JP5715591B2 - Composite containing bitumen and radioactive cesium adsorbent using the same - Google Patents
Composite containing bitumen and radioactive cesium adsorbent using the same Download PDFInfo
- Publication number
- JP5715591B2 JP5715591B2 JP2012096827A JP2012096827A JP5715591B2 JP 5715591 B2 JP5715591 B2 JP 5715591B2 JP 2012096827 A JP2012096827 A JP 2012096827A JP 2012096827 A JP2012096827 A JP 2012096827A JP 5715591 B2 JP5715591 B2 JP 5715591B2
- Authority
- JP
- Japan
- Prior art keywords
- bitumen
- composite
- oxide
- radioactive cesium
- cesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、紺青及び酸化物を含む複合体及びそれを用いた放射性セシウム吸着材に関するものである。 The present invention relates to a composite containing bitumen and an oxide, and a radioactive cesium adsorbent using the same.
紺青の実用としては、放射性物質吸着材、エレクトロクロミック素子、センサ、二次電池電極材、顔料等、様々なものが挙げられる。特に、セシウム吸着材としては、原子力発電の結果排出される放射性廃液からの放射性セシウム分離(特許文献1参照)、土壌散布による放射性セシウムの土壌から植物への移行係数低減(非特許文献1参照)、人や家畜への投与(Use of Prussian blue for decorporation of radiocesium by HPA, 非特許文献2参照)等に利用されている。いずれも、放射性セシウムを環境、体内、廃液等から吸着、分離し、その影響を低減することを目的として利用されている。その利用法としては、液体への散布、粒状とし、カラム等の吸着材として利用、土壌等への散布等が挙げられる。 Practical use of bitumen includes various materials such as radioactive material adsorbents, electrochromic elements, sensors, secondary battery electrode materials, and pigments. In particular, as cesium adsorbents, radioactive cesium is separated from radioactive liquid waste discharged as a result of nuclear power generation (see Patent Document 1), and the transfer coefficient of radioactive cesium from soil to plants by soil application is reduced (see Non-Patent Document 1). It is used for administration to humans and livestock (see Use of Prussian blue for decorporation of radiocesium by HPA, Non-Patent Document 2). All of them are used for the purpose of adsorbing and separating radioactive cesium from the environment, the body, waste liquid, and the like, and reducing its influence. Examples of the utilization method include dispersion in liquid, granulation, utilization as an adsorbent such as a column, and dispersion in soil.
前述の利用法を実施する場合、いくつかの課題がある。一つは成形の問題である。紺青は、微粉末としてのみ得られると考えられており、成形が困難とされている(非特許文献3参照)。 There are several problems when implementing the above usage. One is a molding problem. Bitumen is considered to be obtained only as a fine powder and is difficult to mold (see Non-Patent Document 3).
また、一般的な成形には、高分子等のバインダを利用した手法が挙げられる。しかし、放射性セシウム吸着を目的とする場合、一般的には有機物は放射線への耐久性が低く、放射性セシウム吸着の耐久性に課題が残る。
また、放射性セシウム吸着材は、特に、後処理の問題から、さらなる機能追加が可能であることが望ましい。放射性セシウム吸着材は、利用後は放射性セシウムを大量に含有するため、強い放射線を発する。そのため、取扱いが困難である。この課題を解決する一つの手法として、取り扱いを簡単化する他の機能追加が考えられる。また、放射性廃棄物を回収するにあたり、家屋等の一般的な空間で実現する場合には、意匠性等も重要となるため、それらも新たな機能追加の一つとして考えられる。
Further, general molding includes a technique using a binder such as a polymer. However, for the purpose of radioactive cesium adsorption, generally, organic substances have low durability against radiation, and there remains a problem in durability of radioactive cesium adsorption.
In addition, it is desirable that the radioactive cesium adsorbent can be further added with a function due to the problem of post-processing. Since the radioactive cesium adsorbent contains a large amount of radioactive cesium after use, it emits strong radiation. Therefore, handling is difficult. One way to solve this problem is to add other functions that simplify handling. In addition, when recovering radioactive waste, when it is realized in a general space such as a house, design properties and the like are important, and these are considered as one of new functions added.
本発明は、成形容易でかつ成形体が堅牢であり、さらなる機能の追加も実現できる紺青の複合体及びそれを用いた放射性セシウム吸着材を提供することを目的とする。 It is an object of the present invention to provide a bituminous composite that is easy to mold, has a robust molded body, and that can realize additional functions, and a radioactive cesium adsorbent using the composite.
上記の課題は以下の手段により達成された。
1.紺青と金属原子を含む酸化物を混合、複合化処理して得られる紺青含有複合体。
2.混合、複合化処理において、100℃以上200℃以下での加熱処理がなされる上記1に記載の紺青含有複合体。
3.混合、複合化処理において、バインダとして高分子材料を添加する上記1に記載の紺青含有複合体。
4.混合、複合化処理が他の構造物の表面又は内部において完結される上記1〜3のいずれかに記載の紺青含有複合体。
5.酸化物の主成分が酸化チタンである上記1〜4のいずれかに記載の紺青含有複合体。
6.酸化物として活性白土を含有する上記1〜4のいずれかに記載の紺青含有複合体。
7.上記1〜6のいずれかに記載の紺青含有複合体を用いた放射性セシウム吸着材。
The above problems have been achieved by the following means.
