JP5707295B2 - Square non-aqueous electrolyte secondary battery - Google Patents

Square non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5707295B2
JP5707295B2 JP2011224134A JP2011224134A JP5707295B2 JP 5707295 B2 JP5707295 B2 JP 5707295B2 JP 2011224134 A JP2011224134 A JP 2011224134A JP 2011224134 A JP2011224134 A JP 2011224134A JP 5707295 B2 JP5707295 B2 JP 5707295B2
Authority
JP
Japan
Prior art keywords
electrolyte secondary
protrusion
secondary battery
battery
height direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011224134A
Other languages
Japanese (ja)
Other versions
JP2013084471A (en
Inventor
小島 亮
亮 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011224134A priority Critical patent/JP5707295B2/en
Publication of JP2013084471A publication Critical patent/JP2013084471A/en
Application granted granted Critical
Publication of JP5707295B2 publication Critical patent/JP5707295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本発明は、角形容器を有する非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery having a rectangular container.

非水電解液二次電池では、安全性の確保が重要な課題となっている。特に、過充電されたときには内圧や温度の急激な上昇を伴う不安全な現象が発生し、電池容器の破裂に至る場合があるので、このような現象を避けるための様々な工夫がされている。過充電による不安全現象を防止する手段として、様々な方法が提案されている。例えば、保護回路により過充電そのものが起きないようにする方法、特許文献1に開示されているように過充電により内圧が上昇することを利用して電流回路を遮断する機構を設ける方法、及び特許文献2に開示されているように捲回群の変形を利用してソフトショート(ある程度の抵抗を持って短絡状態になること)を起こさせる方法等による対策が提案されている。   In non-aqueous electrolyte secondary batteries, ensuring safety is an important issue. In particular, when an overcharge occurs, an unsafe phenomenon accompanied by a sudden increase in internal pressure or temperature may occur, which may lead to the rupture of the battery container. Various measures have been taken to avoid such a phenomenon. . Various methods have been proposed as means for preventing unsafe phenomena due to overcharging. For example, a method for preventing overcharging itself by a protection circuit, a method for providing a mechanism for interrupting a current circuit by utilizing an increase in internal pressure due to overcharging as disclosed in Patent Document 1, and a patent As disclosed in Document 2, countermeasures such as a method of causing a soft short (making a short-circuit state with a certain resistance) by utilizing deformation of the wound group have been proposed.

特許第4590856号公報Japanese Patent No. 4590856 特開平11−73941号公報Japanese Patent Laid-Open No. 11-73941

保護回路のような制御回路により過充電を防止する方法は、回路の故障などの場合にリスクを有する。このため、電池の構造で安全性を確保すると、本質的に安全な電池システムとすることができる。   A method of preventing overcharge by a control circuit such as a protection circuit has a risk in the case of a circuit failure or the like. For this reason, if safety is ensured by the structure of the battery, an inherently safe battery system can be obtained.

本発明は、角形容器を有する非水電解液二次電池において、過充電により内圧が上昇したときに起こりうる不安全な現象(例えば、電池容器の破裂)を防止し、安全性を向上させることを目的とする。   The present invention prevents an unsafe phenomenon (for example, rupture of a battery container) that can occur when an internal pressure increases due to overcharging in a nonaqueous electrolyte secondary battery having a rectangular container, and improves safety. With the goal.

上記課題に対して、本発明による角形非水電解液二次電池は、以下のような特徴を有する。セパレータを介して正極電極及び負極電極を扁平に捲回した捲回群と、前記捲回群を収納する電池容器とを有する角形非水電解液二次電池であって、前記捲回群は、扁平形状を形成する平面部と湾曲部とを有し、前記電池容器は、前記捲回群の前記湾曲部に対向する内壁に突起部を有する。   In response to the above problems, the rectangular nonaqueous electrolyte secondary battery according to the present invention has the following characteristics. A prismatic non-aqueous electrolyte secondary battery having a wound group in which a positive electrode and a negative electrode are wound flatly through a separator, and a battery container storing the wound group, wherein the wound group includes: The battery container has a flat portion that forms a flat shape and a curved portion, and the battery container has a protrusion on an inner wall facing the curved portion of the wound group.

本発明による角形非水電解液二次電池は、過充電により内圧が上昇したときに起こりうる、電池容器の破裂等の不安全な現象を防止することができ、安全性を向上させることができる。   The prismatic nonaqueous electrolyte secondary battery according to the present invention can prevent unsafe phenomena such as rupture of a battery container, which can occur when the internal pressure increases due to overcharging, and can improve safety. .

本実施例における角形非水電解液二次電池の外観斜視図である。It is an external appearance perspective view of the square nonaqueous electrolyte secondary battery in a present Example. 本実施例における角形非水電解液二次電池の内部に収められている捲回群と集電部品の構造を示す切断模式図であるIt is a cutting schematic diagram which shows the structure of the winding group accommodated in the inside of the square nonaqueous electrolyte secondary battery in a present Example, and a current collection component. 本実施例における角形非水電解液二次電池の電池容器の横断面図である。It is a cross-sectional view of the battery container of the square nonaqueous electrolyte secondary battery in the present example. 図3の線A−A’における角形非水電解液二次電池の断面図である。FIG. 4 is a cross-sectional view of a rectangular nonaqueous electrolyte secondary battery taken along line A-A ′ in FIG. 3. 電池容器が厚さ方向に膨張した場合に、幅方向に収縮する様子を示す模式図である。It is a schematic diagram which shows a mode that a battery container expand | swells in the width direction when it expand | swells in the thickness direction. 電池容器が幅方向に収縮して、突起部が捲回群に押し込まれた状態を示す模式図である。It is a schematic diagram which shows the state which the battery container contracted in the width direction and the projection part was pushed in the winding group. 図3の線A−A’における角形非水電解液二次電池の断面図であり、突起部を高さ方向に点在させた場合の図である。FIG. 4 is a cross-sectional view of the prismatic nonaqueous electrolyte secondary battery taken along line A-A ′ in FIG. 3, and is a diagram in the case where protrusions are scattered in the height direction. 図3の線A−A’における角形非水電解液二次電池の断面図であり、突起部を高さ方向で3つに分割した場合の図である。FIG. 4 is a cross-sectional view of the prismatic nonaqueous electrolyte secondary battery taken along line A-A ′ in FIG. 3, and is a view when a protrusion is divided into three in the height direction.

本発明による角形非水電解液二次電池の実施例について説明する。本実施例では、非水電解液二次電池としてリチウムイオン電池を用いた例について説明する。ただし、リチウムイオン電池以外の非水電解液二次電池について、本発明の適用を制限するものではない。   Examples of the prismatic nonaqueous electrolyte secondary battery according to the present invention will be described. In this example, an example in which a lithium ion battery is used as a nonaqueous electrolyte secondary battery will be described. However, application of the present invention is not limited to non-aqueous electrolyte secondary batteries other than lithium ion batteries.

非水電解液二次電池の1種であるリチウムイオン電池の外装形状には種々あるが、近年では、装置への実装の観点から角形形状ものが多く利用されている。本実施例は、こうした角形形状のリチウムイオン電池の安全性を向上させるものである。本実施例では、断面形状がオーバル型の角形電池(扁平角形電池)について説明するが、これに類する種々の角形電池においても本発明の適用を制限するものでないことは言うまでもない。   There are various types of exterior shapes of lithium ion batteries, which are one type of non-aqueous electrolyte secondary battery, but in recent years, a rectangular shape is often used from the viewpoint of mounting on a device. This embodiment improves the safety of such a rectangular lithium ion battery. In this embodiment, an oval square battery (flat rectangular battery) having a cross-sectional shape will be described. Needless to say, the application of the present invention is not limited to various square batteries similar to the above.

図1は、本実施例における角形非水電解液二次電池の外観斜視図である。角形電池100は、図1に示すような外装形状をしており、横断面形状がオーバル形の電池容器5に、正極端子1、負極端子2、ガス放出弁3、及び注液口4を備える。正極端子1及び負極端子2は、外部への電気的接続のための端子であり、ガス放出弁3は、過充電等の異常時に内部に発生したガスを排出する。電解液は、注液口4から電池容器5に注入する。正極端子1、ガス放出弁3、及び注液口4は、上部の蓋板に設けられ、負極端子2は、底部の蓋板に設けられる。   FIG. 1 is an external perspective view of a prismatic nonaqueous electrolyte secondary battery in the present embodiment. A prismatic battery 100 has an exterior shape as shown in FIG. 1, and includes a positive electrode terminal 1, a negative electrode terminal 2, a gas release valve 3, and a liquid injection port 4 in a battery container 5 having an oval cross-sectional shape. . The positive electrode terminal 1 and the negative electrode terminal 2 are terminals for electrical connection to the outside, and the gas release valve 3 discharges gas generated inside when there is an abnormality such as overcharge. The electrolytic solution is injected into the battery container 5 from the injection port 4. The positive electrode terminal 1, the gas release valve 3, and the liquid injection port 4 are provided on the upper lid plate, and the negative electrode terminal 2 is provided on the bottom lid plate.

なお、以下の説明において、電池容器5の横断面形状(オーバル形)の長手方向を「幅方向」、短手方向を「厚さ方向」と呼び、幅方向と厚さ方向に直交する方向を「高さ方向」と呼ぶ。図1では、高さ方向は、電池容器5の正極端子1と負極端子2を結ぶ方向である。後述する捲回群についても、これらの方向を用いて説明する。   In the following description, the longitudinal direction of the cross-sectional shape (oval shape) of the battery case 5 is referred to as the “width direction”, the short direction is referred to as the “thickness direction”, and the direction orthogonal to the width direction and the thickness direction is referred to. This is called “height direction”. In FIG. 1, the height direction is a direction connecting the positive electrode terminal 1 and the negative electrode terminal 2 of the battery container 5. The winding group described later will also be described using these directions.

図2は、本実施例における角形非水電解液二次電池の内部に収められている捲回群と集電部品の構造を示す切断模式図である。角形電池100は、図2に示すように、発電要素たる捲回群6を電池容器5の内部に収めている。捲回群6は、集電部品7を介して外部端子(正極端子1および負極端子2)と電気的に接続している。図2では、負極端子2に接続する集電部品を図示していない。   FIG. 2 is a schematic cutaway view showing the structure of the winding group and the current collecting component housed in the rectangular nonaqueous electrolyte secondary battery in the present embodiment. As shown in FIG. 2, the prismatic battery 100 houses a wound group 6 that is a power generation element inside a battery container 5. The wound group 6 is electrically connected to external terminals (the positive terminal 1 and the negative terminal 2) via the current collecting component 7. In FIG. 2, the current collecting component connected to the negative electrode terminal 2 is not shown.

捲回群6は、正極電極と負極電極とを、ポリエチレン製の微多孔膜からなるセパレータを間に介在させて、板状軸心の周りに巻き取ることにより作製される。捲回群6は、図2に示すように扁平形状であり、平面からなる平面部6aと曲面から成る湾曲部6bとを有する。捲回群6には、平面部6aと湾曲部6bがそれぞれ2つ存在する。なお、図2からわかるように、捲回群6の捲回軸方向は、高さ方向と平行である。   The wound group 6 is produced by winding a positive electrode and a negative electrode around a plate-like axis with a separator made of a polyethylene microporous film interposed therebetween. As shown in FIG. 2, the wound group 6 has a flat shape, and includes a flat surface portion 6 a formed of a flat surface and a curved portion 6 b formed of a curved surface. The wound group 6 includes two flat portions 6a and two curved portions 6b. As can be seen from FIG. 2, the winding axis direction of the winding group 6 is parallel to the height direction.

正極電極は、85重量部の化学式LiCoOで表されるリチウム含有複合酸化物、10重量部のカーボンブラック及び黒鉛からなる導電材、及び5重量部のポリフッ化ビニリデン樹脂からなる結着剤を、NMP(N−メチル−2−ピロリドン溶液)に溶解させて一様なスラリとし、このスラリをアルミ箔に塗布したものを乾燥させ、所定の厚さにプレス成形することで作製される。 The positive electrode comprises 85 parts by weight of a lithium-containing composite oxide represented by the chemical formula LiCoO 2 , 10 parts by weight of a conductive material made of carbon black and graphite, and 5 parts by weight of a polyvinylidene fluoride resin. It is prepared by dissolving in NMP (N-methyl-2-pyrrolidone solution) to obtain a uniform slurry, drying the slurry applied to an aluminum foil, and press-molding the slurry to a predetermined thickness.

負極電極は、90重量部の黒鉛、5重量部のカーボンブラックからなる導電材、及び5重量部のポリフッ化ビニリデン樹脂からなる結着剤を、NMPに溶解させて一様なスラリとし、このスラリを銅箔に塗布したものを乾燥させ、所定の厚さにプレス成形することで作製される。   The negative electrode was prepared by dissolving 90 parts by weight of graphite, 5 parts by weight of a carbon black conductive material, and 5 parts by weight of a polyvinylidene fluoride resin binder in NMP to form a uniform slurry. It is produced by drying a material applied to a copper foil and press-molding it to a predetermined thickness.

正極のアルミ箔及び負極の銅箔には、それぞれ高さ方向の一端にスラリを塗らない部分を設けている。このスラリを塗らない部分を集電部品7に溶接することにより、正極と正極端子1、及び負極と負極端子2の電気的接続を得ている。   Each of the positive aluminum foil and the negative copper foil is provided with a portion where no slurry is applied to one end in the height direction. By welding the portion not coated with this slurry to the current collecting component 7, the positive electrode and the positive electrode terminal 1 and the negative electrode and the negative electrode terminal 2 are electrically connected.

図3は、本実施例における角形非水電解液二次電池の電池容器の横断面図である。本実施例では、電池容器5は、捲回群6を収納したときに湾曲部6bに対向する内壁に、捲回群6に向かって突出する突起部8を有する。突起部8は、高さ方向に垂直な断面の形状、すなわち横断面の形状が半円状の棒状であり、高さ方向に延在している。ただし、この横断面の形状において、半円の直径部分は、電池容器5の内壁の形状に合わせて曲率を有する曲線で形成される。本実施例では、電池容器5に変形がない状態では、突起部8は捲回群6の湾曲部6bと応力なしで当接する。   FIG. 3 is a cross-sectional view of the battery container of the rectangular nonaqueous electrolyte secondary battery in the present example. In the present embodiment, the battery container 5 has a protruding portion 8 that protrudes toward the winding group 6 on the inner wall that faces the curved portion 6 b when the winding group 6 is stored. The protrusion 8 has a cross-sectional shape perpendicular to the height direction, that is, a bar shape whose cross-sectional shape is a semicircular shape, and extends in the height direction. However, in this cross-sectional shape, the semicircular diameter portion is formed by a curve having a curvature in accordance with the shape of the inner wall of the battery case 5. In the present embodiment, when the battery case 5 is not deformed, the protruding portion 8 contacts the curved portion 6b of the wound group 6 without stress.

突起部8は、電池容器5と同じ材質であり横断面形状を上述の半円状に鋳造した線材を、電池容器5の内壁に溶接して形成する。具体的には、この線材を、YAGレーザーで数点スポット的に電池容器5の内壁に溶接して、突起部8を形成することができる。   The protruding portion 8 is formed by welding a wire rod made of the same material as the battery case 5 and having a cross-sectional shape cast into the above-described semicircular shape to the inner wall of the battery case 5. Specifically, this wire can be welded to the inner wall of the battery container 5 in several spots with a YAG laser to form the protrusion 8.

本実施例では、突起部8の横断面形状を半円状としたが、これに限るものではない。突起部8の横断面形状は、矩形や三角形等、様々な形状とすることができる。後述するように、突起部8の横断面形状は、正極と負極のソフトショートの制御因子となりうる。   In this embodiment, the projecting portion 8 has a semicircular cross-sectional shape, but is not limited thereto. The cross-sectional shape of the protrusion 8 can be various shapes such as a rectangle and a triangle. As will be described later, the cross-sectional shape of the protrusion 8 can be a control factor for the soft short between the positive electrode and the negative electrode.

図3では、突起部8は、電池容器5の内壁のうち、捲回群6の2つの湾曲部6bにそれぞれ対向する2つの位置の内壁(幅方向の両端部の内壁)に形成されている。突起部8は、この2つの位置のうち、一方の位置の内壁(幅方向の一端の内壁)だけに形成してもよい。   In FIG. 3, the protrusion 8 is formed on two inner walls (inner walls at both ends in the width direction) of the inner wall of the battery container 5 that are opposed to the two curved portions 6 b of the wound group 6. . The protrusion 8 may be formed only on the inner wall (the inner wall at one end in the width direction) at one of the two positions.

図4は、図3の線分A−A’における角形非水電解液二次電池の断面図である。図4に示すように、本実施例での突起部8は、高さ方向の中央付近で2つに分割され、高さ方向に不連続となっている。また、高さ方向において突起部8の存在する区間は、捲回群6の存在する区間よりも長くした。突起部8は、前述したように横断面形状が半円状の棒状であり、縦断面形状は図4に示すように矩形である。   FIG. 4 is a cross-sectional view of the rectangular nonaqueous electrolyte secondary battery taken along line A-A ′ in FIG. 3. As shown in FIG. 4, the protrusion 8 in this embodiment is divided into two near the center in the height direction and is discontinuous in the height direction. In addition, the section where the protruding portion 8 exists in the height direction is longer than the section where the wound group 6 exists. As described above, the protrusion 8 is a rod having a semicircular cross-sectional shape, and the vertical cross-sectional shape is rectangular as shown in FIG.

電池容器5が厚さ方向に膨張して幅方向に収縮する力を受けた場合、突起部8は、巻回群6に押し付けられる。このとき、突起部8は高さ方向に存在する区間が捲回群6よりも長いので、捲回群6では、高さ方向の端部でも突起部8が押し込まれる。   When the battery container 5 receives a force that expands in the thickness direction and contracts in the width direction, the protrusion 8 is pressed against the winding group 6. At this time, since the protrusion 8 has a longer section in the height direction than the wound group 6, in the wound group 6, the protrusion 8 is pushed even at the end in the height direction.

突起部8は、このように捲回群6を強く圧迫して、セパレータを微小に切断する。そして、突起部8を介して正極と負極とが接触するので、ソフトショートが誘発される。このソフトショートにより、正極と負極が小さな面積によって短絡し、通電抵抗が大きい状態で(すなわち、小さい短絡電流で)電気エネルギーを解放することで、不安全な現象が起きることを回避することができる。   Thus, the protrusion 8 strongly presses the wound group 6 and finely cuts the separator. And since a positive electrode and a negative electrode contact via the protrusion part 8, a soft short is induced. By this soft short, the positive electrode and the negative electrode are short-circuited by a small area, and it is possible to avoid an unsafe phenomenon by releasing electric energy in a state where the energization resistance is large (that is, with a small short-circuit current). .

突起部8は、高さ方向に存在する区間が捲回群6よりも長いため、より小さい応力で突起部が押し込まれる捲回群6の端部に突起が存することにより、ソフトショートを誘発しやすくなっている。また、突起部8が高さ方向の中央付近で2つに分割され不連続となっているため、高さ方向の中央付近での突起部8の端部が捲回群6へ押し込まれやすくなり、これもソフトショートを誘発しやすい形状となっている。   Since the protrusion 8 has a longer section in the height direction than the wound group 6, a soft short is induced by the presence of a protrusion at the end of the wound group 6 where the protrusion is pushed with a smaller stress. It has become easier. In addition, since the protrusion 8 is divided into two near the center in the height direction and is discontinuous, the end of the protrusion 8 near the center in the height direction is likely to be pushed into the winding group 6. This is also a shape that is easy to induce soft shorts.

図5は、電池容器が厚さ方向に膨張した場合に、幅方向に収縮する様子を示す模式図である。角形電池100が過充電された場合等で電池の内圧が異常に上昇した場合、この異常な内圧の上昇によって電池容器5が厚さ方向に膨張する。そうすると、電池容器5は、多少の塑性変形による伸びはあるにしても容器周長はあまり変化しないので、厚さ方向に膨張した分、幅方向には収縮する力が働く。この収縮は、蓋板によって保持される電池容器5の高さ方向の端部よりも、電池容器5以外に保持体のない高さ方向の中央部で、より大きな変形となって現れる(図5の右図を参照)。   FIG. 5 is a schematic diagram showing how the battery container contracts in the width direction when the battery container expands in the thickness direction. When the internal pressure of the battery rises abnormally, for example, when the prismatic battery 100 is overcharged, the battery container 5 expands in the thickness direction due to this abnormal increase in internal pressure. Then, the battery container 5 does not change so much even though it is stretched by some plastic deformation. Therefore, the battery container 5 is contracted in the width direction by the amount of expansion in the thickness direction. This contraction appears as a larger deformation at the center in the height direction where there is no holding body other than the battery container 5 than at the end in the height direction of the battery container 5 held by the cover plate (FIG. 5). (See the right figure).

図6は、電池容器が幅方向に収縮して、突起部が捲回群に押し込まれた状態を示す模式図である。電池容器5の中央部が大きく収縮した結果、電池容器5は、図6に示すように高さ方向の中央部が最も大きく変形し、くびれた形状になる。この変形により、電池容器5の内壁に設置した突起部8が捲回群6に押し込まれる。このとき、最も変形の大きい捲回群6の高さ方向の中央部では、突起部8が捲回群6を強く圧迫してセパレータを微小に切断し、正極と負極とを接触させてソフトショートを誘発させる。このソフトショートにより、電池の持つ電気エネルギーを低い速度で放電することができる。   FIG. 6 is a schematic diagram illustrating a state where the battery container contracts in the width direction and the protrusion is pushed into the wound group. As a result of the central portion of the battery container 5 being greatly contracted, the central portion in the height direction is most deformed and becomes a constricted shape as shown in FIG. Due to this deformation, the protruding portion 8 installed on the inner wall of the battery container 5 is pushed into the wound group 6. At this time, in the central portion in the height direction of the wound group 6 having the largest deformation, the protrusion 8 strongly presses the wound group 6 to cut the separator minutely, and the positive electrode and the negative electrode are brought into contact with each other to make a soft short. To trigger. By this soft short, the electric energy of the battery can be discharged at a low speed.

突起部8によりこのような機構を構成することによって、このような機構がない場合のように、電極の充電状態が高いままセパレータの大半部分が溶融して大面積で短絡し、正極と負極が低い抵抗で直接接触して大きな電流が流れ、この電流のジュール熱により電池の急峻な異常発熱が起こり、場合によっては破裂に至るような電池の不安全な挙動を未然に防ぐことができる。   By constructing such a mechanism with the protrusions 8, as in the case where there is no such mechanism, most of the separator melts and short-circuits in a large area while the charged state of the electrode is high, and the positive electrode and the negative electrode A large current flows in direct contact with a low resistance, and sudden abnormal heat generation of the battery is caused by the Joule heat of this current, and in some cases, an unsafe behavior of the battery leading to explosion can be prevented.

また、図4や図6に示すように、電池容器5の内壁に形成した突起部8が、高さ方向の中央付近で2つに分割され、高さ方向に不連続となっている場合、捲回群6の高さ方向の中央付近には、突起部8の端部が存在する。この場合、突起部8の端部がセパレータを微小に切断するので、これにより誘発されるソフトショートでは、より高い電気抵抗を以って正極と負極とが接触することになり、より小さな電流での短絡が生じるので、大きなジュール熱を発生させることなく、放電することができる。   As shown in FIG. 4 and FIG. 6, when the protrusion 8 formed on the inner wall of the battery case 5 is divided into two near the center in the height direction and is discontinuous in the height direction, Near the center of the wound group 6 in the height direction, there is an end of the protrusion 8. In this case, since the end of the protrusion 8 cuts the separator minutely, in the soft short induced thereby, the positive electrode and the negative electrode are brought into contact with each other with a higher electric resistance, and the current is smaller. Therefore, it is possible to discharge without generating a large Joule heat.

以上の実施例では、突起部8を高さ方向に2つに分割して不連続にした。突起部8は、高さ方向に3つ以上に分割して不連続にしてもよいし、高さ方向に分割しなくてもよい(不連続にしなくてもよい)。すなわち、高さ方向において、突起部8の数は、1つでも複数でもよい。高さ方向の突起部8の数を複数にする場合には、例えば、突起部8の分割数を多くして、突起部8を高さ方向に点在させてもよい。   In the above embodiment, the protrusion 8 is divided into two in the height direction to make it discontinuous. The protrusion 8 may be divided into three or more in the height direction to be discontinuous, or may not be divided in the height direction (it may not be discontinuous). That is, in the height direction, the number of the protrusions 8 may be one or plural. When the number of the protrusions 8 in the height direction is plural, for example, the number of divisions of the protrusions 8 may be increased and the protrusions 8 may be scattered in the height direction.

また、突起部8の突出長は、均一でなくてもよい。例えば、高さ方向の中央部の突出長が、他の部分の突出長より大きくてもよい。突起部8を高さ方向に2つ以上に分割して不連続にした場合には、分割された突起部8のそれぞれの突出長が、異なっていてもよい。この場合にも、例えば、高さ方向の中央部の突出長を、他の部分の突出長より大きくすることができる。   Further, the protruding length of the protrusion 8 may not be uniform. For example, the protruding length of the central portion in the height direction may be larger than the protruding length of other portions. When the protruding portion 8 is divided into two or more in the height direction to be discontinuous, the protruding lengths of the divided protruding portions 8 may be different. Also in this case, for example, the protruding length of the central portion in the height direction can be made larger than the protruding length of the other portions.

図7は、図4と同様に、図3の線A−A’における角形非水電解液二次電池の断面図であり、突起部8を高さ方向に点在させた場合の図である。このように、突起部8を高さ方向に点在させると、セパレータを微小に切断してソフトショートを誘発させる効果をより大きくすることができる。   FIG. 7 is a cross-sectional view of the rectangular nonaqueous electrolyte secondary battery taken along line AA ′ in FIG. 3 in the same manner as FIG. 4, and is a diagram in the case where the protrusions 8 are scattered in the height direction. . Thus, when the protrusions 8 are scattered in the height direction, the effect of inducing a soft short by cutting the separator minutely can be further increased.

また、突起部8を高さ方向に2つ以上に分割した場合、突起部8の分割片(分割された突起部8の1つ)の高さ方向の長さは、互いに異なっていてもよい。   Further, when the protrusion 8 is divided into two or more in the height direction, the lengths in the height direction of the divided pieces of the protrusion 8 (one of the divided protrusions 8) may be different from each other. .

図8は、図4と同様に、図3の線A−A’における角形非水電解液二次電池の断面図であり、突起部8を高さ方向に3つに分割した場合の図である。高さ方向の中央部にある突起部8の分割片は、他の分割片よりも高さ方向の長さが短い。このように、高さ方向の中央部にある分割片の高さ方向の長さを短くすると、電池容器が変形した場合に、セパレータを微小に切断してソフトショートを誘発させる効果をより大きくすることができる。   FIG. 8 is a cross-sectional view of the rectangular nonaqueous electrolyte secondary battery taken along line AA ′ in FIG. 3, similar to FIG. 4, and is a view when the protrusion 8 is divided into three in the height direction. is there. The divided piece of the protrusion 8 at the center in the height direction has a shorter length in the height direction than the other divided pieces. Thus, if the length in the height direction of the split piece at the center in the height direction is shortened, the effect of inducing a soft short by finely cutting the separator when the battery container is deformed is further increased. be able to.

突起部8の高さ方向の分割数や、突起部8の分割片の高さ方向の長さは、電池の設計によって適宜変更することが有効なのは言うまでもない。   Needless to say, it is effective to appropriately change the number of divisions in the height direction of the protrusions 8 and the length in the height direction of the divided pieces of the protrusions 8 according to the design of the battery.

本実施例では、電池容器の内壁に設けた突起部が不連続な場合に、よりソフトショート現象の起点になりやすいことを説明した。上述したように、突起部は、高さ方向に連続させても不連続にさせてもよい。また、突起部の横断面形状は、高さ方向の連続、不連続によらず、最適な形状を選択することができる。例えば、横断面形状は、より小さい直径の半円としたり、三角形等の多角形状としたりすることができる。また、突起部を分割して高さ方向に不連続にする場合には、変形の大きい電池容器の中央部にのみ、高さ方向の長さが比較的短い突起部を設けたり、突出長の大きい突起部を設けたりすることによって、セパレータの切裂をより起こりやすくすることができる。このように、突起部は、電池の設計に応じて最適な形状を選択することが可能である。   In the present embodiment, it has been described that when the protrusion provided on the inner wall of the battery container is discontinuous, it is more likely to become the starting point of the soft short phenomenon. As described above, the protrusions may be continuous or discontinuous in the height direction. Moreover, the optimal cross-sectional shape of the protrusion can be selected regardless of whether it is continuous or discontinuous in the height direction. For example, the cross-sectional shape can be a semicircle with a smaller diameter, or a polygonal shape such as a triangle. In addition, when dividing the protrusions to make them discontinuous in the height direction, a protrusion with a relatively short length in the height direction is provided only at the central part of the battery container having a large deformation, By providing a large protrusion, the separator can be more easily ruptured. Thus, the optimal shape of the protrusion can be selected according to the design of the battery.

また、高さ方向において、突起部の存在する区間を、捲回群の存在する区間よりも長くすると、捲回群の中央部だけでなく、捲回群の端部でのソフトショートを発生させることが可能となる。高さ方向における突起部の存在する区間の長さは、電池の設計に応じて決定すべきことは言うまでもない。   In addition, if the section where the protrusion is present is longer than the section where the wound group exists in the height direction, a soft short occurs not only at the center of the wound group but also at the end of the wound group. It becomes possible. Needless to say, the length of the section where the protrusions exist in the height direction should be determined according to the design of the battery.

また、捲回群の湾曲部が電池容器の蓋板に対向する構造の電池では、突起部を電池容器の上部の蓋板と底部の蓋板のいずれか一方または両方の内壁に設けてもよい。   Further, in the battery having a structure in which the curved portion of the winding group is opposed to the cover plate of the battery container, the protrusion may be provided on the inner wall of one or both of the upper cover plate and the bottom cover plate of the battery container. .

いずれの形状を選択するにしても、電池容器の内壁に設けた突起部により、不安全な現象に至る前にソフトショートを誘発させて低い速度で電気エネルギーを放出させる上で、本発明は有効である。   Regardless of which shape is selected, the present invention is effective in inducing a soft short and releasing electric energy at a low speed before reaching an unsafe phenomenon by the protrusion provided on the inner wall of the battery case. It is.

1…正極端子、2…負極端子、3…ガス放出弁、4…注液口、5…電池容器、6…捲回群、6a…平面部、6b…湾曲部、7…集電部品、8…突起部、100…角形電池。   DESCRIPTION OF SYMBOLS 1 ... Positive electrode terminal, 2 ... Negative electrode terminal, 3 ... Gas discharge valve, 4 ... Injection hole, 5 ... Battery container, 6 ... Winding group, 6a ... Plane part, 6b ... Curved part, 7 ... Current collection component, 8 ... protrusion, 100 ... square battery.

Claims (7)

セパレータを介して正極電極及び負極電極を扁平に捲回した捲回群と、前記捲回群を収納する電池容器とを有する角形非水電解液二次電池であって、
前記捲回群は、扁平形状を形成する平面部と湾曲部とを有し、
前記電池容器は、内壁に突起部を有し、
前記突起部は、前記捲回群の前記湾曲部の頂部に対向する位置のみに形成されていることを特徴とする角形非水電解液二次電池。
A square non-aqueous electrolyte secondary battery having a wound group obtained by winding a positive electrode and a negative electrode flatly through a separator, and a battery container storing the wound group,
The wound group has a flat portion and a curved portion forming a flat shape,
The battery container may have a protrusion on the inner wall,
The prismatic non-aqueous electrolyte secondary battery , wherein the protrusion is formed only at a position facing the top of the curved portion of the wound group .
前記突起部は、前記捲回群の捲回軸方向において、前記捲回群の存在する区間よりも長い区間にわたって存在する請求項1記載の角形非水電解液二次電池。   2. The prismatic nonaqueous electrolyte secondary battery according to claim 1, wherein the protrusion is present in a longer section in the winding axis direction of the wound group than a section in which the wound group exists. 前記突起部は、前記捲回群の捲回軸方向に不連続に存在する請求項1または2記載の角形非水電解液二次電池。   The prismatic nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the protrusions are discontinuously present in a winding axis direction of the winding group. 前記電池容器は、前記捲回群の捲回軸方向に、複数の前記突起部を有する請求項1または2記載の角形非水電解液二次電池。   The prismatic nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the battery container has a plurality of the protrusions in a winding axis direction of the winding group. 前記突起部は、前記捲回群の捲回軸方向に点在する請求項1または2記載の角形非水電解液二次電池。   The prismatic nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the protrusions are scattered in a winding axis direction of the winding group. 前記電池容器は、前記捲回群の2つの前記湾曲部のそれぞれに対向する内壁に前記突起部を有する請求項1から5のいずれか1項記載の角形非水電解液二次電池。   The prismatic nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the battery container has the protrusion on an inner wall facing each of the two curved portions of the wound group. 前記突起部は、前記捲回群の捲回軸方向に垂直な断面が、直径部分が曲率を有する半円形状である請求項1から6のいずれか1項記載の角形非水電解液二次電池。   The prismatic non-aqueous electrolyte secondary according to any one of claims 1 to 6, wherein the protrusion has a semicircular shape in which a cross section perpendicular to a winding axis direction of the winding group has a diameter portion having a curvature. battery.
JP2011224134A 2011-10-11 2011-10-11 Square non-aqueous electrolyte secondary battery Expired - Fee Related JP5707295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224134A JP5707295B2 (en) 2011-10-11 2011-10-11 Square non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224134A JP5707295B2 (en) 2011-10-11 2011-10-11 Square non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013084471A JP2013084471A (en) 2013-05-09
JP5707295B2 true JP5707295B2 (en) 2015-04-30

Family

ID=48529476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224134A Expired - Fee Related JP5707295B2 (en) 2011-10-11 2011-10-11 Square non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5707295B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261427A (en) * 1997-03-18 1998-09-29 Japan Storage Battery Co Ltd Battery
JP4848860B2 (en) * 2006-01-13 2011-12-28 ソニー株式会社 battery
JP5699811B2 (en) * 2011-05-30 2015-04-15 株式会社Gsユアサ Storage battery

Also Published As

Publication number Publication date
JP2013084471A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP7105081B2 (en) Assembled battery and secondary battery used therein
US9099732B2 (en) Rechargeable battery having a fuse with an insulating blocking member
JP5611251B2 (en) Sealed secondary battery
EP2793295A2 (en) Rechargeable battery
KR101255171B1 (en) secondary battery and manufacturing method thereof
JP2016189248A (en) Square secondary battery and battery pack using the same
JP4619221B2 (en) Can-type secondary battery
EP2793293B1 (en) Rechargeable battery
US9337459B2 (en) Sealed secondary battery
KR102425797B1 (en) Rechargeable secondary battery
JP2011192550A (en) Secondary battery
JP6012606B2 (en) Square battery
US20180219208A1 (en) Lithium storage battery with integrated circuit-breaker for improved operating safety
JP2014056716A (en) Sealed secondary battery
JP2018037253A (en) Square secondary battery
KR20150032086A (en) Rechargeable battery having safty member
JP5673838B2 (en) Secondary battery
KR20160019016A (en) Rechargeable battery having fuse
CN114762182B (en) Sealed battery
US9231270B2 (en) Lithium-ion battery
KR20160085063A (en) Secondary battery
JP6505998B2 (en) Secondary battery having an insulating case
JP2008171678A (en) Nonaqueous electrolyte secondary battery
KR102248595B1 (en) Secondary Battery
KR101818801B1 (en) Cylinderical Secondary Battery And Manufacturing Method For Fuse Of Electrode Tab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees