JP5705102B2 - Insulation deterioration diagnosis device - Google Patents

Insulation deterioration diagnosis device Download PDF

Info

Publication number
JP5705102B2
JP5705102B2 JP2011279228A JP2011279228A JP5705102B2 JP 5705102 B2 JP5705102 B2 JP 5705102B2 JP 2011279228 A JP2011279228 A JP 2011279228A JP 2011279228 A JP2011279228 A JP 2011279228A JP 5705102 B2 JP5705102 B2 JP 5705102B2
Authority
JP
Japan
Prior art keywords
phase
harmonic component
zero
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011279228A
Other languages
Japanese (ja)
Other versions
JP2013130440A (en
Inventor
佳正 渡邊
佳正 渡邊
西沢 博志
博志 西沢
剛志 津田
剛志 津田
仲嶋 一
一 仲嶋
章 田辺
章 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011279228A priority Critical patent/JP5705102B2/en
Publication of JP2013130440A publication Critical patent/JP2013130440A/en
Application granted granted Critical
Publication of JP5705102B2 publication Critical patent/JP5705102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、インバータ装置とインバータ駆動される負荷機器との間に接続された給電電路および該負荷機器の絶縁劣化を診断する装置に関する。   The present invention relates to a power feeding circuit connected between an inverter device and a load device driven by an inverter, and an apparatus for diagnosing insulation deterioration of the load device.

インバータ駆動される負荷機器には、電動機、無停電電源装置(UPS: Uninterruptible Power Supply)、電磁調理器、そして照明などが挙げられるが、いずれの機器も経年劣化により絶縁劣化を生じる。例えば、搬送機等に用いられる電動機においては、電動機と連結する作業台の頻繁な移動に伴い、給電するための導体ケーブルに摩擦、ねじれ、伸縮が生じ導体被膜が損傷する場合があり、また切削加工機等に用いられる電動機においては切削液や油等が電動機に飛沫し、シャフト軸等などをつたって、内部の絶縁材まで浸食する場合がある。   Inverter-driven load equipment includes an electric motor, an uninterruptible power supply (UPS), an electromagnetic cooker, and lighting, but all of them cause insulation deterioration due to aging. For example, in an electric motor used for a transporter or the like, with frequent movement of a workbench connected to the electric motor, the conductor cable for supplying power may be rubbed, distorted, expanded and contracted, and the conductor coating may be damaged. In an electric motor used for a processing machine or the like, cutting fluid or oil may splash on the electric motor and erode to an internal insulating material through a shaft shaft or the like.

このように、インバータ駆動する負荷機器の絶縁劣化は使用環境や部材の耐久性により劣化度合いは異なるが、この絶縁劣化が生じた箇所を介し漏洩電流が流れ、人体への感電の危機や漏電遮断器が作動する要因となる。漏電遮断器は人体への感電を未然に防ぐべく設置されるものである。人命第一は当然であるが、漏電遮断器がいったん作動すると、該当の電動機を含む装置や設備は停止するため、漏電の原因および箇所の特定、そして復旧に時間を要してしまい、生産設備の稼動効率の低下を招いてしまう。   In this way, the degree of insulation degradation of load equipment driven by an inverter varies depending on the environment of use and the durability of the components, but leakage current flows through the location where this insulation degradation occurs, causing a risk of electric shock to the human body and interruption of leakage It becomes a factor that the device operates. The earth leakage breaker is installed to prevent electric shock to the human body. Naturally, human life is a matter of course, but once the earth leakage circuit breaker is activated, the equipment and equipment containing the motor will stop, so it will take time to identify the cause and location of the earth leakage and restore it. The operating efficiency will be reduced.

こうした絶縁劣化を診断する手法として、一般的に絶縁抵抗計(メガー)が用いられる。絶縁抵抗計は、診断対象電路に直流の高電圧を印加した際に流れる電流を測定し、オームの法則に基づき絶縁抵抗を算出している。   As a method for diagnosing such insulation deterioration, an insulation resistance meter (Megger) is generally used. The insulation resistance meter measures the current that flows when a high DC voltage is applied to the diagnostic circuit, and calculates the insulation resistance based on Ohm's law.

特許文献1(図1)では、絶縁抵抗計の原理を電動機の絶縁劣化診断に応用した例が提案されており、スイッチ開閉により、電動機への給電回路を、絶縁抵抗およびグランドを含む閉回路に切り替え、直流電圧を閉回路に印加した際に流れる電流を測定することによって絶縁劣化を診断している。   Patent Document 1 (FIG. 1) proposes an example in which the principle of an insulation resistance meter is applied to an insulation deterioration diagnosis of an electric motor. By opening and closing a switch, a power supply circuit to the electric motor is changed to a closed circuit including an insulation resistance and a ground. Insulation degradation is diagnosed by switching and measuring the current that flows when a DC voltage is applied to the closed circuit.

絶縁劣化のきっかけや進行度合いは使用環境によって異なることから、絶縁劣化の診断は定期的に実施する必要がある。このため、特許文献1の切り替え方式は絶縁劣化を精度よく計測できるものの、給電電路を切り替える際には電動機を完全に停止させる必要がある。そのため、絶縁劣化の診断時期は電動機の駆動前もしくは駆動後に限定されてしまい、長期連続運転を必要とする負荷機器においては、給電を完全に停止させる時まで絶縁劣化診断を実施することができず、絶縁劣化を未然に検出できない課題がある。   Since the cause and progress of the insulation deterioration vary depending on the usage environment, the diagnosis of the insulation deterioration needs to be performed periodically. For this reason, although the switching method of Patent Document 1 can accurately measure the insulation deterioration, it is necessary to completely stop the electric motor when switching the power feeding circuit. Therefore, the diagnosis time of insulation deterioration is limited before or after driving the motor, and in load equipment that requires long-term continuous operation, insulation deterioration diagnosis cannot be performed until power supply is completely stopped. There is a problem that insulation deterioration cannot be detected in advance.

絶縁抵抗計を用いた場合も同様に、診断の際に負荷への給電を停止したり、結線を断ち切る必要があり、活線状態で絶縁劣化診断を行うことはできない。さらに、絶縁抵抗計を用いた絶縁劣化診断は、定期検査の際に、人間の手作業によって行うことが多い。しかしながら、定期検査対象機器が多い場合は、人的ミスにより別系統の回路に高電圧を印加して負荷機器の故障などを招いてしまう可能性もある。   Similarly, when an insulation resistance meter is used, it is necessary to stop the power supply to the load or cut off the connection at the time of diagnosis, and the insulation deterioration diagnosis cannot be performed in a live line state. Furthermore, insulation deterioration diagnosis using an insulation resistance meter is often performed manually by humans during periodic inspections. However, when there are many devices subject to periodic inspection, there is a possibility that a high voltage is applied to a circuit of another system due to a human error, resulting in a failure of the load device.

このような観点から、漏電遮断器や漏電保護リレー等にも用いられている零相変流器は、活線状態での絶縁劣化診断に有効である。   From this point of view, the zero-phase current transformer used for the earth leakage breaker, the earth leakage protection relay, etc. is effective for the insulation deterioration diagnosis in the live line state.

特許文献2(図2)や特許文献3(第1図)では、負荷機器への給電電路の途中に、往路と復路の差分電流成分や三相交流の零相電流を計測する零相変流器(ZCT: Zero-phase Current Transformer)を配置し、零相電流を検出することで、電路から漏洩する電流を求めることができる。この場合、負荷への給電や結線を断ち切る必要はなく、活線状態で電路から漏洩する漏洩電流を測定することができる。ただし、インバータ駆動する負荷機器には、一般的に、数Hzから百数十Hzの周波数の電流が通電され、通電するケーブルと大地間に生じる浮遊容量を介して、大地に漏洩電流が流れることがある。   In Patent Document 2 (FIG. 2) and Patent Document 3 (FIG. 1), a zero-phase current measurement that measures a differential current component of a forward path and a return path and a zero-phase current of a three-phase AC in the middle of a power feeding circuit to a load device. By arranging a detector (ZCT: Zero-phase Current Transformer) and detecting the zero-phase current, the current leaking from the electric circuit can be obtained. In this case, it is not necessary to cut off the power supply or connection to the load, and the leakage current leaking from the electric circuit in the live line state can be measured. However, a load device driven by an inverter is generally supplied with a current having a frequency of several Hz to several tens of Hz, and a leakage current flows to the ground via a stray capacitance generated between the energized cable and the ground. There is.

その対策として、電路に印加されている電圧の値と漏洩電流値の値から絶縁抵抗を算出し、絶縁劣化診断を行うような方式の場合、浮遊容量を介して漏洩する電流分は検出対象から除外する必要がある。絶縁抵抗を介して漏洩する電流と浮遊容量を介して漏洩する電流はそれぞれRとCの成分であるため、両者は各々90度位相が異なる漏洩電流ベクトルとして分離可能である。ただし、零相変流器は、原理上、2つの漏洩電流ベクトルの合成ベクトルを検出するため、両者を分離することができない。   As a countermeasure, when the insulation resistance is calculated from the value of the voltage applied to the circuit and the value of the leakage current, and the insulation deterioration diagnosis is performed, the amount of current that leaks through the stray capacitance is detected from the detection target. Must be excluded. Since the current leaking through the insulation resistance and the current leaking through the stray capacitance are components of R and C, respectively, they can be separated as leakage current vectors having a phase difference of 90 degrees. However, since the zero-phase current transformer detects a combined vector of two leakage current vectors in principle, it cannot separate them.

特許文献4(第1図、第2図)では、零相変流器の出力波形から電路に印加されている電圧と同一位相のベクトル成分を抽出することによって、絶縁抵抗を介して漏洩する電流のみを検出している。   In Patent Document 4 (FIGS. 1 and 2), a current that leaks through an insulation resistance by extracting a vector component having the same phase as the voltage applied to the electric circuit from the output waveform of the zero-phase current transformer. Only detecting.

特許文献5(図1)では、三相交流電路において、変成器を介して絶縁劣化診断用の電圧を電路に重畳し、電路に設けた零相変流器にて絶縁劣化診断用の電圧と同一周波数成分のみ抽出することを2つ以上の周波数条件下で行うことで、三相交流電路から漏洩する漏洩電流から絶縁抵抗を介して漏洩する電流のみを検出している。   In Patent Document 5 (FIG. 1), in a three-phase AC circuit, a voltage for insulation deterioration diagnosis is superimposed on the electric circuit via a transformer, and a voltage for insulation deterioration diagnosis is obtained by a zero-phase current transformer provided in the electric circuit. By extracting only the same frequency component under two or more frequency conditions, only the current leaking through the insulation resistance is detected from the leakage current leaking from the three-phase AC circuit.

特許文献6(図1)では、三相交流電路において、各相に流れる電流の波形はそれぞれ位相が120度ずつ異なるものの、各相に流れる電流波形の3次高調波成分はいずれも同相であることに着目し、3次高調波電圧と3次高調波電流の同相成分を抽出することによって、三相交流電路から漏洩する漏洩電流から絶縁抵抗を介して漏洩する電流のみを検出している。   In Patent Document 6 (FIG. 1), in the three-phase AC circuit, the waveforms of the currents flowing in the respective phases are 120 degrees different from each other, but the third harmonic components of the current waveforms flowing in the respective phases are all in phase. Focusing on this, only the current leaking through the insulation resistance is detected from the leakage current leaking from the three-phase AC circuit by extracting the in-phase component of the third harmonic voltage and the third harmonic current.

特許文献7(図1)では、零相変流器及び電圧測定器にて測定した漏洩電流と電圧から基本波成分や5次高調波成分を抽出し、基本波及び5次高調波における漏洩電流と電圧の位相関係から、所定の解析アルゴリズムに従って解析することによって、絶縁抵抗を介して漏洩する電流のみを検出している。   In Patent Document 7 (FIG. 1), a fundamental wave component and a fifth harmonic component are extracted from a leakage current and a voltage measured by a zero-phase current transformer and a voltage measuring device, and the leakage current in the fundamental wave and the fifth harmonic is extracted. By analyzing according to a predetermined analysis algorithm from the phase relationship between the voltage and the voltage, only the current leaking through the insulation resistance is detected.

特開2007−159289号公報(図1)JP2007-159289A (FIG. 1) 特開2003−284235号公報(図2)Japanese Patent Laying-Open No. 2003-284235 (FIG. 2) 特開平4−132969号公報(第1図)JP-A-4-132969 (FIG. 1) 特開平4−169869号公報(第1図、第2図)Japanese Patent Laid-Open No. 4-169869 (FIGS. 1 and 2) 特開2003−232821号公報(図1)Japanese Patent Laying-Open No. 2003-2328281 (FIG. 1) 特開平6−43196号公報(図1)JP-A-6-43196 (FIG. 1) 特開2004−317466号公報(図1)Japanese Patent Laying-Open No. 2004-317466 (FIG. 1)

活線状態で絶縁抵抗を介して漏洩する電流のみを検出する方式は、上述のように複数の方式が知られている。ただし、いずれの方式においても課題を有する。例えば、電圧と漏洩電流の位相関係を用いる方式の場合、電圧や漏洩電流の波形が重要な信号情報となるが、一つのセンサで漏洩電流を測定することのできる零相変流器は磁性体やコイルから構成されているため、漏洩電流として比較的に大電流が流れることで、磁性体の磁化状態が変化し、零相電流器の出力波形と漏洩電流波形が一致しなくなり、位相特性に誤差が生ずるという課題を有する。   As described above, a plurality of methods are known for detecting only the current leaking through the insulation resistance in the live line state. However, both methods have problems. For example, in the case of the method using the phase relationship between the voltage and the leakage current, the voltage and the waveform of the leakage current are important signal information, but the zero-phase current transformer that can measure the leakage current with one sensor is a magnetic material. Since a relatively large current flows as a leakage current, the magnetization state of the magnetic material changes, and the output waveform of the zero-phase current device and the leakage current waveform do not match, resulting in phase characteristics. There is a problem that an error occurs.

一方、零相変流器を使用せずに、原理上位相ズレがない電流センサを用いることも可能である。しかしながら、零相電流を検出するために、各相にそれぞれ電流センサを備える必要があり、装置の大型化やセンサ出力配線の煩雑さを招く。さらに、絶縁劣化診断の際、外部から変成器を介して電路に絶縁劣化診断用電圧を印加する場合は、変成器が大型であり、装置の寸法面やコスト面において課題を有する。   On the other hand, it is possible to use a current sensor having no phase shift in principle without using a zero-phase current transformer. However, in order to detect the zero-phase current, it is necessary to provide a current sensor for each phase, which leads to an increase in the size of the device and a complicated sensor output wiring. Further, when an insulation deterioration diagnosis voltage is applied from the outside to the electric circuit via a transformer, the transformer is large and has problems in terms of the size and cost of the apparatus.

3次高調波成分を測定する方式では、三相電路の各相を一括(合成)して測定しているため、絶縁劣化が生じた相を特定することができないという課題を有する。   In the method of measuring the third-order harmonic component, since the phases of the three-phase circuit are measured together (synthesized), there is a problem that the phase in which the insulation deterioration has occurred cannot be specified.

また、漏洩電流及び電圧の基本波成分や5次高調波成分から絶縁の劣化が生じた相を特定できる方式では、電圧と漏洩電流の位相関係を用いることから、零相変流器の位相特性の変動について課題を有する。さらに、5次高調波成分が電路に印加されている電圧信号に含まれていることが前提条件であることや、仮に含まれていたとしても信号レベルが小さいことも課題である。   In addition, in the method that can identify the phase in which insulation degradation has occurred from the leakage current and the fundamental wave component and the fifth harmonic component of the voltage, the phase characteristics of the zero-phase current transformer are used because the phase relationship between the voltage and the leakage current is used. There is a problem with the fluctuations. Furthermore, it is a precondition that the fifth harmonic component is included in the voltage signal applied to the electric circuit, and that the signal level is low even if it is included.

本発明の目的は、漏洩電流と電圧の位相関係を使用することなく、絶縁抵抗を介して漏洩する電流のみを検出するとともに、各相の絶縁抵抗値を算出し、絶縁劣化が生じた相を特定できる絶縁劣化診断装置を提供することである。   The object of the present invention is to detect only the current leaking through the insulation resistance without using the phase relationship between the leakage current and the voltage, calculate the insulation resistance value of each phase, and determine the phase where the insulation deterioration has occurred. The object is to provide an insulation deterioration diagnosis device that can be identified.

上記目的を達成するために、本発明は、インバータ装置とインバータ駆動される負荷機器との間に接続された三相給電電路および該負荷機器の絶縁劣化を診断する装置であって、
三相給電電路の零相電流を計測するための零相電流計測部と、
計測した零相電流から、3次高調波成分および3n次高調波成分(nは2以上の整数)を抽出するための高調波抽出部と、
抽出した3次高調波成分および3n次高調波成分に基づいて、各相の給電電路の絶縁抵抗値を演算する演算部と、を備え
演算部は、少なくとも3つの異なる基本周波数f1,f2,f3の電圧で負荷機器を駆動した各条件下で、各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分との比率s、零相電流I 0 の3次高調波成分I 0_3f および3n次高調波成分I 0_3nf をそれぞれ取得し、下記の式(5)を用いて各相の給電電路の絶縁抵抗を介して漏洩する電流の合成値aをそれぞれ算出し、基本周波数f1,f2,f3について得られた3つの連立方程式を解くことにより、各相の漏洩電流値を算出することを特徴とする。

In order to achieve the above object, the present invention provides a three-phase power supply circuit connected between an inverter device and an inverter-driven load device and a device for diagnosing insulation deterioration of the load device,
A zero-phase current measurement unit for measuring the zero-phase current of the three-phase feed circuit,
A harmonic extraction unit for extracting a third-order harmonic component and a 3n-order harmonic component (n is an integer of 2 or more) from the measured zero-phase current;
A calculation unit that calculates an insulation resistance value of the power feeding circuit of each phase based on the extracted third harmonic component and 3n harmonic component ;
The calculation unit calculates the third harmonic component and the 3n-order harmonic component of the applied voltage in the power supply circuit of each phase under each condition in which the load device is driven with voltages of at least three different fundamental frequencies f1, f2, and f3. The third-order harmonic component I 0_3f and the 3n-order harmonic component I 0_3nf of the ratio s and the zero-phase current I 0 are acquired, respectively, and leaked via the insulation resistance of the power supply circuit of each phase using the following equation (5) A leakage current value of each phase is calculated by calculating a combined value a of currents to be solved and solving three simultaneous equations obtained for the fundamental frequencies f1, f2, and f3 .

本発明によれば、絶縁劣化を診断する際、計測した零相電流の3次高調波成分および3n次高調波成分を用いることによって、漏洩電流と電圧の位相関係を使用することなく、各相の給電電路の絶縁抵抗値を演算できる。その結果、零相電流計測部の位相特性の変動による影響を受けることなく、絶縁劣化を正確に診断することができる。   According to the present invention, when diagnosing insulation degradation, each phase can be obtained without using the phase relationship between leakage current and voltage by using the measured third-order harmonic component and 3n-order harmonic component of the zero-phase current. It is possible to calculate the insulation resistance value of the power feeding circuit. As a result, it is possible to accurately diagnose the insulation deterioration without being affected by the variation in the phase characteristics of the zero-phase current measuring unit.

本発明の実施の形態1に係る絶縁劣化診断装置を示す構成図である。It is a block diagram which shows the insulation deterioration diagnostic apparatus which concerns on Embodiment 1 of this invention. 零相変流器と三相ケーブル線の配置を示す断面図である。It is sectional drawing which shows arrangement | positioning of a zero phase current transformer and a three-phase cable wire. 三相交流電路を流れる電流が発生する磁界ベクトルを示す説明図であり、図3(a)は漏洩電流が存在しない場合、図3(b)は漏洩電流が存在する場合を示す。FIG. 3A is an explanatory diagram showing a magnetic field vector generated by a current flowing through a three-phase AC circuit. FIG. 3A shows a case where there is no leakage current, and FIG. 3B shows a case where there is a leakage current. 各相の絶縁抵抗を介して漏洩する電流ベクトル及び各相のコンデンサを介して漏洩する電流ベクトルを示す説明図であり、図4(a)は絶縁抵抗およびコンデンサが各相で同じである場合、図4(b)は絶縁抵抗およびコンデンサが各相ごとに異なる場合を示す。FIG. 4A is an explanatory diagram showing a current vector leaking through the insulation resistance of each phase and a current vector leaking through the capacitor of each phase, and FIG. 4A is the same when the insulation resistance and the capacitor are the same in each phase; FIG. 4B shows a case where the insulation resistance and the capacitor are different for each phase. 零相電流の3次高調波成分及び3n次高調波成分のベクトル成分を示す説明図である。It is explanatory drawing which shows the vector component of the 3rd harmonic component of a zero phase current, and a 3n order harmonic component. 絶縁劣化診断装置の他の例を示す構成図である。It is a block diagram which shows the other example of an insulation degradation diagnostic apparatus. 絶縁劣化診断装置のさらに他の例を示す構成図である。It is a block diagram which shows the further another example of an insulation degradation diagnostic apparatus. 本発明の実施の形態2に係る絶縁劣化診断装置を示す構成図である。It is a block diagram which shows the insulation degradation diagnostic apparatus which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る絶縁劣化診断装置101を示す構成図である。負荷機器3は、インバータ装置2から、給電電路として機能する複数のケーブル線6a,6b,6cを経由して相電流を給電することによって駆動される。例えば、三相駆動の場合は3本のケーブル線を使用し、単相駆動の場合は2本のケーブル線を使用する。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing an insulation deterioration diagnosis apparatus 101 according to Embodiment 1 of the present invention. The load device 3 is driven by feeding a phase current from the inverter device 2 via a plurality of cable lines 6a, 6b, and 6c that function as a feeding power path. For example, three cable lines are used for three-phase driving, and two cable lines are used for single-phase driving.

インバータ駆動される負荷機器3として、例えば、電動機、無停電電源装置(UPS)、電磁調理器、照明などが挙げられる。各ケーブル線6a,6b,6cと大地との間には、絶縁抵抗8a,8b,8cおよび、浮遊容量を表すコンデンサ7a,7b,7cがそれぞれ存在する。なお、インバータ装置1のグランド端子と負荷機器3のグランド端子とは、アース線で結線されていても構わない。   Examples of the inverter-driven load device 3 include an electric motor, an uninterruptible power supply (UPS), an electromagnetic cooker, and lighting. Insulation resistances 8a, 8b, 8c and capacitors 7a, 7b, 7c representing stray capacitance exist between the cable lines 6a, 6b, 6c and the ground, respectively. Note that the ground terminal of the inverter device 1 and the ground terminal of the load device 3 may be connected by an earth wire.

制御装置1は、インバータ装置2の動作を制御する機能を有し、負荷機器3の駆動方式に応じて、三相の駆動電流の波形や大きさや周期などの制御信号をインバータ装置2に伝送する。インバータ装置2は、制御装置1からの制御信号に基づいて、前段のコンバータ等から入力される直流信号を変調する機能を有し、制御装置1で指令した波形、振幅、周波数を有する交流信号を出力する。   The control device 1 has a function of controlling the operation of the inverter device 2, and transmits a control signal such as a waveform, magnitude, and cycle of a three-phase drive current to the inverter device 2 in accordance with the driving method of the load device 3. . The inverter device 2 has a function of modulating a direct current signal input from a preceding converter or the like based on a control signal from the control device 1, and an alternating current signal having a waveform, amplitude, and frequency commanded by the control device 1. Output.

絶縁劣化診断装置101は、零相電流センサ4と、絶縁劣化検出回路90と、情報伝送ケーブル9と、表示器11などを備える。   The insulation deterioration diagnosis apparatus 101 includes a zero-phase current sensor 4, an insulation deterioration detection circuit 90, an information transmission cable 9, a display 11 and the like.

情報伝送ケーブル9は、インバータ装置2から、ケーブル線6a,6b,6cに印加されている電圧の3次高調波成分と3n次高調波成分(nは2以上の整数)との比率の情報および周波数情報を制御装置1から絶縁劣化検出回路90に伝送する機能を有する。なお、3n次高調波とは、6次高調波、9次高調波、12次高調波などを意味する。   The information transmission cable 9 includes information on the ratio between the third-order harmonic component and the 3n-order harmonic component (n is an integer of 2 or more) of the voltage applied from the inverter device 2 to the cable wires 6a, 6b, 6c, and The frequency information is transmitted from the control device 1 to the insulation deterioration detection circuit 90. The 3n-order harmonic means a 6th-order harmonic, a 9th-order harmonic, a 12th-order harmonic, and the like.

零相電流センサ4は、ケーブル線6a,6b,6cの途中に設けられ、給電電路の零相電流を測定する機能を有する。零相電流とは、電路から絶縁抵抗を介して大地へ流れる漏洩電流を示す。ここで、インバータ装置2から出力される信号が交流信号であることや、コンデンサ7a,7b,7cや絶縁抵抗8a,8b,8cを介して漏洩する電流が微小電流であることを考慮すると、零相電流センサ4として、例えば、零相変流器(ZCT: Zero-phase Current Transformer)やフラックスゲート電流センサを応用した零相変流器などを使用することが好ましい。   The zero-phase current sensor 4 is provided in the middle of the cable lines 6a, 6b, and 6c, and has a function of measuring the zero-phase current of the power feeding circuit. Zero-phase current refers to leakage current that flows from the electric circuit to the ground via an insulation resistance. Here, considering that the signal output from the inverter device 2 is an AC signal, and that the current leaking through the capacitors 7a, 7b, and 7c and the insulation resistors 8a, 8b, and 8c is a minute current, it is zero. As the phase current sensor 4, for example, a zero-phase current transformer (ZCT: Zero-phase Current Transformer) or a zero-phase current transformer to which a fluxgate current sensor is applied is preferably used.

絶縁劣化検出回路90は、フィルタ回路5と、絶縁抵抗演算回路10などを備える。   The insulation deterioration detection circuit 90 includes a filter circuit 5, an insulation resistance calculation circuit 10, and the like.

フィルタ回路5は、零相電流センサ4の出力電圧波形から3次高調波成分や3n次高調波成分を抽出する機能を有する。フィルタ回路5は、アナログ回路で構成してもよいが、インバータ装置2から負荷機器3に給電する電圧周波数が可変であり、その基本周波数が変動することを考慮すると、DSP(Digital Signal Processor)などのデジタル回路で構成することが好ましい。デジタル回路の場合、零相電流センサ4の出力電圧波形をA/D変換し、離散フーリエ演算処理を行うことで、高調波成分を抽出し、情報伝送ケーブル9を介して得られるインバータ装置2の駆動周波数(基本周波数)に基づいて3次高調波成分や3n次高調波成分を抽出することができる。   The filter circuit 5 has a function of extracting a third-order harmonic component and a 3n-order harmonic component from the output voltage waveform of the zero-phase current sensor 4. The filter circuit 5 may be configured by an analog circuit, but considering that the voltage frequency supplied from the inverter device 2 to the load device 3 is variable and the fundamental frequency fluctuates, a DSP (Digital Signal Processor) or the like The digital circuit is preferably used. In the case of a digital circuit, the output voltage waveform of the zero-phase current sensor 4 is A / D converted, and a discrete Fourier calculation process is performed to extract a harmonic component and the inverter device 2 obtained via the information transmission cable 9 Based on the drive frequency (fundamental frequency), it is possible to extract the third-order harmonic component and the 3n-order harmonic component.

絶縁抵抗演算回路10は、情報伝送ケーブル9を介して得られた情報、例えば、ケーブル線6a,6b,6cに印加されている電圧に関する情報、およびフィルタ回路5の出力値を用いて所定の演算式に従って、ケーブル線6a,6b,6cの絶縁抵抗値を演算する機能を有する。   The insulation resistance calculation circuit 10 performs a predetermined calculation using information obtained via the information transmission cable 9, for example, information about the voltage applied to the cable lines 6 a, 6 b, 6 c and the output value of the filter circuit 5. It has a function of calculating the insulation resistance values of the cable lines 6a, 6b, 6c according to the equation.

表示器11は、絶縁劣化診断の結果を表示するものであり、例えば、ディスプレイなどで構成され、各相の絶縁抵抗値を定期的に表示することによって、絶縁劣化を視覚的に監視できる。なお、表示器11の代わりに、漏電遮断器、漏電リレーまたは警告ブザー等を使用して絶縁劣化をユーザに知らせる形態でもよく、絶縁劣化が生じた時にユーザが望む機能を付加することも可能である。   The display 11 displays the result of the insulation deterioration diagnosis. For example, the display 11 is composed of a display or the like, and the insulation deterioration can be visually monitored by periodically displaying the insulation resistance value of each phase. It should be noted that instead of the display device 11, an earth leakage circuit breaker, an earth leakage relay, a warning buzzer, or the like may be used to notify the user of insulation deterioration, and a function desired by the user when insulation deterioration occurs can be added. is there.

次に、絶縁劣化検出方法について説明する。零相電流センサ4として零相変流器を用いた場合、図2に示すように、三相すべてのケーブル線6a,6b,6cを零相変流器の環状コア4aの内側に貫通させる。零相変流器は、ケーブル線6aに流れる電流ベクトルIu、ケーブル線6bに流れる電流ベクトルIv、およびケーブル線6cに流れる電流ベクトルIwの合成ベクトルの大きさを検出できる。   Next, an insulation deterioration detection method will be described. When a zero-phase current transformer is used as the zero-phase current sensor 4, as shown in FIG. 2, all the three-phase cable wires 6a, 6b, 6c are passed through the inside of the annular core 4a of the zero-phase current transformer. The zero-phase current transformer can detect the magnitude of the combined vector of the current vector Iu flowing through the cable line 6a, the current vector Iv flowing through the cable line 6b, and the current vector Iw flowing through the cable line 6c.

三相交流電路では、各相の基本波電圧の位相は120度ずつ異なる。電路から漏洩する電流がない場合、図3(a)に示すように、各ケーブル線6a,6b,6cに流れている電流値の振幅は同じであるため、各ケーブル線6a,6b,6cから生じる磁界も同じ値であり、磁界の合成ベクトルの大きさは零となり、零相変流器にはゼロ電圧が出力される。なお、図3(a)では、U相ケーブル線6aから生じる磁界をH(U)、V相ケーブル線6bから生じる磁界をH(V)、W相ケーブル線6cから生じる磁界をH(W)としている。 In the three-phase AC circuit, the phase of the fundamental voltage of each phase differs by 120 degrees. When there is no current leaking from the electric circuit, as shown in FIG. 3A, the amplitudes of the current values flowing through the cable lines 6a, 6b, and 6c are the same. Therefore, from the cable lines 6a, 6b, and 6c, The generated magnetic field has the same value, the magnitude of the resultant magnetic field vector becomes zero, and zero voltage is output to the zero-phase current transformer. In FIG. 3A, the magnetic field generated from the U-phase cable wire 6a is H (U) , the magnetic field generated from the V-phase cable wire 6b is H (V) , and the magnetic field generated from the W-phase cable wire 6c is H (W). It is said.

一方、電路から大地へ漏洩する電流が存在する場合、例えば、図3(b)に示すように、各ケーブル線6a,6b,6cから生じる磁界の振幅が異なるようになり、磁界の合成ベクトルの大きさはゼロにならず、合成ベクトルの大きさに比例した値が零相変流器の出力として得られる。図3(b)では、V相及びW相の磁界の大きさが図3(a)より減少しているが、電路から漏洩した電流は同相成分である。印加電圧と漏洩電流が同相であることは、抵抗成分を介して漏洩電流が流れており、容量成分を介して漏洩電流が流れていないことを意味する。   On the other hand, when there is a current leaking from the electric circuit to the ground, for example, as shown in FIG. 3B, the amplitude of the magnetic field generated from each of the cable lines 6a, 6b, and 6c becomes different. The magnitude is not zero, and a value proportional to the magnitude of the resultant vector is obtained as the output of the zero-phase current transformer. In FIG. 3B, the magnitudes of the V-phase and W-phase magnetic fields are smaller than those in FIG. 3A, but the current leaked from the electric circuit is an in-phase component. The fact that the applied voltage and the leakage current are in phase means that the leakage current flows through the resistance component and no leakage current flows through the capacitance component.

図1でも示したように、各相のケーブル線6a,6b,6cには大地との間に浮遊容量があるため、コンデンサ7a,7b,7cが存在する。そのため、絶縁抵抗8a,8b,8cを介して大地に流れる電流だけでなく、コンデンサ7a,7b,7cを介して大地に流れる電流を考慮する必要がある。すなわち、零相変流器は、図4(a)に示すように、各相の絶縁抵抗を介して漏洩する電流I0R及び各相のコンデンサを介して漏洩する電流I0Cの合成ベクトルの大きさに比例した電圧信号を出力する。コンデンサ7a,7b,7cの値が同一であれば、コンデンサを介して漏洩する電流I0Cの合成ベクトルの大きさはゼロである。一方、コンデンサ7a,7b,7cの値、絶縁抵抗8a,8b,8cの値がそれぞれ異なる場合、例えば、図4(b)に示すような合成ベクトルIとなる。 As shown in FIG. 1, the cable lines 6a, 6b, and 6c of each phase have stray capacitance between the ground and the capacitors 7a, 7b, and 7c. Therefore, it is necessary to consider not only the current that flows to the ground via the insulation resistors 8a, 8b, and 8c, but also the current that flows to the ground via the capacitors 7a, 7b, and 7c. That is, as shown in FIG. 4A, the zero-phase current transformer has a magnitude of the combined vector of the current I 0R leaking through the insulation resistance of each phase and the current I 0C leaking through the capacitor of each phase. A voltage signal proportional to the height is output. If the values of the capacitors 7a, 7b, and 7c are the same, the magnitude of the combined vector of the current I 0C that leaks through the capacitors is zero. On the other hand, the capacitors 7a, 7b, 7c value, if the insulation resistance 8a, 8b, the value of 8c respectively different example, a synthetic vector I 0 as shown in Figure 4 (b).

さて、三相交流電路の場合、各相の基本波電圧の位相は120度ずつ異なるが、3次および3n次高調波成分はそれぞれ同相になる。そのため、例えば、3次高調波成分に着目すると、図5(a)に示すように、各相から漏洩する電流の3次高調波成分ベクトルは同一方向で、和算される。   In the case of a three-phase AC circuit, the phase of the fundamental wave voltage of each phase differs by 120 degrees, but the third-order and 3n-order harmonic components are in phase. Therefore, for example, when focusing on the third harmonic component, as shown in FIG. 5A, the third harmonic component vector of the current leaking from each phase is added in the same direction.

なお、各相の絶縁抵抗8a,8b,8cの絶縁抵抗値をR(U),R(V),R(W)とし、各相のコンデンサ7a,7b,7cの絶縁容量値をC(U),C(V),C(W)とし、各絶縁抵抗及び各コンデンサに印加される電圧の3次高調波成分の大きさをV(U)_3f,V(V)_3f,V(W)_3fとすると、下記の式(1)、式(2)が成り立つ。 The insulation resistance values of the insulation resistances 8a, 8b, and 8c for each phase are R (U) , R (V) , and R (W), and the insulation capacitance values of the capacitors 7a, 7b, and 7c for each phase are C (U ) , C (V) , C (W), and the magnitude of the third harmonic component of the voltage applied to each insulation resistance and each capacitor V (U) — 3f , V (V) — 3f , V (W) Assuming that _3f , the following formulas (1) and (2) are established.

Figure 0005705102
Figure 0005705102

零相電流Iの3次高調波成分I0_3fは、図5(b)に示すように、各絶縁抵抗8a,8b,8cを介して漏洩する電流の合成ベクトルの大きさをaとし、各コンデンサ7a,7b,7cを介して漏洩する電流の合成ベクトルの大きさをbとすると、式(3)が成り立つ。 As shown in FIG. 5B, the third-order harmonic component I 0 — 3f of the zero-phase current I 0 has a combined vector magnitude of current leaking through each of the insulation resistors 8a, 8b, and 8c. If the magnitude of the combined vector of currents leaking through the capacitors 7a, 7b, and 7c is b, Equation (3) is established.

Figure 0005705102
Figure 0005705102

また、コンデンサ7a,7b,7cのインピーダンスは、式(2)からも判るように、周波数fに依存する。そのため、図5(c)に示すように、3次高調波のn倍(n:2,3,4,…)の高調波成分に着目すると、式(4)が成り立つ。なお、式(4)におけるsは、式(4a)に示すように、3n次高調波電圧と3次高調波電圧との比率を表し、各相の3n次高調波電圧は等しいものとする。   Further, the impedances of the capacitors 7a, 7b, and 7c depend on the frequency f as can be seen from the equation (2). Therefore, as shown in FIG. 5C, when attention is paid to the harmonic component of n times (n: 2, 3, 4,...) Of the third harmonic, Expression (4) is established. Note that s in Equation (4) represents the ratio of the 3n-order harmonic voltage to the 3rd-order harmonic voltage as shown in Equation (4a), and the 3n-order harmonic voltage of each phase is the same.

Figure 0005705102
Figure 0005705102

式(3)と式(4)より、各絶縁抵抗8a,8b,8cを介して漏洩する電流の合成ベクトルの大きさaは、式(5)で表される。   From Expression (3) and Expression (4), the magnitude a of the combined vector of currents leaking through the respective insulation resistances 8a, 8b, and 8c is expressed by Expression (5).

Figure 0005705102
Figure 0005705102

特に、負荷機器3の駆動電圧波形が矩形波である場合、矩形波はフーリエ展開によって、式(6)で表される。   In particular, when the drive voltage waveform of the load device 3 is a rectangular wave, the rectangular wave is expressed by Expression (6) by Fourier expansion.

Figure 0005705102
Figure 0005705102

矩形波の場合、3n次である9次高調波と3次高調波の電圧比率は1/3である。s=1/3、n=3とすると、各絶縁抵抗8a,8b,8cを介して漏洩する電流の合成ベクトルの大きさaは、式(7)で表される。   In the case of a rectangular wave, the voltage ratio between the 9th harmonic, which is the 3nth order, and the third harmonic is 1/3. When s = 1/3 and n = 3, the magnitude a of the combined vector of currents leaking through the respective insulation resistances 8a, 8b, 8c is expressed by Expression (7).

Figure 0005705102
Figure 0005705102

即ち、3次高調波成分と3n次高調波成分の零相電流の値を用いることで、各絶縁抵抗8a,8b,8cを介して漏洩する電流の合成ベクトルの大きさaを求めることができ、その結果、絶縁劣化の程度を判定することが可能になる。しかしながら、ここで得られた値は絶縁抵抗8a,8b,8cの合成抵抗に流れる漏洩電流であり、どの絶縁抵抗を介して漏洩している電流かまでは特定することができない。   That is, by using the values of the zero-phase currents of the third harmonic component and the 3n harmonic component, the magnitude a of the combined vector of currents leaking through the respective insulation resistances 8a, 8b, 8c can be obtained. As a result, the degree of insulation deterioration can be determined. However, the value obtained here is a leakage current flowing through the combined resistance of the insulation resistances 8a, 8b, and 8c, and it cannot be specified through which insulation resistance the current leaks.

そこで、インバータ装置2の基本機能である周波数可変機能を応用し、制御装置1からの制御によって、少なくとも3つの異なる基本周波数f1,f2,f3の電圧で負荷機器3をインバータ駆動し、それぞれ異なる条件下で零相電流を計測する。得られた零相電流はいずれもフィルタ回路5を介して、3次高調波成分と3n次高調波成分の零相電流の値を抽出することにより、式(8)〜式(10)に示すように、漏洩電流の合成ベクトルの大きさa,a,aに関する3つの方程式を得ることができる。また、各相の3次高調波電圧の値、各相の3次高調波電圧の値と3n次高調波電圧の値との比率sなどの情報は、制御装置1から情報伝送ケーブル9を介して取得できる。 Therefore, by applying the frequency variable function that is the basic function of the inverter device 2, the load device 3 is inverter-driven with voltages of at least three different basic frequencies f 1, f 2, and f 3 under the control of the control device 1, and each has different conditions. Measure the zero-phase current below. The obtained zero-phase current is extracted from the zero-phase current values of the third-order harmonic component and the 3n-order harmonic component via the filter circuit 5, and is expressed by equations (8) to (10). Thus, three equations relating to the magnitudes a 1 , a 2 , and a 3 of the combined vector of leakage currents can be obtained. Information such as the value of the third harmonic voltage of each phase and the ratio s between the value of the third harmonic voltage and the value of the 3n harmonic voltage of each phase is transmitted from the control device 1 via the information transmission cable 9. Can be obtained.

Figure 0005705102
Figure 0005705102

こうして絶縁抵抗値R(U),R(V),R(W)という3つの未知数に対して、式(8)、式(9)、式(10)という3つの連立方程式が成立する。この連立方程式を解くことにより、R(U),R(V),R(W)の値が得られ、その結果、絶縁劣化が生じた絶縁抵抗を特定することが可能になる。従って、U相、V相、W相の各相に関する絶縁抵抗値の増減または変化率などを指標にして、負荷機器3及びケーブル線6a,6b,6cの絶縁劣化を正確に診断することができる。 In this way, for the three unknowns of the insulation resistance values R (U) , R (V) , and R (W) , three simultaneous equations of Formula (8), Formula (9), and Formula (10) are established. By solving the simultaneous equations, values of R (U) , R (V) , and R (W) can be obtained, and as a result, it is possible to specify the insulation resistance in which the insulation deterioration has occurred. Therefore, it is possible to accurately diagnose the insulation deterioration of the load device 3 and the cable wires 6a, 6b, and 6c using the increase or decrease or change rate of the insulation resistance value for each phase of the U phase, V phase, and W phase as an index. .

なお、式(8)〜(10)では各相の3次高調波電圧の値を代入しているが、その代替として、下記の式(11)、式(12)、式(13)に示すように、各相の絶縁抵抗を介して漏洩する電流として、連立方程式を演算し、絶縁抵抗を介して各相から漏洩する電流の3次高調波成分で絶縁劣化診断を評価しても構わない。この場合、制御装置1から情報伝送ケーブル9を介して得る情報は基本周波数、各相の3次高調波電圧の値と3n次高調波電圧の値との比率の情報だけでよく、各相の3次及び3n次高調波電圧の値の情報は必要ない。   In addition, in the formulas (8) to (10), the value of the third harmonic voltage of each phase is substituted, but as an alternative, the following formulas (11), (12), and (13) are shown. As described above, the simultaneous equation may be calculated as the current leaking through the insulation resistance of each phase, and the insulation deterioration diagnosis may be evaluated by the third harmonic component of the current leaking from each phase through the insulation resistance. . In this case, the information obtained from the control device 1 via the information transmission cable 9 is only information on the fundamental frequency and the ratio between the third harmonic voltage value and the 3n harmonic voltage value of each phase. Information on the values of the 3rd order and 3n order harmonic voltages is not necessary.

Figure 0005705102
Figure 0005705102

負荷機器3が無停電電源装置(UPS)、電磁調理器、照明などの場合、異なる基本周波数f1,f2,f3の電圧で負荷機器3を駆動することは比較的容易である。しかし、負荷機器3が主軸用電動機の場合、一定の回転速度で駆動することが多いため、複数の周波数の条件下で零相電流を測定することが困難であると考えられる。その場合、例えば、駆動周波数を徐々に変化させて、電動機の回転速度を低速から一定速度に達するまでの加速期間中に得られる零相検出器の出力波形に対して、例えば、短時間フーリエ演算処理を施すなどを行うことにより、加速中のデータから3つ以上の異なる基本周波数f1,f2,f3に応じた零相電流を抽出することが可能である。電動機の回転速度を徐々に減速させる場合も同様に、異なる基本周波数f1,f2,f3に応じた零相電流が抽出可能である。   When the load device 3 is an uninterruptible power supply (UPS), an electromagnetic cooker, lighting, or the like, it is relatively easy to drive the load device 3 with voltages of different basic frequencies f1, f2, and f3. However, when the load device 3 is a main shaft motor, it is often driven at a constant rotational speed, so it is considered difficult to measure the zero-phase current under a plurality of frequency conditions. In this case, for example, the drive frequency is gradually changed, and the output waveform of the zero-phase detector obtained during the acceleration period until the rotational speed of the motor reaches a constant speed from a low speed, for example, a short-time Fourier calculation By performing processing or the like, it is possible to extract zero-phase currents corresponding to three or more different fundamental frequencies f1, f2, and f3 from the data being accelerated. Similarly, when the rotational speed of the electric motor is gradually reduced, zero-phase currents corresponding to different basic frequencies f1, f2, and f3 can be extracted.

更なる代替として、電動機が一定速度で回転している状況下では、電動機のトルクに寄与しないd軸電流の周波数を変化させることによって、異なる基本周波数f1,f2,f3に応じた零相電流が抽出可能である。   As a further alternative, under the situation where the motor is rotating at a constant speed, by changing the frequency of the d-axis current that does not contribute to the torque of the motor, zero-phase currents corresponding to different fundamental frequencies f1, f2, and f3 are obtained. Extraction is possible.

図1の構成では、三相交流電路に印加されている3次高調波成分や3n次高調波成分の電圧値やその比率の値に関する情報は、制御装置1から情報伝送ケーブル9を介して取得している。その代替として、図6に示すように、VT(Voltage Transformer)などの電圧計測機器13をケーブル線6a,6b,6cの途中に設置して各相の相電圧を計測し、フィルタ回路14により3次高調波成分及び3n次高調波成分の電圧値を取得することも可能である。   In the configuration of FIG. 1, information on the voltage value of the third harmonic component and the 3n harmonic component applied to the three-phase AC circuit and the value of the ratio is acquired from the control device 1 via the information transmission cable 9. doing. As an alternative, as shown in FIG. 6, a voltage measuring device 13 such as VT (Voltage Transformer) is installed in the middle of the cable lines 6 a, 6 b, 6 c to measure the phase voltage of each phase, and the filter circuit 14 It is also possible to acquire the voltage values of the second harmonic component and the 3nth harmonic component.

また、図1および図6の構成では、ケーブル線6a,6b,6cに印加されている3次高調波成分及び3n次高調波成分の電圧値を絶縁劣化検出回路90,91に直接提供するように構成している。その代替として、図7に示すように、制御装置1から各相に印加されている電圧波形を情報伝送ケーブル9を介してフィルタ回路15に伝送し、フィルタ回路15にて3次高調波成分及び3n次高調波成分の電圧値を取得することも可能である。   1 and FIG. 6, the voltage values of the third harmonic component and the 3n harmonic component applied to the cable lines 6a, 6b, 6c are directly provided to the insulation deterioration detection circuits 90, 91. It is configured. As an alternative, as shown in FIG. 7, the voltage waveform applied to each phase from the control device 1 is transmitted to the filter circuit 15 via the information transmission cable 9, and the third harmonic component and It is also possible to acquire the voltage value of the 3n-order harmonic component.

情報伝送ケーブル9として、有線または無線の情報通信手段が利用できる。また、図1、図6、図7では、絶縁劣化検出回路90,91,92は、インバータ装置2や制御装置1とは分離して記載しているが、同一筐体内に配置しても構わない。   As the information transmission cable 9, a wired or wireless information communication means can be used. 1, 6, and 7, the insulation deterioration detection circuits 90, 91, and 92 are illustrated separately from the inverter device 2 and the control device 1, but may be disposed in the same casing. Absent.

以上の説明では、零相電流センサ4は、本実施形態で示したように、零相変流器が望ましいが、例えば、3相全てについて相電流を計測し、各相電流の波形から零相電流を求める方法でも構わない。   In the above description, the zero-phase current sensor 4 is preferably a zero-phase current transformer as shown in the present embodiment. For example, the phase current is measured for all three phases, and the zero-phase current sensor 4 is calculated from the waveform of each phase current. A method for obtaining the current may be used.

このように本実施形態では、インバータ駆動される負荷機器3に給電するケーブル線6a,6b,6cにおける各相の絶縁抵抗値R(U),R(V),R(W)を算出することができる。そのため、各絶縁抵抗値の増減や変化を監視し、絶縁劣化が生じている相を特定することができるため、絶縁劣化の診断精度を向上させることができる。 As described above, in this embodiment, the insulation resistance values R (U) , R (V) , and R (W) of the respective phases in the cable lines 6a, 6b, and 6c that supply power to the inverter-driven load device 3 are calculated. Can do. Therefore, it is possible to monitor the increase / decrease or change of each insulation resistance value and identify the phase in which the insulation deterioration occurs, so that the diagnosis accuracy of the insulation deterioration can be improved.

実施の形態2.
図8は、本発明の実施の形態2に係る絶縁劣化診断装置104を示す構成図である。本実施形態に係る絶縁劣化診断装置104は、実施の形態1に係る絶縁劣化診断装置101と同様な構成を有するが、情報伝送ケーブル9の代わりに、絶縁劣化検出回路93に周波数−電圧値換算回路12を設けている。即ち、実施の形態1では、情報伝送ケーブル9を用いて、制御装置1からケーブル線6a,6b,6cに印加されている電圧の周波数や3次高調波成分および3n次高調波成分の電圧値に関する情報を、フィルタ回路5や絶縁抵抗演算回路10に供給している。本実施形態では、情報伝送ケーブル9を用いずに、実施の形態1と同等な機能を実現している。
Embodiment 2. FIG.
FIG. 8 is a configuration diagram showing an insulation deterioration diagnosis apparatus 104 according to Embodiment 2 of the present invention. The insulation deterioration diagnosis device 104 according to the present embodiment has the same configuration as that of the insulation deterioration diagnosis device 101 according to the first embodiment. However, instead of the information transmission cable 9, the insulation deterioration detection circuit 93 is converted into a frequency-voltage value. A circuit 12 is provided. That is, in the first embodiment, using the information transmission cable 9, the frequency of the voltage applied from the control device 1 to the cable lines 6a, 6b, and 6c, and the voltage values of the third harmonic component and the 3n harmonic component. The information regarding is supplied to the filter circuit 5 and the insulation resistance arithmetic circuit 10. In the present embodiment, functions equivalent to those of the first embodiment are realized without using the information transmission cable 9.

各相のケーブル線6a,6b,6cに存在するコンデンサ7a,7b,7cが全て同じ値である場合は、コンデンサを介して漏洩する電流I0Cの基本波成分において、合成ベクトルの大きさはゼロである。しかしながら、電動機の製造や配線施工における環境変動により、各コンデンサ7a,7b,7cの値を一致させることは難しいと考えられる。即ち、製造初期の段階では絶縁抵抗8a,8b,8cを介して漏洩する電流は無視できる程度であっても、零相電流センサ4の出力は完全にゼロではなく、零相電流センサ4の出力電圧波形から基本周波数に相当する信号成分を抽出することができる。 When the capacitors 7a, 7b, and 7c existing in the cable wires 6a, 6b, and 6c of the respective phases have the same value, the magnitude of the combined vector is zero in the fundamental component of the current I0C that leaks through the capacitors. It is. However, it is considered difficult to match the values of the capacitors 7a, 7b, and 7c due to environmental fluctuations in the manufacture of the electric motor and the wiring construction. In other words, even if the current leaked through the insulation resistors 8a, 8b, and 8c is negligible at the initial stage of manufacture, the output of the zero-phase current sensor 4 is not completely zero, and the output of the zero-phase current sensor 4 A signal component corresponding to the fundamental frequency can be extracted from the voltage waveform.

零相電流センサ4の信号レベルにも依存するが、離散フーリエ演算処理を行う場合、基本周波数に相当する箇所にピーク値が明確にあらわれる。つまり、ピーク検知を行うことによって、基本周波数を推定することが可能である。   Although depending on the signal level of the zero-phase current sensor 4, when performing discrete Fourier arithmetic processing, a peak value clearly appears at a location corresponding to the fundamental frequency. That is, it is possible to estimate the fundamental frequency by performing peak detection.

基本周波数が明確に現れている場合、例えば、基本周波数から基本波、3次及び3n次高調波電圧値を逆算できると考えられる。そのため、フィルタ回路5で求めた基本周波数に基づいて、基本波、3次及び3n次高調波電圧値を換算する周波数−電圧値換算回路12を設け、換算した電圧値と、フィルタ回路5で求めた3次高調波成分の値及び3n次高調波成分の値から、式(8)〜式(10)に従って絶縁抵抗値R(U),R(V),R(W)を演算することができる。 When the fundamental frequency clearly appears, for example, it is considered that the fundamental wave, third-order, and 3n-order harmonic voltage values can be calculated backward from the fundamental frequency. Therefore, based on the fundamental frequency obtained by the filter circuit 5, a frequency-voltage value conversion circuit 12 for converting the fundamental wave, third-order and 3n-order harmonic voltage values is provided, and the converted voltage value and the filter circuit 5 are obtained. Insulation resistance values R (U) , R (V) , and R (W) can be calculated from the values of the third harmonic component and the value of the 3n harmonic component according to the equations (8) to (10). it can.

このように本実施形態では、制御装置1から電路に印加されている電圧の周波数や3次、3n次高調波成分の電圧値に関する情報を入手することなく、零相電流センサ4の出力に基づいて各相の絶縁抵抗値を求めることができ、その結果、各相の絶縁劣化診断を実施することができる。   As described above, in the present embodiment, it is based on the output of the zero-phase current sensor 4 without obtaining information on the frequency of the voltage applied to the electric circuit from the control device 1 and the voltage value of the third-order and 3n-order harmonic components. Thus, the insulation resistance value of each phase can be obtained, and as a result, the insulation deterioration diagnosis of each phase can be performed.

1 制御装置、 2 インバータ装置、 3 負荷機器、 4 零相電流センサ、
5 フィルタ回路、 6a,6b,6c ケーブル線、
7a,7b,7c コンデンサ、 8a,8b,8c 絶縁抵抗、
9 情報伝送ケーブル、 10 絶縁抵抗演算回路、 11 表示器、
12 周波数−電圧換算回路、 13 電圧計測機器、
5,14,15 フィルタ回路、 90〜93 絶縁劣化検出回路、
101〜104 絶縁劣化診断装置。
1 control device, 2 inverter device, 3 load equipment, 4 zero-phase current sensor,
5 Filter circuit, 6a, 6b, 6c Cable line,
7a, 7b, 7c capacitors, 8a, 8b, 8c insulation resistance,
9 Information transmission cable, 10 Insulation resistance calculation circuit, 11 Display,
12 frequency-voltage conversion circuit, 13 voltage measuring device,
5, 14, 15 filter circuit, 90-93 insulation deterioration detection circuit,
101-104 Insulation deterioration diagnosis device.

Claims (5)

インバータ装置とインバータ駆動される負荷機器との間に接続された三相給電電路および該負荷機器の絶縁劣化を診断する装置であって、
三相給電電路の零相電流を計測するための零相電流計測部と、
計測した零相電流から、3次高調波成分および3n次高調波成分(nは2以上の整数)を抽出するための高調波抽出部と、
抽出した3次高調波成分および3n次高調波成分に基づいて、各相の給電電路の絶縁抵抗値を演算する演算部と、を備え
演算部は、少なくとも3つの異なる基本周波数f1,f2,f3の電圧で負荷機器を駆動した各条件下で、各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分との比率s、零相電流I 0 の3次高調波成分I 0_3f および3n次高調波成分I 0_3nf をそれぞれ取得し、下記の式(A1)を用いて各相の給電電路の絶縁抵抗を介して漏洩する電流の合成値aをそれぞれ算出し、基本周波数f1,f2,f3について得られた3つの連立方程式を解くことにより、各相の漏洩電流値を算出することを特徴とする絶縁劣化診断装置。
Figure 0005705102
A device for diagnosing the three-phase power supply circuit connected between the inverter device and the load device driven by the inverter and the insulation deterioration of the load device,
A zero-phase current measurement unit for measuring the zero-phase current of the three-phase feed circuit,
A harmonic extraction unit for extracting a third-order harmonic component and a 3n-order harmonic component (n is an integer of 2 or more) from the measured zero-phase current;
A calculation unit that calculates an insulation resistance value of the power feeding circuit of each phase based on the extracted third harmonic component and 3n harmonic component ;
The calculation unit calculates the third harmonic component and the 3n-order harmonic component of the applied voltage in the power supply circuit of each phase under each condition in which the load device is driven with voltages of at least three different fundamental frequencies f1, f2, and f3. The ratio s and the third harmonic component I 0_3f and the 3n harmonic component I 0_3nf of the zero-phase current I 0 are acquired, respectively, and leaked through the insulation resistance of the feeding circuit of each phase using the following formula (A1) An insulation deterioration diagnostic apparatus , wherein a leakage current value of each phase is calculated by calculating a combined value a of currents to be calculated and solving three simultaneous equations obtained for the fundamental frequencies f1, f2, and f3 .
Figure 0005705102
演算部は、算出した各相の漏洩電流値、および各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分を用いて、各相の給電電路の絶縁抵抗値を算出することを特徴とする請求項記載の絶縁劣化診断装置。 The calculation unit calculates the insulation resistance value of the power supply circuit of each phase using the calculated leakage current value of each phase and the third harmonic component and 3n-order harmonic component of the applied voltage in the power supply circuit of each phase. The insulation deterioration diagnosis apparatus according to claim 1 . インバータ装置は、制御装置によって制御されており、
演算部は、インバータ装置の制御装置から、各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分を取得することを特徴とする請求項記載の絶縁劣化診断装置。
The inverter device is controlled by a control device,
Operation unit, the control unit of the inverter unit, insulation deterioration diagnostic apparatus according to claim 1, wherein the obtaining the third harmonic component and 3n-order harmonic component of the applied voltage in each phase of the power supply path.
インバータ装置は、制御装置によって制御されており、
高調波抽出部は、インバータ装置の制御装置から各相の給電電路に印加されている電圧波形を取得し、この印加電圧の3次高調波成分および3n次高調波成分を抽出し、
演算部は、高調波抽出部から、各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分を取得することを特徴とする請求項記載の絶縁劣化診断装置。
The inverter device is controlled by a control device,
The harmonic extraction unit obtains the voltage waveform applied to the power feeding circuit of each phase from the control device of the inverter device, extracts the third harmonic component and the 3n harmonic component of the applied voltage,
Calculation unit, from the harmonic extraction unit, insulation deterioration diagnostic apparatus according to claim 1, wherein the obtaining the third harmonic component and 3n-order harmonic component of the applied voltage in each phase of the power supply path.
給電電路に印加されている電圧波形をそれぞれ計測するための電圧計測部を備え、
高調波抽出部は、電圧計測部から電圧波形を取得し、この印加電圧の3次高調波成分および3n次高調波成分を抽出し、
演算部は、高調波抽出部から、各相の給電電路における印加電圧の3次高調波成分と3n次高調波成分を取得することを特徴とする請求項記載の絶縁劣化診断装置。
A voltage measurement unit for measuring each voltage waveform applied to the power supply circuit,
The harmonic extraction unit obtains a voltage waveform from the voltage measurement unit, extracts a third harmonic component and a 3n order harmonic component of the applied voltage,
Calculation unit, from the harmonic extraction unit, insulation deterioration diagnostic apparatus according to claim 1, wherein the obtaining the third harmonic component and 3n-order harmonic component of the applied voltage in each phase of the power supply path.
JP2011279228A 2011-12-21 2011-12-21 Insulation deterioration diagnosis device Active JP5705102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279228A JP5705102B2 (en) 2011-12-21 2011-12-21 Insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279228A JP5705102B2 (en) 2011-12-21 2011-12-21 Insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JP2013130440A JP2013130440A (en) 2013-07-04
JP5705102B2 true JP5705102B2 (en) 2015-04-22

Family

ID=48908113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279228A Active JP5705102B2 (en) 2011-12-21 2011-12-21 Insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JP5705102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982966A (en) * 2015-05-19 2018-12-11 江苏理工学院 Humorous phase angle analysis method based on linear correction algorithm
CN109270357A (en) * 2015-05-19 2019-01-25 江苏理工学院 Dielectric loss measurement method based on linear correction algorithm

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353694B2 (en) 2014-05-13 2018-07-04 株式会社日立製作所 Deterioration diagnosis system
JP5770903B1 (en) * 2014-09-26 2015-08-26 タナシン電機株式会社 Leakage current calculation device and leakage current calculation method
CN108474818B (en) * 2016-01-08 2021-01-15 三菱电机株式会社 Insulation resistance measuring device
JP6454034B2 (en) * 2016-01-18 2019-01-16 日立オートモティブシステムズ株式会社 DC current sensor, AC current sensor, and inverter having the same
JP7218239B2 (en) 2019-04-26 2023-02-06 株式会社日立製作所 Electric machine diagnostic method and diagnostic device, and rotary electric machine
JP7422942B1 (en) 2022-07-11 2024-01-26 東芝三菱電機産業システム株式会社 Insulation diagnosis device and insulation diagnosis method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692995B2 (en) * 1992-04-24 1994-11-16 光商工株式会社 Insulation monitoring method in low piezoelectric path
JP4167872B2 (en) * 2001-10-04 2008-10-22 株式会社日立産機システム Leakage current monitoring device and monitoring system therefor
JP2004184346A (en) * 2002-12-06 2004-07-02 Hitachi Industrial Equipment Systems Co Ltd Insulation state measuring apparatus
JP4143463B2 (en) * 2003-04-21 2008-09-03 三菱電機株式会社 Insulation monitoring device
KR101279193B1 (en) * 2009-03-05 2013-06-26 미쓰비시덴키 가부시키가이샤 Device for detecting insulation degradation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982966A (en) * 2015-05-19 2018-12-11 江苏理工学院 Humorous phase angle analysis method based on linear correction algorithm
CN109270357A (en) * 2015-05-19 2019-01-25 江苏理工学院 Dielectric loss measurement method based on linear correction algorithm

Also Published As

Publication number Publication date
JP2013130440A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5705102B2 (en) Insulation deterioration diagnosis device
US10267860B2 (en) Fault detection in induction machines
KR101279193B1 (en) Device for detecting insulation degradation
CN102812369B (en) Insulation deterioration diagnosis device
US10310016B2 (en) Method for the diagnostics of electromechanical system based on impedance analysis
JP5546545B2 (en) Method for monitoring and / or analyzing an electric machine during operation of the rotor of the electric machine and apparatus for monitoring and / or analyzing the electric machine during operation
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
CN106304846B (en) Method and system for determining fault status of synchronous machine
EP3147681B1 (en) Rotary machine diagnostic system
Sottile et al. Experimental investigation of on-line methods for incipient fault detection [in induction motors]
Goktas et al. Separation of induction motor rotor faults and low frequency load oscillations through the radial leakage flux
Zorig et al. A comparative study for stator winding inter-turn short-circuit fault detection based on harmonic analysis of induction machine signatures
RU2537744C1 (en) Method of diagnostics of induction motor stator windings insulation
KR20080032761A (en) Apparatus and method for detecting stator winding groundwall insulation condition of inverter-fed ac motor
Saad et al. Fault diagnostics of induction motors based on internal flux measurement
Treetrong et al. Bispectrum of stator phase current for fault detection of induction motor
KR101909379B1 (en) Leakage current measuring method and leakage current measuring apparatus
Drif et al. Rotor cage fault diagnostics in three-phase induction motors, by the instantaneous non-active power signature analysis
Treetrong Fault detection and diagnosis of induction motors based on higher-order spectrum
Wei et al. Identifying ground-fault locations: Using adjustable speed drives in high-resistance grounded systems
Frosini et al. An improved diagnostic system to detect inter-turns short circuits in low voltage stator windings
Sahoo et al. Experimental investigation of different fault indicators for Synchronous machine failure analysis
Liu et al. Stator inter-turn fault detection for the converter-fed induction motor based on the adjacent-current phase-shift
Bacha et al. Comparative investigation of diagnosis media of stator voltage asymmetry and rotor broken bars in induction machines
De Mata-Castrejón et al. Evaluation of progressive deterioration of a squirrel-cage rotor, with a condition monitoring system that implements the sideband methodology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250