1. A bitumen-containing composite obtained by mixing and combining bitumen and an oxide containing metal atoms.
2. The bitumen-containing composite according to 1 above, wherein heat treatment is performed at 100 ° C. or more and 200 ° C. or less in the mixing and composite treatment.
3. The bitumen-containing composite according to 1 above, wherein a polymer material is added as a binder in the mixing and composite treatment.
4). 4. The bitumen-containing composite according to any one of 1 to 3, wherein the mixing and composite treatment are completed on the surface or inside of another structure.
5. The bitumen-containing composite according to any one of 1 to 4 above, wherein the main component of the oxide is titanium oxide.
6). The bitumen-containing composite according to any one of the above 1 to 4, which contains activated clay as an oxide.
7). The radioactive cesium adsorbent using the bitumen containing complex in any one of said 1-6.
本発明によれば、簡便かつ量産可能な手法で製造が可能であり、かつ堅牢な紺青の複合体及びそれを用いた放射性セシウム吸着材が得られる。
複合化させる材料として、各種機能を持つ酸化物を利用することで、紺青の持つ機能と、酸化物の機能を併せ持った複合体が得られる。
所望の物性が付与された複合体は、特にセシウム吸着体としてその機能を最大限に発揮し、この種の材料のバリエーションを豊富化すると共に、アプリケーションの態様や機能の拡大に資するものである。
ADVANTAGE OF THE INVENTION According to this invention, it can manufacture by the technique which is simple and can be mass-produced, and can obtain the robust bituminous composite and the radioactive cesium adsorption material using the same.
By using an oxide having various functions as a material to be combined, a composite having both the function of bitumen and the function of an oxide can be obtained.
The composite imparted with the desired physical properties exhibits its function to the maximum extent, particularly as a cesium adsorbent, enriches the variation of this kind of material, and contributes to the expansion of application modes and functions.
本発明においては、酸化物は二種類の役割を果たすために紺青と複合化される。一つは、酸化物そのものがバインダとして機能し、有機物を含有するバインダを使用することなく紺青の成形が可能になる点である。前述の通り、有機物は放射性に対する耐久性が低く、放射性セシウム吸着後の耐久性に課題が生じる場合がある。また、複合体中の紺青が占める量の向上させることも可能となる。 In the present invention, the oxide is compounded with bitumen to fulfill two kinds of roles. One is that the oxide itself functions as a binder, and bitumen can be formed without using a binder containing an organic substance. As described above, organic substances have low durability against radioactivity, and there may be a problem in durability after adsorption of radioactive cesium. It is also possible to improve the amount of bitumen in the composite.
もう一つの酸化物の役割は、酸化物の持つ機能を複合体に新に付与することである。例えば、酸化物として磁性体を利用した場合、磁石に吸着する複合体を作製することが可能である。紺青の機能として、放射性セシウムの吸着を目的とする場合、吸着後の紺青は強い放射線を発することが想定され、人が直接取り扱うこと等が困難となる。しかしながら、複合体化により、磁性を持たせることにより、磁気を利用した遠隔操作等が可能となるため、被曝の危険性を低減させることができる。また、土壌に分散した放射性セシウムを吸着させ、植物への移行低減を目的とする際には、その吸着後の回収が課題となっているが、磁性を持たせることにより、磁石等による回収が可能となる。 Another role of the oxide is to newly impart the function of the oxide to the composite. For example, when a magnetic material is used as the oxide, it is possible to produce a composite that is attracted to a magnet. As a function of bitumen, when the purpose is adsorption of radioactive cesium, it is assumed that the bitumen after adsorption emits strong radiation, which makes it difficult for humans to handle it directly. However, by providing the magnetism by complexing, remote operation using magnetism and the like can be performed, so that the risk of exposure can be reduced. In addition, when radioactive cesium dispersed in soil is adsorbed and aimed at reducing migration to plants, recovery after adsorption is an issue, but by providing magnetism, recovery with a magnet or the like is possible. It becomes possible.
さらには、大気中に浮遊している放射性セシウムが雨等により地面や家屋等に付着することを防ぐには、放射性セシウム吸着材を保護シート等に具備させ、地面や家屋等保護すべきものを覆うことが考えられるが、その際には有機物等が同時に付着し、吸着材の機能が低下する恐れがある。この場合には、例えば酸化チタンや酸化タングステン等が有する光触媒機能や、超親水機能を付与することにより、有機物堆積による機能低下を防ぐことが可能となる。さらには、家屋等で利用する際には、吸着機能だけでなく、意匠性等も重要な機能となる。この場合には、顔料等の無機材料を添加することにより、吸着材の色を制御することが可能であり、意匠性制御にも効果がある。
このように、紺青と、酸化物を複合化することにより、耐久性や成形性等の直接的な放射性セシウム吸着性能の向上に資するだけでなく、磁性機能、光触媒機能、光学的機能等を付与することが可能となる。
Furthermore, in order to prevent radioactive cesium floating in the atmosphere from adhering to the ground or houses due to rain, etc., a radioactive cesium adsorbent is provided on the protective sheet, etc., and covers what should be protected such as the ground and houses. However, in such a case, organic substances or the like may be attached at the same time, and the function of the adsorbent may be deteriorated. In this case, for example, by providing a photocatalytic function or a superhydrophilic function possessed by titanium oxide, tungsten oxide, or the like, it is possible to prevent functional degradation due to organic matter deposition. Furthermore, when it is used in a house or the like, not only the adsorption function but also the design properties are important functions. In this case, it is possible to control the color of the adsorbent by adding an inorganic material such as a pigment, which is effective in controlling the design.
