JP5716250B2 - Resonant photoacoustic imager - Google Patents

Resonant photoacoustic imager Download PDF

Info

Publication number
JP5716250B2
JP5716250B2 JP2012046366A JP2012046366A JP5716250B2 JP 5716250 B2 JP5716250 B2 JP 5716250B2 JP 2012046366 A JP2012046366 A JP 2012046366A JP 2012046366 A JP2012046366 A JP 2012046366A JP 5716250 B2 JP5716250 B2 JP 5716250B2
Authority
JP
Japan
Prior art keywords
sample
acoustic
photoacoustic
resonator
acoustic resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012046366A
Other languages
Japanese (ja)
Other versions
JP2013181866A (en
Inventor
務 星宮
務 星宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
gakkou houjin touhoku Gakuin
Original Assignee
gakkou houjin touhoku Gakuin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by gakkou houjin touhoku Gakuin filed Critical gakkou houjin touhoku Gakuin
Priority to JP2012046366A priority Critical patent/JP5716250B2/en
Publication of JP2013181866A publication Critical patent/JP2013181866A/en
Application granted granted Critical
Publication of JP5716250B2 publication Critical patent/JP5716250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids

Description

本発明は非破壊検査や試料の分光イメージングに応用される光音響イメージング装置に関するものである。The present invention relates to a photoacoustic imaging apparatus applied to nondestructive inspection and spectroscopic imaging of a sample.

光を物質に照射して、熱に転換されたエネルギーを空気中の音波、あるいは固体中の熱弾性波としてとらえる光音響法は、内部が見えない固体試料内部の非破壊検査や試料の分光イメージングを行う光音響顕微鏡、あるいは光音響映像法に応用されてきた。 The photoacoustic method that irradiates a substance with light and captures the energy converted into heat as a sound wave in the air or a thermoelastic wave in a solid is a non-destructive inspection inside the solid sample and the spectroscopic imaging of the sample. Have been applied to photoacoustic microscopes or photoacoustic imaging methods.

光音響イメージングを行う装置においては、試料を密閉セルに封入するガス=マイクロフォン法
か、試料に圧電素子を貼り付ける方法 の2つが主流であった。前者では試料を光音響セルに封入しなければならず、後者では光音響信号の分光学的な直線性が問題になる
  In an apparatus for photoacoustic imaging, gas = microphone method in which a sample is sealed in a closed cell
Or a method of attaching a piezoelectric element to a sample The two were mainstream. In the former, the sample must be enclosed in a photoacoustic cell, and in the latter, the spectral linearity of the photoacoustic signal becomes a problem. .

さらに、ヘルムホルツ共鳴器
や回転楕円体型音響共鳴器 を用いる光音響センサも実現されてはいたが、試料に密着した分光のためのセンサとしてのみ用いられており、まだ試料から離間した状態で走査をするイメージング用のセンサとしては用いられてこなかった。
  In addition, Helmholtz resonators
And spheroid acoustic resonator Although a photoacoustic sensor using a sensor has been realized, it has been used only as a sensor for spectroscopy closely attached to a sample, and has not been used as an imaging sensor for scanning in a state of being separated from the sample. .

R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D.Favro, P. K. Kuo , and A. Rosencwaig: J. Appl. Phys.,51, 1152(1980).R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, P. K. Kuo, and A. Rosencwaig: J. Appl. Phys., 51, 1152 (1980). A.Rosencwaig and G. Busse: Appl. Phys. Lett., 36, 725 (1980).A. Rosencwaig and G. Busse: Appl. Phys. Lett., 36, 725 (1980). W.Jackson and N. M. Amer: J. Appl. Phys., 51, 3343 (1980).W. Jackson and N. M. Amer: J. Appl. Phys., 51, 3343 (1980). A.Miklos, P. Hess and Z. Bozoki: Rev. Sci. Instr., 72, 1937 (2001).A. Miklos, P. Hess and Z. Bozoki: Rev. Sci. Instr., 72, 1937 (2001). 和田森直、松田甚一:信学技報MBE2003-61(2003-09)Wada Mori Nao and Matsuda Junichi: IEICE Technical Report MBE2003-61 (2003-09) 西巻正郎:電気音響振動学(コロナ社, 1960).Masamaki Nishimaki: Electroacoustic Vibration Studies (Corona, 1960). C. T. M.Chang: J. Acoust. Soc. Amer., 49, 611 (1971)C. T. M. Chang: J. Acoust. Soc. Amer., 49, 611 (1971)

本発明は、圧電素子では難しい分光学的な直線性を保証した形で、微小サイズから大型サイズまでの試料を、測定対象を光音響セルに封入せずに、音響的には開放された空洞共鳴器を用いて非接触的に、かつ光導入に光学窓や光ファイバを必要としないため、きわめて広帯域な波長範囲で測定できる光音響イメージング手段を実現する。  The present invention is an acoustically open cavity for specimens of micro to large size that is difficult to achieve with piezoelectric elements, without enclosing the object to be measured in a photoacoustic cell. Since a resonator is used in a non-contact manner and does not require an optical window or an optical fiber for introducing light, a photoacoustic imaging means capable of measuring in a very wide wavelength range is realized.

発明者は、これまで試料と光音響セルとが密着した構造でしか用いられてこなかった回転楕円体型音響共鳴器を用いた光音響測定において、回転楕円体型音響共鳴器を内蔵する 光音響セルが試料と離間した構造をとった場合の測定例として、音響的な共振に基づく光音響信号の低下が、共鳴器と試料との間隔を1mm程度離した場合でも減少量が40%程度と少ないこと、ならびに共鳴振動数のシフトが高周波側に生じることを新たに発見した。
The inventor has proposed a photoacoustic cell incorporating a spheroid acoustic resonator in photoacoustic measurement using a spheroid acoustic resonator that has been used only in a structure in which a sample and a photoacoustic cell are in close contact with each other. As an example of measurement when a structure separated from the sample is taken, the decrease in the photoacoustic signal based on acoustic resonance is as small as about 40% even when the distance between the resonator and the sample is about 1 mm. In addition, it was newly discovered that a shift in resonance frequency occurs on the high frequency side.

この事実に立脚し、回転楕円体型音響共鳴器において、あえて試料と光音響セルとが離 間しているような、音響的には漏洩のある構造をとることによって、これまでの2つの手法では得られない3つの利点、つまり、1)微小なサイズから大型の構造物まで、光音響セルへの封入や圧電素子の貼り付けから自由な非接触・非破壊検査の実現、2)窓が不要なための測定波長域の制限の撤廃、3)ガス=マイクロフォン法を用いるための分光学的直線性の保証、を実現する。Grounded in this fact, the spheroidal type acoustic resonator, dare such that the sample and the photoacoustic cell is between away, by taking a structure in which a leak is acoustically, the two approaches so far Three advantages that cannot be obtained: 1) Realization of free non-contact / non-destructive inspection from micro-size to large-sized structures by encapsulating in photoacoustic cells and attaching piezoelectric elements 2) No need for windows To eliminate the restriction of the measurement wavelength range for 3), and guarantee the spectroscopic linearity for using the gas = microphone method.

この発明は、密閉構造を取らない音響共鳴器を活用して、測定対象を光音響セルに封入せずに、微小サイズから大型サイズまでの試料を音響的に開放された測定系で非接触測定可能な光音響イメージング手段を実現する効果がある。   This invention utilizes an acoustic resonator that does not take a sealed structure, and does not enclose a measurement object in a photoacoustic cell, and non-contact measurement of a sample from a small size to a large size is performed in an acoustically open measurement system. There is an effect of realizing possible photoacoustic imaging means.

また、光源となる光を導入する窓や光ファイバを用いた密閉構造を採用しないため、極めて広範囲な波長範囲の光源を用いた分光イメージングを可能にする効果がある。  Further, since a sealed structure using a window or an optical fiber for introducing light serving as a light source is not adopted, there is an effect of enabling spectral imaging using a light source in a very wide wavelength range.

さらに、試料を照射するレーザー光を検出器の音響共鳴周波数と同じ周期を有するパルス、あるいは正弦波で変調した後、その包絡線を1)さらに別の周期の正弦波で変調するか、または2)ランダムパルスで変調することによって、前者の場合には、試料内部から発生する被変調温度信号の振幅と位相から、後者の場合には振幅と遅れ時間から試料の内部構造に関する情報を得ることが可能となる。Further, after the laser light for irradiating the sample is modulated with a pulse or a sine wave having the same period as the acoustic resonance frequency of the detector, the envelope is modulated with 1) a sine wave with another period or 2 ) By modulating with random pulses, in the former case, information on the internal structure of the sample can be obtained from the amplitude and phase of the modulated temperature signal generated from inside the sample, and in the latter case from the amplitude and delay time. It becomes possible.

図1は本発明の請求項の1および2の説明をなすもので、基本的な構成を示したものである。FIG. 1 explains the claims 1 and 2 of the present invention and shows a basic configuration. 図2は本発明の請求項1の説明をなすもので、請求項に述べる光音響イメージング装置の具体的な構成を示したものである。FIG. 2 explains the first aspect of the present invention, and shows a specific configuration of the photoacoustic imaging apparatus described in the claims. 図3は本発明の請求項の3の説明をなすもので、実験データの説明となっている。密閉度は「0mm閉」(密閉時)、「0mm閉 ハリガネ」(共鳴器と試料とを密着させ間に針金を挿入した時)、「1mm開 ラップ」(共鳴器と試料との間隔が1mmで開放し、ラップで閉じた時)、「1mm開」(共鳴器と試料との間隔が1mmの開放時)で、共鳴周波数もこの順で高周波側に上昇する形でシフトしている。FIG. 3 explains claim 3 of the present invention, and is an explanation of experimental data. The degree of sealing is "0mm closed" (when sealed), "0mm closed tension" (when the resonator is in close contact with the sample and a wire is inserted between them), "1mm open lap" (the distance between the resonator and the sample is 1mm) (When opened with a lap and closed with a lap) and “1 mm open” (when the distance between the resonator and the sample is 1 mm open), the resonance frequency also shifts in the order of increasing to the high frequency side in this order. 図4は本発明の請求項の3の説明をなすもので、音響系の等価回路表現[文献6]を表す。電圧が圧力を、電流が体積速度を表し、音響インピーダンスは圧力/体積速度比を表す。図にYcavityと示したRLC並列共振回路が回転楕円体共振器を表し、左側のYholeと示した直列回路は気体の流出に伴う放射インピーダンスをアドミッタンスに直したものを示している。FIG. 4 explains claim 3 of the present invention and represents an equivalent circuit representation of the acoustic system [Reference 6]. Voltage represents pressure, current represents volume velocity, and acoustic impedance represents pressure / volume velocity ratio. The RLC parallel resonance circuit indicated as Ycavity in the figure represents a spheroid resonator, and the series circuit indicated as Yhole on the left side shows the radiant impedance associated with the outflow of gas converted to admittance. 図5は試料に用いた、アルミニウム金属板に4色の塗料を塗布したものである。色は上段、左から右へ青色、赤色、下段左から右へ黒色、緑色の順である。FIG. 5 shows an aluminum metal plate used for the sample coated with four colors of paint. The colors are blue, red from the top, left to right, red, black, green from the bottom left to right. 図6は、図5に示した試料を本装置で光音響イメージングした振幅像である。走査範囲は23mmx23mmである。FIG. 6 is an amplitude image obtained by photoacoustic imaging of the sample shown in FIG. The scanning range is 23 mm × 23 mm.

以下に、本発明に関わる共鳴型光音響映像装置を応用した場合について、本発明の原理ならびに実施形態を図面に基づいて説明する。  Hereinafter, the principle and embodiments of the present invention will be described with reference to the drawings in the case where the resonant photoacoustic image apparatus according to the present invention is applied.

図1は、本発明に関わる共鳴型光音響映像装置を光音響分光イメージングに応用した実施例である。まず図の様に、直方体内部を回転楕円体型にくりぬいた空洞音響共鳴器(1)に入射用開口部(5)を通して、強度変調したレーザー光(4)(可変波長光源としてレーザー光を光パラメトリック発振器で波長変換する場合をも含むものとする)を、試料(3)を照射するように入射させる。試料の過熱によって発生した光音響信号は、共鳴器と試料との間隔が近距離であれば音響共鳴器を通して高感度マイクロフォン(2)に到達する。  FIG. 1 shows an embodiment in which a resonant photoacoustic image apparatus according to the present invention is applied to photoacoustic spectroscopic imaging. First, as shown in the figure, the cavity acoustic resonator (1) in which the inside of the rectangular parallelepiped is hollowed out into a spheroid is passed through the entrance opening (5), and the intensity-modulated laser beam (4) Including the case of wavelength conversion by an oscillator) is incident so as to irradiate the sample (3). The photoacoustic signal generated by overheating of the sample reaches the high sensitivity microphone (2) through the acoustic resonator if the distance between the resonator and the sample is a short distance.

図2の実施例は、本装置を光音響イメージング装置として用いた場合の応用例である。発振器(6)により変調したレーザー(7)の光をミラー(8)で反射させた後に、回転楕円体音響共鳴器(1)に開けた光導入開口部(5)を通して試料(3)に照射する。光音響効果により発生した音波は音響共鳴器を通過して高感度マイクロフォン(2)で検出する。電気信号はロックインアンプ(10)により変調信号を利用して同期検波される。その振幅と位相とは、信号転送バスライン(11)を経由してパーソナルコンピューター(13)に転送される。試料は走査ステージ(9)により2次元的に走査され、その制御はステージコントローラー(12)とパーソナルコンピューターにより行われる。   The embodiment of FIG. 2 is an application example when this apparatus is used as a photoacoustic imaging apparatus. After the light of the laser (7) modulated by the oscillator (6) is reflected by the mirror (8), the sample (3) is irradiated through the light introduction opening (5) opened in the spheroid acoustic resonator (1). To do. The sound wave generated by the photoacoustic effect passes through the acoustic resonator and is detected by the high sensitivity microphone (2). The electric signal is synchronously detected by the lock-in amplifier (10) using the modulation signal. The amplitude and phase are transferred to the personal computer (13) via the signal transfer bus line (11). The sample is scanned two-dimensionally by the scanning stage (9), and the control is performed by the stage controller (12) and a personal computer.

走査の1点1点から発生した光音響信号は振幅画像および位相画像として表示される。開口部に窓を装着し、イメージングしようとする固体試料を音響共鳴器に密着させた場合には、その共鳴振動数は回転楕円体の共鳴振動数
となる。
Photoacoustic signals generated from each point of scanning are displayed as an amplitude image and a phase image. When a window is attached to the opening and the solid sample to be imaged is brought into close contact with the acoustic resonator, the resonance frequency is the resonance frequency of the spheroid.
It becomes.

しかし、試料を音響共鳴器に密着させない場合には、発生した音波が外部へ流出する音響的アダミッタンス(体積速度/圧力の比)に従って共鳴振動数がシフトする。共鳴振動数のシフト量の実例を図3に示す。楕円の長軸の半分の長さを85.5 mm,長軸と短軸との長さの比を9.0に選んだ場合、完全に密閉した状態での光音響信号の共鳴振動数は1360Hz、信号電圧が128μVであったが、共鳴器と試料とを1 mm離した場合、1490 Hz, 83μVとなり、約10%の高周波側への振動数シフト、40%程度の信号の低下という結果であった。このため、このタイプの共鳴型光音響測定では、試料と共鳴器とを離したままイメージングすることが十分に可能であることが示された。 However, when the sample is not brought into close contact with the acoustic resonator, the resonance frequency shifts in accordance with the acoustic admittance (volume velocity / pressure ratio) at which the generated sound wave flows out. An actual example of the shift amount of the resonance frequency is shown in FIG. When the length of half of the major axis of the ellipse is 85.5 mm and the ratio of the length of the major axis to the minor axis is 9.0, the resonant frequency of the photoacoustic signal in a completely sealed state is 1360 Hz, the signal voltage However, when the resonator and the sample were separated from each other by 1 mm, 1490 Hz and 83 μV were obtained, resulting in a frequency shift to about 10% on the high frequency side and a signal decrease of about 40%. For this reason, this type of resonance photoacoustic measurement has shown that it is sufficiently possible to image the sample and the resonator apart.

回転楕円体の共鳴を音響回路を用いて表現すると、図4に示すRLC並列共振回路で表現できる。密閉状態ではこの回路のみが光音響効果によって発生する音源につながっているだけであるが、音響的な開放系で漏えいが存在する場合には、図に示す音響的放射アドミッタンスが加わるため、このリアクタンス分(等価的にインダクタンスとなる)が並列回路に加わる。そのため、共鳴振動数のシフトは高周波数側にシフトし、その量も計算でき、設計することが可能となる。 If the resonance of the spheroid is expressed using an acoustic circuit, it can be expressed by the RLC parallel resonance circuit shown in FIG. In the sealed state, only this circuit is connected to the sound source generated by the photoacoustic effect, but if there is leakage in an acoustic open system, the acoustic radiation admittance shown in the figure is added, so this reactance Min (equivalent to inductance) is added to the parallel circuit. Therefore, the resonance frequency shift shifts to the high frequency side, and the amount can be calculated and designed.

図4中で16は穴の存在によって生じたリアクタンス成分であって、開放部や穴のない場合の共鳴振動数に対する共鳴振動数のシフトを引き起こす原因となっている。穴が存在しない場合、空洞共鳴器の共鳴振動数は下記の数式(1)であるが、穴が存在する場合には、共鳴振動数は記の数式(2)で示されるように、高周波数側にシフトする。4 16 in the a reactance component generated by the presence of holes, which is a cause of a shift of the resonant frequency for the resonant frequency in the absence of opening or hole. When there is no hole, the resonance frequency of the cavity resonator is represented by the following formula (1). However, when the hole is present, the resonance frequency is a high frequency as shown by the following formula (2). Shift to the side.

なお、振動数シフト量は共鳴器と試料との距離には比例せず、飽和傾向にあることが実験的に得られた。It has been experimentally obtained that the frequency shift amount is not proportional to the distance between the resonator and the sample but tends to be saturated.

図5および図6は光音響イメージングの実施例2の具体例である。図5の試料に対して、YAGレーザーの第2高調波(波長532nm)を光源にした場合に得られた光音響信号画像を階調表示したもの(白色が強く黒色が弱い)を図6に示す。この波長においては試料の光吸収は、黒色>赤色>青色>緑色の順に強いので、この順に光音響信号が強い画像となっている。試料を音響セルに密着させない状態でも光音響イメージングができる事を示している。5 and 6 are specific examples of Embodiment 2 of photoacoustic imaging. The photoacoustic signal image obtained when the second harmonic (wavelength of 532 nm) of the YAG laser is used as the light source for the sample of FIG. 5 is displayed in gray scale (white is strong and black is weak) in FIG. Show. At this wavelength, the light absorption of the sample is strong in the order of black> red> blue> green, so that the photoacoustic signal becomes an image in this order. It shows that photoacoustic imaging can be performed even when the sample is not in close contact with the acoustic cell.

本発明の産業上での応用としては、まず不可視試料内部の構造物の分光的検出があげられる。つまり、試料の表層に可視光線は吸収するが、赤外線は透過する材料があり、その内部に表層を透過してきた赤外線を吸収するような構造物や成分がある場合、内部での光吸収に基づく光音響信号の発生があるので、それをこの装置では非常に広い波長域にわたって分光分析しながら、内部の空間分布まで測定可能な顕微分光イメージング装置として機能する。   As an industrial application of the present invention, first, spectroscopic detection of a structure inside an invisible sample can be mentioned. In other words, when there is a material that absorbs visible light but transmits infrared light in the surface layer of the sample, and there are structures and components that absorb infrared light that has passed through the surface layer, it is based on internal light absorption. Since a photoacoustic signal is generated, this apparatus functions as a microspectroscopic imaging apparatus capable of measuring the internal spatial distribution while performing spectral analysis over a very wide wavelength range.

次に本装置の応用が期待されるのは、サイズがペン程度の音響共鳴器を内蔵した光音響セ と小型の高感度マイクロフォンと半導体レーザーまたは高輝度発光ダイオードと組み合わせると、小型軽量で低価格な光音響非破壊検査装置ができる。The following applications of the present device is expected, the size is combined with a high sensitivity microphone and the semiconductor laser or a high intensity light emitting diode photoacoustic cell Le and small with a built-in acoustic resonators of approximately pen, low in size and weight An inexpensive photoacoustic nondestructive inspection device can be created.

1 回転楕円体音響共鳴器
2 音響センサ(高感度マイクロフォン)
3 測定試料
4 レーザービーム
5 光導入開口部
6 発振器
7 レーザー
8 ミラー
9 走査ステージ
10 ロックインアンプ
11 信号転送バスライン
12 ステージコントローラー
13 パーソナルコンピューター
14 光音響効果によって発生する圧力源を意味する体積速度源
15 放射インピーダンスの実数部 (RH)
16 放射インピーダンスのリアクタンス部 (LH)
17 回転楕円体音響共鳴器の音響抵抗 (RA)
18 回転楕円体音響共鳴器のイナータンス(LA)
19 回転楕円体音響共鳴器の音響容量 (CA)
20 マイクロフォンに入射する圧力
1 spheroid acoustic resonator 2 acoustic sensor (high sensitivity microphone)
3 Measurement Sample 4 Laser Beam 5 Light Introducing Opening 6 Oscillator 7 Laser 8 Mirror 9 Scanning Stage 10 Lock-in Amplifier 11 Signal Transfer Bus Line 12 Stage Controller 13 Personal Computer 14 Volume Velocity Source Meaning Pressure Source Generated by Photoacoustic Effect 15 Real part of radiation impedance (R H )
16 Reactance part of radiation impedance (L H )
17 Acoustic resistance of spheroid acoustic resonator (R A )
18 Inertance of spheroid acoustic resonator (L A )
19 Acoustic capacity of spheroid acoustic resonator (C A )
20 Pressure incident on the microphone

Claims (4)

回転楕円体型の音響共鳴器を内蔵する光音響セルにおいて、音響共鳴器に設けた開口を通 してレーザーを試料へ照射し、試料で生じた音波を音響共鳴器を通過させて音響センサで 検出するようになし、この手順を音響共鳴器を走査することで繰り返し行い、音響イメー ジングを行う映像装置であって、セルの端部を試料と1mm程度離間した構造にして移動・走査することにより、試料の光音響イメージングを可能とすることを特徴とする映像 In photoacoustic cell which incorporates an acoustic resonator spheroidal body type, by irradiating laser to the sample and through the opening provided in the acoustic resonator, detected by the acoustic sensor sound waves generated in the sample is passed through an acoustic resonator None as repeats this procedure by scanning the acoustic resonator, a video apparatus for performing acoustic Imaging, by moving and scanning the edge of the cell to the spaced structure about the sample and 1mm , video equipment, characterized in that to enable photoacoustic imaging of the sample. 第1項に記載の装置であって、回転楕円体型の音響共鳴器に光ビームを導入する窓を取り払うことによって、使用するレーザー光の波長の制限を除去した広帯域な分光イメージングが可能であることを特徴とする映像装置The apparatus according to item 1, wherein wide-band spectroscopic imaging is possible by removing a window for introducing a light beam into a spheroid-type acoustic resonator and removing a restriction on a wavelength of a laser beam to be used. A video device characterized by the above. 第1項および第2項に述べた装置であって、試料を照射するレーザー光を音響共鳴器の共 鳴振動数と同じ周期を有するパルスあるいは正弦波で変調した後、その包絡線を1)さらに別の周期の正弦波で変調するか、または2)ランダムパルスで変調することによって、前者の場合には、試料内部から発生する被変調温度信号の振幅と位相から、後者の場合には振幅と遅れ時間から試料の内部構造に関する情報を得ることを特徴とする映像装置An apparatus as described in paragraphs 1 and 2, after modulating the laser beam illuminating the sample with a pulse or a sinusoidal wave having the same period as the co-ringing frequency of the acoustic resonator, the envelope 1) Further, by modulating with a sine wave of another period, or 2) modulating with a random pulse, in the former case, the amplitude and phase of the modulated temperature signal generated from inside the sample, and in the latter case, the amplitude A video apparatus characterized in that information on the internal structure of the sample is obtained from the delay time. 第1項から第3項に述べた装置であって、半導体レーザーまたは高輝度発光ダイオードと高感度音響センサを用いた、共鳴器のサイズがペン程度の手に持って走査ができるコンパ クトなサイズの装置。
An apparatus as described in Section 3 of paragraph 1, using a high sensitivity acoustic sensor and the semiconductor laser or high intensity light emitting diodes, compact size the size of the resonator can scan in hand of around pen device.
JP2012046366A 2012-03-02 2012-03-02 Resonant photoacoustic imager Expired - Fee Related JP5716250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046366A JP5716250B2 (en) 2012-03-02 2012-03-02 Resonant photoacoustic imager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046366A JP5716250B2 (en) 2012-03-02 2012-03-02 Resonant photoacoustic imager

Publications (2)

Publication Number Publication Date
JP2013181866A JP2013181866A (en) 2013-09-12
JP5716250B2 true JP5716250B2 (en) 2015-05-13

Family

ID=49272605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046366A Expired - Fee Related JP5716250B2 (en) 2012-03-02 2012-03-02 Resonant photoacoustic imager

Country Status (1)

Country Link
JP (1) JP5716250B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521808A1 (en) * 2018-02-02 2019-08-07 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Device and method for infrared microscopy and analysis
CN117007531B (en) * 2023-10-07 2024-01-23 之江实验室 Gas concentration detection device and method based on Mie resonance transceiver pair

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262343A (en) * 1984-06-07 1985-12-25 Matsushita Electric Works Ltd High pressure discharge lamp
JP2554297B2 (en) * 1991-09-09 1996-11-13 三菱電機株式会社 Snow melting device for antenna
JP4247310B2 (en) * 2004-04-30 2009-04-02 国立大学法人広島大学 Hardness measuring device
JP2011513744A (en) * 2008-03-07 2011-04-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photoacoustic sample detector with background compensation

Also Published As

Publication number Publication date
JP2013181866A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
US9759689B2 (en) Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion
US9618445B2 (en) Optical microscopy systems based on photoacoustic imaging
Favro et al. Infrared imaging of defects heated by a sonic pulse
US4267732A (en) Acoustic microscope and method
US6977379B2 (en) T-ray Microscope
JP5022363B2 (en) Photoacoustic detector and photoacoustic detection method
JP6997779B2 (en) Acoustic resonance spectroscopy measurement method and system
WO2002006778A1 (en) System and method for epi-detected coherent anti-stokes raman scattering microscopy
WO2015011228A1 (en) Sensor device and method for thermoacoustic measurement of electromagnetic fields
Gleiter et al. Ultrasound lock-in thermography for advanced depth resolved defect selective imaging
Chen et al. Recent developments in photoacoustic imaging and sensing for nondestructive testing and evaluation
JP5716250B2 (en) Resonant photoacoustic imager
EP3746769B1 (en) Device and method for mid-infrared microscopy and analysis
JP5580251B2 (en) Wafer bonding strength inspection apparatus and method
KR101264099B1 (en) Apparatus and method for inspecting void of multi-junction semiconductor
JPH03165257A (en) Optoacoustic video device
Kanstad et al. Photoacoustic and photothermal techniques for powder and surface spectroscopy
JP2001050934A (en) Scanning squid microscope
Busse From photothermal radiometry to lock-in thermography methods
Zakrzewski et al. Combined photoacoustic–acoustic technique for crack imaging
Ichikawa et al. Generating in vivo continuous ultrasound based on sub-terahertz photoacoustic effect
KR20100011133A (en) Apparatus and method for detecting photothermal effect
JPH01214719A (en) Collecting apparatus of optoacoustic signal
Patel et al. A review on photoacoustic spectroscopy
EP1118853A1 (en) Material Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150226

R150 Certificate of patent or registration of utility model

Ref document number: 5716250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees