As described above, according to the present invention, when the rotary shaft of the internal combustion engine is supported by the radial slide bearing via the lubricating oil, the temperature of the lubricating oil can be efficiently raised at a low temperature.

本発明の実施形態に係る内燃機関の軸受構造の概略構成を示す図である。It is a figure showing a schematic structure of a bearing structure of an internal-combustion engine concerning an embodiment of the present invention. 本発明の実施形態に係る内燃機関の軸受構造の概略構成を示す図である。It is a figure showing a schematic structure of a bearing structure of an internal-combustion engine concerning an embodiment of the present invention. 本発明の実施形態に係る内燃機関の軸受構造の概略構成を示す図である。It is a figure showing a schematic structure of a bearing structure of an internal-combustion engine concerning an embodiment of the present invention. 本発明の実施形態に係る内燃機関の軸受構造の概略構成を示す図である。It is a figure showing a schematic structure of a bearing structure of an internal-combustion engine concerning an embodiment of the present invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 本発明の実施形態に係る内燃機関の軸受構造の他の概略構成を示す図である。It is a figure which shows the other schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1〜4は、本発明の実施形態に係る内燃機関の軸受構造の概略構成を示す図である。図1は軸受構造の回転軸方向から見た断面図を示し、図2,4は軸受構造の回転軸方向に垂直な方向から見た内部構成図を示し、図3は図2のA部の拡大図を示す。本実施形態に係る内燃機関の軸受構造では、内燃機関の回転軸であるクランクシャフトのクランクジャーナル18が潤滑油を介してラジアルすべり軸受(ジャーナルすべり軸受とも称される)30で支持され、ラジアルすべり軸受30が軸受保持部13で保持される。   1-4 is a figure which shows schematic structure of the bearing structure of the internal combustion engine which concerns on embodiment of this invention. 1 shows a cross-sectional view of the bearing structure as viewed from the direction of the rotation axis, FIGS. 2 and 4 show an internal configuration diagram as viewed from a direction perpendicular to the direction of the rotation axis of the bearing structure, and FIG. An enlarged view is shown. In the bearing structure of the internal combustion engine according to the present embodiment, the crank journal 18 of the crankshaft that is the rotation shaft of the internal combustion engine is supported by a radial slide bearing (also referred to as a journal slide bearing) 30 via a lubricating oil, and the radial slide. The bearing 30 is held by the bearing holding portion 13.

軸受保持部13は、内燃機関のシリンダブロックの一部分により構成される軸受保持部本体20と、軸受保持部本体20に締結されるキャップ21とを含んで構成される。軸受保持部13(軸受保持部本体20及びキャップ21)には、鉄やアルミニウム等の金属材料が用いられる。軸受保持部本体20の体積はキャップ21の体積よりも大きく、軸受保持部本体20の熱容量はキャップ21の熱容量よりも大きい。軸受保持部本体20には、略半円筒形状の凹曲面である軸受装着面13Aが形成されており、キャップ21には、略半円筒形状の凹曲面である軸受装着面13Bが形成されている。締結部材であるボルト15により軸受保持部本体20にキャップ21を締結することで、クランクジャーナル18が挿通される貫通孔が軸受装着面13A,13B間に形成され、半割り構造のラジアルすべり軸受30が軸受装着面13A,13Bに装着されることで軸受保持部13に保持される。   The bearing holding part 13 includes a bearing holding part main body 20 constituted by a part of a cylinder block of the internal combustion engine and a cap 21 fastened to the bearing holding part main body 20. A metal material such as iron or aluminum is used for the bearing holding portion 13 (the bearing holding portion main body 20 and the cap 21). The volume of the bearing holder main body 20 is larger than the volume of the cap 21, and the heat capacity of the bearing holder main body 20 is larger than the heat capacity of the cap 21. A bearing mounting surface 13A, which is a substantially semi-cylindrical concave curved surface, is formed on the bearing holder main body 20, and a bearing mounting surface 13B, which is a substantially semi-cylindrical concave curved surface, is formed on the cap 21. . By fastening the cap 21 to the bearing holder main body 20 with the bolt 15 as a fastening member, a through hole through which the crank journal 18 is inserted is formed between the bearing mounting surfaces 13A and 13B, and the radial sliding bearing 30 having a half structure. Is held by the bearing holding portion 13 by being mounted on the bearing mounting surfaces 13A and 13B.

ラジアルすべり軸受30は、回転軸の周方向に関して2分割された略半円筒形状の半割り軸受メタル31A,31Bにより構成される。一方の半割り軸受メタル31Aは軸受保持部本体20の軸受装着面13Aに装着されることで軸受装着面13Aと対向し、他方の半割り軸受メタル31Bはキャップ21の軸受装着面13Bに装着されることで軸受装着面13Bと対向し、2つの半割り軸受メタル31A,31Bの周方向に関する両端部同士を合わせることで、ラジアルすべり軸受30が構成される。各半割り軸受メタル31A,31Bは、裏金と、裏金の内周側に形成されたライニング層としての軸受合金層とを含んで構成される。裏金の種類としては、例えば鋼等が挙げられ、軸受合金層の種類としては、例えば銅−鉛合金やアルミニウム合金等が挙げられる。   The radial plain bearing 30 is constituted by half bearing metals 31A and 31B having a substantially semi-cylindrical shape divided into two in the circumferential direction of the rotating shaft. One half bearing metal 31A faces the bearing mounting surface 13A by being mounted on the bearing mounting surface 13A of the bearing holding body 20 and the other half bearing metal 31B is mounted on the bearing mounting surface 13B of the cap 21. Thus, the radial sliding bearing 30 is configured by facing the bearing mounting surface 13B and aligning both ends of the two half bearing metals 31A and 31B in the circumferential direction. Each half bearing metal 31A, 31B includes a backing metal and a bearing alloy layer as a lining layer formed on the inner peripheral side of the backing metal. Examples of the back metal include steel, and examples of the bearing alloy layer include a copper-lead alloy and an aluminum alloy.

軸受保持部13及びラジアルすべり軸受30には、ラジアルすべり軸受30とクランクジャーナル18間の隙間と連通し、潤滑油をラジアルすべり軸受30とクランクジャーナル18間の隙間に供給するための潤滑油供給路41が形成されている。図1〜4に示す例では、軸受保持部本体20及び半割り軸受メタル31Aと、キャップ21及び半割り軸受メタル31Bとに潤滑油供給路41がそれぞれ形成され、これら2つの潤滑油供給路41が軸受周方向に関する位置をずらして(図1〜4に示す例では180°)配置されている。潤滑油供給路41には、オイルポンプ40の出口40bから吐出した潤滑油が供給される。オイルポンプ40の出口40b側にはオイル予熱装置52が設けられており、オイル予熱装置52を作動させることで、オイルポンプ40の出口40bから吐出した潤滑油をオイル予熱装置52で予熱(加熱)してから潤滑油供給路41へ供給することが可能である。   The bearing holding portion 13 and the radial sliding bearing 30 communicate with the gap between the radial sliding bearing 30 and the crank journal 18 and supply a lubricating oil supply path for supplying lubricating oil to the gap between the radial sliding bearing 30 and the crank journal 18. 41 is formed. In the example shown in FIGS. 1-4, the lubricating oil supply path 41 is each formed in the bearing holding | maintenance part main body 20, the half bearing metal 31A, and the cap 21 and the half bearing metal 31B, These two lubricating oil supply paths 41 are each formed. However, the positions in the circumferential direction of the bearing are shifted (180 ° in the examples shown in FIGS. 1 to 4). Lubricating oil discharged from the outlet 40 b of the oil pump 40 is supplied to the lubricating oil supply path 41. An oil preheating device 52 is provided on the outlet 40b side of the oil pump 40. By operating the oil preheating device 52, the lubricant discharged from the outlet 40b of the oil pump 40 is preheated (heated) by the oil preheating device 52. Then, it can be supplied to the lubricating oil supply passage 41.

本実施形態では、図2,3に示すように、ラジアルすべり軸受30(半割り軸受メタル31A,31B)の内周面は、回転軸方向(クランクシャフト軸線方向)に関して、両端部が他の部分より径方向内側(クランクジャーナル18側)へ張り出している。これによって、ラジアルすべり軸受30の内周面とクランクジャーナル18の外周面間の隙間は、回転軸方向に関して両端部が他の部分より狭くなる。回転軸方向両端部でのラジアルすべり軸受30とクランクジャーナル18間の隙間は、内燃機関の始動直後等の低温時(例えば20℃程度)に高粘度の潤滑油が軸受保持部13の回転軸方向両端面から流出しない程度の隙間に設定される。さらに、クランクシャフト(クランクジャーナル18)においては、ラジアルすべり軸受30の内周側に位置する部分の直径が、この部分より回転軸方向両側に位置する部分の直径よりも小さく、段付き形状となっている。さらに、ラジアルすべり軸受30には、ラジアルすべり軸受30とクランクジャーナル18間の隙間と連通し、潤滑油をラジアルすべり軸受30とクランクジャーナル18間の隙間から流出させるための潤滑油流出口43が形成されている。図1〜4に示す例では、半割り軸受メタル31A,31B同士の合わせ面(軸受周方向両端面)間に例えば切り欠きや窪み等によりクリアランスを形成することで潤滑油流出口43が形成されており(ただし回転軸方向両端部については潤滑油が外部へ漏れ出ないようにクリアランスを形成しないか狭くする)、潤滑油供給路41に対して軸受周方向に関する位置をずらして(図1〜4に示す例では90°)潤滑油流出口43が配置されている。ただし、潤滑油流出口43を半割り軸受メタル31Aや半割り軸受メタル31Bに形成することも可能である。   In this embodiment, as shown in FIGS. 2 and 3, the inner peripheral surface of the radial plain bearing 30 (half bearing metal 31 </ b> A, 31 </ b> B) has other end portions in the rotational axis direction (crankshaft axial direction). It protrudes more radially inward (crank journal 18 side). As a result, the gap between the inner peripheral surface of the radial plain bearing 30 and the outer peripheral surface of the crank journal 18 is narrower at both ends than the other portions in the direction of the rotation axis. The clearance between the radial plain bearing 30 and the crank journal 18 at both ends of the rotation axis direction is such that high-viscosity lubricating oil is applied in the direction of the rotation axis of the bearing holder 13 at a low temperature (for example, about 20 ° C.) immediately after the start of the internal combustion engine. The gap is set so as not to flow out from both end faces. Further, in the crankshaft (crank journal 18), the diameter of the portion located on the inner peripheral side of the radial slide bearing 30 is smaller than the diameter of the portion located on both sides in the rotation axis direction from this portion, and has a stepped shape. ing. Further, the radial sliding bearing 30 is formed with a lubricating oil outlet 43 that communicates with the gap between the radial sliding bearing 30 and the crank journal 18 and allows the lubricating oil to flow out of the gap between the radial sliding bearing 30 and the crank journal 18. Has been. In the example shown in FIGS. 1 to 4, the lubricating oil outlet 43 is formed by forming a clearance, for example, by a notch or a recess, between the mating surfaces (both end surfaces in the bearing circumferential direction) of the half bearing metals 31 </ b> A and 31 </ b> B. (However, clearance is not formed or narrowed at both ends in the rotation axis direction so that the lubricant does not leak outside), and the position in the bearing circumferential direction is shifted with respect to the lubricant supply path 41 (FIGS. 1 to 1). (90 ° in the example shown in FIG. 4) a lubricating oil outlet 43 is arranged. However, it is also possible to form the lubricating oil outlet 43 in the half bearing metal 31A or the half bearing metal 31B.

