JP5711796B2 - Electrocatalytic honeycomb for controlling exhaust gas emissions - Google Patents

Electrocatalytic honeycomb for controlling exhaust gas emissions Download PDF

Info

Publication number
JP5711796B2
JP5711796B2 JP2013192053A JP2013192053A JP5711796B2 JP 5711796 B2 JP5711796 B2 JP 5711796B2 JP 2013192053 A JP2013192053 A JP 2013192053A JP 2013192053 A JP2013192053 A JP 2013192053A JP 5711796 B2 JP5711796 B2 JP 5711796B2
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb
gas emission
anode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013192053A
Other languages
Japanese (ja)
Other versions
JP2014066243A (en
Inventor
大仁 黄
大仁 黄
Original Assignee
大仁 黄
大仁 黄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大仁 黄, 大仁 黄 filed Critical 大仁 黄
Publication of JP2014066243A publication Critical patent/JP2014066243A/en
Application granted granted Critical
Publication of JP5711796B2 publication Critical patent/JP5711796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)

Description

本発明は一種の電気触媒ハニカムに係り、特に一種の、排ガス排出をコントロールし、並びに有効に窒素酸化物を分解し、及び、一酸化炭素、炭素水素化合物及び粒状物を酸化する電気触媒ハニカムに関する。   The present invention relates to a kind of electrocatalyst honeycomb, and more particularly to a kind of electrocatalyst honeycomb which controls exhaust gas emission and effectively decomposes nitrogen oxides and oxidizes carbon monoxide, carbon hydrogen compounds and particulate matter. .

清浄な空気は人類生活の基本要件の一つであり、清浄で汚染のない空気を呼吸することで人類は安定し健康な生存が確保される。科学技術の卓越した進歩により、経済は迅速に発展したが、交通工具及び各種の林立する工場からの排ガス排出は、大気汚染をもたらし、人類生活の空気品質への影響ははなはだ大きい。そのうち、重工業工場と自動車は多くの汚染物質の主要なソースである。   Clean air is one of the basic requirements of human life. Breathing clean and uncontaminated air ensures that mankind is stable and healthy. Although the economy has developed rapidly due to the outstanding advancement of science and technology, exhaust emissions from transportation tools and various forested factories cause air pollution and the impact on the air quality of human life is enormous. Among them, heavy industry factories and automobiles are the main sources of many pollutants.

自動車の場合、自動車の排出基準は不断に引き上げられてはいるが、車両数量が不断に増加するため、車両の排出する排ガスのもたらす大気汚染の問題は、なおも日増しに増加している。一般には、自動車エンジンの運転は、異なる形式の燃料をシリンダ内で燃焼させて熱エネルギーを放出させ、並びに動力を伝送する。しかし、燃焼過程中に発生する排ガスは、窒素酸化物(NOx)、一酸化炭素(CO)、炭素水素化合物(hydrocarbons,HCs)、粒子状物質(particulate matter,PM)等の有害汚染物を包含し、これら物質は光化学スモッグ(photochemical smog)を形成するのみならず、オゾン層を破壊し、温室効果を悪化させ、酸性雨を引き起し、ひいては生態環境を破壊し、人の健康を損なう。   In the case of automobiles, although the emission standards for automobiles are constantly being raised, the number of vehicles is constantly increasing, so the problem of air pollution caused by exhaust gas emitted from vehicles is still increasing day by day. In general, the operation of an automobile engine burns different types of fuel in a cylinder to release heat energy and transmit power. However, exhaust gas generated during the combustion process includes harmful pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), carbon hydrogen compounds (hydrocarbons, HCs), and particulate matter (particulate matter, PM). However, these substances not only form photochemical smog, but also destroy the ozone layer, worsen the greenhouse effect, cause acid rain, and thus destroy the ecological environment, thereby damaging human health.

そのうち、一酸化炭素はエンジンの不完全燃焼により発生し、そのヘモグロビンと結合して一酸化炭素ヘモグロビン(COHb)を形成する能力は、酸素がヘモグロビンと結合して酸化ヘモグロビン(HbO2)を形成する能力の300倍であり、ゆえに空気中の一酸化炭素濃度が高すぎるとき、ヘモグロビンの酸素輸送の機能に影響が生じる。窒素酸化物は窒素ガスと酸素ガスの化合により形成され、主には一酸化窒素(NO)或いは二酸化窒素(NO2)の形式で排出され、炭素水素化合物と紫外線照射により反応して有毒な光化学スモッグを形成し、特殊な匂いを有し、目を刺激し、植物を傷つけ、並びに大気の透明度を下げ、且つ窒素酸化物は空気中の水と反応して硝酸及び亜硝酸を形成し、それは酸性雨の成分である。炭素水素化合物は低濃度の時には呼吸系統を刺激し、濃度が高くなると、中枢神経系統の機能に影響を与える。粒子状物質もまた人体の健康に危害を及ぼし得て、ひいては癌を引き起こす。   Among them, carbon monoxide is generated by incomplete combustion of the engine, and the ability to combine with its hemoglobin to form carbon monoxide hemoglobin (COHb) is the ability for oxygen to combine with hemoglobin to form oxidized hemoglobin (HbO2). Therefore, when the concentration of carbon monoxide in the air is too high, the oxygen transport function of hemoglobin is affected. Nitrogen oxide is formed by the combination of nitrogen gas and oxygen gas, and is emitted mainly in the form of nitrogen monoxide (NO) or nitrogen dioxide (NO2). It reacts with carbon hydrogen compounds by UV irradiation and is a toxic photochemical smog. , Has a special odor, irritate eyes, damage plants, and reduce atmospheric transparency, and nitrogen oxides react with water in the air to form nitric acid and nitrous acid, which is acidic It is a component of rain. Carbon hydrogen compounds stimulate the respiratory system at low concentrations, and higher concentrations affect the function of the central nervous system. Particulate matter can also be harmful to human health, which in turn causes cancer.

