JP5712464B2 - Carbon long fiber reinforced composite material - Google Patents

Carbon long fiber reinforced composite material Download PDF

Info

Publication number
JP5712464B2
JP5712464B2 JP2009068155A JP2009068155A JP5712464B2 JP 5712464 B2 JP5712464 B2 JP 5712464B2 JP 2009068155 A JP2009068155 A JP 2009068155A JP 2009068155 A JP2009068155 A JP 2009068155A JP 5712464 B2 JP5712464 B2 JP 5712464B2
Authority
JP
Japan
Prior art keywords
polypropylene
composite material
polyamide resin
strength
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009068155A
Other languages
Japanese (ja)
Other versions
JP2010168526A (en
Inventor
葭原法
名合聡
北村仁志
園田秀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009068155A priority Critical patent/JP5712464B2/en
Publication of JP2010168526A publication Critical patent/JP2010168526A/en
Application granted granted Critical
Publication of JP5712464B2 publication Critical patent/JP5712464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、炭素長繊維とポリプロピレンからなる複合材料に関する。更に詳しくは、接着部位が化学的に分岐結合されたポリプロピレンと炭素長繊維からなり、界面接着性が著しく改善され、剛性・強度が飛躍的に高く、比強度の高い構造材用複合材料に関する。   The present invention relates to a composite material comprising carbon long fibers and polypropylene. More specifically, the present invention relates to a composite material for a structural material, which is composed of polypropylene and carbon long fibers whose chemically bonded sites are bonded to each other, has significantly improved interfacial adhesion, has significantly high rigidity and strength, and high specific strength.

従来、ガラス長繊維強化ポリプロピレン複合材料は知られていた(例えば、文献1参照)。しかし、かかる従来技術は、ガラス繊維とポリプロピレンの接着性が低く、ガラス繊維の強度や弾性率への補強効果が低く、構造材としての実用性能には不満足であった。
ガラス繊維とポリプロピレンの接着性については、プロピレンを無水マレイン酸のような極性官能基により変性することは有効であると特開平05−001184や特開平06−279615に開示されている。さらに特殊なカップリング剤を含む集束剤で処理したガラス繊維を使用することが特開2005−170691に開示されている。しかし、保安部品のような高強度の構造部材に要求される高い強度や物性の信頼性にははるかに未達であった。また、ガラス繊維より、強度や弾性率の高い炭素繊維を使用した炭素繊維強化ポリプロピレンについても、無水マレイン酸変性ポリオレフィン共重合体を使用して接着性を改善した組成物が特開2005−256206に開示されている。しかし、炭素繊維とポリプロピレンの接着性がまだ低く、炭素繊維の高強度が複合材料に反映されず、構造材としての要求には未達であった。また、繊維強化半芳香族ポリアミド樹脂の吸湿性を改善することを目的に、半芳香族ポリアミド樹脂60〜90重量%にα、β−不飽和カルボン酸またはその誘導体をグラフトさせたポリプロピレン10〜40重量%配合することが特開平06−100775に開示されている。これは、その組成比からして母相を成す主成分が半芳香族ポリアミド樹脂からなるもので、本発明のように、軽量化を目的としたポリプロピレンを主成分とした繊維強化ポリプロピレン樹脂については開示されていない。またポリプロピレンにポリアミド樹脂少量を化学的に分岐結合して、母相をなすポリプロピレンと炭素繊維の接着強度を改善することは全く想定されていないものである。
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、強度や弾性率が飛躍的に優れた比強度の高い構造材用複合材料を提供することにある。
Conventionally, a long glass fiber reinforced polypropylene composite material has been known (for example, see Document 1). However, such a conventional technique has low adhesiveness between glass fiber and polypropylene, has a low reinforcing effect on the strength and elastic modulus of glass fiber, and is unsatisfactory in practical performance as a structural material.
Regarding the adhesion between glass fiber and polypropylene, it is disclosed in JP-A Nos. 05-001184 and 06-279615 that it is effective to modify propylene with a polar functional group such as maleic anhydride. Further, JP 2005-170691 discloses the use of glass fibers treated with a sizing agent containing a special coupling agent. However, the reliability of the high strength and physical properties required for a high-strength structural member such as a safety part has not been achieved. Further, regarding carbon fiber reinforced polypropylene using carbon fiber having higher strength and elastic modulus than glass fiber, JP-A-2005-256206 discloses a composition in which adhesion is improved by using a maleic anhydride-modified polyolefin copolymer. It is disclosed. However, the adhesion between the carbon fiber and the polypropylene is still low, and the high strength of the carbon fiber is not reflected in the composite material, and the demand as a structural material has not been achieved. Further, for the purpose of improving the hygroscopicity of the fiber-reinforced semi-aromatic polyamide resin, polypropylene 10 to 40 obtained by grafting an α, β-unsaturated carboxylic acid or a derivative thereof to 60 to 90% by weight of the semi-aromatic polyamide resin. Japanese Patent Laid-Open No. 06-100775 discloses the blending by weight. This is because the main component of the matrix is semi-aromatic polyamide resin based on the composition ratio, and as in the present invention, the fiber reinforced polypropylene resin mainly composed of polypropylene for the purpose of weight reduction. Not disclosed. Moreover, it is not assumed at all that the small amount of polyamide resin is chemically branched and bonded to polypropylene to improve the bond strength between polypropylene and carbon fiber forming the matrix.
The present invention has been made against the background of such prior art problems. That is, an object of the present invention is to provide a composite material for a structural material having a high specific strength that is remarkably excellent in strength and elastic modulus.

プラスチックス、Vol.36(7),p103(1985)Plastics, Vol. 36 (7), p103 (1985) 特開平05−001184JP 05-001184 A 特開平06−279615JP 06-279615 A 特開2005−170691JP 2005-170691 特開2005−256206JP 2005-256206 A 特開平06−100775JP 06-1000077

本発明の課題は、強化材である炭素繊維と樹脂相の接着性を改善して、補強効果を改善して、構造材に提供できるプリプレグ材料を提供することにある。   The subject of this invention is providing the prepreg material which improves the adhesiveness of the carbon fiber which is a reinforcement material, and a resin phase, improves a reinforcement effect, and can provide to a structural material.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
7.5mm以上の炭素長繊維(A)100質量部に対して、メルトフローレートが30〜150g/10minである無水マレイン酸変性したポリプロピレン(B)50〜250質量部及びポリアミド樹脂(C)1〜50質量部を含み、且つ(B)+(C)が35〜260質量部であることを特徴とする炭素長繊維強化ポリプロピレン樹脂複合材料であり、また炭素長繊維強化複合材料中の(B)及び(C)成分は(B)と(C)の反応物であり、ポリアミド樹脂が無水マレイン酸変性ポリプロピレンに化学的に分岐結合したものであることを特徴とする、前記の炭素長繊維強化複合材料である
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.
That is, this invention consists of the following structures.
50-250 parts by mass of maleic anhydride-modified polypropylene (B) having a melt flow rate of 30-150 g / 10 min and polyamide resin (C) 1 with respect to 100 parts by mass of carbon long fiber (A) of 7.5 mm or more It is a carbon long fiber reinforced polypropylene resin composite material comprising ˜50 parts by mass and (B) + (C) being 35 to 260 parts by mass, and (B) in the carbon long fiber reinforced composite material ) And (C) are the reaction products of (B) and (C), and the polyamide resin is obtained by chemically branching a polyamide resin to maleic anhydride-modified polypropylene. It is a composite material .

本発明により、強度や弾性率が飛躍的に高く、比強度が高く、構造材としての要求を満たす複合材料を提供することができる。比強度が高いと成形部品に要求される強度を、より軽い成形品で満たすことが可能となる。製品の軽量化が成されると、自動車や二輪車などの輸送機の燃比が改善され、省エネルギーに貢献できる。従って、本発明により得られた複合材組成物を成形して得られる成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。本発明により、高い強度や弾性率が得られる複合材組成物が提供される理由は、未だ明確でないが、本発明に使用される樹脂成分である無水マレイン酸ポリプロピレンとポリアミド樹脂を250℃にて10分間溶融混練すると、装置のトルクが明らかに上昇することから、ポリプロピレンに変性導入された無水マレイン酸とポリアミド樹脂のアミノ末端基が化学反応し、脱水してイミド結合を成すことにより、ポリプロピレンにポリアミド樹脂が化学的に分岐として導入され、グラフト結合したポリアミド樹脂がポリプロピレンと炭素繊維表面のカルボキシル基とカップリング結合する効果によるものと推定される。   According to the present invention, it is possible to provide a composite material that has dramatically high strength and elastic modulus, high specific strength, and satisfies the requirements as a structural material. When the specific strength is high, the strength required for the molded part can be satisfied with a lighter molded product. If the weight of the product is reduced, the fuel ratio of transportation equipment such as automobiles and motorcycles will be improved, which can contribute to energy saving. Therefore, a molded product obtained by molding the composite material composition obtained by the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like. The reason why the present invention provides a composite composition capable of obtaining high strength and elastic modulus is not yet clear, but the maleic anhydride polypropylene and polyamide resin, which are resin components used in the present invention, are used at 250 ° C. When melt-kneading for 10 minutes, the torque of the apparatus clearly increases, so that the maleic anhydride modified and introduced into the polypropylene chemically reacts with the amino terminal group of the polyamide resin and dehydrates to form an imide bond. It is presumed that the polyamide resin is chemically introduced as a branch, and the graft-bonded polyamide resin is coupled to the polypropylene and the carboxyl group on the carbon fiber surface.

以下、本発明を詳述する。
本発明には、重量平均繊維長が7.5mm以上、好ましくは25mm以上、更に好ましくは100mm以上の炭素長繊維や連続繊維が使用される。重量平均繊維長が7.5mm未満では、構造材としての強度が未達となり、好ましくない。炭素繊維としては、製造法に特に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引っ張り強度20t/cm以上、引っ張り弾性率200GPa以上の炭素繊維が好ましい。本発明に使用される単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜20μmが好ましく、特に4〜15μm好ましい。3μm未満では、含浸や脱泡が難しく、20μmを超えると、比表面積が小さくなり、複合化の効果が小さくなり好ましくない。本発明に使用される炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理されたものが好ましい。また本発明の複合材料製造に使用される炭素繊維は、作業工程の取り扱い性から、120℃以下で軟化する収束剤により収束されていることが好ましい。収束フィラメント数には特に制限ないが、1000〜30000フィラメント、好ましくは、3000〜25000フィラメントが好ましい。
The present invention is described in detail below.
In the present invention, carbon long fibers or continuous fibers having a weight average fiber length of 7.5 mm or more, preferably 25 mm or more, more preferably 100 mm or more are used. If the weight average fiber length is less than 7.5 mm, the strength as a structural material is not achieved, which is not preferable. Although it does not restrict | limit especially in a manufacturing method as carbon fiber, After processing fibers, such as a polyacrylonitrile fiber and a cellulose fiber, in air at 200-300 degreeC, it is baked at 1000-3000 degreeC or more in inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. The diameter of the single fiber used in the present invention is not particularly limited, but is preferably 3 to 20 μm, particularly preferably 4 to 15 μm, from the production line step of the composite. If it is less than 3 μm, impregnation and defoaming are difficult, and if it exceeds 20 μm, the specific surface area becomes small, and the effect of compounding becomes unfavorable. The carbon fiber used in the present invention is preferably treated for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber used for composite material manufacture of this invention is converged by the sizing agent which softens at 120 degrees C or less from the handleability of a work process. Although there is no restriction | limiting in particular in the number of converging filaments, 1000-30000 filaments, Preferably, 3000-25000 filaments are preferable.

本発明には、炭素繊維100質量部当り、メルトフローレートが30〜150g/10minである無水マレイン酸変性ポリプロピレンを30〜250重量部、好ましくは70〜150質量部配合される。30質量部未満では、含浸が困難で複合材料の製造が難しい。また250質量部を超えると複合材料中の炭素繊維含有率が低く、目的とする構造材に要求される強度や弾性率が得られない。本発明に使用される無水マレイン酸変性ポリプロピレンとしては、230℃、21.2N下でのメルトフローレートが30〜150g/10min、好ましくは、40〜100g/10minの溶融粘度のものである。30g/10min未満では、炭素繊維への含浸性や脱泡が困難で好ましくない。また150g/10minを超えると、複合材料の母相となる無水マレイン酸変性ポリプロピレンの強度や伸度が低く、複合材料としても構造材としての強度が得られないので好ましくない。本発明においては、さらに未変性ポリプロピレンを含有することもできる。特に無水マレイン酸変性ポリプロピレンと未変性ポリプロピレンのブレンド物のメルトフローレートが、30〜120g/10min,特に40〜100g/10minの配合比にあると母相のタフネスが向上するから好ましい態様である。本発明に使用される無水マレイン酸変性ポリプロピレンの無水マレイン酸変性量としては、特に制限されないが無水マレイン酸換算で0.01〜8質量%、好ましくは、0.02〜5質量%である。0.01質量%未満では、炭素繊維とポリプロピレンとの接着性改良効果が小さく好ましくない。また8質量%を超えると母相となるポリプロピレンの強度が低下して、複合材としても高い強度が得られないので好ましくない。
ポリプロピレンとしては、アイソタクチックポリプロピレンのホモタイプ、ブロックタイプ、シンジオタクチックポリプロピレンなどが使用される。結晶性の低いアタクチックポリプロピレンは、複合材の成形加工性に劣るので本発明には好ましくない。ポリプロピレンにポリエチレンやポリブテンなど他のポリオレフィンがブロック共重合されたブロックタイプポリプロピレンも本発明に使用される。特に、耐衝撃性が要求される構造材用複合材料には好ましい態様である。本発明の複合材料においては、さらに未変性ポリプロピレンを配合することでも本発明の目的は達成される。特に、使用される無水マレイン酸変性ポリプロピレンのメルトフローレートが100g/10minを越える場合、より高分子量の未変性ポリプロピレンをブレンドすることにより、混合体のメルトフローレートを30〜120g/10minに、好ましくは40〜100g/10minに調節することが好ましい。工業的に好ましい態様である。 変性体と未変性体の合計質量に対して、無水マレイン酸変性量は、0.01〜4質量%、好ましくは0.02〜3質量%であり、変性体と未変性体の比率は、4:6〜0.5:9.5が、さらに好ましくは、2:8〜0.7:9.3である。変性体に対する未変性体の比が4:6未満では経済的効果が小さく、0.5:9.5を超えると炭素繊維とポリプロピレンの界面に対して変性体が不足して欠陥点となることがあり好ましくない。
In the present invention, 30 to 250 parts by weight, preferably 70 to 150 parts by weight, of maleic anhydride-modified polypropylene having a melt flow rate of 30 to 150 g / 10 min is blended per 100 parts by weight of carbon fibers. If it is less than 30 parts by mass, it is difficult to impregnate and it is difficult to produce a composite material. On the other hand, when it exceeds 250 parts by mass, the carbon fiber content in the composite material is low, and the strength and elastic modulus required for the intended structural material cannot be obtained. The maleic anhydride-modified polypropylene used in the present invention has a melt viscosity of 230 to 150 g / 10 min, preferably 40 to 100 g / 10 min, at 230 ° C. and 21.2 N. If it is less than 30 g / 10 min, the impregnation property to carbon fiber and defoaming are difficult, which is not preferable. On the other hand, if it exceeds 150 g / 10 min, the strength and elongation of the maleic anhydride-modified polypropylene, which is the matrix of the composite material, are low, and the composite material cannot obtain the strength as a structural material. In the present invention, unmodified polypropylene can also be contained. In particular, when the melt flow rate of the blend of maleic anhydride-modified polypropylene and unmodified polypropylene is 30 to 120 g / 10 min, particularly 40 to 100 g / 10 min, the toughness of the mother phase is improved, which is a preferable embodiment. The maleic anhydride-modified amount of the maleic anhydride-modified polypropylene used in the present invention is not particularly limited, but is 0.01 to 8% by mass, preferably 0.02 to 5% by mass in terms of maleic anhydride. If it is less than 0.01% by mass, the effect of improving the adhesion between carbon fiber and polypropylene is small, which is not preferable. On the other hand, when the content exceeds 8% by mass, the strength of polypropylene as a matrix is lowered, and high strength cannot be obtained as a composite material.
As the polypropylene, isotactic polypropylene homotype, block type, syndiotactic polypropylene or the like is used. Atactic polypropylene having low crystallinity is not preferable for the present invention because it is inferior in molding processability of the composite material. A block type polypropylene obtained by block copolymerization of other polyolefin such as polyethylene and polybutene with polypropylene is also used in the present invention. In particular, it is a preferred embodiment for composite materials for structural materials that require impact resistance. In the composite material of the present invention, the object of the present invention can also be achieved by further blending unmodified polypropylene. In particular, when the melt flow rate of the maleic anhydride-modified polypropylene used exceeds 100 g / 10 min, the melt flow rate of the mixture is preferably 30 to 120 g / 10 min by blending higher molecular weight unmodified polypropylene. Is preferably adjusted to 40 to 100 g / 10 min. This is an industrially preferred embodiment. The maleic anhydride modification amount is 0.01 to 4% by mass, preferably 0.02 to 3% by mass, based on the total mass of the modified product and the unmodified product. 4: 6 to 0.5: 9.5 is more preferably 2: 8 to 0.7: 9.3. If the ratio of the unmodified product to the modified product is less than 4: 6, the economic effect is small, and if it exceeds 0.5: 9.5, the modified product is insufficient with respect to the interface between the carbon fiber and the polypropylene, resulting in a defect point. Is not preferable.

本発明には、炭素繊維100質量部当り、ポリアミド樹脂1〜50質量部、好ましくは2〜30質量部配合される。1質量部未満では、炭素繊維とポリプロピレンの接着性改善効果が小さく、複合材の強度が構造材として要求に未達で好ましくない。また、50質量部を超えると、複合材中のポリアミド樹脂の吸水による弾性率低下や寸法変化が起こり好ましくない。また本発明には、炭素繊維100質量部に対して、無水マレイン酸変性ポリプロピレンとポリアミド樹脂の和が35〜260質量部であることが必要である。35質量部未満では、炭素繊維への含浸が不十分で複合効果が得られない。また260質量部を超えると繊維含有率が低くて構造材としての強度が得られない。ポリアミド樹脂としては、末端に無水マレイン酸と反応しうるアミノ基を30〜90モル%、好ましくは50〜85モル%有するものが好ましい。複合材料中では、ポリアミド樹脂のアミノ末端とポリプロピレンに付加した無水マレイン酸が反応することにより、ポリプロピレンの分子側鎖に形成されるイミド結合を介して、ポリアミド樹脂の一部がポリプロピレンに化学的に分岐結合する。ポリアミド樹脂の分子量は、小さい樹脂が好ましく、0.5質量%の96%硫酸溶液の25℃における相対粘度で、1.8〜2.7、さらに好ましくは、1.9〜2.6のポリアミド樹脂が使用される。1.8未満では、ポリアミド樹脂自身の加工性が困難で好ましくなく、2.7を超えると複合材で母相を形成するポリプロピレンとポリアミド樹脂からなる樹脂相の溶融粘度が高くなり、複合材の製造工程における含浸性が低下して好ましくない。ポリアミド樹脂としては、ポリアミド6、ポリミド66、ポリアミド46、ポリアミド11.ポリアミド12、ポリアミドMXD6、ポリアミド6T系共重合体、ポリアミド9T、ポリアミド612やこれらの共重合体などが例示される。これらの中では、融点が250℃以下のものが複合材の製造工程上好ましく、ポリアミド6、ポリアミドMXD6,ポリアミド12、ポリアミド11、ポリアミド612が好ましい。本発明において、ポリアミド樹脂の全体または一部が無水マレイン酸変性ポリプロピレンと化学反応により分岐結合しており、また分岐結合したものが相溶化剤として作用して、ポリアミド樹脂はポリプロピレン中で、平均粒径が3μm以下、好ましくは1μm以下に分散している。本発明においてポリアミド樹脂含有による飛躍的な比強度の改善される理由は未だ明確ではないが、このポリアミド樹脂のアミド基は、炭素繊維や炭素繊維に表面に処理された極性基と強く接着することから、ポリアミド樹脂層が接着部位として作用し、高い複合材強度を発現したものと推察される。また、ポリアミド樹脂からなる複合材料は、一般に空気中の水分を吸湿すると、強度や剛性が大幅に低下することや、吸湿により寸法が大きく変化する問題点を有する。しかし、驚いたことに本発明の複合材料は、吸水率は低く、吸湿による強度や剛性の低下は微量であり、また、吸湿による寸法変化も殆ど観察されない。これは、本発明においては、ポリアミド樹脂は、殆ど吸湿しないポリプロピレンに比較して、少量であり、ポリプロピレン中に微分散しているので、水分がポリアミド樹脂相に殆ど拡散しないためと考察される。   In the present invention, 1 to 50 parts by mass, preferably 2 to 30 parts by mass of the polyamide resin is blended per 100 parts by mass of the carbon fiber. If the amount is less than 1 part by mass, the effect of improving the adhesion between carbon fiber and polypropylene is small, and the strength of the composite material is not preferable as a structural material because it does not meet the requirements. Moreover, when it exceeds 50 mass parts, the elastic modulus fall and dimensional change by water absorption of the polyamide resin in a composite material will arise, and it is unpreferable. In the present invention, the sum of maleic anhydride-modified polypropylene and polyamide resin needs to be 35 to 260 parts by mass with respect to 100 parts by mass of the carbon fiber. If the amount is less than 35 parts by mass, the carbon fiber is not sufficiently impregnated and the combined effect cannot be obtained. On the other hand, if it exceeds 260 parts by mass, the fiber content is low and the strength as a structural material cannot be obtained. As the polyamide resin, those having 30 to 90 mol%, preferably 50 to 85 mol% of an amino group capable of reacting with maleic anhydride at the terminal are preferable. In the composite material, a part of the polyamide resin chemically reacts with the polypropylene via an imide bond formed on the molecular side chain of the polypropylene by the reaction between the amino terminal of the polyamide resin and maleic anhydride added to the polypropylene. Branch and join. The polyamide resin preferably has a low molecular weight, and is a polyamide having a relative viscosity at 25 ° C. of a 0.5% by weight 96% sulfuric acid solution of 1.8 to 2.7, more preferably 1.9 to 2.6. Resin is used. If it is less than 1.8, the processability of the polyamide resin itself is difficult, and if it exceeds 2.7, the melt viscosity of the resin phase composed of polypropylene and polyamide resin that forms a matrix phase with the composite material increases, and the composite material The impregnation property in the production process is undesirably lowered. As the polyamide resin, polyamide 6, polyamide 66, polyamide 46, polyamide 11. Examples thereof include polyamide 12, polyamide MXD6, polyamide 6T copolymer, polyamide 9T, polyamide 612, and copolymers thereof. Among these, those having a melting point of 250 ° C. or lower are preferable in the production process of the composite material, and polyamide 6, polyamide MXD6, polyamide 12, polyamide 11, and polyamide 612 are preferable. In the present invention, all or part of the polyamide resin is branched and bonded to maleic anhydride-modified polypropylene by a chemical reaction, and the branched bond acts as a compatibilizing agent. The diameter is 3 μm or less, preferably 1 μm or less. The reason why the specific strength is dramatically improved by the inclusion of the polyamide resin in the present invention is not yet clear, but the amide group of this polyamide resin strongly adheres to the carbon fiber or the polar group treated on the surface of the carbon fiber. Therefore, it is presumed that the polyamide resin layer acts as an adhesion site and exhibits a high composite material strength. In addition, composite materials made of polyamide resin generally have problems in that when moisture in the air is absorbed, strength and rigidity are significantly reduced, and the size is greatly changed by moisture absorption. Surprisingly, however, the composite material of the present invention has a low water absorption rate, a slight decrease in strength and rigidity due to moisture absorption, and little dimensional change due to moisture absorption is observed. In the present invention, it is considered that the polyamide resin is a small amount compared to polypropylene that hardly absorbs moisture and is finely dispersed in the polypropylene, so that moisture hardly diffuses into the polyamide resin phase.

本発明の樹脂組成物には、上記の必須成分の他に物性改良・成形性改良、耐久性改良を目的として、結晶核剤・離型剤、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などが配合できる。   In the resin composition of the present invention, in addition to the above essential components, for the purpose of improving physical properties / moldability, improving durability, crystal nucleating agent / release agent, lubricant, antioxidant, flame retardant, light fastener, A weathering agent etc. can be mix | blended.

本発明の組成物の製造法は特に限定されない。例えば、樹脂の融点以上に温度調節されたスクリュータイプ押出機のホッパーに無水マレイン酸変性ポリプロピレンとポリアミド樹脂を所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。一方、ロービング状の炭素繊維を拡張開繊し、含浸用押出機の下流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、炭素繊維ロービングに樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の炭素繊維と変性ポリプロピレンからなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料を7.5mm以上にカットすることや、テープ状複合材料をカットせずに織物状に織って成形用に提供される。また、樹脂の融点以上に温度調節されたスクリュータイプ押出機の上流ホッパーに無水マレイン酸変性ポリプロピレンとポリアミド樹脂を所定割合に予備混合して供給する。下流の出口ダイにロービング状炭素繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の炭素繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを7.5mm以上にカットするか、織物状に織って成形用に提供される方法などが上げられる。   The method for producing the composition of the present invention is not particularly limited. For example, maleic anhydride-modified polypropylene and polyamide resin are premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. On the other hand, roving-like carbon fibers are expanded and supplied downstream of the impregnation extruder. Carbon fiber roving is impregnated and defoamed with resin pressure in an extruder for impregnation equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of the tape-like carbon fiber and the modified polypropylene discharged from the downstream opening is cooled and wound up. Furthermore, the tape-shaped composite material is cut into 7.5 mm or more, or the tape-shaped composite material is woven into a woven shape without being cut and provided for molding. Further, maleic anhydride-modified polypropylene and polyamide resin are premixed at a predetermined ratio and supplied to an upstream hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the melting point of the resin. A roving carbon fiber is supplied to a downstream outlet die, and a fiber coating speed and a resin discharge amount are adjusted to obtain a strand-like carbon fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. A method of cutting this strand to 7.5 mm or more, or woven it into a woven shape and providing it for molding can be raised.

本発明の複合材は、赤外線加熱や高周波加熱して、樹脂を加熱溶融して、圧縮成形機の金型に供給して、賦形冷却後脱型して構造材の部品が成形される。
本発明の複合材から得られた成形部品は、自動車のフレーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。
The composite material of the present invention is heated and melted by infrared heating or high-frequency heating, and the resin is heated and melted, supplied to a mold of a compression molding machine, demolded after shaping cooling, and a structural material part is formed.
Molded parts obtained from the composite material of the present invention are used for parts that require high strength and rigidity, such as automobile frames, two-wheeled vehicle frames, agricultural equipment frames, OA equipment frames, and machine parts.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
実施例 1〜20
種々のポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリアミド樹脂を表1に示した質量部に配合して、250℃に温度調節されたスクリュー式押し出し機のホッパーに投入した。また表1にし示した炭素繊維のロービングを100質量部になる速度で拡張開繊して押出機のダイヘッドに供給した。幅10mm・高さ0.5mmのダイから含浸被覆されたテープ状プリプレグを水槽に浸漬して固化した後、枷に巻き取った。
テープ状プリプレグを100mmにカットして8枚重ねて、IRヒータにより、200℃に予熱した後、温度250℃に温度調節された15×120×4mmの金型にセットして、2分間3MPa圧縮保持した。金型を圧縮成形機から取り出した。金型表面が50℃になるまで放冷後、成形品を取り出した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
Examples 1-20
Various polypropylenes, maleic anhydride-modified polypropylenes, and polyamide resins were blended in the parts by mass shown in Table 1 and charged into a hopper of a screw type extruder adjusted to 250 ° C. Further, the carbon fiber roving shown in Table 1 was expanded and opened at a speed of 100 parts by mass and supplied to the die head of the extruder. A tape-shaped prepreg impregnated and coated from a die having a width of 10 mm and a height of 0.5 mm was immersed in a water tank and solidified, and then wound on a basket.
Cut eight tape-shaped prepregs and stack them, preheat them to 200 ° C with an IR heater, set them in a 15 x 120 x 4 mm mold adjusted to a temperature of 250 ° C, and compress them at 3 MPa for 2 minutes Retained. The mold was removed from the compression molding machine. After allowing the mold surface to cool to 50 ° C., the molded product was taken out.

得られた成形品を、23℃・50%RHに調節された室内にて48時間保管後、ISO178に準拠した3点曲げ試験機を使用して、スパン長64mm、クロスヘッド速度4mm/minによる曲げ強度、及び15×20×4mmの試験片を使用してISO14130に準じて、スパン長10mm・クロスヘッド速度1mm/minとして層間せん断強度を測定した。
本発明の目的のひとつである軽量性は、圧縮成形して得られた成形品をアルキメデスの原理による水中置換法により比重を測定し、曲げ強度を比重で除して求めた比強度により評価した。
本発明に使用された原料のメルトフローレートは、ISO1133に準じて、ポリプロピレン系は、230℃・21.2N、ポリアミド系は、250℃・21.2Nの条件下で測定した。
The obtained molded product was stored in a room adjusted to 23 ° C. and 50% RH for 48 hours, and then a span length of 64 mm and a crosshead speed of 4 mm / min were used using a three-point bending tester compliant with ISO178. The bending strength and the interlaminar shear strength were measured according to ISO14130 using a test piece of 15 × 20 × 4 mm with a span length of 10 mm and a crosshead speed of 1 mm / min.
The lightness, which is one of the objects of the present invention, was evaluated based on the specific strength obtained by measuring the specific gravity of a molded product obtained by compression molding by an underwater displacement method based on Archimedes' principle and dividing the bending strength by the specific gravity. .
The melt flow rate of the raw material used in the present invention was measured under the conditions of 230 ° C. · 21.2N for the polypropylene type and 250 ° C. · 21.2N for the polyamide type according to ISO1133.

比較例1〜10
ポリプロピレン、無水マレイン酸変性ポリプロピレン、ポリアミド樹脂の種類や配合比を表2に示したように変更した以外は、実施例と全く同様にプリプレグを作製した後、テストピースを成形した。得られた試験片について,実施例と全く同様に曲げ強度と層間せん断強度、比強度を測定した。得られた試験データを表2に合わせて示した。
Comparative Examples 1-10
A test piece was molded after preparing a prepreg in the same manner as in Example except that the types and blending ratios of polypropylene, maleic anhydride-modified polypropylene and polyamide resin were changed as shown in Table 2. About the obtained test piece, the bending strength, the interlaminar shear strength, and the specific strength were measured in the same manner as in the example. The obtained test data is shown in Table 2 together.

実験に使用した原料と記号
MMP006:無水マレイン酸0.4質量部変性ポリプロピレン(プライムポリマー社製、MFR65g/10min)
MAH003:ポリプロピレンW101(プライムポリマー社製)98.5質量部に、ジクミルパーオキサイド(日本油脂社製パークミルD)0.5質量部、粉末化した無水マレイン酸(ナカライテスク社製)2質量部を予備混合して、190℃に温度調節された二軸押出機のホッパーに供給して、スクリュウ80回転/分にて溶融反応して得たストランドを水槽で冷却固化して得られた無水マレイン酸変性ポリプロピレン(MFR50g/10min)
PP1:未変性ポリプロピレン(プライムポリマー社製、J139、MFR50g/10min)
PP2:未変性ポリプロピレン(プライムポリマー社製、W101,MFR8g/10min)
T840:ポリアミド樹脂 PA6(東洋紡績社製、25℃における0.5g/l濃度の96%硫酸溶液の相対粘度2.2)
T600:ポリアミド樹脂 PAMXD6(東洋紡績社製、25℃における0.5g/l濃度の96%硫酸溶液の相対粘度2.2)
3014U:ポリアミド樹脂 PA12(宇部興産社製、25℃における0.5g/l濃度の96%硫酸溶液の相対粘度 2.5)
炭素繊維:帝人社製東邦テナックス IMS40(単繊維径6.4μm、6000フィラメント)
Raw materials and symbols used in the experiment MMP006: maleic anhydride 0.4 parts by mass modified polypropylene (manufactured by Prime Polymer Co., Ltd., MFR 65 g / 10 min)
MAH003: Polypropylene W101 (manufactured by Prime Polymer) 98.5 parts by mass, dicumyl peroxide (Nippon Yushi Co., Ltd. Park Mill D) 0.5 parts by mass, powdered maleic anhydride (manufactured by Nacalai Tesque) 2 parts by mass An anhydrous maleate obtained by cooling and solidifying a strand obtained by melting and reacting with a screw at a speed of 80 revolutions / minute by feeding to a hopper of a twin screw extruder whose temperature is adjusted to 190 ° C. Acid-modified polypropylene (MFR50g / 10min)
PP1: unmodified polypropylene (manufactured by Prime Polymer, J139, MFR 50 g / 10 min)
PP2: Unmodified polypropylene (manufactured by Prime Polymer, W101, MFR 8 g / 10 min)
T840: Polyamide resin PA6 (manufactured by Toyobo Co., Ltd., relative viscosity of 96% sulfuric acid solution with a concentration of 0.5 g / l at 25 ° C. of 2.2)
T600: Polyamide resin PAMXD6 (manufactured by Toyobo Co., Ltd., relative viscosity 2.2% of a 96% sulfuric acid solution having a concentration of 0.5 g / l at 25 ° C.)
3014U: Polyamide resin PA12 (manufactured by Ube Industries, relative viscosity of 96% sulfuric acid solution with a concentration of 0.5 g / l at 25 ° C., 2.5)
Carbon fiber: Toho Tenax IMS40 manufactured by Teijin Ltd. (single fiber diameter 6.4 μm, 6000 filaments)

本発明により、炭素繊維とポリプロピレンの接着性が改善することができ、より高強度・高せん断強度・比強度の高い成形品を得ることが可能となり、プリプレグ製造法や成形法も非常に容易であることからも、構造部材の樹脂化が可能となり、軽量化や省エネルギーの面から産業界に大きく寄与することが期待される。     According to the present invention, the adhesion between carbon fiber and polypropylene can be improved, and a molded product with higher strength, higher shear strength and higher specific strength can be obtained, and the prepreg manufacturing method and molding method are very easy. For this reason, it is possible to make the structural member resin, and it is expected that it will greatly contribute to the industry in terms of weight reduction and energy saving.

Claims (2)

7.5mm以上の炭素長繊維(A)100質量部に対して、メルトフローレートが30〜150g/10minである無水マレイン酸変性したポリプロピレン(B)30〜250質量部及びポリアミド樹脂(C)1〜50質量部を含み、且つ(B)+(C)が35〜260量部であることを特徴とする炭素長繊維強化複合材料。 30 to 250 parts by weight of maleic anhydride-modified polypropylene (B) having a melt flow rate of 30 to 150 g / 10 min and polyamide resin (C) 1 with respect to 100 parts by weight of carbon long fibers (A) of 7.5 mm or more It comprises 50 parts by weight, and (B) + (C) carbon long-fiber-reinforced composite material, which is a 35 to 260 mass parts. 炭素長繊維強化複合材料中の(B)及び(C)成分は、(B)と(C)の反応物であり、ポリアミド樹脂が無水マレイン酸変性ポリプロピレンに化学的に分岐結合したものであることを特徴とする、請求項1記載の炭素長繊維強化複合材料。 Components (B) and (C) in the carbon long fiber reinforced composite material are the reaction products of (B) and (C), and the polyamide resin is chemically branched and bonded to maleic anhydride-modified polypropylene. The carbon long fiber reinforced composite material according to claim 1, wherein:
JP2009068155A 2008-12-25 2009-03-19 Carbon long fiber reinforced composite material Active JP5712464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068155A JP5712464B2 (en) 2008-12-25 2009-03-19 Carbon long fiber reinforced composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008329580 2008-12-25
JP2008329580 2008-12-25
JP2009068155A JP5712464B2 (en) 2008-12-25 2009-03-19 Carbon long fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2010168526A JP2010168526A (en) 2010-08-05
JP5712464B2 true JP5712464B2 (en) 2015-05-07

Family

ID=42700958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068155A Active JP5712464B2 (en) 2008-12-25 2009-03-19 Carbon long fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5712464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413810B2 (en) 2020-03-26 2022-08-16 Fujifilm Business Innovation Corp. Filament for three-dimensional modeling, three-dimensional modeled article, three-dimensional modeling method, and three-dimensional modeling apparatus
US11738502B2 (en) 2020-02-10 2023-08-29 Fujifilm Business Innovation Corp. Filament for three-dimensional modeling

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601156B2 (en) * 2010-11-01 2014-10-08 東洋紡株式会社 Carbon long fiber reinforced composite material
JP6161928B2 (en) * 2013-03-21 2017-07-12 三洋化成工業株式会社 Polyolefin resin modifier
WO2016076411A1 (en) 2014-11-13 2016-05-19 三井化学株式会社 Carbon fiber-reinforced resin composition and molded article produced from same
JP6635765B2 (en) * 2015-01-05 2020-01-29 三洋化成工業株式会社 Carbon fiber dispersant for polyolefin resin
EP3127958B1 (en) * 2015-08-04 2021-09-01 FUJIFILM Business Innovation Corp. Resin composition, resin molded article, and method of preparing resin composition
JP6957850B2 (en) * 2016-09-28 2021-11-02 富士フイルムビジネスイノベーション株式会社 Resin composition and resin molded product
JP6957849B2 (en) * 2016-09-28 2021-11-02 富士フイルムビジネスイノベーション株式会社 Resin composition and resin molded product
JP6149994B1 (en) * 2016-09-28 2017-06-21 富士ゼロックス株式会社 Resin composition and resin molded body
JP6149995B1 (en) * 2016-09-28 2017-06-21 富士ゼロックス株式会社 Non-crosslinked resin composition and non-crosslinked resin molded body
JP2018100378A (en) * 2016-12-21 2018-06-28 富士ゼロックス株式会社 Resin composition, and resin molding
JP2018104521A (en) * 2016-12-26 2018-07-05 富士ゼロックス株式会社 Resin composition and resin molded article
JP6946653B2 (en) 2017-02-03 2021-10-06 トヨタ紡織株式会社 Fiber reinforced materials and structures
JP6872122B2 (en) * 2017-03-24 2021-05-19 富士フイルムビジネスイノベーション株式会社 Resin composition, resin molded product, and method for producing the resin composition
JP6939004B2 (en) * 2017-03-24 2021-09-22 富士フイルムビジネスイノベーション株式会社 Resin composition for resin molded product, and resin molded product
EP3461859A1 (en) * 2017-09-29 2019-04-03 Borealis AG Reinforced polymer composition
EP3988603A4 (en) * 2019-06-18 2023-06-14 Mitsui Chemicals, Inc. Unidirectional fiber-reinforced resin sheet, and layered body and automobile member including same
CN116444984A (en) * 2023-05-15 2023-07-18 链行走新材料科技(广州)有限公司 Functionalized low-temperature heat sealing material and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3387215B2 (en) * 1994-06-13 2003-03-17 チッソ株式会社 Long fiber reinforced polymer alloy resin column, injection molded article obtained therefrom, and method for producing the same
JP2000198884A (en) * 1998-12-28 2000-07-18 Chisso Corp Highly fluid continuous fiber-reinforced resin composition and production of impact- and heat-resistant molded product using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738502B2 (en) 2020-02-10 2023-08-29 Fujifilm Business Innovation Corp. Filament for three-dimensional modeling
US11413810B2 (en) 2020-03-26 2022-08-16 Fujifilm Business Innovation Corp. Filament for three-dimensional modeling, three-dimensional modeled article, three-dimensional modeling method, and three-dimensional modeling apparatus

Also Published As

Publication number Publication date
JP2010168526A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5712464B2 (en) Carbon long fiber reinforced composite material
JP5493350B2 (en) Carbon long fiber reinforced polypropylene composite
JP5938299B2 (en) Fiber reinforced resin composition
JP2872466B2 (en) Method for producing composite reinforced polypropylene resin composition
JP5564839B2 (en) Stamping molded products
US5866648A (en) Long fiber-reinforced polymer alloy resin composition
WO2006125035A2 (en) Method for making fiber reinforced polypropylene composites
WO2005073291A1 (en) Carbon fiber-reinforced polyolefin resin composition and formed article made therefrom
JP5668310B2 (en) Hybrid carbon fiber reinforced thermoplastic resin composite material
CN111971343A (en) Thermoplastic resin composition, material for fiber-reinforced plastic molding, and molded article
JP7198287B2 (en) Long fiber reinforced propylene resin composition and long fiber reinforced molded article
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
AU2015371082A1 (en) Polyamide mixture having improved fluidity
JP2010235774A (en) Carbon filament-reinforced polypropylene composite
KR101602814B1 (en) Polyamide 66 resin composition reinforced with glass fiber for high tensile strength and manufacturing method thereof
KR101154303B1 (en) Composition of long carbon fiber reinforced plastics and molding products using the same
JP6797707B2 (en) Method for manufacturing an injection molded product made of a fiber reinforced resin composition
JP5891657B2 (en) Carbon long fiber reinforced polypropylene molded products
WO2014185243A1 (en) Fiber-reinforced resin composition
JP6711876B2 (en) Fiber reinforced resin composition
MXPA05004599A (en) Polyolefin resin composition and processes for the production thereof.
JP2023141277A (en) Sizing agent adhered carbon fiber short fiber
JP4705386B2 (en) Manufacturing method of fiber reinforced plastic and fiber material for reinforcement
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product
JP6955506B2 (en) PEEK resin composition molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R151 Written notification of patent or utility model registration

Ref document number: 5712464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350