さらに、本実施形態では、軸受保持部13内部におけるラジアルすべり軸受30の外周囲には、潤滑油流出口43と連通する複数の熱交換油路42が形成されており、各熱交換油路42を通る潤滑油が軸受保持部13と熱交換する。さらに、軸受保持部13には、各熱交換油路42と連通する潤滑油排出路44が形成されており、潤滑油排出路44を通る潤滑油が潤滑油供給路41を通る潤滑油と熱交換するように、潤滑油排出路44が潤滑油供給路41に近接して配置されている。複数の熱交換油路42の一端部が回転軸方向に互いに間隔をおいた状態で潤滑油流出口43と連通し、各熱交換油路42の他端部が潤滑油排出路44と連通する。図1〜4に示す例では、軸受保持部本体20内部における半割り軸受メタル31Aの外周囲に複数の熱交換油路42が形成され、キャップ21内部における半割り軸受メタル31Bの外周囲に複数の熱交換油路42が形成されている。そして、軸受保持部本体20に複数の潤滑油排出路44が潤滑油供給路41に近接して形成され、キャップ21に複数の潤滑油排出路44が潤滑油供給路41に近接して形成されている。なお、図1〜4を含む各図において、ラジアルすべり軸受30の厚さや、ラジアルすべり軸受30とクランクジャーナル18間の隙間や、潤滑油供給路41、熱交換油路42、潤滑油流出口43、及び潤滑油排出路44の幅等のサイズについては、説明の便宜上、実際のサイズよりも大きく図示している。   Further, in the present embodiment, a plurality of heat exchange oil passages 42 communicating with the lubricating oil outlet 43 are formed around the outer periphery of the radial plain bearing 30 inside the bearing holding portion 13. The lubricating oil passing through the shaft exchanges heat with the bearing holder 13. Further, the bearing holding portion 13 is formed with a lubricating oil discharge path 44 communicating with each heat exchange oil path 42, and the lubricating oil passing through the lubricating oil discharge path 44 is heated with the lubricating oil passing through the lubricating oil supply path 41. The lubricating oil discharge path 44 is disposed close to the lubricating oil supply path 41 so as to be replaced. One end portions of the plurality of heat exchange oil passages 42 communicate with the lubricating oil outlet 43 in a state of being spaced apart from each other in the rotation axis direction, and the other end portion of each heat exchange oil passage 42 communicates with the lubricating oil discharge passage 44. . In the example shown in FIGS. 1 to 4, a plurality of heat exchange oil passages 42 are formed on the outer periphery of the half bearing metal 31 </ b> A inside the bearing holding body 20, and a plurality of heat exchange oil passages 42 are formed on the outer periphery of the half bearing metal 31 </ b> B inside the cap 21. The heat exchange oil passage 42 is formed. A plurality of lubricating oil discharge passages 44 are formed in the bearing holding body 20 close to the lubricating oil supply passage 41, and a plurality of lubricating oil discharge passages 44 are formed in the cap 21 close to the lubricating oil supply passage 41. ing. 1 to 4, the thickness of the radial slide bearing 30, the gap between the radial slide bearing 30 and the crank journal 18, the lubricating oil supply passage 41, the heat exchange oil passage 42, and the lubricating oil outlet 43. The size of the lubricating oil discharge passage 44 and the like are shown larger than the actual size for convenience of explanation.

オイルポンプ40から潤滑油供給路41に供給された潤滑油は、図1の矢印に示すように、ラジアルすべり軸受30の内周面とクランクジャーナル18の外周面間の隙間に流入する。ラジアルすべり軸受30は、クランクジャーナル18を潤滑油を介して回転自在に支持することで、クランクジャーナル18の径方向に沿った荷重を潤滑油を介して受ける。潤滑油は、ラジアルすべり軸受30とクランクジャーナル18間の隙間を軸受周方向(クランクジャーナル18の回転方向)に流れ、潤滑油流出口43から流出する。その際には、ラジアルすべり軸受30とクランクジャーナル18間の隙間は、回転軸方向に関して両端部が他の部分より狭いことで、潤滑油が軸受保持部13の回転軸方向両端面から流出するのが抑えられる。さらに、クランクシャフト(クランクジャーナル18)を前述の段付き形状にすることによっても、潤滑油が軸受保持部13の回転軸方向両端面から流出するのが抑えられる。ここでの潤滑油は、油膜を形成することにより、回転軸と軸受が焼き付くことなく機関を運転すること、回転軸と軸受との摩擦損失や磨耗を低減することを主な役割とするが、冷却、洗浄、防錆等の役割も果たしている。   The lubricating oil supplied from the oil pump 40 to the lubricating oil supply passage 41 flows into the gap between the inner peripheral surface of the radial slide bearing 30 and the outer peripheral surface of the crank journal 18 as shown by the arrows in FIG. The radial plain bearing 30 receives the load along the radial direction of the crank journal 18 via the lubricating oil by rotatably supporting the crank journal 18 via the lubricating oil. The lubricating oil flows through the clearance between the radial slide bearing 30 and the crank journal 18 in the bearing circumferential direction (rotating direction of the crank journal 18), and flows out from the lubricating oil outlet 43. In that case, the clearance between the radial slide bearing 30 and the crank journal 18 is narrower at the both end portions than the other portions in the rotation axis direction, so that the lubricating oil flows out from both end surfaces in the rotation axis direction of the bearing holding portion 13. Is suppressed. Furthermore, by making the crankshaft (crank journal 18) have the above-mentioned stepped shape, it is possible to prevent the lubricating oil from flowing out from both end surfaces of the bearing holding portion 13 in the rotation axis direction. The lubricating oil here has the main role of operating the engine without the seizure of the rotating shaft and the bearing by forming an oil film, and reducing friction loss and wear between the rotating shaft and the bearing, It also plays a role of cooling, cleaning, rust prevention and so on.

潤滑油流出口43から流出した潤滑油は、図1,4の矢印に示すように、各熱交換油路42を流れることで、軸受保持部13と熱交換する。各熱交換油路42から流出した潤滑油は、潤滑油排出路44を流れることで、潤滑油供給路41を流れる潤滑油と熱交換する。潤滑油排出路44から軸受保持部13外部へ流出した潤滑油は、オイルポンプ40の入口40a側へ戻る。図1では、オイルポンプ40の出口40b(オイル予熱装置52)から潤滑油供給路41に潤滑油を供給するための具体的構成、及び潤滑油排出路44からオイルポンプ40の入口40aへ潤滑油を戻すための具体的構成を簡略化しているが、周知の構成で実現可能である。   As shown by the arrows in FIGS. 1 and 4, the lubricating oil that has flowed out from the lubricating oil outlet 43 flows through each heat exchange oil passage 42 to exchange heat with the bearing holder 13. The lubricating oil that has flowed out of each heat exchange oil passage 42 flows through the lubricating oil discharge passage 44 and exchanges heat with the lubricating oil that flows through the lubricating oil supply passage 41. The lubricating oil that has flowed out of the bearing holder 13 from the lubricating oil discharge path 44 returns to the inlet 40a side of the oil pump 40. In FIG. 1, a specific configuration for supplying the lubricating oil from the outlet 40 b (oil preheating device 52) of the oil pump 40 to the lubricating oil supply path 41, and the lubricating oil from the lubricating oil discharge path 44 to the inlet 40 a of the oil pump 40. Although the specific configuration for returning is simplified, it can be realized by a known configuration.

内燃機関の始動直後等、低温時においては、潤滑油の粘度が高くなる。クランクジャーナル18がラジアルすべり軸受30に対して回転する際には、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給された潤滑油がせん断力(摺動摩擦)により発熱し、潤滑油の粘度が高いほど、せん断力による発熱量が増加する。本実施形態では、クランクジャーナル18とラジアルすべり軸受30の摺動摩擦により発熱した潤滑油が、潤滑油流出口43を介して各熱交換油路42に供給される。その際には、前述したように、摺動摩擦により発熱した潤滑油が軸受保持部13の回転軸方向両端面から流出するのが抑えられる。各熱交換油路42を通る発熱した潤滑油は、軸受保持部13(ラジアルすべり軸受30の外周囲)と熱交換を行うことで、軸受保持部13を加熱する。これによって、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を外周側から加熱することができ、潤滑油の粘度を低くすることができるので、クランクジャーナル18が回転するときの粘性摩擦損失を低減することができる。その際には、軸受保持部13内部に形成する熱交換油路42の数や長さを増加させて、熱交換油路42を通る潤滑油と軸受保持部13との接触面積を増加させることで、熱交換油路42を通る発熱した潤滑油から軸受保持部13への供給熱量を増加させることができる。さらに、潤滑油排出路44を通る発熱した潤滑油が、潤滑油供給路41を通る潤滑油と熱交換することで、潤滑油供給路41を通る潤滑油を加熱する。これによっても、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を加熱することができ、潤滑油の粘度を低くすることができる。   At low temperatures, such as immediately after starting the internal combustion engine, the viscosity of the lubricating oil increases. When the crank journal 18 rotates with respect to the radial slide bearing 30, the lubricating oil supplied to the gap between the radial slide bearing 30 and the crank journal 18 generates heat due to shear force (sliding friction), and the viscosity of the lubricating oil is reduced. The higher the value, the greater the amount of heat generated by the shear force. In the present embodiment, the lubricating oil generated by the sliding friction between the crank journal 18 and the radial slide bearing 30 is supplied to each heat exchange oil passage 42 via the lubricating oil outlet 43. At that time, as described above, it is possible to prevent the lubricating oil generated by the sliding friction from flowing out from both end surfaces of the bearing holding portion 13 in the rotation axis direction. The generated lubricating oil passing through each heat exchange oil passage 42 heats the bearing holder 13 by exchanging heat with the bearing holder 13 (the outer periphery of the radial slide bearing 30). Accordingly, the lubricating oil supplied to the gap between the radial slide bearing 30 and the crank journal 18 can be heated from the outer peripheral side, and the viscosity of the lubricating oil can be lowered. Viscous friction loss can be reduced. In that case, the number and length of the heat exchange oil passages 42 formed in the bearing holding portion 13 are increased to increase the contact area between the lubricating oil passing through the heat exchange oil passage 42 and the bearing holding portion 13. Thus, it is possible to increase the amount of heat supplied from the heated lubricating oil passing through the heat exchange oil passage 42 to the bearing holder 13. Further, the heated lubricating oil passing through the lubricating oil discharge path 44 heats the lubricating oil passing through the lubricating oil supply path 41 by exchanging heat with the lubricating oil passing through the lubricating oil supply path 41. Also by this, the lubricating oil supplied to the clearance between the radial slide bearing 30 and the crank journal 18 can be heated, and the viscosity of the lubricating oil can be lowered.

このように、本実施形態では、内燃機関の始動直後等、潤滑油の粘度が高い低温時に、軸受保持部13内部の熱交換油路42を通る発熱した潤滑油と軸受保持部13との熱交換を利用して軸受保持部13を暖機することで、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を速やかに昇温させて粘度を低くすることができる。その際には、クランクシャフトと比較して熱容量(体積)の小さい軸受保持部13に熱量を供給することで、熱量あたりの昇温効率を向上させることができる。また、ラジアルすべり軸受30とクランクジャーナル18間に存在する隙間と薄い油膜により構成される熱抵抗を利用して、軸受保持部13へ供給した熱量のクランクシャフトへの熱損失を抑えることができ、軸受保持部13の昇温を促進させることができる。さらに、クランクジャーナル18とラジアルすべり軸受30の摺動摩擦により発熱した潤滑油を利用して軸受保持部13を暖機することで、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を効率よく昇温させることができる。その際には、摺動摩擦により発熱した潤滑油が軸受保持部13の回転軸方向両端面から流出するのが抑えられることで、摺動摩擦により発生した熱が軸受保持部13外部へ逃げるのが抑えられ、摺動摩擦により発生した熱を有効に利用して軸受保持部13を暖機することができる。さらに、潤滑油排出路44を通る発熱した潤滑油と潤滑油供給路41を通る潤滑油との熱交換を利用することによっても、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を効率よく昇温させることができる。   As described above, in this embodiment, when the viscosity of the lubricating oil is high, such as immediately after starting the internal combustion engine, at a low temperature, the heat generated between the lubricating oil that has generated heat passing through the heat exchange oil passage 42 in the bearing holding portion 13 and the bearing holding portion 13. By using the replacement to warm up the bearing holder 13, it is possible to quickly raise the temperature of the lubricating oil supplied to the gap between the radial slide bearing 30 and the crank journal 18, thereby reducing the viscosity. In that case, the temperature rise efficiency per heat quantity can be improved by supplying heat quantity to the bearing holding part 13 whose heat capacity (volume) is smaller than that of the crankshaft. Further, by utilizing the thermal resistance constituted by the gap between the radial slide bearing 30 and the crank journal 18 and a thin oil film, heat loss to the crankshaft of the amount of heat supplied to the bearing holder 13 can be suppressed, The temperature rise of the bearing holding part 13 can be promoted. Further, the lubricating oil supplied to the gap between the radial sliding bearing 30 and the crank journal 18 is obtained by warming up the bearing holding portion 13 using the lubricating oil generated by the sliding friction between the crank journal 18 and the radial sliding bearing 30. Can be efficiently heated. In that case, it is possible to prevent the lubricant generated by the sliding friction from flowing out from both end surfaces in the rotation axis direction of the bearing holding portion 13, thereby preventing the heat generated by the sliding friction from escaping to the outside of the bearing holding portion 13. Thus, it is possible to warm up the bearing holder 13 by effectively using the heat generated by the sliding friction. Further, the lubrication supplied to the gap between the radial slide bearing 30 and the crank journal 18 can also be achieved by utilizing heat exchange between the heated lubricating oil passing through the lubricating oil discharge passage 44 and the lubricating oil passing through the lubricating oil supply passage 41. The temperature of the oil can be raised efficiently.