これにより、台湾、或いはヨーロッパ、日本、米国等の先進国家では、いずれも厳格な排気ガス基準を設けており(たとえば米国基準BIN5及びヨーロッパ基準EURO6)、窒素酸化物、一酸化炭素、炭素水素化合物及び粒子状物質等の排ガスの排出に対して基準を定めており、これにより有害気体の排出をコントロール並びに減少し、また業者が最新の汚染防御技術の製品の製造、研究開発、使用推進を行うのを奨励している。   As a result, Taiwan, Europe, Japan, the United States, and other advanced countries all have strict exhaust gas standards (for example, US standard BIN5 and European standard EURO6), nitrogen oxides, carbon monoxide, and hydrocarbon compounds. Standards are set for the emission of exhaust gases such as particulate matter, etc., thereby controlling and reducing the emission of harmful gases, and contractors promote the manufacture, research and development, and use of the latest pollution control technology products. Is encouraged.

たとえば、特許文献1には、一種の窒素酸化物を単独で除去する装置が記載され、それは電気化学触媒還元反応を利用し、5酸化2バナジウム(vanadium pentaoxide,V2O5)触媒で窒素酸化物を窒素ガスとする反応を補助する。しかし、上述の装置は余分に電源供給を行って、この装置中の電気化学電池を動作させなければならず、このため、エネルギーを消費し且つ排ガス中の多種類の有害危害を同時に除去する目標を達成できない。   For example, Patent Document 1 describes an apparatus for removing a kind of nitrogen oxide alone, which uses an electrochemical catalytic reduction reaction, and converts nitrogen oxide to nitrogen with a vanadium pentoxide (V2O5) catalyst. Assists the reaction with gas. However, the above-mentioned device has to supply extra power and operate the electrochemical cell in this device, so that the target is to consume energy and remove many kinds of harmful hazards in the exhaust gas at the same time Cannot be achieved.

ゆえに、特許文献2には、一種の、排ガス排出をコントロールする電気触媒管が開示され、該電気触媒管はスタックされてハニカム状構造を形成し、先進のハニカム式電気化学触媒変換器を形成し、排ガス中の窒素酸化物、一酸化炭素、炭素水素化合物及び粒子状物質等の浄化に使用できる。そのうち、該窒素酸化物は分解されて窒素ガスと酸素ガスとされ、一酸化炭素、炭素化合物及び粒子状物質は酸化されて二酸化炭素と水となる。これにより、該電気触媒管は余分のエネルギー及び還元性気体を消費せずに、多種類の汚染物質を浄化できる。   Therefore, Patent Document 2 discloses a kind of electrocatalyst tube that controls exhaust gas emission, and the electrocatalyst tube is stacked to form a honeycomb-like structure to form an advanced honeycomb electrochemical catalyst converter. It can be used to purify nitrogen oxides, carbon monoxide, carbon hydrogen compounds and particulate matter in exhaust gas. Of these, the nitrogen oxides are decomposed into nitrogen gas and oxygen gas, and the carbon monoxide, carbon compound and particulate matter are oxidized into carbon dioxide and water. Thereby, the electrocatalyst tube can purify many kinds of pollutants without consuming excess energy and reducing gas.

しかし、上述のハニカム式電気化学触媒変換器は、該電気触媒管を形成するためにその半分のチャネルは密封されなければならず、このため既存の車両のハニカム式触媒変換器と比較すると、反応領域が減るだけでなく、製造コストが増加し、このため、なおも改善の余地を有している。   However, the above-mentioned honeycomb electrochemical catalyst converter requires that half of the channels be sealed in order to form the electrocatalyst tube. Not only does the area decrease, but the manufacturing costs increase, so there is still room for improvement.

米国特許公告第5401372号明細書US Patent Publication No. 5401372 米国特許出願第13362247号明細書US Patent Application No. 13362247

本発明の主要な目的は、周知のハニカム式電気化学触媒変換器が、比較的小さい反応領域及び比較的高い製造コストを有する問題を解決することにある。   The main object of the present invention is to solve the problem that the known honeycomb electrochemical catalytic converter has a relatively small reaction area and a relatively high production cost.

上述の目的を達成するため、本発明は排ガス排出をコントロールする電気触媒ハニカムを提供し、それは、ハニカム構造体、固体酸化物層及び陰極層を包含する。該ハニカム構造体は陽極、複数の気流チャネル及びケーシングを包含し、該陽極は該ハニカム構造体の骨格を形成し、第1多孔性材料で形成され、並びに還元性環境を有し、該気流チャネルは該骨格内に形成されて該富酸素燃焼排ガスを流通させ、該ケーシングは該陽極の一つの外表面を被覆し、並びに第1緻密マイクロ構造とされる。該固体酸化物層は該陽極の、該外表面と反対の内表面に付着し、第2緻密マイクロ構造とされ、並びに該気流チャネルに面する管壁を具え、且つ該固体酸化物層は該ケーシングと接合されて該陽極を密封する。該陰極層は該管壁上に付着し、該固体酸化物層は該陽極と該陰極層の間に位置し、該陰極層は第2多孔性材料で形成され、並びに酸化性環境を有する。   To achieve the above objective, the present invention provides an electrocatalytic honeycomb for controlling exhaust gas emissions, which includes a honeycomb structure, a solid oxide layer and a cathode layer. The honeycomb structure includes an anode, a plurality of air flow channels and a casing, the anode forming a skeleton of the honeycomb structure, formed of a first porous material, and having a reducing environment, the air flow channel Is formed in the skeleton to circulate the oxygen-rich combustion exhaust gas, and the casing covers one outer surface of the anode and has a first dense microstructure. The solid oxide layer adheres to the inner surface of the anode opposite the outer surface, has a second dense microstructure, and includes a tube wall facing the air flow channel, and the solid oxide layer comprises the Joined to the casing to seal the anode. The cathode layer is deposited on the tube wall, the solid oxide layer is located between the anode and the cathode layer, the cathode layer is formed of a second porous material and has an oxidizing environment.

そのうち、該還元性環境と該酸化性環境は該陽極と該陰極層の間に起電力を発生させ、該富酸素燃焼排ガス中の窒素酸化物を該陰極層での分解反応を促進し、窒素ガスと酸素ガスを生成させる。   Among these, the reducing environment and the oxidizing environment generate an electromotive force between the anode and the cathode layer, promote the decomposition reaction of nitrogen oxides in the oxygen-rich combustion exhaust gas at the cathode layer, Gas and oxygen gas are generated.