In this way, combining bitumen and oxides not only contributes to the improvement of direct radioactive cesium adsorption performance such as durability and moldability, but also provides magnetic function, photocatalytic function, optical function, etc. It becomes possible to do.
以下、本発明についてその好ましい実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
本発明において使用される紺青とは、フェロシアン化第二鉄を主成分とする青色顔料であり、その化学式は、M1/nFe[Fe(CN)6]で示される。ただし、化学式中のMは、K、NH4、Na、Feのいずれかであり、nはMの価数を表わす。
紺青は、工業的に量産され、極めて微粒子状の顔料であり、その用途としてインキ、絵の具、化粧品などに広く使用されている安全性の高い化合物である。その結晶構造として立方晶形を有し、格子内に一価の陽イオン、特にセシウムを選択的に取り込みやすい化合物である。
本発明のセシウム除去材に使用される紺青は、その形態が微粒子状であっても、水分等を含んだウェット状であってもよい。
Bitumen used in the present invention is a blue pigment mainly composed of ferric ferrocyanide, and the chemical formula thereof is represented by M 1 / n Fe [Fe (CN) 6 ]. However, M in the chemical formula is any one of K, NH 4 , Na, and Fe, and n represents the valence of M.
Bitumen is mass-produced industrially and is a very fine pigment, and is a highly safe compound widely used in inks, paints, cosmetics and the like. The compound has a cubic crystal structure, and is a compound that can easily take in monovalent cations, particularly cesium, into the lattice.
The bitumen used for the cesium-removing material of the present invention may be in the form of fine particles or wet including water.
本発明における酸化物は、その主たる組成が金属及び酸素を含む物であればよく、例えば、アルミナ、チタニア、ジルコニア等の酸化物、バリウムフェライト、ストロンチウムフェライト、マグネタイト等の磁性体、活性白土、酸性白土等の粘土由来物質等が利用できる。それらの選択は、付与すべき機能により選択が可能である。例えば、堅牢性を重視する場合には、チタニア及び活性白土等が望ましい。磁性機能を付与する場合には、マグネタイト、バリウムフェライトやストロンチウムフェライトが特に望ましく、光触媒機能や超親水性機能、光学的機能を付与する場合には、それぞれに応じたチタニアを利用することが望ましい。
なお、チタニアを酸化物の主成分とする場合、酸化物中でのチタニアの比率は50重量%以上とすることが望ましい。
The oxides in the present invention may be those containing a metal and oxygen as the main composition. For example, oxides such as alumina, titania and zirconia, magnetic materials such as barium ferrite, strontium ferrite and magnetite, activated clay, acidic clay Clay-derived substances such as white clay can be used. These can be selected depending on the function to be given. For example, titania and activated clay are desirable when fastness is important. Magnetite, barium ferrite, and strontium ferrite are particularly desirable for imparting a magnetic function, and titania corresponding to each is desirably utilized for imparting a photocatalytic function, a superhydrophilic function, and an optical function.
When titania is used as the main component of the oxide, the titania ratio in the oxide is preferably 50% by weight or more.
紺青、酸化物の比率については、紺青の比が重量比で20〜95%であることが望ましく、特に30〜90%であることが望ましい。 As for the ratio of bitumen and oxide, the ratio of bitumen is preferably 20 to 95% by weight, and more preferably 30 to 90%.
また、酸化物の表面は、必要に応じて付加的な処理を施すことができる。例えば、酸化チタンを利用する場合、光触媒効果が不要な場合には、逆に光触媒効果により複合体の劣化が加速する恐れがある。この場合には、酸化チタンの表面をジルコニア、シリカ、アルミナ等で覆うことが有効である。また、溶媒への分散性を向上させる処理を施すことも、紺青とのより均一な混合を実現するためには有効である。 Further, the surface of the oxide can be subjected to additional treatment as necessary. For example, when titanium oxide is used, when the photocatalytic effect is not necessary, the deterioration of the composite may be accelerated by the photocatalytic effect. In this case, it is effective to cover the surface of titanium oxide with zirconia, silica, alumina or the like. It is also effective to perform a treatment for improving the dispersibility in a solvent in order to achieve more uniform mixing with bitumen.
また、本発明の複合体は必ずしも紺青及び酸化物のみで構成される必要はない。放射線耐久性等が問題にならない用途に利用する場合には、高分子等のバインダを合わせて利用することもあり得る。さらには、得られた複合体をシートや不織布等に吸着もしくは塗布すること等により、シート状の複合体としてもよい。酸化物の形状は、後述の通り、その製造法に合わせて選択することが重要である。 Further, the composite of the present invention does not necessarily need to be composed only of bitumen and oxide. When used in applications where radiation durability or the like does not become a problem, a binder such as a polymer may be used together. Furthermore, it is good also as a sheet-like composite by adsorb | sucking or apply | coating the obtained composite to a sheet | seat, a nonwoven fabric, etc. As described later, it is important to select the shape of the oxide in accordance with the manufacturing method.
本発明による紺青及び酸化物の複合体を製造するには、下記のいくつかの手法が可能である。
方法1.紺青と、酸化物の微粒子を水等の溶媒に懸濁もしくは分散させ、スラリー状とした上で成形し、加熱処理を行う。
方法2.紺青と、酸化物の微粒子を水等の溶媒に懸濁もしくは分散させ、スラリー状とした上で、シート等他の構造物に塗布もしくは吸着させた上で加熱処理を行い、構造物の表面又は内部において複合化を完結させる。
方法3.紺青と、酸化物の微粒子、高分子等のバインダを水等の溶媒に懸濁もしくは分散させ、乾燥処理等を行う。
In order to produce the bitumen and oxide composite according to the present invention, several approaches are possible:
Method 1. Bitumen and oxide fine particles are suspended or dispersed in a solvent such as water to form a slurry, and then heat-treated.
Method 2. The bitumen and oxide fine particles are suspended or dispersed in a solvent such as water to form a slurry, which is then applied or adsorbed to other structures such as sheets, and then subjected to heat treatment to obtain the surface of the structure or Complete compounding inside.
Method 3. A bitumen and a binder such as fine oxide particles and a polymer are suspended or dispersed in a solvent such as water, followed by drying treatment.
以下、各々の手法について詳細に説明する。
方法1の場合、紺青と酸化物が十分に混ざることが望ましく、各々が微粒子もしくはコロイド等の微細構造を持つことが望ましい。紺青としては、事前に合成したものを利用してもよく、懸濁もしくは分散させる溶媒中で共沈法等により析出させてもよい。事前に合成する場合には、顔料として市販されているものを利用することができる。また、共沈法や電解析出法等で合成したものを利用してもよい。粒径は、100μm以下が望ましく、30μm以下であることが特に望ましい。
Hereinafter, each method will be described in detail.
In the case of method 1, it is desirable that the bitumen and the oxide are sufficiently mixed, and it is desirable that each has a fine structure such as a fine particle or a colloid. As the bitumen, one synthesized in advance may be used, or it may be precipitated by a coprecipitation method or the like in a solvent to be suspended or dispersed. When synthesizing in advance, commercially available pigments can be used. Moreover, you may utilize what was synthesize | combined by the coprecipitation method, the electrolytic deposition method, etc. The particle size is desirably 100 μm or less, and particularly desirably 30 μm or less.
利用する酸化物に特に制限はないが、紺青により酸化されること等が避けられる化学的安定性を持つことが必要となる。具体的には、上述の通り、目的とする用途によって使い分けることが望ましい。例えば、堅牢性を重視する場合には、アルミナ、チタニア、ジルコニア、活性白土等が望ましく、特に活性白土、チタニアが望ましい。磁気特性を付与することが目的の場合には、バリウムフェライト、ストロンチウムフェライト、マグネタイト、ヘマタイト、もしくはそれらの派生物を利用することができる。光触媒特性を付与する場合には、酸化チタン、酸化タングステン等を利用できる。色等の光学特性を制御する場合には、酸化チタン、マグネタイト等の顔料用途で利用されている酸化物を利用することができる。 There is no particular limitation on the oxide to be used, but it is necessary to have chemical stability that can be prevented from being oxidized by bitumen. Specifically, as described above, it is desirable to use properly depending on the intended application. For example, when importance is attached to fastness, alumina, titania, zirconia, activated clay and the like are desirable, and activated clay and titania are particularly desirable. For the purpose of imparting magnetic properties, barium ferrite, strontium ferrite, magnetite, hematite, or derivatives thereof can be used. In the case of imparting photocatalytic properties, titanium oxide, tungsten oxide or the like can be used. When controlling optical properties such as color, oxides used for pigments such as titanium oxide and magnetite can be used.
これらを各種溶媒に懸濁もしくは分散させ、スラリー化を行う。利用する溶媒については、懸濁もしくは分散が可能であれば特に制限はないが、水、エタノール、メタノール、ブタノール、トルエン、酢酸エチル、オクタンもしくはそれらの混合物が利用できる。それらを混合する比については、特に制限はないが、溶媒の量を増やすと得られる複合体が多孔質的になり、例えばセシウム吸着性能は向上するが、堅牢性に関しては弱くなる。酸化物の量を増やすと堅牢性は増すが、紺青の量がへるため、吸着可能なセシウムの量は減る。これらのことから、用途に合わせた混合比の調整が必要である。また、磁性機能を付与する場合には、酸化物の量をあまり減らすことはできないこと等に注意を要する。具体的には、紺青、酸化物の混合比については、紺青の比が重量比で20〜95%であることが望ましく、特に30〜90%であることが望ましい。 These are suspended or dispersed in various solvents and slurried. The solvent to be used is not particularly limited as long as it can be suspended or dispersed, but water, ethanol, methanol, butanol, toluene, ethyl acetate, octane or a mixture thereof can be used. The ratio of mixing them is not particularly limited, but when the amount of the solvent is increased, the resulting composite becomes porous. For example, the cesium adsorption performance is improved, but the fastness is weakened. Increasing the amount of oxide increases the robustness, but reduces the amount of bitumen and reduces the amount of cesium that can be adsorbed. Therefore, it is necessary to adjust the mixing ratio according to the application. In addition, when providing a magnetic function, attention must be paid to the fact that the amount of oxide cannot be reduced so much. Specifically, the bitumen / oxide mixing ratio is preferably 20 to 95% by weight, and more preferably 30 to 90%.
これらを利用しスラリーとするが、それを加熱処理する前に、脱水等の、溶媒を除去する処理を行ってもよい。例えば遠心分離法、吸引濾過法等が利用できる。この場合、スラリー内の溶媒の量が著しく低減し、流動性を失う場合もあるが、成形が可能であれば問題はない。また、このような脱溶媒処理を行う場合には、スラリー化の際の溶媒量をより多くすることも可能である。溶媒の、紺青及び酸化物の和に対する混合比については、このような脱溶媒処理を実施しない場合には、30%から200%が好ましく、50〜150%が特に好ましい。 These are used to form a slurry, but before the heat treatment, a treatment for removing the solvent such as dehydration may be performed. For example, a centrifugal separation method, a suction filtration method, or the like can be used. In this case, the amount of the solvent in the slurry is remarkably reduced and the fluidity may be lost, but there is no problem as long as molding is possible. Moreover, when performing such a solvent removal process, it is also possible to increase the amount of the solvent at the time of slurrying. The mixing ratio of the solvent to the sum of bitumen and oxide is preferably 30% to 200%, particularly preferably 50 to 150%, when such a desolvation treatment is not performed.
得られたスラリーを必要に応じて成形した後、加熱処理を行う。加熱温度は100℃から200℃の間が望ましく、特に110℃から180℃の間が望ましい。紺青は、概ね200℃から250℃付近で分解が加速するため、その温度を上回らないことが望ましい。加熱時間は十分に乾燥していれば特に問題はないが、一般的には長時間加熱処理を行った方が堅牢性が増す。具体的には5分以上が望ましく、特に15分以上が望ましい。必要な成形は、加熱後に行うことも可能である。例えば、微粉末を必要とする場合には、加熱乾燥後に破砕することで所望のものが得られる。 The obtained slurry is shaped as necessary, and then heat-treated. The heating temperature is preferably between 100 ° C. and 200 ° C., particularly preferably between 110 ° C. and 180 ° C. Since bitumen accelerates decomposition at about 200 ° C. to about 250 ° C., it is desirable that the temperature does not exceed the temperature. The heating time is not particularly problematic as long as it is sufficiently dried, but in general, the longer the heat treatment, the higher the fastness. Specifically, it is preferably 5 minutes or longer, particularly 15 minutes or longer. Necessary shaping can also be performed after heating. For example, when a fine powder is required, a desired product can be obtained by crushing after heating and drying.
方法2の場合、スラリー化する時点までは、方法1と同様の手法で進めることが可能である。ただし、塗布することが必要であるため、溶媒の量を増やし、流度を増すことが望ましい。具体的には、溶媒の、紺青及び酸化物の和に対する混合比については、50%から2000%が好ましく、100〜1000%が特に好ましい。
紺青−酸化物複合体を坦持させる構造物としては、スラリーの塗布等による吸着が可能であり、紺青により酸化されない等の化学的安定性があれば特に問わない。ただし、耐久性が必要な場合には、多孔質状のもの等、塗布後乾燥により、紺青−酸化物複合体が強固に密着することが望ましい。具体的には、セラミック、グラスファイバー及びそれを原材料とするシート等、表面のラフネスを向上させたステンレス等が利用できる。
In the case of the method 2, it is possible to proceed by the same method as the method 1 until the time of slurrying. However, since it is necessary to apply, it is desirable to increase the amount of solvent and increase the flow rate. Specifically, the mixing ratio of the solvent to the sum of bitumen and oxide is preferably 50% to 2000%, particularly preferably 100 to 1000%.
The structure for supporting the bitumen-oxide complex is not particularly limited as long as it can be adsorbed by applying slurry and has chemical stability such as not oxidized by bitumen. However, when durability is required, it is desirable that the bitumen-oxide composite is firmly adhered by drying after coating, such as a porous one. Specifically, stainless steel with improved surface roughness, such as ceramic, glass fiber, and a sheet made from the same, can be used.
方法3は、高分子等のバインダが放射線耐久性に関する問題とならない場合には、複合体の耐久性をより向上させるために有効な手法である。分子バインダとしては、ポリエチレン、ポリスチレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、パーフルオロエチレン-プロペンコポリマー、エチレン-クロロトリフルオロエチレンコポリマー、パーフルオロアルコキシアルカン(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂、アクリル樹脂、アクリルシリコン樹脂、シリコン樹脂、ウレタン樹脂、ヒドロキシエチルセルロース、CMC(カルボキシメチルセルロース)、PVA(ポリビニルアルコール)等が利用できる。 Method 3 is an effective method for further improving the durability of the composite when a binder such as a polymer does not cause a problem regarding radiation durability. Molecular binders include polyethylene, polystyrene, polytetrafluoroethylene, polyvinylidene fluoride, perfluoroethylene-propene copolymer, ethylene-chlorotrifluoroethylene copolymer, perfluoroalkoxyalkane (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, Phenol resin, epoxy resin, melamine resin, acrylic resin, acrylic silicon resin, silicon resin, urethane resin, hydroxyethyl cellulose, CMC (carboxymethyl cellulose), PVA (polyvinyl alcohol), and the like can be used.
基本的には方法1、方法2で作製するスラリーに高分子を添加し、加熱等の乾燥工程を行うことで実現する。高分子は、スラリー作製時はモノマーを添加し、加熱や光照射により高分子化する工程をとってもよい。 Basically, it is realized by adding a polymer to the slurry prepared by Method 1 and Method 2 and performing a drying step such as heating. The polymer may be added with a monomer at the time of slurry preparation and may be polymerized by heating or light irradiation.
以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれにより限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention should not be construed as being limited thereto.
(実施例1)
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)100g、蒸留水200g、アルミナ(和光純薬製型番MPアルミナA、粒径50μm〜200μm)100gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行い、複合体1(1〜2mm、長さ3〜5mmの円柱状ペレット)を作製した。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)200g、蒸留水210g、酸化チタン(堺化学製型番GTR-100、粒径260nm)100gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行い、複合体1と同様の形状を有する複合体2を作製した。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)200g、蒸留水180g、酸化チタン(堺化学製型番GTR-100、粒径260nm)100g、シリカゾル(日産化学工業製型番スノーテックス30)5gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行い、複合体1と同様の形状を有する複合体3を作製した。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)200g、蒸留水210g、酸化チタン(石原産業製型番CR−97、粒径250nm)100gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行い、複合体1と同様の形状を有する複合体4を作製した。
0.1M硫酸鉄と、0.1Mフェロシアン化ナトリウムを混合し共沈にて鉄−鉄シアノ錯体(ベルリンホワイト)を析出後、遠心分離法により洗浄後、乾燥した試料を100g、蒸留水120g、酸化チタン(堺化学製型番GTR−100、粒径260nm)50gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行い、複合体1と同様の形状を有する複合体5を作製した。
また、比較のため、紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)200g、蒸留水220gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で20分の加熱処理を行って作製した、複合体0を準備した。この複合体0も複合体1と同様の形状を有していた。
Example 1
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 100 g, distilled water 200 g, alumina (manufactured by Wako Pure Chemicals, model number MP alumina A, particle size 50 μm) ~ 200μm) After mixing and slurrying 100g, forming by filling and extruding into a syringe, heat treatment at 150 ° C for 20 minutes, composite 1 (1-2mm, length 3-5mm) Columnar pellets).
Bituminous pigment (trade name: Milori Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 200 g, distilled water 210 g, titanium oxide (manufactured by Sakai Chemicals, model number GTR-100, particle size 260 nm ) After mixing and slurrying 100 g, forming by filling and extruding into a syringe, heat treatment was performed at 150 ° C. for 20 minutes, and composite 2 having the same shape as composite 1 was produced. .
Bituminous pigment (trade name: Milori Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 200 g, distilled water 180 g, titanium oxide (manufactured by Sakai Chemicals, model number GTR-100, particle size 260 nm) ) 100g and silica sol (Nissan Chemical Industry Model No. Snowtex 30) 5g were mixed and made into a slurry, and then molded by filling and extruding into a syringe, followed by heat treatment at 150 ° C for 20 minutes to obtain a composite. A composite 3 having the same shape as 1 was prepared.
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 200 g, distilled water 210 g, titanium oxide (Ishihara Sangyo Model No. CR-97, particle size 250 nm ) After mixing and slurrying 100 g, forming by filling and extruding into a syringe, heat treatment was performed at 150 ° C. for 20 minutes, and composite 4 having the same shape as composite 1 was produced. .
0.1M iron sulfate and 0.1M sodium ferrocyanide are mixed and iron-iron cyano complex (Berlin White) is precipitated by coprecipitation, then washed by centrifugation and dried, and 100g of dried sample and 120g of distilled water After mixing 50 g of titanium oxide (manufactured by Sakai Chemicals, model number GTR-100, particle size 260 nm) and making it into a slurry, it was molded by filling and extruding into a syringe, followed by heat treatment at 150 ° C. for 20 minutes, A composite 5 having the same shape as the composite 1 was produced.
For comparison, after mixing 200 g of bituminous pigment (trade name: Miloli Blue 905, chemical formula NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) and 220 g of distilled water, After molding by filling and extruding into a syringe, a composite 0 produced by heat treatment at 150 ° C. for 20 minutes was prepared. This complex 0 also had the same shape as the complex 1.
上記で得られた複合体0〜5の硬度の比較について、爪の先でペレットを割ることと及び指の先で押し砕くことにより感覚的に判定した。また、スクリュー管瓶に人工塩水と共に入れて振ることにより水中での壊れやすさを判定した。その結果、複合体0に比べ、全ての試料で硬度は向上した。中でも、複合体5は最も高い硬度を示した。 About the comparison of the hardness of the composites 0-5 obtained above, it judged sensuously by breaking a pellet with the tip of a nail and crushing with the tip of a finger. Moreover, the ease of breakage in water was determined by putting in a screw tube bottle together with artificial salt water and shaking. As a result, the hardness was improved in all samples as compared with the composite 0. Among them, the composite 5 showed the highest hardness.
また、チタニアを利用した複合体2〜5は、紺青色を示す複合体1と比べ、薄い水色を呈した。これは、チタニアが白色顔料として販売されているものを利用しているため、その光学特性が、紺青色と白色の混色である水色になったと考えられる。 Moreover, the composites 2-5 using a titania exhibited a light blue color as compared with the composite 1 showing a dark blue color. This is because titania uses what is sold as a white pigment, and its optical characteristics are considered to be light blue, which is a mixture of dark blue and white.
(実施例2)
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)30g、蒸留水110g、活性白土(水沢化学製型番ガレオンアースV2)70gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で1時間加熱処理を行い、複合体1と同様の形状を有する複合体6を作製した。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)40g、蒸留水100g、活性白土(水沢化学製型番ガレオンアースV2)60gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で1時間加熱処理を行い、複合体1と同様の形状を有する複合体7を作成した。これらの硬度の測定は、実施例1で行った方法と同じように実施した。その結果は、複合体0及び複合体1より硬度が向上していた。
(Example 2)
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 30 g, distilled water 110 g, activated clay (model number Galeon Earth V2 manufactured by Mizusawa Chemical) 70 g Then, after forming a slurry, it was molded by filling and extruding into a syringe, followed by heat treatment at 150 ° C. for 1 hour, to produce a composite 6 having the same shape as composite 1.
Bituminous pigment (trade name: Miroli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 40 g, distilled water 100 g, activated clay (model number Galeon Earth V2 manufactured by Mizusawa Chemical) 60 g Then, after forming a slurry, it was molded by filling and extruding into a syringe, followed by heat treatment at 150 ° C. for 1 hour, and composite 7 having the same shape as composite 1 was produced. These hardness measurements were performed in the same manner as the method performed in Example 1. As a result, the hardness was improved as compared with composite 0 and composite 1.
(実施例3)
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)60g、蒸留水50g、酸化チタン(石原産業株式会社製、型番ST−21、粒子径20nm)40gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で1時間加熱処理を行い、複合体1と同様の形状を有する複合体8を作製した。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)60g、蒸留水80g、酸化チタン(石原産業株式会社製、型番ST−01、粒子径7nm)40gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で1時間加熱処理を行い、複合体1と同様の形状を有する複合体9を作製した。これらの硬度の測定は、実施例1で行った方法と同じように実施した。その結果は、複合体0及び複合体1より硬度が向上していた。
紺青顔料(商品名:ミロリブルー905、化学式はNH4Fe[Fe(CN)6]、大日精化工業株式会社製)70g、蒸留水40g、マグネタイト(戸田工業株式会社製、商品名:KN-320、)40gを混合し、スラリー化したのち、シリンジに充填、押し出すことにより成形を行った後に、150℃で1時間加熱処理を行い、複合体1と同様の形状を有する複合体10を作製した。これらの硬度の測定は、実施例1で行った方法と同じように実施した。その結果は、複合体0及び複合体1より硬度が向上していた。またこの複合体10は、磁石に付き、磁性を持つことが確認された。
(Example 3)
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 60 g, distilled water 50 g, titanium oxide (Ishihara Sangyo Co., Ltd., model number ST-21) After mixing and slurrying 40 g (particle diameter 20 nm), the syringe 8 was molded by filling and extruding, and then heat-treated at 150 ° C. for 1 hour to obtain the composite 8 having the same shape as the composite 1. Produced.
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) 60 g, distilled water 80 g, titanium oxide (Ishihara Sangyo Co., Ltd., model number ST-01, After mixing and slurrying 40 g (particle diameter 7 nm), filling into a syringe and extruding was performed, followed by heat treatment at 150 ° C. for 1 hour, and composite 9 having the same shape as composite 1 was obtained. Produced. These hardness measurements were performed in the same manner as the method performed in Example 1. As a result, the hardness was improved as compared with composite 0 and composite 1.
Bituminous pigment (trade name: Miloli Blue 905, chemical formula is NH 4 Fe [Fe (CN) 6 ], manufactured by Dainichi Seika Kogyo Co., Ltd.) )) After 40 g was mixed and slurried, it was molded by filling and extruding into a syringe, followed by heat treatment at 150 ° C. for 1 hour to produce a composite 10 having the same shape as composite 1 . These hardness measurements were performed in the same manner as the method performed in Example 1. As a result, the hardness was improved as compared with composite 0 and composite 1. Further, it was confirmed that the composite 10 was attached to a magnet and had magnetism.
(実施例4)
上記で得られた複合体について、水溶液中のセシウム吸着特性を測定した。セシウム吸着特性は以下の方法によった。
500μg/リットルの濃度を有する硝酸セシウム水溶液に各複合体を10g投入し、攪拌しながら一定時間後(4時間、24時間)にてサンプリングを行い、偏光ゼーマン原子吸光光度計Z−2010((株)日立ハイテクノロジーズ製)にて原子吸光分析を行うことでセシウム濃度の測定を行い、各複合体のセシウム吸着能をセシウム除去率で算出した。その測定結果を表1に示す。
Example 4
About the composite_body | complex obtained above, the cesium adsorption | suction characteristic in aqueous solution was measured. The cesium adsorption characteristics were determined by the following method.
10 g of each complex was added to an aqueous cesium nitrate solution having a concentration of 500 μg / liter, and sampling was performed after a certain period of time (4 hours, 24 hours) with stirring, and a polarized Zeeman atomic absorption photometer Z-2010 ((stock) ) The cesium concentration was measured by performing atomic absorption analysis at Hitachi High-Technologies), and the cesium adsorption capacity of each complex was calculated as the cesium removal rate. The measurement results are shown in Table 1.
上記の表1の結果から、本発明の紺青を含む複合体は、セシウム除去率に優れていることがわかる。 From the results of Table 1 above, it can be seen that the composite containing bitumen of the present invention is excellent in cesium removal rate.
本発明により、紺青の成形が簡便となり、必要に応じて高分子バインダを使用しなくとも成形が可能になった。特に、放射性セシウム吸着を用途とした場合に、カラム用ビーズ、吸着用シート等、多彩な形成が可能となる。これにより、原子力発電により排出される放射性廃棄物処理における放射性セシウムの分離回収のみならず、環境中に放出された放射性セシウムの、各種水(用水、雨水、飲料水等)、土壌、家屋等建築物等幅広い対象からの放射性セシウムの分離回収が容易となる。 According to the present invention, the bitumen can be easily formed and can be formed without using a polymer binder as required. In particular, when radioactive cesium adsorption is used, various forms such as column beads and adsorption sheets can be formed. As a result, not only the separation and recovery of radioactive cesium in the treatment of radioactive waste discharged by nuclear power generation, but also various water (water, rainwater, drinking water, etc.), soil, houses, etc. of radioactive cesium released into the environment This makes it easy to separate and recover radioactive cesium from a wide range of objects.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012096827A JP5715591B2 (en) | 2011-05-06 | 2012-04-20 | Composite containing bitumen and radioactive cesium adsorbent using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011103748 | 2011-05-06 | ||
JP2011103748 | 2011-05-06 | ||
JP2012096827A JP5715591B2 (en) | 2011-05-06 | 2012-04-20 | Composite containing bitumen and radioactive cesium adsorbent using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012251994A JP2012251994A (en) | 2012-12-20 |
JP5715591B2 true JP5715591B2 (en) | 2015-05-07 |
Family
ID=47524917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012096827A Expired - Fee Related JP5715591B2 (en) | 2011-05-06 | 2012-04-20 | Composite containing bitumen and radioactive cesium adsorbent using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5715591B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012250904A (en) * | 2011-05-06 | 2012-12-20 | National Institute Of Advanced Industrial Science & Technology | Composite containing metal complex, and radiocesium adsorbent using the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293863B2 (en) * | 2011-06-22 | 2013-09-18 | 東亞合成株式会社 | Cesium adsorbent and method for producing the same |
JP5250140B1 (en) * | 2011-07-12 | 2013-07-31 | 三菱製紙株式会社 | Magnetic adsorbent particles |
JP5762889B2 (en) * | 2011-09-05 | 2015-08-12 | 日本バイリーン株式会社 | Non-woven |
JP6236644B2 (en) * | 2013-07-18 | 2017-11-29 | 株式会社コクブン | Treatment method of radioactive cesium |
JP6152764B2 (en) * | 2013-09-24 | 2017-06-28 | 東亞合成株式会社 | Cesium adsorbent manufacturing method and cesium adsorbent |
CN115627100B (en) * | 2022-10-26 | 2023-07-21 | 广东腐蚀科学与技术创新研究院 | Water-based strippable nano composite polyvinyl alcohol coating and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111041A (en) * | 1980-02-08 | 1981-09-02 | Hitachi Ltd | Production of zeolite attached with ferrocyanide metal compound |
JPH0724764B2 (en) * | 1986-11-20 | 1995-03-22 | 旭化成工業株式会社 | Composite adsorbent and method for producing the same |
FR2828819B1 (en) * | 2001-08-22 | 2003-10-24 | Commissariat Energie Atomique | PROCESS FOR PREPARING A SOLID COMPOSITE MATERIAL BASED ON HEXACYANOFERRATES, AND PROCESS FOR FIXING MINERAL POLLUTANTS USING IT |
JP4932054B1 (en) * | 2011-04-28 | 2012-05-16 | 学校法人慈恵大学 | Radioactive substance decontamination system, decontamination method for radioactive substance, and magnetic composite particles for decontamination |
-
2012
- 2012-04-20 JP JP2012096827A patent/JP5715591B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012250904A (en) * | 2011-05-06 | 2012-12-20 | National Institute Of Advanced Industrial Science & Technology | Composite containing metal complex, and radiocesium adsorbent using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2012251994A (en) | 2012-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5715591B2 (en) | Composite containing bitumen and radioactive cesium adsorbent using the same | |
Zinatloo-Ajabshir et al. | Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants | |
Yu et al. | Constructing sphere-like cobalt-molybdenum-nickel ternary hydroxide and calcined ternary oxide nanocomposites for efficient removal of U (VI) from aqueous solutions | |
Yu et al. | Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres | |
JP5858473B2 (en) | Composite containing metal complex and radioactive cesium adsorbent using the same | |
Hao et al. | One-pot synthesis of C/Bi/Bi2O3 composite with enhanced photocatalytic activity | |
Mahapatra et al. | Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites | |
Tan et al. | Sorption of Eu (III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques | |
Wen et al. | Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils | |
Culita et al. | Effect of surfactant concentration on textural, morphological and magnetic properties of CoFe2O4 nanoparticles and evaluation of their adsorptive capacity for Pb (II) ions | |
TW201124198A (en) | Magnetic dye-absorbent catalyst | |
JP2008536675A5 (en) | ||
CN113877517B (en) | Bismuth sulfide aerogel adsorbent for removing radioactive iodine and preparation method and application thereof | |
Hassan et al. | Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+ 154Eu radionuclides from nitric acid solution | |
Zhao et al. | Preparation of core–shell structured CaCO3 microspheres as rapid and recyclable adsorbent for anionic dyes | |
CN105854744A (en) | Magnetic nanoparticle/SiO2 aerogel and preparation method thereof and method for treating high level liquid waste | |
Jyothi et al. | Magnetic nanoparticles impregnated, cross-linked, porous chitosan microspheres for efficient adsorption of methylene blue from pharmaceutical waste water | |
Ma et al. | Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors | |
CN104478462B (en) | Crystallite bamboo charcoal Tao Zhu of coating catalysis material and preparation method thereof | |
Štengl et al. | Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite | |
CN102357323B (en) | Nanometer iron oxide-modified quartz sand filter material and preparation method thereof | |
Chen et al. | Characterizations of TiO2@ Mn-Zn ferrite powders for magnetic photocatalyst prepared from used alkaline batteries and waste steel pickling liquor | |
Bdewi et al. | Catalytic photodegradation of methyl orange using MgO nanoparticles prepared by molten salt method | |
CN102548903B (en) | Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide | |
WO2014038713A1 (en) | Radioactive cesium decontaminating agent and method for producing same, and method for removing radioactive cesium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5715591 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |