JP5707684B2 - Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof - Google Patents

Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof Download PDF

Info

Publication number
JP5707684B2
JP5707684B2 JP2009215453A JP2009215453A JP5707684B2 JP 5707684 B2 JP5707684 B2 JP 5707684B2 JP 2009215453 A JP2009215453 A JP 2009215453A JP 2009215453 A JP2009215453 A JP 2009215453A JP 5707684 B2 JP5707684 B2 JP 5707684B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
molecular weight
average molecular
cement
concrete composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009215453A
Other languages
Japanese (ja)
Other versions
JP2011063477A (en
Inventor
佐々木 彰
彰 佐々木
大和 功一郎
功一郎 大和
五十嵐 秀明
秀明 五十嵐
恵子 平泉
恵子 平泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009215453A priority Critical patent/JP5707684B2/en
Publication of JP2011063477A publication Critical patent/JP2011063477A/en
Application granted granted Critical
Publication of JP5707684B2 publication Critical patent/JP5707684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、下水道、温泉地などの硫酸あるいは硫酸塩による腐食が問題となる箇所での耐硫酸性に優れる耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物並びにそれらの硬化体に関する。   The present invention relates to a sulfuric acid resistant mortar composition and a sulfuric acid resistant concrete composition excellent in sulfuric acid resistance in places where corrosion due to sulfuric acid or sulfate such as sewerage and hot springs is a problem, and hardened bodies thereof.

下水道、温泉地等の硫酸もしくは硫酸塩にさらされる箇所においては、従来から、硫酸によるセメント硬化体の腐食が問題となっている。この腐食の問題は、下水道、温泉地等の限定された箇所での問題に留まらず、更に近年、酸性雨による腐食によって、セメントを使用した構築物全体の問題となっている。   In places exposed to sulfuric acid or sulfate such as sewers and hot springs, corrosion of hardened cement by sulfuric acid has been a problem. This problem of corrosion is not limited to limited areas such as sewers and hot springs, and in recent years, it has become a problem of the entire structure using cement due to corrosion by acid rain.

セメント硬化体(モルタルやコンクリート)は硫酸に長期間接触し続けると、難溶性の石膏を形成すると共に、シリカゲルやアルミナゲルを生成する。このシリカゲルやアルミナゲルが溶出して、セメント硬化体が崩れ易くなる。セメント硬化体、特にコンクリートに対する硫酸のこの作用は、当然、酸の濃度に依存する。pHが2以上の場合(硫酸濃度0.1%以下)には、炭酸ガスや低濃度の酸による腐食、又は硫酸塩などの腐食性を示す塩類などによる腐食の場合と同様に、コンクリートを緻密化させること、例えば高性能AE減水剤等の使用により作業性を確保しながら水セメント比を低下させることにより、腐食物質のコンクリート内部への浸透を抑制することができ、これにより耐食性を向上させることができる。しかし硫酸の濃度が高くなるとコンクリートの緻密化のみでは対応が難しい。例えばpHが2より低い場合に水セメント比を低くしてコンクリートを緻密化すると、硫酸によって生成される石膏の結晶成長による膨張圧を緩和する細孔が少なくなり、ひび割れ等を誘発する。このひび割れに硫酸が浸透すると逆にコンクリートの耐食性が悪くなる場合があり、セメント素材自体に硫酸に対する抵抗性を期待することは困難である。   When a hardened cement (mortar or concrete) is kept in contact with sulfuric acid for a long time, it forms hardly soluble gypsum and produces silica gel and alumina gel. The silica gel and alumina gel are eluted, and the hardened cement body is liable to collapse. This action of sulfuric acid on hardened cement, in particular concrete, naturally depends on the acid concentration. When the pH is 2 or more (sulfuric acid concentration 0.1% or less), the concrete is dense as in the case of corrosion due to carbon dioxide gas or low-concentration acid, or corrosive salts such as sulfate. For example, by reducing the water-cement ratio while ensuring workability by using a high-performance AE water reducing agent or the like, it is possible to suppress the penetration of corrosive substances into the concrete, thereby improving the corrosion resistance. be able to. However, when the concentration of sulfuric acid is high, it is difficult to cope with only the densification of concrete. For example, when the pH is lower than 2 and the concrete is densified by lowering the water-cement ratio, the number of pores that relieve the expansion pressure due to crystal growth of gypsum produced by sulfuric acid is reduced, and cracks and the like are induced. If sulfuric acid penetrates into the cracks, the corrosion resistance of the concrete may deteriorate, and it is difficult to expect the cement material itself to be resistant to sulfuric acid.

pHが2より低い場合における硫酸によるセメント硬化体の劣化の防止法として、セメントを含む組成物100質量部に対して、ナフタレンスルホン酸塩縮合物を1〜10質量部と多量に添加する方法が提案されている(特許文献1、2及び3参照)。   As a method of preventing deterioration of the cement cured body due to sulfuric acid when the pH is lower than 2, a method of adding 1 to 10 parts by mass of a naphthalenesulfonate condensate in a large amount with respect to 100 parts by mass of the composition containing cement. It has been proposed (see Patent Documents 1, 2, and 3).

特開2004−331458号公報JP 2004-331458 A 特開2004−331459号公報JP 2004-331459 A 特開2005−336012号公報JP-A-2005-336012

しかしながら、更なる耐硫酸性の改善が望まれていた。   However, further improvement in sulfuric acid resistance has been desired.

そこで、本発明は、従来に比べ耐硫酸性の高い耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物並びにそれらの硬化体を提供することを目的とする。   Therefore, an object of the present invention is to provide a sulfuric acid resistant mortar composition, a sulfuric acid resistant concrete composition, and a cured product thereof having higher sulfuric acid resistance than conventional ones.

本発明は、セメントと、細骨材と、数平均分子量が2000〜4000及び重量平均分子量が3000〜6000のナフタレンスルホン酸塩縮合物とを含み、更に粗骨材及び石灰石微粉末を含むことを特徴とする耐硫酸性コンクリート組成物に関する。
また、本発明は、上記耐硫酸性コンクリート組成物を硬化させてなる、硬化体に関する。
The present invention include a cement, a fine aggregate, the number seen containing an average molecular weight of from 2000 to 4000 and a weight average molecular weight of 3,000 to 6,000 and a naphthalenesulfonic Sanshiochijimigo was further coarse aggregate and limestone powder The present invention relates to a sulfuric acid resistant concrete composition characterized by the following.
Further, the present invention is obtained by curing the above Ki耐 sulfate concrete composition, a cured product.

本発明に係る耐硫酸性コンクリート組成物によれば、耐硫酸性に優れるコンクリート硬化体を提供することができる。 According to engagement Ru resistance sulfate concrete composition of the present invention, it is possible to provide a benzalkonium Nkurito cured product excellent in resistance to sulfuric acid.

標準ポリスチレンスルホン酸を用いた分子量較正曲線である。It is a molecular weight calibration curve using standard polystyrene sulfonic acid. ナフタレンスルホン酸塩縮合物NS1のゲルろ過クロマトグラムである。It is a gel filtration chromatogram of naphthalenesulfonate condensate NS1. ナフタレンスルホン酸塩縮合物NS1の分子量分布曲線である。It is a molecular weight distribution curve of naphthalene sulfonate condensate NS1. ナフタレンスルホン酸塩縮合物NS2のゲルろ過クロマトグラムである。It is a gel filtration chromatogram of naphthalenesulfonate condensate NS2. ナフタレンスルホン酸塩縮合物NS2の分子量分布曲線である。It is a molecular weight distribution curve of naphthalene sulfonate condensate NS2. ナフタレンスルホン酸塩縮合物NS3のゲルろ過クロマトグラムである。It is a gel filtration chromatogram of naphthalenesulfonate condensate NS3. ナフタレンスルホン酸塩縮合物NS3の分子量分布曲線である。It is a molecular weight distribution curve of naphthalene sulfonate condensate NS3.

本発明に係る耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物について詳述する。
本発明の耐硫酸性モルタル組成物は、セメントと、細骨材と、数平均分子量が2000〜6000及び重量平均分子量が3000〜30000のナフタレンスルホン酸塩縮合物とを含む。
The sulfuric acid resistant mortar composition and sulfuric acid resistant concrete composition according to the present invention will be described in detail.
The sulfuric acid resistant mortar composition of the present invention contains cement, fine aggregate, and a naphthalene sulfonate condensate having a number average molecular weight of 2000 to 6000 and a weight average molecular weight of 3000 to 30000.

本発明で使用するセメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、耐硫酸塩ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカフュームセメント、アルミナセメント等を挙げることができる。   Examples of the cement used in the present invention include ordinary Portland cement, early strength Portland cement, super early strength Portland cement, sulfate-resistant Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, fly ash cement, silica fume cement, and alumina. A cement etc. can be mentioned.

本発明で使用するナフタレンスルホン酸塩縮合物は、数平均分子量が2000〜6000であり、好ましくは2000〜5000、より好ましくは2050〜4500、更に好ましくは2080〜4000である。また、上記ナフタレンスルホン酸塩縮合物は、重量平均分子量が3000〜30000であり、好ましくは3050〜20000、より好ましくは3100〜10000、更に好ましくは3150〜6000である。ナフタレンスルホン酸塩縮合物の数平均分子量及び重量平均分子量が上記範囲であれば、耐硫酸性を十分に得られる。   The naphthalene sulfonate condensate used in the present invention has a number average molecular weight of 2000 to 6000, preferably 2000 to 5000, more preferably 2050 to 4500, and still more preferably 2080 to 4000. The naphthalene sulfonate condensate has a weight average molecular weight of 3000 to 30000, preferably 3050 to 20000, more preferably 3100 to 10000, and still more preferably 3150 to 6000. If the number average molecular weight and the weight average molecular weight of the naphthalene sulfonate condensate are within the above ranges, sufficient sulfuric acid resistance can be obtained.

数平均分子量と重量平均分子量が上記範囲であることにより耐硫酸性が向上する理由は明らかではない。しかしながら、以下の機構が推定される。
硫酸侵食とは、下水道及び温泉地等の環境下で発生する硫酸イオンがモルタル、コンクリートから溶出するカルシウムイオンと反応して脆い石膏を形成し、形成された石膏層が脱落後また新たに石膏を形成するというサイクルによって、モルタル構造物、コンクリート構造物が侵食される現象である。
本発明の範囲の特定の数平均分子量及び重量平均分子量のナフタレンスルホン酸塩縮合物は、ナフタレン構造に続くスルホン酸基がセメント粒子表面のカルシウムイオン等の多価カチオンに吸着し、吸着点から極近傍に嵩高い剛直なナフタレン構造やそれに続くポリマーがセメント粒子表面を被覆することでカルシウムイオンの溶出を抑制したり、硫酸イオンとの反応を抑制すると考えられる。
The reason why the sulfuric acid resistance is improved by the number average molecular weight and the weight average molecular weight being in the above ranges is not clear. However, the following mechanism is estimated.
Sulfuric acid erosion means that sulfate ions generated in the environment such as sewers and hot springs react with calcium ions eluted from mortar and concrete to form brittle gypsum. This is a phenomenon in which mortar structures and concrete structures are eroded by the cycle of formation.
In the naphthalene sulfonate condensate having a specific number average molecular weight and weight average molecular weight within the scope of the present invention, the sulfonic acid group following the naphthalene structure is adsorbed on polyvalent cations such as calcium ions on the cement particle surface, It is thought that the elution of calcium ions is suppressed or the reaction with sulfate ions is suppressed by covering the cement particle surface with a bulky and rigid naphthalene structure and the subsequent polymer.

すなわち、モルタル組成物又はコンクリート組成物中に特定の数平均分子量及び重量平均分子量のナフタレンスルホン酸塩縮合物が共存する場合は、ナフタレンスルホン酸塩縮合物が共存しない場合と比較して、特定の数平均分子量及び重量平均分子量を有するナフタレンスルホン酸塩縮合物がセメント表面を被覆することによって、緩やかに石膏を形成し、緻密に配向した石膏層を形成することにより、硫酸の侵食を防ぎ、耐硫酸性を向上させると推定される。   That is, when a naphthalene sulfonate condensate having a specific number average molecular weight and a weight average molecular weight coexists in a mortar composition or a concrete composition, a specific number average molecular weight and a weight average molecular weight are compared with the case where no naphthalene sulfonate condensate coexists. A naphthalene sulfonate condensate having a number average molecular weight and a weight average molecular weight coats the cement surface to form a gypsum gently, and to form a densely oriented gypsum layer to prevent sulfuric acid erosion and resistance. It is presumed to improve sulfuric acidity.

上記ナフタレンスルホン酸塩縮合物としては、場合により一個以上のアルキル基で置換されているナフタレンスルホン酸塩のホルマリン縮合物を用いることができ、置換基としては、メチル基、エチル基等の炭素数1〜3のアルキル基が挙げられる。また、ナフタレンスルホン酸塩縮合物は、ナトリウム(Na)、カリウム(K)等のアルカリ金属、マグネシウム(Mg)、カルシウム(Ca)等のアルカリ土類金属、アンモニウム又はアミン類との塩であることが好ましい。   As the naphthalenesulfonate condensate, a formalin condensate of naphthalenesulfonate optionally substituted with one or more alkyl groups can be used, and the substituent includes carbon atoms such as a methyl group and an ethyl group. 1-3 alkyl groups are mentioned. The naphthalenesulfonate condensate is a salt with an alkali metal such as sodium (Na) or potassium (K), an alkaline earth metal such as magnesium (Mg) or calcium (Ca), ammonium or an amine. Is preferred.

上記ナフタレンスルホン酸塩縮合物としては、数平均分子量及び重量平均分子量が上記範囲内であれば、コンクリート用の高性能分散剤、顔料、染料及び農薬水和剤等に使用される分散剤として市販されているものを用いることができる。また、ナフタレンスルホン酸塩縮合物としては、ナフタレンスルホン酸塩縮合物を主成分として、高分子ポリマー製造時の未反応モノマーが残存したものであっても、未反応モノマーを除去精製したものであってもよく、添加剤等が混合されたものであってもよい。   As the naphthalene sulfonate condensate, as long as the number average molecular weight and the weight average molecular weight are within the above ranges, they are commercially available as dispersants for use in high performance dispersants, pigments, dyes, agricultural chemical wettable powders and the like for concrete. Can be used. In addition, the naphthalene sulfonate condensate is a product obtained by removing and purifying unreacted monomers, even if unreacted monomers remaining in the production of the polymer are mainly composed of naphthalene sulfonate condensate. It may be a mixture of additives and the like.

上述のとおり、一般的に有機高分子系の市販品には、分散剤ならば分散という主目的を担う主成分に加え、重合に関与しなかった残存モノマーや重合禁止剤、滑剤、防腐剤、消泡剤、染料などが共存する場合があるが、本発明における数平均分子量及び重量平均分子量とは、主成分についての数平均分子量及び重量平均分子量を意味する。   As described above, in general, organic polymer-based commercial products include, in addition to the main component responsible for the main purpose of dispersion if a dispersant, residual monomers and polymerization inhibitors, lubricants, preservatives that were not involved in the polymerization, Although an antifoamer, dye, etc. may coexist, the number average molecular weight and weight average molecular weight in the present invention mean the number average molecular weight and the weight average molecular weight of the main component.

また、本発明において数平均分子量及び重量平均分子量は、ナフタレンスルホン酸塩縮合物をゲルろ過クロマトグラフィー(GFC:Gel Filtration Chromatography)で分子量を測定する場合に、複数のピークを持つ分子量分布のうち、測定初期に検出される高分子量側のピーク強度(面積)の最大ピークを主成分ピークとし、その主成分ピーク単独の数平均分子量及び重量平均分子量を標準物質(例えばポリスチレン)の較正曲線換算で算出したものをいう。   In the present invention, the number average molecular weight and the weight average molecular weight are determined when the molecular weight of the naphthalene sulfonate condensate is measured by gel filtration chromatography (GFC: Gel Filtration Chromatography). Using the maximum peak of the high molecular weight peak intensity (area) detected at the beginning of the measurement as the main component peak, the number average molecular weight and weight average molecular weight of the main component peak alone are calculated in terms of the calibration curve of a standard substance (for example, polystyrene) What you did.

ナフタレンスルホン酸塩縮合物は、セメント100質量部に対して固形分基準で、好ましくは0.3〜5質量部、より好ましくは0.4〜4質量部、更に好ましくは0.5〜3.5質量部である。ナフタレンスルホン酸塩縮合物の配合量が上記範囲であれば、得られるセメント硬化体は、耐硫酸性を十分に得られる。   The naphthalene sulfonate condensate is preferably 0.3 to 5 parts by mass, more preferably 0.4 to 4 parts by mass, and still more preferably 0.5 to 3. 5 parts by mass. When the blending amount of the naphthalene sulfonate condensate is within the above range, the obtained cement cured product can sufficiently obtain sulfuric acid resistance.

本発明で使用する細骨材としては、川砂、陸砂、海砂、砕砂、高炉スラグ細骨材等を使用することができる。細骨材は、セメント100質量部に対して、好ましくは200〜320質量部、より好ましくは230〜290質量部、更に好ましくは250〜270質量部である。細骨材の配合量が上記範囲であれば、良好なフレッシュ性状を得ることができる。   As the fine aggregate used in the present invention, river sand, land sand, sea sand, crushed sand, blast furnace slag fine aggregate and the like can be used. The fine aggregate is preferably 200 to 320 parts by mass, more preferably 230 to 290 parts by mass, and still more preferably 250 to 270 parts by mass with respect to 100 parts by mass of cement. If the amount of fine aggregate is within the above range, good fresh properties can be obtained.

本発明の耐硫酸性コンクリート組成物は、上記耐硫酸性モルタル組成物に、更に粗骨材及び石灰石微粉末を含む。本発明で使用する粗骨材としては、砂利、砕石、高炉スラグ粗骨材等を使用することができる。粗骨材は、セメント100質量部に対して、好ましくは200〜320質量部、より好ましくは230〜290質量部、更に好ましくは250〜270質量部である。粗骨材の配合量が上記範囲内であれば、良好なフレッシュ性状を得ることができる。   The sulfuric acid resistant concrete composition of the present invention further comprises coarse aggregate and fine limestone powder in the sulfuric acid resistant mortar composition. As the coarse aggregate used in the present invention, gravel, crushed stone, blast furnace slag coarse aggregate or the like can be used. The coarse aggregate is preferably 200 to 320 parts by mass, more preferably 230 to 290 parts by mass, and still more preferably 250 to 270 parts by mass with respect to 100 parts by mass of cement. If the blending amount of the coarse aggregate is within the above range, good fresh properties can be obtained.

なお、細骨材及び/又は粗骨材として、石灰石骨材を使用することもできる。   In addition, a limestone aggregate can also be used as a fine aggregate and / or a coarse aggregate.

石灰石微粉末の使用は、モルタル硬化体及びコンクリート硬化体の耐硫酸性を更に向上させる。耐硫酸性が向上する理由は明らかではないが、石灰石微粉末によって硫酸に対してバリアとなる石膏が生成し易くなり、石膏の生成時の膨張が少ないことなどが関係していると考えられる。   The use of fine limestone powder further improves the sulfuric acid resistance of the mortar hardened body and the concrete hardened body. The reason why the sulfuric acid resistance is improved is not clear, but it is considered that gypsum serving as a barrier against sulfuric acid is easily generated by the fine powder of limestone, and that the expansion at the time of generating the gypsum is related.

石灰石微粉末のブレーン比表面積(JIS R 5201「セメントの物理試験方法」に準拠して測定)は、2000〜10000cm/gであり、好ましくは3000〜80000cm/g、特に好ましくは4000〜6000cm/gである。 Blaine specific surface area of powder limestone fines (JIS R 5201 measured in accordance with "Physical testing methods for cement") is a 2000~10000cm 2 / g, preferably 3000~80000cm 2 / g, particularly preferably 4000~6000cm 2 / g.

本発明の耐硫酸性コンクリート組成物は、更に水を含み、水/セメント比(セメントに対する水の質量比)が30〜70質量%、好ましくは40〜60質量%、特に好ましくは45〜58質量%である。
水/セメント比が30質量%未満であると、耐硫酸性が低下する傾向にあり、水/セメント比が70質量%を超えると、凝結が遅くなるとともに水密性が低下する傾向にある。
The sulfuric acid resistant concrete composition of the present invention further contains water, and the water / cement ratio (mass ratio of water to cement) is 30 to 70 mass%, preferably 40 to 60 mass%, particularly preferably 45 to 58 mass%. %.
When the water / cement ratio is less than 30% by mass, the sulfuric acid resistance tends to decrease, and when the water / cement ratio exceeds 70% by mass, the setting is delayed and the water tightness tends to decrease.

耐硫酸性に優れた耐硫酸性コンクリート組成物を得るために、好ましい配合量は、次のとおりである。
水:120〜200kg/m、好ましくは140〜180kg/m、特に好ましくは150〜170kg/m
セメント:200〜400kg/m、好ましくは220〜380kg/m、特に好ましくは250〜350kg/m
石灰石微粉末:20〜150kg/m、好ましくは40〜130kg/m、特に好ましくは60〜120kg/m
細骨材:500〜1000kg/m、好ましくは600〜900kg/m、特に好ましくは650〜800kg/m
粗骨材:800〜1400kg/m、好ましくは900〜1200kg/m、特に好ましくは1000〜1100kg/m
ナフタレンスルホン酸塩縮合物:4〜40kg/m、好ましくは6〜25kg/m、特に好ましくは8〜15kg/m
である。
上記範囲であれば、適度な強度、流動性を有し、施工性が良好であり、耐硫酸性に優れたコンクリート組成物が得られる。
In order to obtain a sulfuric acid resistant concrete composition having excellent sulfuric acid resistance, the preferred blending amounts are as follows.
Water: 120 to 200 kg / m 3 , preferably 140 to 180 kg / m 3 , particularly preferably 150 to 170 kg / m 3 ,
Cement: 200 to 400 kg / m 3 , preferably 220 to 380 kg / m 3 , particularly preferably 250 to 350 kg / m 3 ,
Limestone fine powder: 20 to 150 kg / m 3 , preferably 40 to 130 kg / m 3 , particularly preferably 60 to 120 kg / m 3 ,
Fine aggregate: 500 to 1000 kg / m 3 , preferably 600 to 900 kg / m 3 , particularly preferably 650 to 800 kg / m 3 ,
Coarse aggregate: 800-1400 kg / m 3 , preferably 900-1200 kg / m 3 , particularly preferably 1000-1100 kg / m 3 ,
Naphthalenesulfonate condensate: 4 to 40 kg / m 3 , preferably 6 to 25 kg / m 3 , particularly preferably 8 to 15 kg / m 3 ,
It is.
If it is the said range, it has moderate intensity | strength and fluidity | liquidity, a workability is favorable, and the concrete composition excellent in sulfuric acid resistance is obtained.

本発明の耐硫酸性モルタル組成物又は耐硫酸性コンクリート組成物は、通常のモルタルやコンクリートと同様に、必用に応じて減水剤、更に骨材分離を低減するために水溶性増粘剤や無機増粘剤を添加しても良い。   The sulfuric acid-resistant mortar composition or sulfuric acid-resistant concrete composition of the present invention is a water-reducing agent as necessary, and a water-soluble thickener or an inorganic material to reduce aggregate separation, as with normal mortar and concrete. A thickener may be added.

減水剤としては、リグニンスルホン酸系、ナフタレンスルホン酸系、ポリカルボン酸系等の減水剤が挙げられる。また、AE減水剤の使用も可能である。ナフタレンスルホン酸塩縮合物との相溶性の観点から、リグニンスルホン酸系、ナフタレンスルホン酸系の使用が好ましい。   Examples of the water reducing agent include water reducing agents such as lignin sulfonic acid, naphthalene sulfonic acid, and polycarboxylic acid. Moreover, the use of an AE water reducing agent is also possible. From the viewpoint of compatibility with the naphthalene sulfonate condensate, use of lignin sulfonic acid or naphthalene sulfonic acid is preferred.

水溶性増粘剤としては、アクリル系水溶性高分子、バイオポリマー、グリコール系水溶性高分子及びセルロース系水溶性高分子等から選ばれる1種、又はこれらの混合物が挙げられる。アクリル系水溶性高分子としては、例えば、アクリルアミドとアクリル酸の共重合体、ポリアクリル酸等が挙げられる。また、バイオポリマーとしては、例えば、β−1、3グルカン、水溶性ポリサッカライド等が挙げられる。グリコール系水溶性高分子としては、例えば、ポリアルキレングリコール、ジステアリン酸グリコール、繊維素グリコール酸等が挙げられる。セルロース系水溶性高分子としては、例えば、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等のアルキルセルロース、ヒドロキシアルキルセルロース、ヒドロキシアルキルアルキルセルロース等が挙げられる。   Examples of the water-soluble thickener include one selected from acrylic water-soluble polymers, biopolymers, glycol-based water-soluble polymers, and cellulose-based water-soluble polymers, or a mixture thereof. Examples of the acrylic water-soluble polymer include a copolymer of acrylamide and acrylic acid, polyacrylic acid, and the like. Examples of biopolymers include β-1, 3 glucan, water-soluble polysaccharides and the like. Examples of the glycol-based water-soluble polymer include polyalkylene glycol, glycol distearate, and fiber glycolic acid. Examples of the cellulose-based water-soluble polymer include alkyl celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose, hydroxyalkyl cellulose, and hydroxyalkylalkyl cellulose.

無機増粘剤としては、例えば、アタパルジャイト、セピオライト、ベントナイト、タルク及びシリカヒューム等から選ばれる1種、又はこれらの混合物が挙げられる。   Examples of the inorganic thickener include one selected from attapulgite, sepiolite, bentonite, talc, silica fume, and the like, or a mixture thereof.

本発明の耐硫酸性モルタル組成物又は耐硫酸性コンクリート組成物は、混練に先立ち、セメントと、その他の成分とを予め混合しておくことも可能であるが、セメントに水を加えて混練する際に、その他の成分を加えて調整することが好ましい。また、水を加えて混練した耐硫酸性モルタル組成物又は耐硫酸性コンクリート組成物を、成型、養生、硬化させることによって耐硫酸性コンクリート硬化体が得られる。養生方法は、特に限定されない。   The sulfuric acid resistant mortar composition or sulfuric acid resistant concrete composition of the present invention can be premixed with cement and other components prior to kneading, but water is added to the cement and kneaded. At this time, it is preferable to adjust by adding other components. Moreover, a sulfuric acid resistant concrete hardening body is obtained by shape | molding, curing, and hardening the sulfuric acid resistant mortar composition or sulfuric acid resistant concrete composition knead | mixed by adding water. The curing method is not particularly limited.

このような本発明の耐硫酸性モルタル組成物及び耐硫酸性コンクリート組成物は、優れた耐硫酸性が求められる下水道管、下水道処理場や管渠等の下水道処理関連の施設、あるいは温泉施設の給排水設備や温泉地域における農業用及び排水用の水路構造物等温泉地関連施設、化学工場等で使用される構造物や二次製品、補修材として有利に適用できる。下水道処理関連のコンクリート施設においては、例えば、ポンプ場、沈殿池、分配槽、反応タンク、汚泥貯留槽、連絡水路、汚泥消化槽等に、本発明の耐硫酸性コンクリート組成物や耐硫酸性コンクリート硬化体を利用することができる。また、温泉施設としては、温泉施設の浴槽、浴室内装材、内部設備類の他、温泉水や温泉蒸気に影響を受ける温泉地の建築物の基礎や壁、地中ばり、コンクリートを利用したトンネル、電柱、舗装コンクリート等に、本発明の耐硫酸性コンクリート組成物や耐硫酸性コンクリート硬化体を利用することができる。   Such a sulfuric acid resistant mortar composition and a sulfuric acid resistant concrete composition of the present invention can be used in sewerage pipes, sewerage treatment plants, pipes and other facilities related to sewerage, or hot spring facilities, which are required to have excellent sulfuric acid resistance. It can be advantageously applied as structures, secondary products, and repair materials used in hot spring related facilities, chemical factories, etc., such as water supply and drainage facilities and waterway structures for agriculture and drainage in hot spring areas. In concrete facilities related to sewage treatment, for example, pumping stations, sedimentation tanks, distribution tanks, reaction tanks, sludge storage tanks, communication channels, sludge digestion tanks, etc., the sulfuric acid resistant concrete composition or sulfuric acid resistant concrete of the present invention is used. A cured product can be used. In addition to hot spring facilities such as bathtubs, bathroom interior materials and internal equipment, the hot spring facilities include foundations and walls of hot springs affected by hot spring water and hot spring steam, underground beams, and tunnels using concrete. The sulfuric acid resistant concrete composition and the sulfuric acid resistant concrete hardened body of the present invention can be used for utility poles, pavement concrete and the like.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

[使用材料]
以下に示す材料を使用した。
(1)セメント(C):
普通ポルトランドセメント:ブレーン比表面積 3270cm/g
(2)石灰石微粉末
石灰石微粉末(LSP):ブレーン比表面積 4500cm/g
(3)骨材
(i)細骨材
海砂(S1)(表乾密度 2.59g/cm、粗粒率2.66)
砕砂(S2)(表乾密度 2.68g/cm、粗粒率2.79)
(ii)粗骨材(G)
硬質砂岩砕石(表乾密度 2.70g/cm、粗粒率6.61)
(4)AE減水剤(ポゾリスNo.70)
リグニンスルホン酸系、固形分濃度:48質量%
(5)練混ぜ水(W)
上水道水
(6)ナフタレンスルホン酸塩縮合物
ゲルろ過クロマトグラフィー(GFC:Gel Filtration Chromatography)により、次に示す条件で、市販の下記式(1)で示されるナフタレンスルホン酸塩のホルマリン縮合物の数平均分子量及び重量平均分子量を測定し、数平均分子量及び重量平均分子量が異なる3種類のナフタレンスルホン酸塩縮合物を使用した。
[Materials used]
The following materials were used.
(1) Cement (C):
Normal Portland cement: Blaine specific surface area 3270 cm 2 / g
(2) Limestone fine powder Limestone fine powder (LSP): Blaine specific surface area 4500 cm 2 / g
(3) Aggregate (i) Fine aggregate Sea sand (S1) (surface dry density 2.59 g / cm 3 , coarse particle ratio 2.66)
Crushed sand (S2) (surface dry density 2.68 g / cm 3 , coarse particle ratio 2.79)
(Ii) Coarse aggregate (G)
Hard sandstone crushed stone (surface dry density 2.70 g / cm 3 , coarse particle ratio 6.61)
(4) AE water reducing agent (Pozoris No. 70)
Lignin sulfonic acid, solid content: 48% by mass
(5) Mixing water (W)
Tap water (6) Naphthalene sulfonate condensate Number-average molecular weight of naphthalene sulfonate formalin condensate represented by the following formula (1) by gel filtration chromatography (GFC) under the following conditions The weight average molecular weight was measured, and three types of naphthalene sulfonate condensates having different number average molecular weights and weight average molecular weights were used.

(ナフタレンスルホン酸塩縮合物)
下記式(1)で示されるナフタレンスルホン酸塩のホルマリン縮合物を用いた。
(Naphthalenesulfonate condensate)
A formalin condensate of naphthalene sulfonate represented by the following formula (1) was used.

Figure 0005707684
Figure 0005707684

[ゲルろ過クロマトグラフィーの測定条件]
GFC装置:日本分光株式会社製 PU−2085plus型システム
カラム:東ソー株式会社製 GMPW(内径7.8mm×長さ300mm)
溶離液:50mM LiCl水溶液/CHCN=60/40(容量比)
注入量:10μL
溶離液流速:0.6mL/min
カラム温度:40℃
検出器:紫外吸収型(波長260nm)
標準試料:ポリスチレンスルホン酸、p−トルエンスルホン酸
[Measurement conditions for gel filtration chromatography]
GFC apparatus: PU-2085plus type system column manufactured by JASCO Corporation: GMPW manufactured by Tosoh Corporation (inner diameter 7.8 mm × length 300 mm)
Eluent: 50 mM LiCl aqueous solution / CH 3 CN = 60/40 (volume ratio)
Injection volume: 10 μL
Eluent flow rate: 0.6 mL / min
Column temperature: 40 ° C
Detector: UV absorption type (wavelength 260nm)
Standard samples: polystyrene sulfonic acid, p-toluenesulfonic acid

[分子量の測定]
表1に示すように、ポリスチレンスルホン酸とp−トルエンスルホン酸の分子量と保持時間の関係を測定し、この測定結果から図1に示す較正曲線を作成した。
[Measurement of molecular weight]
As shown in Table 1, the relationship between the molecular weight of polystyrene sulfonic acid and p-toluenesulfonic acid and the retention time was measured, and a calibration curve shown in FIG. 1 was created from the measurement results.

Figure 0005707684
Figure 0005707684

上記条件及びGFC装置により測定した、3種類のナフタレンスルホン酸塩のホルマリン縮合物のクロマトグラム及び検出器により測定した分子量分布曲線を図2〜7に示す。   The chromatogram of the formalin condensate of three types of naphthalene sulfonates measured with the above conditions and a GFC apparatus and the molecular weight distribution curves measured with a detector are shown in FIGS.

表2に分子量分布の測定結果を示す。表2のピークトップ分子量とは、分子量分布曲線における最も大きなピークの最大値のリテンションタイムから、標準試料であるポリスチレンスルホン酸とp−トルエンスルホン酸から算出された較正曲線に基づいて換算した分子量である。また、表2の固形分濃度は、ナフタレンスルホン酸塩縮合物を105℃で3日間乾燥させて、乾燥させる前の質量で乾燥後の質量を除した値をいう。   Table 2 shows the measurement results of the molecular weight distribution. The peak top molecular weight in Table 2 is the molecular weight converted based on the calibration curve calculated from polystyrene sulfonic acid and p-toluenesulfonic acid, which are standard samples, from the retention time of the maximum value of the largest peak in the molecular weight distribution curve. is there. Moreover, the solid content concentration in Table 2 refers to a value obtained by drying the naphthalene sulfonate condensate at 105 ° C. for 3 days and dividing the mass after drying by the mass before drying.

Figure 0005707684
Figure 0005707684

[コンクリート組成物の調製]
コンクリート組成物の調製は、普通ポルトランドセメント(C)、石灰石微粉末(LSP)、細骨材(S:S1、S2)、粗骨材(G)及びナフタレンスルホン酸塩縮合物(NS1、NS2、NS3)を表3に示す割合で混合し、二軸強制練りミキサで30秒間撹拌した後、水道水(W)を表3に示す割合でミキサ内に投入し、更に150秒間撹拌することにより調製を行った。
[Preparation of concrete composition]
The preparation of the concrete composition includes ordinary Portland cement (C), fine limestone powder (LSP), fine aggregate (S: S1, S2), coarse aggregate (G) and naphthalene sulfonate condensate (NS1, NS2, NS3) is mixed at the ratio shown in Table 3, and stirred for 30 seconds with a biaxial forced kneading mixer, and then tap water (W) is poured into the mixer at the ratio shown in Table 3 and further stirred for 150 seconds. Went.

Figure 0005707684
Figure 0005707684

[コンクリート硬化体の評価試験方法]
(1)コンクリート硬化体の耐硫酸性
直径10cm×高さ20cmの寸法の円柱型枠に調整したコンクリート組成物を打設し、材齢1日後、型枠から脱型し20℃の水中で材齢28日まで養生してコンクリート硬化体の供試体を得た。この供試体を5質量%の硫酸水溶液に浸せきし、浸せき期間4週、8週及び13週で取り出し、供試体の表面を水洗いの後、表面の水分を拭き取り、質量を測定した。質量変化率は以下の式で求めた。結果を表4に示す。
質量変化率(%)=(硫酸水溶液に浸漬する前の供試体の質量−硫酸水溶液に所定期間浸漬した後の供試体の質量)/(硫酸水溶液に浸漬する前の供試体の質量)×100
[Evaluation test method for hardened concrete]
(1) Sulfuric acid resistance of hardened concrete The concrete composition prepared was placed in a cylindrical form having a diameter of 10 cm and a height of 20 cm. After 1 day of age, the form was removed from the form and the material was washed in water at 20 ° C. The specimen was cured until age 28 days to obtain a specimen of a hardened concrete. This specimen was immersed in a 5% by mass sulfuric acid aqueous solution, taken out at immersion periods of 4 weeks, 8 weeks and 13 weeks. After the surface of the specimen was washed with water, the moisture on the surface was wiped off and the mass was measured. The mass change rate was determined by the following formula. The results are shown in Table 4.
Mass change rate (%) = (mass of specimen before being immersed in sulfuric acid aqueous solution−mass of specimen after being immersed in sulfuric acid aqueous solution for a predetermined period) / (mass of specimen before being immersed in sulfuric acid aqueous solution) × 100

Figure 0005707684
Figure 0005707684

[耐硫酸性試験の結果の考察]
表4に示すように、浸せき期間4週間、8週間では、実施例1、2と比較例1との質量変化率に大きな違いはないが、浸せき期間13週間後には、比較例1に対して、実施例1、2の質量変化率が小さいことから、実施例1、2は、耐硫酸性に優れていることがわかった。このように数平均分子量と重量平均分子量が本発明の範囲であるナフタレンスルホン酸塩縮合物を含むコンクリート組成物を硬化してなるコンクリート硬化体は、耐硫酸性が高くなることがわかった。
[Consideration of results of sulfuric acid resistance test]
As shown in Table 4, in the immersion periods of 4 weeks and 8 weeks, there is no significant difference in mass change rate between Examples 1 and 2 and Comparative Example 1, but after 13 weeks of immersion, Comparative Example 1 is compared. Since the mass change rate of Examples 1 and 2 was small, it was found that Examples 1 and 2 were excellent in sulfuric acid resistance. Thus, it was found that a cured concrete body obtained by curing a concrete composition containing a naphthalene sulfonate condensate having a number average molecular weight and a weight average molecular weight within the scope of the present invention has high sulfuric acid resistance.

Claims (7)

水120〜200kg/m、セメント200〜400kg/m、石灰石微粉末20〜130kg/m、細骨材500〜1000kg/m、粗骨材1000〜1400kg/m並びに数平均分子量が2000〜4000及び重量平均分子量が3000〜6000であるナフタレンスルホン酸塩縮合物8〜40kg/mを含む、耐硫酸性コンクリート組成物。 Water 120~200kg / m 3, a cement 200~400kg / m 3, limestone powder 20~ 130 kg / m 3, fine aggregates 500~1000kg / m 3, coarse aggregate 1000 ~1400kg / m 3 and a number average molecular weight Sulfate-resistant concrete composition comprising 8 to 40 kg / m 3 of naphthalene sulfonate condensate having a weight average molecular weight of 3000 to 6000. 増粘剤を含まない、請求項1記載の耐硫酸性コンクリート組成物。The sulfuric acid resistant concrete composition according to claim 1, which does not contain a thickener. ナフタレンスルホン酸塩縮合物の数平均分子量が2000〜3418及び重量平均分子量が3000〜5110である、請求項1又は2記載の耐硫酸性コンクリート組成物。 The sulfate-resistant concrete composition according to claim 1 or 2 , wherein the naphthalene sulfonate condensate has a number average molecular weight of 2000 to 3418 and a weight average molecular weight of 3000 to 5110. ナフタレンスルホン酸塩縮合物の数平均分子量が2000〜2141及び重量平均分子量が3000〜3231である、請求項1〜3のいずれか1項記載の耐硫酸性コンクリート組成物。 The sulfate-resistant concrete composition according to any one of claims 1 to 3, wherein the naphthalene sulfonate condensate has a number average molecular weight of 2000 to 2141 and a weight average molecular weight of 3000 to 3231. セメント100質量部に対してナフタレンスルホン酸塩縮合物を固形分基準で0.3〜5質量部含む、請求項1〜のいずれか1項記載の耐硫酸性コンクリート組成物。 The sulfate-resistant concrete composition according to any one of claims 1 to 4 , comprising 0.3 to 5 parts by mass of a naphthalene sulfonate condensate based on solid content with respect to 100 parts by mass of cement. 水/セメントの質量比が30〜70質量%である、請求項1〜のいずれか1項記載の耐硫酸性コンクリート組成物。 The weight ratio of water / cement is 30 to 70 wt%, any one sulfuric acid concrete composition according to claim 1-5. 請求項1〜のいずれか1項記載の耐硫酸性コンクリート組成物を硬化させてなる、耐硫酸性コンクリート硬化体。 A sulfate-resistant concrete cured body obtained by curing the sulfate-resistant concrete composition according to any one of claims 1 to 6 .
JP2009215453A 2009-09-17 2009-09-17 Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof Active JP5707684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009215453A JP5707684B2 (en) 2009-09-17 2009-09-17 Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009215453A JP5707684B2 (en) 2009-09-17 2009-09-17 Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof

Publications (2)

Publication Number Publication Date
JP2011063477A JP2011063477A (en) 2011-03-31
JP5707684B2 true JP5707684B2 (en) 2015-04-30

Family

ID=43950118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009215453A Active JP5707684B2 (en) 2009-09-17 2009-09-17 Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof

Country Status (1)

Country Link
JP (1) JP5707684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002432B2 (en) * 2012-05-10 2016-10-05 宇部興産株式会社 Sulfuric acid resistant grout composition and filling method using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188554A (en) * 1996-01-10 1997-07-22 Nippon Concrete Ind Co Ltd Admixture for highly fluid concrete and production of highly fluid concrete using the same
JPH1015811A (en) * 1996-06-28 1998-01-20 Kao Corp Processing assistant composition and surface processing method employing the processing assistant composition
JP3580070B2 (en) * 1997-02-28 2004-10-20 宇部興産株式会社 Sulfuric acid resistant cement composition
JP2003292362A (en) * 2003-03-24 2003-10-15 Ube Ind Ltd Sulfuric acid-resistant cement composition
JP4290473B2 (en) * 2003-05-08 2009-07-08 日本下水道事業団 Sulfuric acid resistant cement composition and sulfuric acid resistant cement cured product
JP4551697B2 (en) * 2004-05-27 2010-09-29 日本下水道事業団 Sulfuric acid resistant concrete
JP4932348B2 (en) * 2006-06-28 2012-05-16 花王株式会社 Hydraulic composition for centrifugal molded cured body

Also Published As

Publication number Publication date
JP2011063477A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP4359505B2 (en) Process for producing particles for introduction into fresh concrete or coating compositions
CA2609853C (en) Fast binder compositions for concrete parts and works containing a calcium salt
EP2228352B1 (en) Mortar especially for shaped clinker bricks
AU2006323956B2 (en) Composition and its use for improving the processibility of hydraulically setting compositions
TW200938506A (en) Concrete optimized for high workability and high strength to cement ratio
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
CN111620589A (en) Cement grouting material additive capable of adapting to various working conditions and improving performance of grouting material and preparation method and application thereof
JP5910156B2 (en) Acid-resistant hydraulic composition, mortar composition, and cured mortar
JP2011132040A (en) Thickener for anti-washout underwater hydraulic composition
JP5707684B2 (en) Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof
KR20190057348A (en) Method for producing cationic polymer having reduced halide content
JP4290473B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant cement cured product
JP6985177B2 (en) Hydraulic composition and concrete
JP4551697B2 (en) Sulfuric acid resistant concrete
JP6002432B2 (en) Sulfuric acid resistant grout composition and filling method using the same
JP5728545B2 (en) Hardened salt-resistant cement
JP5587007B2 (en) Sulfuric acid resistant cement composition, sulfuric acid resistant mortar composition and sulfuric acid resistant concrete composition
CN111574173A (en) Quick-drying type toilet backfill material and preparation method thereof
JP5446375B2 (en) Sulfuric acid resistance imparting agent, sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and method for producing the same
CA2661111C (en) Molecular de-airentrainer compositions and methods of use of same
JP6456693B2 (en) Underwater inseparable concrete composition and cured product thereof, and method for producing underwater inseparable concrete composition
JP5587006B2 (en) Sulfuric acid resistant cement composition, sulfuric acid resistant mortar composition and sulfuric acid resistant concrete composition
JP7135849B2 (en) Durability improver for impregnated hardened cement
KR101849282B1 (en) Concrete naphthalene-based superplasticizer having an antimicrobial function, and its making method thereof
KR20060112748A (en) High strength water concrete composition comprising silanes main material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5707684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250