総合すると、本発明中、該電気触媒ハニカムの全ての該気流チャネルはいずれも該富酸素燃焼排ガスの反応に用いられ、且つ該電気触媒ハニカムは周知のハニカム式電気化学触媒変換器よりも製作が容易であり、これにより、本発明は周知のハニカム式電気化学触媒変換器に較べて、以下の長所を有する。
1.比較的大きな反応領域を有する。
2.比較的低いコストで製造できる。
Overall, in the present invention, all the air flow channels of the electrocatalyst honeycomb are used for the reaction of the oxygen-rich combustion exhaust gas, and the electrocatalyst honeycomb is manufactured more than the known honeycomb type electrochemical catalyst converter. As a result, the present invention has the following advantages over the known honeycomb type electrochemical catalyst converter.
1. It has a relatively large reaction area.
2. It can be manufactured at a relatively low cost.

本発明の第1実施例の外観立体図である。1 is an external perspective view of a first embodiment of the present invention. 本発明の第1実施例の断面図である。It is sectional drawing of 1st Example of this invention. 本発明の第1実施例の断面局部拡大図である。It is a cross-sectional local enlarged view of 1st Example of this invention. 本発明の第2実施例の断面局部拡大図である。It is a section local enlarged view of the 2nd example of the present invention. 本発明の第3実施例の正面図である。It is a front view of 3rd Example of this invention.

以下に本発明の技術内容、構造特徴、達成する目的及び作用効果について、以下に例を挙げ並びに図面を組み合わせて詳細に説明する。   The technical contents, structural features, objects to be achieved, and operational effects of the present invention will be described in detail below with reference to examples and drawings.

図1から図3を参照されたい。図1は本発明の第1実施例の外観立体図である。図2は本発明の第1実施例の断面図である。図3は本発明の第1実施例の断面局部拡大図である。本発明は一種の排ガス排出をコントロールする電気触媒ハニカムであり、富酸素燃焼排ガスを浄化するのに用いられ、該富酸素燃焼排ガスは、窒素酸化物(NOx)、一酸化炭素(CO)、炭素水素化合物(hydrocarbons,HCs)、及び粒子状物質(particulate matter,PM)を含み得る。   Please refer to FIG. 1 to FIG. FIG. 1 is an external perspective view of a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the first embodiment of the present invention. FIG. 3 is a partially enlarged cross-sectional view of the first embodiment of the present invention. The present invention is an electrocatalyst honeycomb for controlling exhaust gas emission, which is used to purify oxygen-rich combustion exhaust gas, and the oxygen-rich combustion exhaust gas contains nitrogen oxide (NOx), carbon monoxide (CO), carbon Hydrogen compounds (HCs) and particulate matter (PM) may be included.

該電気触媒ハニカムは、ハニカム構造体(10)、固体酸化物層(20)及び陰極層(30)を包含する。該ハニカム構造体(10)は陽極(11)、複数の気流チャネル(12)、及びケーシング(13)を包含し、該陽極(11)は該ハニカム構造体(10)の骨格を形成する。この実施例では、該陽極(11)は第1多孔性材料で形成され、大量の孔を有し、該陽極(11)の材料は、金属及び蛍石型構造金属酸化物で構成されたセルメット(cermet)、蛍石型構造金属酸化物(fluorite metal oxides)、ペロブスカイト型金属酸化物(perovskite metal oxides)、金属を添加した蛍石型構造金属酸化物或いは金属を添加したペロブスカイト型金属酸化物、たとえば、ニッケル(Ni)及びイットリア安定化ジルコニア(yttria−stabilized zirconia,YSZ)セルメット(Ni−YSZ cermet)とされる。   The electrocatalyst honeycomb includes a honeycomb structure (10), a solid oxide layer (20), and a cathode layer (30). The honeycomb structure (10) includes an anode (11), a plurality of air flow channels (12), and a casing (13), and the anode (11) forms a skeleton of the honeycomb structure (10). In this embodiment, the anode (11) is made of a first porous material and has a large number of pores, and the material of the anode (11) is made of a metal and a fluorite-type structural metal oxide. (Cermet), fluorite-type metal oxides, perovskite-metal oxides, fluorite-type metal oxides added with metal or perovskite-type metal oxides added with metal, For example, nickel (Ni) and yttria-stabilized zirconia (YSZ) cermet (Ni-YSZ cermet).

該気流チャネル(12)は該骨格内に形成され、該ハニカム構造体(10)の対応する両端を貫通し、該富酸素燃焼排ガスの流通に供される。   The air flow channel (12) is formed in the skeleton, penetrates through the corresponding both ends of the honeycomb structure (10), and is used for circulation of the oxygen-rich combustion exhaust gas.

該ケーシング(13)は該陽極(11)の一つの外表面(111)を被覆し、並びに第1緻密マイクロ構造とされ、その材料は金属、セラミック(ceramics)或いはガラス、たとえば、ステンレススチール、酸化アルミニウム、石英ガラスとされる。   The casing (13) covers one outer surface (111) of the anode (11) and has a first dense microstructure, which is made of metal, ceramics or glass such as stainless steel, oxidized Aluminum and quartz glass.

該固体酸化物層(20)は該陽極(11)の、該外表面(111)の反対の内表面(112)に付着し、並びに該ケーシング(13)と該陽極(11)上の対応する2端で接合され、完全に該陽極(11)を密封し、該陽極(11)内を還元性環境となし、該固体酸化物層(20)は並びに該気流チャネル(12)に面した管壁(21)を具え、且つ該固体酸化物層(20)の構造は、第2緻密マイクロ構造とされ、並びに酸素イオン伝導性を有し、その材料は、蛍石型構造金属酸化物或いはペロブスカイト型金属酸化物とされる。たとえば、蛍石型構造金属酸化物は、イットリア安定化ジルコニア(yttria−stabilized zirconia,YSZ)、安定化ジルコニア、蛍石型構造のガドリニアドープ酸化セリウム(gadolinia−doped ceria,GDC)、ドープ酸化セリウム、ペロブスカイト型のストロンチウム及びマグネシウムドープガリウム酸ランタン(strontium/magnesium−doped lanthanum gallate,LSGM)、ドープガリウム酸ランタンとされる。   The solid oxide layer (20) adheres to the inner surface (112) of the anode (11) opposite the outer surface (111), and correspondingly on the casing (13) and the anode (11). A tube joined at two ends, completely sealing the anode (11), creating a reducing environment in the anode (11), the solid oxide layer (20) as well as a tube facing the air flow channel (12) The solid oxide layer (20) has a wall (21), and the structure of the solid oxide layer (20) is a second dense microstructure, and has oxygen ion conductivity, and the material is a fluorite structure metal oxide or perovskite. Type metal oxide. For example, fluorite-type structural metal oxides include yttria-stabilized zirconia (YSZ), stabilized zirconia, gadolinia-doped cerium oxide (gadolinia-doped ceria, GDC), doped cerium oxide, Perovskite-type strontium and magnesium-doped lanthanum gallate (LSGM) and doped lanthanum gallate.

該陰極層(30)は該管壁(21)に付着し、該固体酸化物層(20)を該陽極(11)と該陰極層(30)の間に位置させ、この実施例では、該陰極層(30)は第2多孔性材料で形成され、大量の孔を有し、たとえば、ペロブスカイト型金属酸化物、蛍石型構造金属酸化物、金属を添加したペロブスカイト型金属酸化物ある有為は金属を添加した蛍石型構造金属酸化物、たとえば、ペロブスカイト型のランタンストロンチウムコバルト銅酸化物、ランタンストロンチウムマンガン銅酸化物、ランタンストロンチウムコバルト銅酸化物及びガドリニアドープ酸化セリウム(gadolinia−doped ceria,GDC)の組み合わせ、ランタンストロンチウムマンガン銅酸化物及びガドリニアドープ酸化セリウムの組み合わせ、銀を添加したランタンストロンチウムコバルト銅酸化物、銀を添加したランタンストロンチウムマンガン銅酸化物、銀を添加したランタンストロンチウムコバルト銅酸化物及びガドリニアドープ酸化セリウムの組み合わせ、銀を添加したランタンストロンチウムマンガン銅酸化物及びガドリニアドープ酸化セリウムの組み合わせとされる。   The cathode layer (30) is attached to the tube wall (21), and the solid oxide layer (20) is positioned between the anode (11) and the cathode layer (30). The cathode layer (30) is formed of the second porous material and has a large amount of pores, for example, a perovskite type metal oxide, a fluorite type structure metal oxide, and a perovskite type metal oxide added with a metal. Is a metal-added fluorite-type structure metal oxide, for example, perovskite-type lanthanum strontium cobalt copper oxide, lanthanum strontium manganese copper oxide, lanthanum strontium cobalt copper oxide and gadolinia-doped ceria, GDC ), A combination of lanthanum strontium manganese copper oxide and gadolinia-doped cerium oxide, Lanthanum strontium cobalt copper oxide with addition of silver, lanthanum strontium manganese copper oxide with addition of silver, combination of lanthanum strontium cobalt copper oxide with addition of silver and gadolinia-doped cerium oxide, lanthanum strontium manganese copper oxide with addition of silver and It is a combination of gadolinia-doped cerium oxide.

本発明中、該陽極(11)は初期製作時に金属酸化物を包含し、該金属酸化物は該陽極(11)を製造する時に、まず還元性気体を使用して処理されて金属に還元され、たとえば、酸化ニッケルが還元されてニッケルとされる。或いは、該金属酸化物は還元されて酸素欠乏の金属酸化物(oxygen−deficient metal oxide)とされ、該陽極(11)の該還元性環境を形成する。   In the present invention, the anode (11) includes a metal oxide during initial fabrication, and the metal oxide is first treated with a reducing gas and reduced to a metal when the anode (11) is manufactured. For example, nickel oxide is reduced to nickel. Alternatively, the metal oxide is reduced to an oxygen-deficient metal oxide to form the reducing environment of the anode (11).

このほか、該固体酸化物層(20)が該ケーシング(13)に接合されて該陽極(11)を完全に密封する前に、先に一酸化炭素或いは炭素水素化合物を該陽極(11)に添加してもよく、たとえば、該陽極(11)に細孔拡散(pore diffusion)によりメタン、エタン、プロピレン、或いはプロパン等を通入し、該陽極(11)の孔に付着した炭素質種を形成し、これにより該陽極(11)の該還元性環境の形成を強化する。   In addition, before the solid oxide layer (20) is joined to the casing (13) to completely seal the anode (11), carbon monoxide or a carbon hydrogen compound is first applied to the anode (11). For example, methane, ethane, propylene, propane or the like is introduced into the anode (11) by pore diffusion, and carbonaceous species attached to the pores of the anode (11) are added. Forming, thereby enhancing the formation of the reducing environment of the anode (11).

また、このほかに、完全に該陽極(11)を密封する前に、該陽極(11)の孔中の気体を抽出し、これにより、その気体圧力を大気圧以下となすか真空となし、これにより、ハニカム構造体(10)の排ガス処理操作における熱膨張冷収縮により発生し得る構造の傷害を減少できる。   In addition to this, before the anode (11) is completely sealed, the gas in the hole of the anode (11) is extracted, whereby the gas pressure is reduced to atmospheric pressure or less, Thereby, the damage of the structure which may be generated by the thermal expansion / cooling shrinkage in the exhaust gas treatment operation of the honeycomb structure (10) can be reduced.

図4を参照されたい。それは本発明の第2実施例の断面局部拡大図である。第2実施例中、第1実施例と比較すると、その特徴は、該電気触媒ハニカムがさらに界面層(40)を包含し、該界面層(40)は該陰極層(30)と該固体酸化物層(20)の間に設置され、これにより該陰極層(30)と該固体酸化物層(20)の連接を促進することにある。該界面層(40)の材料は、蛍石型構造金属酸化物、或いはペロブスカイト型金属酸化物、たとえば蛍石型構造のガドリニアドープ酸化セリウムとされ得る。   Please refer to FIG. It is a cross-sectional local enlarged view of the second embodiment of the present invention. In the second embodiment, compared with the first embodiment, the feature is that the electrocatalyst honeycomb further includes an interface layer (40), and the interface layer (40) includes the cathode layer (30) and the solid oxide. It is provided between the physical layers (20), thereby promoting the connection between the cathode layer (30) and the solid oxide layer (20). The material of the interface layer (40) can be a fluorite-type structure metal oxide or a perovskite-type metal oxide, such as gadolinia-doped cerium oxide with a fluorite structure.

さらに、第2実施例中、該電気触媒ハニカムはさらに酸化触媒層(50)を包含し、これにより、該陰極層(30)で酸化されにくい該富酸素燃焼排ガスの成分を酸化させ、該酸化触媒層(50)は該陰極層(30)は接続され、並びに該陰極層(30)上に付着し、該酸化触媒層(50)の材料は、金属、合金、金属酸化物、蛍石型構造金属酸化物、ペロブスカイト型金属酸化物、たとえば、パラジウム、蛍石型構造のガドリニアドープ酸化セリウム、及びランタンストロンチウムマンガン酸化物(lanthanum−strontium−manganese oxide)等とされる。   Further, in the second embodiment, the electrocatalyst honeycomb further includes an oxidation catalyst layer (50), which oxidizes components of the oxygen-rich combustion exhaust gas that are not easily oxidized by the cathode layer (30). The catalyst layer (50) is connected to the cathode layer (30) and adhered onto the cathode layer (30), and the material of the oxidation catalyst layer (50) is metal, alloy, metal oxide, fluorite type Structural metal oxides, perovskite-type metal oxides such as palladium, gadolinia-doped cerium oxide having a fluorite-type structure, and lanthanum-strontium-manganese oxide.

続いて、本発明の排ガス浄化の作用過程について説明する。まず、該電気触媒ハニカムを排ガス環境中に置く。該排ガスは該富酸素燃焼排ガスとされ、酸化性環境を有するか、或いは二次空気を加入してそれをさらに富酸素とする。該電気触媒ハニカムの作業温度は常温から800℃とし、該富酸素燃焼排ガスは窒素酸化物、一酸化炭素或いは炭素水素化合物及び粒子状物質を主要成分とする。本発明は該富酸素燃焼排ガスの浄化反応面に対して、窒素酸化物の除去及び一酸化炭素或いは炭素水素化合物及び粒子状物質の除去の二つの部分に分けて進行する。   Next, the process of exhaust gas purification according to the present invention will be described. First, the electrocatalyst honeycomb is placed in an exhaust gas environment. The exhaust gas is regarded as the oxygen-rich combustion exhaust gas and has an oxidizing environment, or secondary air is added to make it further oxygen-rich. The working temperature of the electrocatalyst honeycomb is from room temperature to 800 ° C., and the oxygen-rich combustion exhaust gas contains nitrogen oxide, carbon monoxide or carbon hydrogen compound and particulate matter as main components. The present invention proceeds to the purification reaction surface of the oxygen-rich combustion exhaust gas in two parts: removal of nitrogen oxides and removal of carbon monoxide or carbon hydrogen compounds and particulate matter.

窒素酸化物除去方面では、窒素酸化物は主に一酸化窒素(NO)と二酸化窒素(NO2)とされ、一酸化窒素は陰極層(30)で分解反応を発生して窒素ガスと酸素ガスを発生し、その反応式は以下の一般式(1)とされる。   In terms of removing nitrogen oxides, nitrogen oxides are mainly made of nitric oxide (NO) and nitrogen dioxide (NO2), and nitrogen monoxide generates a decomposition reaction in the cathode layer (30) to generate nitrogen gas and oxygen gas. The reaction formula is represented by the following general formula (1).

Figure 0005711796
Figure 0005711796

二酸化窒素は陰極層(30)で分解反応を発生して一酸化窒素を発生し、その反応式は以下の一般式(2)とされる。   Nitrogen dioxide generates a decomposition reaction in the cathode layer (30) to generate nitric oxide, and the reaction formula is represented by the following general formula (2).

Figure 0005711796
Figure 0005711796

その一酸化窒素はさらに、陰極層(30)で分解反応を発生し窒素ガスと酸素ガスを発生する。   The nitric oxide further undergoes a decomposition reaction in the cathode layer (30) to generate nitrogen gas and oxygen gas.

該陽極(11)の該還元性環境及び該陰極層(30)の該酸化性環境により、該陽極(11)と該陰極層(30)で異なる酸素分圧が発生し、これにより該陰極層(30)と該陽極(11)の間に起電力(electromotive force,emf)が発生し、該富酸素燃焼排ガス中の窒素酸化物の陰極層(30)での分解反応が促進され、窒素ガスと酸素ガスを形成し、該起電力の発生は以下の原理による。   Due to the reducing environment of the anode (11) and the oxidizing environment of the cathode layer (30), different partial pressures of oxygen are generated in the anode (11) and the cathode layer (30), thereby the cathode layer. An electromotive force (emf) is generated between the anode (11) and the anode (11), the decomposition reaction of the nitrogen oxide in the oxygen-rich combustion exhaust gas at the cathode layer (30) is promoted, and nitrogen gas Oxygen gas is formed and the electromotive force is generated according to the following principle.

Figure 0005711796
そのうち、Rは気体定数であり、Tは絶対温度、Fはファラデー定数(Faradic constant)、PO2は酸素分圧とされる。該金属或いは該酸素欠乏の金属酸化物で形成される該陽極(11)、或いは該炭素質種が付着した該陽極(11)は、還元性化合物とされ、相当に低い酸素分圧の環境を陽極(Anode)側にもたらし、これにより、比較的大きな起電力を発生する。異なる還元性化合物は陽極側で異なる酸素分圧をもたらし得て、異なる起電力を発生し得る。陰極(Cathode)側の異なる酸素濃度も異なる酸素分圧値に対応し、異なる起電力を発生し得て、すなわち、陰極側の該富酸素燃焼排ガス中の酸素含有量が高くなるほど、起電力は大きくなり、起電力が大きいほど、本発明の窒素酸化物は電気化学促進(electrochemical promotion)分解の反応速度が速くなる。これにより、該富酸素燃焼排ガスは酸化性環境で起電力を発生できるが、該二次空気を添加して該富酸素燃焼排ガスに進入させることで、さらに大きな起電力をもたらし得る。一定温度範囲内で、分解反応速度は作業温度が低くなるほど大きくなり、常温の分解反応は比較的高い温度のときと同様に有効である。
Figure 0005711796
Among them, R is a gas constant, T is an absolute temperature, F is a Faraday constant, and PO2 is an oxygen partial pressure. The anode (11) formed of the metal or the oxygen-deficient metal oxide, or the anode (11) to which the carbonaceous species is attached, is a reducing compound, and has a considerably low oxygen partial pressure environment. This is provided on the anode side, thereby generating a relatively large electromotive force. Different reducible compounds can result in different oxygen partial pressures on the anode side and generate different electromotive forces. Different oxygen concentrations on the cathode side also correspond to different oxygen partial pressure values and can generate different electromotive forces, that is, the higher the oxygen content in the oxygen-rich combustion exhaust gas on the cathode side, the more the electromotive force The larger the electromotive force, the higher the reaction rate of the electrochemical promotion decomposition of the nitrogen oxide of the present invention. Thereby, although the oxygen-rich combustion exhaust gas can generate an electromotive force in an oxidizing environment, adding the secondary air to enter the oxygen-rich combustion exhaust gas can bring about a larger electromotive force. Within a certain temperature range, the decomposition reaction rate increases as the working temperature decreases, and the decomposition reaction at normal temperature is as effective as at a relatively high temperature.

該富酸素燃焼排ガス中より一酸化炭素、炭素水素化合物と粒子状物質を除去する反応方面では、該富酸素燃焼排ガスは富酸素の状態であるか、或いは二次空気が加えられてそれがさらに富酸素とされるため、該陰極層(30)及び該酸化触媒層(50)の触媒反応による酸化で無害な気体が形成され、そのうち、該富酸素燃焼排ガス中の一酸化炭素は酸化されて二酸化炭素とされ、炭素水素化合物と粒子状物質(Cを含有する物質)は酸化されて二酸化炭素と水とされ、その反応式は以下の一般式(4)から(6)に示されるとおりである。   In the reaction direction in which carbon monoxide, carbon hydrogen compounds and particulate matter are removed from the oxygen-rich combustion exhaust gas, the oxygen-rich combustion exhaust gas is in an oxygen-rich state, or secondary air is added to the reaction. Because it is oxygen-rich, harmless gas is formed by oxidation of the cathode layer (30) and the oxidation catalyst layer (50), and carbon monoxide in the oxygen-rich combustion exhaust gas is oxidized. Carbon dioxide, carbon hydrogen compound and particulate matter (substance containing C) are oxidized to carbon dioxide and water, and their reaction formulas are as shown in the following general formulas (4) to (6). is there.

Figure 0005711796
Figure 0005711796

Figure 0005711796
Figure 0005711796

Figure 0005711796
Figure 0005711796

これにより、本発明の第1実施例に対しては、主に電気化学促進分解反応により窒素酸化物の除去を行ない、並びに酸化反応により一酸化炭素、炭素水素化合物と粒子状物質を除去し、有効に該富酸素燃焼排ガス中の有害成分を除去する。   Thereby, for the first embodiment of the present invention, nitrogen oxide is mainly removed by electrochemically promoted decomposition reaction, and carbon monoxide, carbon hydrogen compound and particulate matter are removed by oxidation reaction, Effectively remove harmful components in the oxygen-rich combustion exhaust gas.

図5を参照されたい。それは本発明の第3実施例の正面図である。この実施例中、該ハニカム構造体(10)の横断面外観は六角形を形成し、該気流チャネル(12)の横断面外観は円形を形成するが、これに限定されるわけではない。該ハニカム構造体(10)と該気流チャネル(12)の横断面形状は、使用の必要と形式により変化し得る。   Please refer to FIG. It is a front view of the third embodiment of the present invention. In this embodiment, the cross-sectional appearance of the honeycomb structure (10) forms a hexagon, and the cross-sectional appearance of the air flow channel (12) forms a circle, but is not limited thereto. The cross-sectional shape of the honeycomb structure (10) and the air flow channel (12) can vary depending on the need and type of use.

総合すると、本発明はそれぞれ該陽極側と該陰極側の間に異なる酸素分圧を形成し、該起電力を発生して該触媒分解反応を促進し、構造が簡単であるのみならず、生産コストを減らせ、さらに、本発明は最小の体積で浄化の効果を達成でき、たとえば、車両エンジン排気管中に設置され、エンジンの排出する該富酸素燃焼排ガス中の有害物質を除去し、空気汚染を減らせる。最後に、本発明は周知のハニカム式電気化学触媒変換器と比較すると、全ての該気流チャネルがいずれも該富酸素燃焼排ガスとの反応進行に使用され、比較的大きな反応領域を有し、及び比較的良好な反応効率を有する。これにより本発明は進歩性を有し特許の要件を満たし、ここに特許出願をいたす次第です。   In summary, the present invention forms different oxygen partial pressures between the anode side and the cathode side, generates the electromotive force and promotes the catalytic decomposition reaction, and has a simple structure as well as production. Further, the present invention can achieve a purification effect with a minimum volume. For example, it is installed in a vehicle engine exhaust pipe and removes harmful substances in the oxygen-rich combustion exhaust gas discharged from the engine. Can be reduced. Finally, when compared to the well-known honeycomb electrochemical catalytic converter, the present invention uses all the air flow channels for the progress of the reaction with the oxygen-rich flue gas, has a relatively large reaction area, and Has a relatively good reaction efficiency. As a result, the present invention has an inventive step, meets the requirements of the patent, and it is up to the patent application here.

以上は本発明の好ましい実施例の説明に過ぎず、並びに本発明を限定するものではなく、本発明に提示の精神より逸脱せずに完成されるその他の同等の効果の修飾或いは置換は、いずれも本発明の権利請求範囲内に属する。   The foregoing is only a description of the preferred embodiment of the present invention, and is not intended to limit the present invention. Other equivalent effect modifications or substitutions that may be accomplished without departing from the spirit of the present invention are not Are also within the scope of the claims of the present invention.

(10)ハニカム構造体
(11)陽極
(111)外表面
(112)内表面
(12)気流チャネル
(13)ケーシング
(20)固体酸化物層
(21)管壁
(30)陰極層
(40)界面層
(50)酸化触媒層
(10) honeycomb structure (11) anode (111) outer surface (112) inner surface (12) air flow channel (13) casing (20) solid oxide layer (21) tube wall (30) cathode layer (40) interface Layer (50) oxidation catalyst layer

Claims (9)

富酸素燃焼排ガスを浄化するのに用いられる排ガス排出をコントロールする電気触媒ハニカムにおいて、
ハニカム構造体(10)であって、該ハニカム構造体(10)を形成する骨格の陽極(11)、該骨格内に形成されて該富酸素燃焼排ガスを流通させる複数の気流チャネル(12)、及び該陽極(11)の一つの外表面(111)を被覆するケーシング(13)を包含し、該陽極(11)は、第1多孔性材料で構成され、並びに還元性環境を有し、該ケーシング(13)は第1気密材料とされ、各該気流チャネルは、管径幅を有し、且つ隣接するいずれか二つの該気流チャネルの間の距離は、該管径幅より小さい、上記ハニカム構造体(10)と、
該陽極(11)の該外表面(111)と反対の内表面(112)に付着する固体酸化物層(20)であり、該固体酸化物層(20)は第2気密材料とされ、並びに該気流チャネル(12)に対向する管壁(21)を具え、且つ該固体酸化物層(20)は該ケーシング(13)に接合されて該陽極(11)を密封する、上記固体酸化物層(20)と、
該管壁(21)に付着する陰極層(30)であって、該固体酸化物層(20)は該陽極(11)と該陰極層(30)の間に位置し、該陰極層(30)は第2多孔性材料で構成され、並びに酸化性環境を有する、上記陰極層(30)と、
を包含し、そのうち該還元性環境と該酸化性環境は該陽極(11)及び該陰極層(30)の間に起電力を発生し、該富酸素燃焼排ガス中の窒素酸化物の該陰極層(30)における分解反応を促進し、窒素ガス及び酸素ガスを生成させることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。
In the electrocatalyst honeycomb that controls the exhaust gas emission used to purify the oxygen-rich combustion exhaust gas,
A honeycomb structure (10), a skeleton anode (11) forming the honeycomb structure (10), a plurality of air flow channels (12) formed in the skeleton and circulating the oxygen-rich combustion exhaust gas, And a casing (13) covering one outer surface (111) of the anode (11), the anode (11) being composed of a first porous material and having a reducing environment, The honeycomb having the casing (13) as a first hermetic material, each air flow channel having a tube diameter width, and a distance between any two adjacent air flow channels being smaller than the tube diameter width. A structure (10);
A solid oxide layer (20) attached to an inner surface (112) opposite to the outer surface (111) of the anode (11), the solid oxide layer (20) being a second hermetic material; and The solid oxide layer comprising a tube wall (21) facing the air flow channel (12) and the solid oxide layer (20) being joined to the casing (13) to seal the anode (11) (20) and
A cathode layer (30) attached to the tube wall (21), wherein the solid oxide layer (20) is located between the anode (11) and the cathode layer (30), and the cathode layer (30 ) Is composed of the second porous material and has an oxidizing environment, the cathode layer (30),
Wherein the reducing environment and the oxidizing environment generate an electromotive force between the anode (11) and the cathode layer (30), and the cathode layer of nitrogen oxides in the oxygen-rich combustion exhaust gas. An electrocatalyst honeycomb for controlling exhaust gas emission, wherein the decomposition reaction in (30) is promoted to generate nitrogen gas and oxygen gas.
請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該陽極(11)の材料は、金属及び蛍石型構造金属酸化物で組成されたセルメット、ペロブスカイト型金属酸化物、蛍石型構造金属酸化物、金属を添加したペロブスカイト型金属酸化物、金属を添加した蛍石構造金属酸化物及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, wherein the material of the anode (11) is a cermet, a perovskite type metal oxide, a fluorite type structural metal composed of a metal and a fluorite type structural metal oxide. An electrocatalyst honeycomb for controlling exhaust gas emission, which is freely selected from the group consisting of oxides, perovskite-type metal oxides added with metals, fluorite-structured metal oxides added with metals, and combinations thereof. 請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該ケーシング(13)の材料は、金属、セラミック、ガラス及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, wherein the material of the casing (13) is freely selected from the group consisting of metal, ceramic, glass and a combination thereof. Electrocatalytic honeycomb to be controlled. 請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該固体酸化物層(20)の材料は、蛍石型構造金属酸化物、ペロブスカイト型金属酸化物及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, wherein the material of the solid oxide layer (20) is freely selected from the group consisting of a fluorite-type structure metal oxide, a perovskite-type metal oxide, and a combination thereof. An electrocatalyst honeycomb that controls exhaust gas emission. 請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該陰極層(30)の材料は、ペロブスカイト型金属酸化物、蛍石型構造金属酸化物、金属を添加したペロブスカイト型金属酸化物、金属を添加した蛍石型構造金属酸化物及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, wherein the material of the cathode layer (30) is a perovskite type metal oxide, a fluorite type structure metal oxide, a perovskite type metal oxide added with a metal, a metal An electrocatalyst honeycomb for controlling exhaust gas emission, which is freely selected from the group consisting of a fluorite-type structural metal oxide to which is added and a combination thereof. 請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該陰極層(30)及び該固体酸化物層(20)の間に設置されて該陰極層(30)及び該固体酸化物層(20)の連接を促進する界面層(40)をさらに包含することを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, wherein the cathode layer (30) and the solid oxide layer (20) are disposed between the cathode layer (30) and the solid oxide layer (20). An electrocatalyst honeycomb for controlling exhaust gas emission, further comprising an interface layer (40) that promotes connection of 請求項6記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該界面層(40)の材料は、蛍石型構造金属酸化物、ペロブスカイト型金属酸化物及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 6, wherein the material of the interface layer (40) is freely selected from the group consisting of a fluorite type structure metal oxide, a perovskite type metal oxide and a combination thereof. An electrocatalyst honeycomb that controls exhaust gas emission. 請求項1記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該陰極層(30)上に付着した酸化触媒層(50)をさらに包含することを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 1, further comprising an oxidation catalyst layer (50) attached on the cathode layer (30). 請求項8記載の排ガス排出をコントロールする電気触媒ハニカムにおいて、該酸化触媒層(50)の材料は、金属、合金、蛍石型構造金属酸化物、ペロブスカイト型金属酸化物及びその組み合わせからなる群より自由に選択されることを特徴とする、排ガス排出をコントロールする電気触媒ハニカム。The electrocatalyst honeycomb for controlling exhaust gas emission according to claim 8, wherein the material of the oxidation catalyst layer (50) is selected from the group consisting of metals, alloys, fluorite-type structural metal oxides, perovskite-type metal oxides, and combinations thereof. An electrocatalyst honeycomb for controlling exhaust gas emission, which is freely selected.
JP2013192053A 2012-09-24 2013-09-17 Electrocatalytic honeycomb for controlling exhaust gas emissions Active JP5711796B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101135008A TWI474859B (en) 2012-09-24 2012-09-24 An electro-catalytic honeycomb for controlling exhaust emissions
TW101135008 2012-09-24

Publications (2)

Publication Number Publication Date
JP2014066243A JP2014066243A (en) 2014-04-17
JP5711796B2 true JP5711796B2 (en) 2015-05-07

Family

ID=50382824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013192053A Active JP5711796B2 (en) 2012-09-24 2013-09-17 Electrocatalytic honeycomb for controlling exhaust gas emissions

Country Status (6)

Country Link
JP (1) JP5711796B2 (en)
KR (1) KR101562289B1 (en)
BR (1) BR102013024179A2 (en)
CA (1) CA2826434C (en)
IN (1) IN2013MU02910A (en)
TW (1) TWI474859B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549742B (en) * 2014-05-02 2016-09-21 Ta Jen Huang Method and apparatus for treating sulfur oxides from honeycomb with electric catalyst and recovering sulfur
TWI548780B (en) * 2014-07-02 2016-09-11 Huang Ta Yung Electrochemical dual battery panels and features for
CN106765538A (en) * 2015-11-20 2017-05-31 张家铭 Metal solvent sterilization device
TWI572406B (en) * 2016-07-05 2017-03-01 An electric catalyst honeycomb for controlling exhaust emission and its manufacturing method
JP7156111B2 (en) * 2019-03-13 2022-10-19 トヨタ自動車株式会社 HONEYCOMB FILTER AND METHOD FOR MANUFACTURING HONEYCOMB FILTER

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215650B2 (en) * 1996-05-23 2001-10-09 日本碍子株式会社 Electrochemical cell, method for producing the same, and electrochemical device
JP3668349B2 (en) * 1997-01-08 2005-07-06 日本碍子株式会社 Electrochemical cell substrate, electrochemical cell, and method for producing electrochemical cell substrate
JPH10189024A (en) * 1996-12-20 1998-07-21 Toho Gas Co Ltd Solid electrolyte fuel cell having honeycomb monolithic structure
JP4057823B2 (en) * 2002-03-15 2008-03-05 独立行政法人産業技術総合研究所 Nitrogen oxide purification chemical reactor and nitrogen oxide purification method
WO2006070540A1 (en) * 2004-12-27 2006-07-06 Ibiden Co., Ltd. Ceramic honeycomb structure
WO2006137150A1 (en) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. Honeycomb structure body
JP2011069326A (en) * 2009-09-28 2011-04-07 Dainippon Printing Co Ltd Exhaust gas filter and exhaust gas treatment system using the same
TWI390104B (en) * 2010-03-04 2013-03-21 Nat Univ Tsing Hua Thermally activated electrochemical-catalytic converter for exhaust emission control with power generation
TWI414343B (en) * 2010-10-29 2013-11-11 Nat Univ Tsing Hua An oxy catalyst converter for
CN102485326A (en) * 2010-12-06 2012-06-06 黄大仁 Electrochemical catalyst converter
TWI422422B (en) * 2011-11-09 2014-01-11 Nat Univ Tsing Hua Electrocatalytic converter for exhaust emission control

Also Published As

Publication number Publication date
TWI474859B (en) 2015-03-01
BR102013024179A2 (en) 2015-06-23
CA2826434C (en) 2015-09-01
JP2014066243A (en) 2014-04-17
KR101562289B1 (en) 2015-10-21
TW201412382A (en) 2014-04-01
IN2013MU02910A (en) 2015-07-10
CA2826434A1 (en) 2014-03-24
KR20140040006A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5711796B2 (en) Electrocatalytic honeycomb for controlling exhaust gas emissions
US20130112552A1 (en) Electrocatalytic tube of electrochemical-catalytic converter for exhaust emissions control
TWI414343B (en) An oxy catalyst converter for
TWI491794B (en) And a method for producing an exhaust gas purifying reactor in which a plurality of layers are arranged
TWM454870U (en) Multi-layered exhaust gas purifying reactor
JP6169651B2 (en) Electrochemical double cell plate and apparatus for controlling exhaust gas emission
TWI390104B (en) Thermally activated electrochemical-catalytic converter for exhaust emission control with power generation
TWI572406B (en) An electric catalyst honeycomb for controlling exhaust emission and its manufacturing method
US9028764B2 (en) Electro-catalytic honeycomb for exhaust emissions control
EP2724768B1 (en) Electro-catalytic honeycomb for exhaust emissions control
TWI491436B (en) Production method of exhaust gas purifying reactor
CN103768901B (en) Control the electric catalyst honeycomb of toxic emission
TW201829063A (en) Electrocatalyst honeycomb for controlling exhaust emission in which an electromotive force is generated by different oxygen partial pressures between the anode and the cathode layer to perform the decomposition reaction of sulfur oxides or nitrogen oxides in the exhaust gas
KR20110035353A (en) Apparatus for reducing nitrogen oxide of exhaust from lean-burn engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150306

R150 Certificate of patent or registration of utility model

Ref document number: 5711796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250