したがって、本実施形態によれば、内燃機関の始動直後等、潤滑油の粘度が高い低温時に、ラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油を効率よく昇温させて粘度を低くすることができる。その結果、クランクジャーナル18が回転するときの粘性摩擦損失を速やかに低減することができる。   Therefore, according to the present embodiment, the viscosity of the lubricating oil supplied to the gap between the radial slide bearing 30 and the crank journal 18 is efficiently raised at a low temperature when the viscosity of the lubricating oil is high, such as immediately after starting the internal combustion engine. Can be lowered. As a result, it is possible to quickly reduce viscous friction loss when the crank journal 18 rotates.

さらに、本実施形態では、内燃機関の始動直後等、潤滑油の粘度が高い低温時に、オイル予熱装置52を作動させることで、オイルポンプ40の出口40bから吐出した潤滑油をオイル予熱装置52で予熱してから潤滑油供給路41へ供給することもできる。軸受保持部13内部の潤滑油供給路41からラジアルすべり軸受30とクランクジャーナル18間の隙間に予熱した潤滑油を供給することで、軸受保持部13を暖機してラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される潤滑油の粘度を低くすることができる。さらに、予熱した潤滑油の熱量のクランクシャフトへの熱損失を抑えることができる。   Furthermore, in the present embodiment, the oil preheating device 52 is operated at a low temperature when the viscosity of the lubricating oil is high, such as immediately after the start of the internal combustion engine, so that the lubricating oil discharged from the outlet 40b of the oil pump 40 is discharged by the oil preheating device 52. It can also be supplied to the lubricating oil supply passage 41 after preheating. By supplying preheated lubricating oil to the gap between the radial slide bearing 30 and the crank journal 18 from the lubricating oil supply passage 41 inside the bearing holding portion 13, the bearing holding portion 13 is warmed up and the radial sliding bearing 30 and the crank journal are heated. The viscosity of the lubricating oil supplied to the gap between 18 can be reduced. Further, the heat loss of the preheated lubricating oil to the crankshaft can be suppressed.

本実施形態では、例えば図5,6に示すように、軸受保持部本体20における熱交換油路42より外周側の位置に断熱層58を設けることもできる。図5,6に示す例では、断熱層58が軸受保持部本体20の回転軸方向の両端部にも熱交換油路42を挟んでさらに設けられている。断熱層58の材料としては、例えばジルコニアやアルミナ等のセラミックスを用いることが可能である。軸受保持部本体20はキャップ21と比較して熱容量(体積)が大きく昇温に必要な熱量も大きくなるが、この構成例によれば、低温時に、熱交換油路42内の発熱した潤滑油から軸受保持部本体20に供給された熱量が外側へ拡散するのを断熱層58により抑えることができるので、軸受保持部本体20の昇温を効率よく行うことができる。   In the present embodiment, for example, as shown in FIGS. 5 and 6, a heat insulating layer 58 can be provided at a position on the outer peripheral side of the heat exchange oil passage 42 in the bearing holding body 20. In the example shown in FIGS. 5 and 6, the heat insulating layer 58 is further provided on both ends of the bearing holding unit body 20 in the rotation axis direction with the heat exchange oil passage 42 interposed therebetween. As a material of the heat insulation layer 58, for example, ceramics such as zirconia and alumina can be used. The bearing holder main body 20 has a larger heat capacity (volume) than the cap 21 and requires a larger amount of heat to raise the temperature. According to this configuration example, the lubricating oil that has generated heat in the heat exchange oil passage 42 at a low temperature. Since the heat insulation layer 58 can suppress the amount of heat supplied to the bearing holder main body 20 from diffusing outside, the temperature of the bearing holder main body 20 can be increased efficiently.

また、本実施形態では、例えば図7〜9に示すように、潤滑油供給路41、熱交換油路42、及び潤滑油排出路44を、軸受保持部本体20及びキャップ21のうち、熱容量(体積)の小さい方のキャップ21だけに形成することも可能である。図7〜9に示す構成例では、図1〜4に示す構成例と比較して、軸受保持部本体20の潤滑油供給路41、熱交換油路42、及び潤滑油排出路44が省略されている。この構成例によれば、低温時に、熱容量の小さいキャップ21に熱交換油路42内の潤滑油の熱量を供給して暖機することで、熱量あたりの昇温効率をさらに向上させることができる。   Moreover, in this embodiment, as shown, for example in FIGS. 7-9, the lubricating oil supply path 41, the heat exchange oil path 42, and the lubricating oil discharge path 44 are made into the heat capacity (of the bearing holding | maintenance part main body 20 and the cap 21 ( It is also possible to form only the cap 21 having the smaller volume. 7-9, the lubricating oil supply path 41, the heat exchange oil path 42, and the lubricating oil discharge path 44 of the bearing holding body 20 are omitted as compared with the structural examples shown in FIGS. ing. According to this configuration example, the temperature rise efficiency per heat quantity can be further improved by supplying the heat quantity of the lubricating oil in the heat exchange oil passage 42 to the cap 21 having a small heat capacity at the low temperature to warm up. .

また、本実施形態では、例えば図10に示すように、オイルポンプ40の出口40b側にオイル冷却装置62を設けることも可能である。オイル冷却装置62は、ラジエータ64で冷却された内燃機関の冷却水との熱交換により、オイルポンプ40の出口40bから吐出した潤滑油を冷却して潤滑油供給路41へ供給することが可能である。あるいは、外部サブタンク内の冷却液との熱交換を利用して潤滑油を冷却することも可能である。   In the present embodiment, for example, as shown in FIG. 10, an oil cooling device 62 can be provided on the outlet 40 b side of the oil pump 40. The oil cooling device 62 can cool and supply the lubricating oil discharged from the outlet 40 b of the oil pump 40 to the lubricating oil supply passage 41 by heat exchange with the cooling water of the internal combustion engine cooled by the radiator 64. is there. Alternatively, the lubricating oil can be cooled using heat exchange with the coolant in the external sub tank.

図10に示す構成例では、内燃機関の暖機後等、潤滑油の粘度が低い高温時に、ラジエータ64からオイル冷却装置62に内燃機関の冷却水を供給してオイル冷却装置62を作動させることで、オイル冷却装置62で冷却された潤滑油が軸受保持部13内部の潤滑油供給路41を通ってからラジアルすべり軸受30とクランクジャーナル18間の隙間に供給される。これによって、軸受保持部13、及びクランクジャーナル18とラジアルすべり軸受30の摺動部の冷却を行うことができる。さらに、オイル冷却装置62で冷却された潤滑油は、潤滑油流出口43から流出して各熱交換油路42を流れることで、軸受保持部13と熱交換してから潤滑油排出路44から流出する。これによって、軸受保持部13の冷却を行うことができる。したがって、内燃機関の暖機後等、高温時に、クランクジャーナル18とラジアルすべり軸受30の摺動部、及び軸受保持部13の温度を低減することができ、高温度化による油膜の油切れ、焼き付きを防止することができる。特に、ラジエータキャップ圧により温度管理されたエンジン冷却水との熱交換を行うことで、安定した潤滑油の供給と摺動部の温度管理を可能とする。また、外部サブタンクによる温度管理においても同様の効果が期待できる。   In the configuration example shown in FIG. 10, the cooling water of the internal combustion engine is supplied from the radiator 64 to the oil cooling device 62 to operate the oil cooling device 62 when the viscosity of the lubricating oil is low, such as after the internal combustion engine is warmed up. Thus, the lubricating oil cooled by the oil cooling device 62 passes through the lubricating oil supply passage 41 inside the bearing holding portion 13 and then is supplied to the gap between the radial plain bearing 30 and the crank journal 18. Thus, the bearing holding portion 13 and the sliding portions of the crank journal 18 and the radial slide bearing 30 can be cooled. Further, the lubricating oil cooled by the oil cooling device 62 flows out from the lubricating oil outlet 43 and flows through each heat exchange oil passage 42, thereby exchanging heat with the bearing holder 13 and from the lubricating oil discharge passage 44. leak. Thereby, the bearing holding part 13 can be cooled. Therefore, the temperature of the sliding portion of the crank journal 18 and the radial slide bearing 30 and the bearing holding portion 13 can be reduced at a high temperature such as after the internal combustion engine is warmed up. Can be prevented. In particular, heat exchange with engine coolant whose temperature is controlled by the radiator cap pressure enables stable supply of lubricating oil and temperature management of the sliding portion. In addition, the same effect can be expected in the temperature management by the external sub tank.

また、本実施形態では、例えば図11に示すように、軸受保持部13内部におけるラジアルすべり軸受30の外周囲に熱交換水路68をさらに形成することも可能である。熱交換水路68には、ラジエータ66で冷却された内燃機関の冷却水が熱交換流体として供給可能であり、熱交換水路68を通る冷却水が熱交換油路42を通る潤滑油と熱交換するように、熱交換水路68が熱交換油路42に近接して配置されている。図11に示す例では、軸受保持部本体20内部における半割り軸受メタル31Aの外周囲に複数の熱交換水路68が熱交換油路42に近接して形成され、キャップ21内部における半割り軸受メタル31Bの外周囲に複数の熱交換水路68が熱交換油路42に近接して形成されている。   Further, in the present embodiment, for example, as shown in FIG. 11, it is possible to further form a heat exchange water channel 68 around the outer periphery of the radial plain bearing 30 inside the bearing holding portion 13. The cooling water of the internal combustion engine cooled by the radiator 66 can be supplied to the heat exchange channel 68 as a heat exchange fluid, and the cooling water passing through the heat exchange channel 68 exchanges heat with the lubricating oil passing through the heat exchange channel 42. As described above, the heat exchange water channel 68 is disposed close to the heat exchange oil channel 42. In the example shown in FIG. 11, a plurality of heat exchange water channels 68 are formed in the outer periphery of the half bearing metal 31 </ b> A inside the bearing holding body 20 near the heat exchange oil passage 42, and the half bearing metal inside the cap 21. A plurality of heat exchange water channels 68 are formed in proximity to the heat exchange oil channel 42 around the outer periphery of 31B.

図11に示す構成例では、内燃機関の暖機後等、高温時に、熱交換水路68に冷却水を流すことで、熱交換油路42を通る潤滑油と熱交換して潤滑油の冷却を行うことができる。さらに、熱交換水路68を通る冷却水が軸受保持部13と熱交換して軸受保持部13の冷却を行うことができる。したがって、内燃機関の暖機後等、高温時に、クランクジャーナル18とラジアルすべり軸受30の摺動部、及び軸受保持部13の温度を低減することができる。特に、熱容量を限定した軸受構成では、高い熱交換効率を実現することができ、潤滑油の温度制御性を向上させることが可能となる。また、ラジエータキャップ圧により温度管理されたエンジン冷却水との熱交換を行うことで、摺動部の安定した温度管理が可能となる。   In the configuration example shown in FIG. 11, by cooling water flowing through the heat exchange water channel 68 at a high temperature such as after the internal combustion engine is warmed up, heat is exchanged with the lubricating oil passing through the heat exchange oil channel 42 to cool the lubricating oil. It can be carried out. Furthermore, the cooling water passing through the heat exchange water channel 68 can exchange heat with the bearing holder 13 to cool the bearing holder 13. Accordingly, the temperature of the sliding portion of the crank journal 18 and the radial slide bearing 30 and the temperature of the bearing holding portion 13 can be reduced at a high temperature such as after the internal combustion engine is warmed up. In particular, in a bearing configuration with a limited heat capacity, high heat exchange efficiency can be realized, and temperature controllability of the lubricating oil can be improved. In addition, by performing heat exchange with engine coolant whose temperature is controlled by the radiator cap pressure, stable temperature management of the sliding portion is possible.

以上の説明では、本発明の実施形態に係る内燃機関の軸受構造として、クランクシャフトのクランクジャーナル18の軸受構造を例に挙げて説明した。ただし、本発明に係る内燃機関の軸受構造は、クランクシャフトのクランクジャーナル18の軸受構造以外に、例えば内燃機関のカムシャフトの軸受構造等、その他の内燃機関の回転軸の軸受構造にも適用することが可能である。   In the above description, the bearing structure of the crank journal 18 of the crankshaft has been described as an example of the bearing structure of the internal combustion engine according to the embodiment of the present invention. However, the bearing structure of the internal combustion engine according to the present invention is applied to the bearing structure of the rotary shaft of other internal combustion engines such as a bearing structure of the camshaft of the internal combustion engine, in addition to the bearing structure of the crank journal 18 of the crankshaft. It is possible.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

13 軸受保持部、13A,13B 軸受装着面、18 クランクジャーナル、20 軸受保持部本体、21 キャップ、30 ラジアルすべり軸受、31A,31B 半割り軸受メタル、40 オイルポンプ、41 潤滑油供給路、42 熱交換油路、43 潤滑油流出口、44 潤滑油排出路、52 オイル予熱装置、58 断熱層、62 オイル冷却装置、64,66 ラジエータ、68 熱交換水路。   13 Bearing holder, 13A, 13B Bearing mounting surface, 18 Crank journal, 20 Bearing holder body, 21 Cap, 30 Radial slide bearing, 31A, 31B Half bearing metal, 40 Oil pump, 41 Lubricating oil supply path, 42 Heat Exchange oil passage, 43 Lubricating oil outlet, 44 Lubricating oil discharge passage, 52 Oil preheating device, 58 Heat insulation layer, 62 Oil cooling device, 64, 66 Radiator, 68 Heat exchange water passage.

Claims (9)

内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、
潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、
ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、
軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、
軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、
を有し、
ラジアルすべり軸受と回転軸間の隙間は、回転軸方向に関して両端部が他の部分よりも狭い、内燃機関の軸受構造。
A bearing structure for an internal combustion engine in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial slide bearing is held by a bearing holding portion,
A lubricating oil supply path for supplying lubricating oil to the gap between the radial slide bearing and the rotary shaft;
A lubricating oil outlet formed on the radial sliding bearing, for allowing the lubricating oil to flow out from a gap between the radial sliding bearing and the rotary shaft;
A heat exchange oil passage formed on the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat exchange for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. Oil passage,
A lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage;
I have a,
A bearing structure for an internal combustion engine in which a gap between the radial slide bearing and the rotating shaft is narrower at the both ends than in the other portions in the rotating shaft direction .
内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、
潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、
ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、
軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、
軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、
を有し、
軸受保持部は、軸受保持部本体にキャップを締結して構成され、
熱交換油路は、キャップにおけるラジアルすべり軸受の外周囲に形成されている、内燃機関の軸受構造。
A bearing structure for an internal combustion engine in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial slide bearing is held by a bearing holding portion ,
A lubricating oil supply path for supplying lubricating oil to the gap between the radial slide bearing and the rotary shaft;
A lubricating oil outlet formed on the radial sliding bearing, for allowing the lubricating oil to flow out from a gap between the radial sliding bearing and the rotary shaft;
A heat exchange oil passage formed on the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat exchange for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. Oil passage,
A lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage;
Have
The bearing holding part is configured by fastening a cap to the bearing holding part body,
The heat exchange oil passage is a bearing structure for an internal combustion engine, which is formed on the outer periphery of the radial slide bearing in the cap .
内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、
潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、
ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、
軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、
軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、
を有し、
軸受保持部は、軸受保持部本体にキャップを締結して構成され、
熱交換油路は、軸受保持部本体におけるラジアルすべり軸受の外周囲に形成され、
軸受保持部本体における熱交換油路より外周側の位置に断熱層が設けられている、内燃機関の軸受構造。
A bearing structure for an internal combustion engine in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial slide bearing is held by a bearing holding portion ,
A lubricating oil supply path for supplying lubricating oil to the gap between the radial slide bearing and the rotary shaft;
A lubricating oil outlet formed on the radial sliding bearing, for allowing the lubricating oil to flow out from a gap between the radial sliding bearing and the rotary shaft;
A heat exchange oil passage formed on the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat exchange for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. Oil passage,
A lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage;
Have
The bearing holding part is configured by fastening a cap to the bearing holding part body,
The heat exchange oil passage is formed on the outer periphery of the radial slide bearing in the bearing holding body,
A bearing structure for an internal combustion engine , wherein a heat insulating layer is provided at a position on the outer peripheral side of the heat exchange oil passage in the bearing holding body .
内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、
潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、
ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、
軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、
軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、
を有し、
熱交換油路を通る潤滑油と熱交換するための熱交換流体が供給可能な熱交換流路が軸受保持部におけるラジアルすべり軸受の外周囲にさらに形成されている、内燃機関の軸受構造。
A bearing structure for an internal combustion engine in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial slide bearing is held by a bearing holding portion ,
A lubricating oil supply path for supplying lubricating oil to the gap between the radial slide bearing and the rotary shaft;
A lubricating oil outlet formed on the radial sliding bearing, for allowing the lubricating oil to flow out from a gap between the radial sliding bearing and the rotary shaft;
A heat exchange oil passage formed on the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat exchange for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. Oil passage,
A lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage;
Have
A bearing structure for an internal combustion engine, wherein a heat exchange flow path capable of supplying a heat exchange fluid for exchanging heat with lubricating oil passing through the heat exchange oil path is further formed on the outer periphery of the radial plain bearing in the bearing holding portion .
請求項に記載の内燃機関の軸受構造であって、
熱交換流体は内燃機関の冷却液である、内燃機関の軸受構造。
A bearing structure for an internal combustion engine according to claim 4 ,
A bearing structure for an internal combustion engine, wherein the heat exchange fluid is a coolant for the internal combustion engine.
請求項1〜5のいずれか1に記載の内燃機関の軸受構造であって、
潤滑油供給路は軸受保持部に形成され、
潤滑油を予熱装置で予熱してから潤滑油供給路へ供給可能である、内燃機関の軸受構造。
A bearing structure for an internal combustion engine according to any one of claims 1 to 5,
The lubricating oil supply path is formed in the bearing holder,
A bearing structure for an internal combustion engine, in which the lubricating oil can be preheated by a preheating device and then supplied to the lubricating oil supply passage.
請求項1〜5のいずれか1に記載の内燃機関の軸受構造であって、
潤滑油供給路は軸受保持部に形成され、
潤滑油を冷却装置で冷却してから潤滑油供給路へ供給可能である、内燃機関の軸受構造。
A bearing structure for an internal combustion engine according to any one of claims 1 to 5,
The lubricating oil supply path is formed in the bearing holder,
A bearing structure for an internal combustion engine that can supply lubricating oil to a lubricating oil supply path after cooling the lubricating oil with a cooling device.
内燃機関の回転軸を潤滑油を介してラジアルすべり軸受で支持し、ラジアルすべり軸受を軸受保持部で保持する内燃機関の軸受構造であって、
潤滑油をラジアルすべり軸受と回転軸間の隙間に供給するための潤滑油供給路と、
ラジアルすべり軸受に形成され、ラジアルすべり軸受と回転軸間の隙間から潤滑油を流出させるための潤滑油流出口と、
軸受保持部におけるラジアルすべり軸受の外周囲に形成され、潤滑油流出口と連通する熱交換油路であって、該熱交換油路を通る潤滑油を軸受保持部と熱交換させるための熱交換油路と、
軸受保持部に形成され、熱交換油路と連通する潤滑油排出路と、
を有し、
潤滑油供給路は軸受保持部に形成され、
潤滑油を冷却装置で冷却してから潤滑油供給路へ供給可能であり、
冷却装置は、内燃機関の冷却液との熱交換を利用するものである、内燃機関の軸受構造。
A bearing structure for an internal combustion engine in which a rotating shaft of an internal combustion engine is supported by a radial slide bearing via lubricating oil, and the radial slide bearing is held by a bearing holding portion ,
A lubricating oil supply path for supplying lubricating oil to the gap between the radial slide bearing and the rotary shaft;
A lubricating oil outlet formed on the radial sliding bearing, for allowing the lubricating oil to flow out from a gap between the radial sliding bearing and the rotary shaft;
A heat exchange oil passage formed on the outer periphery of the radial slide bearing in the bearing holding portion and communicating with the lubricating oil outlet, and heat exchange for exchanging the lubricating oil passing through the heat exchange oil passage with the bearing holding portion. Oil passage,
A lubricating oil discharge passage formed in the bearing holding portion and communicating with the heat exchange oil passage;
Have
The lubricating oil supply path is formed in the bearing holder,
The lubricating oil can be supplied to the lubricating oil supply passage after being cooled by a cooling device.
The cooling device is a bearing structure for an internal combustion engine that uses heat exchange with the coolant of the internal combustion engine.
請求項1〜8のいずれか1に記載の内燃機関の軸受構造であって、
潤滑油供給路は軸受保持部に形成され、
潤滑油排出路を通る潤滑油が潤滑油供給路を通る潤滑油と熱交換するように、潤滑油排出路が潤滑油供給路に近接して配置されている、内燃機関の軸受構造。
A bearing structure for an internal combustion engine according to any one of claims 1 to 8,
The lubricating oil supply path is formed in the bearing holder,
A bearing structure for an internal combustion engine , wherein the lubricating oil discharge path is arranged close to the lubricating oil supply path so that the lubricating oil passing through the lubricating oil discharge path exchanges heat with the lubricating oil passing through the lubricating oil supply path .
JP2011064143A 2011-03-23 2011-03-23 Bearing structure of internal combustion engine Expired - Fee Related JP5716476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011064143A JP5716476B2 (en) 2011-03-23 2011-03-23 Bearing structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011064143A JP5716476B2 (en) 2011-03-23 2011-03-23 Bearing structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012197922A JP2012197922A (en) 2012-10-18
JP5716476B2 true JP5716476B2 (en) 2015-05-13

Family

ID=47180345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011064143A Expired - Fee Related JP5716476B2 (en) 2011-03-23 2011-03-23 Bearing structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP5716476B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202930A (en) * 1991-03-15 1993-08-10 Osaka Gas Co Ltd Abnormality monitoring method and apparatus for bearing
JPH0654913U (en) * 1992-12-28 1994-07-26 マツダ株式会社 V-type engine crankshaft bearing structure
JP2009144623A (en) * 2007-12-14 2009-07-02 Toyota Motor Corp Lubricating device for engine

Also Published As

Publication number Publication date
JP2012197922A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5343992B2 (en) Bearing structure of internal combustion engine
JP6152430B2 (en) Thermal insulation system for lubrication of rotating and swinging parts of drive units
US8621865B2 (en) Internal combustion engine with liquid-cooled turbine
US9951664B2 (en) Method for heating the engine oil of an internal combustion engine and internal combustion engine for performing such a method
JPH08277831A (en) Crank lubricating device for internal combustion engine
RU2698539C2 (en) Internal combustion engine with oil circuit and support bearings with oil lubricant (embodiments)
CA2954079C (en) Pressure wave supercharger and method for operating a pressure wave supercharger
JP5716476B2 (en) Bearing structure of internal combustion engine
JP2012197779A (en) Bearing structure of internal combustion engine
JP2012197921A (en) Bearing structure of internal combustion engine
GB2442736A (en) Cooling internal combustion engines
US9822678B2 (en) Internal combustion engine with a lubrication system and method for producing an internal combustion engine
JP6687467B2 (en) Internal combustion engine
JP2013108387A (en) Engine
JP2012140914A (en) Bearing structure of internal combustion engine
JP5429026B2 (en) Radial slide bearing and rotating shaft bearing structure
JP2017101558A (en) Bearing structure for internal combustion engine
JP2012112492A (en) Slide bearing structure of shaft member
JP2005147027A (en) Cooling device for internal combustion engine, and manufacturing method thereof
US20040216601A1 (en) Rotating fluid machine
JP2009041541A (en) Variable valve train for internal combustion engine
JPH0988534A (en) Lubricating system for internal combustion engine
JP2016534283A (en) Fluid cooling system
JP2002106346A (en) Thermal storage device
JPH1181962A (en) Lubricating circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5716476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees