JP5704544B2 - Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient - Google Patents

Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient Download PDF

Info

Publication number
JP5704544B2
JP5704544B2 JP2013096471A JP2013096471A JP5704544B2 JP 5704544 B2 JP5704544 B2 JP 5704544B2 JP 2013096471 A JP2013096471 A JP 2013096471A JP 2013096471 A JP2013096471 A JP 2013096471A JP 5704544 B2 JP5704544 B2 JP 5704544B2
Authority
JP
Japan
Prior art keywords
cordyceps
koishimaru
activity
active ingredient
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013096471A
Other languages
Japanese (ja)
Other versions
JP2013151558A (en
Inventor
鈴木 幸一
幸一 鈴木
純平 藤田
純平 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2013096471A priority Critical patent/JP5704544B2/en
Publication of JP2013151558A publication Critical patent/JP2013151558A/en
Application granted granted Critical
Publication of JP5704544B2 publication Critical patent/JP5704544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冬虫夏草を有効成分とする免疫賦活剤、がん細胞増殖抑制剤、抗炎症剤、又は抗酸化剤に関する。   The present invention relates to an immunostimulant, a cancer cell growth inhibitor, an anti-inflammatory agent, or an antioxidant containing Cordyceps as an active ingredient.

冬虫夏草は、中国古来から伝わる秘薬として珍重されてきた。近年、秘薬としての冬虫夏草の効果並びに成分分析が行われている。また、生活様式の変化や健康志向の高まりから、健康食品としての利用も進んでいる。
冬虫夏草は、昆虫に寄生するキノコの総称として用いられることが多いが、子嚢菌類、バッカク菌目、バッカク菌科の一属に位置づけられている。
分類体系は未だ確立されていないと言われているが、菌種によって寄生する寄主が異なるとされ、冬虫夏草の同定には、形成される子実体の形態だけでなく、寄主となる昆虫の種類も参考にされている。
例えば、ツクツクボウシセミタケ(学名Cordyceps,sinclairii,Kobayasi)はツクツクボウシを寄主とし、コブガタアリタケ(学名Torrubiella sp. (kobugataaritake))はムネアカオオアリを寄主とし、カメムシタケ(学名Cordyceps nutans Pat.)はカメムシを寄主とする。
その他、トンボ、ハチ、クモ類やダニ類を寄主とする冬虫夏草もある。
そして、例えばサナギタケ(Cordyceps militaris)からは、コルジセピンを指標とした免疫賦活効果が知られ、ツクツクボウシに寄生するツクツクボウシタケからは、FTY720という免疫抑制効果が知られているように、冬虫夏草は、その種類によって異なる活性が見つけられている。
非特許文献1では、ハナサナギタケ、ツクツクボウシセミタケ、サナギタケ、マルミノアリタケ(Cordyceps formicarum)、ウスキサナギタケ(Cordyceps takaomontana)について、虫体成分を含まない培地で培養を行い、それぞれの有効成分について調べた結果を報告している。
また、特許文献1では、サナギタケの培養菌糸体の抽出液に強心作用や気管支拡張作用があることを開示し、特許文献2では、サナギタケに着目してコルジセピンの抽出方法を提案している。
また、特許文献3、4、5では、ハナサナギタケに着目して有効物質を見出している。
漢方薬として珍重されているコルジセプス・シネンシス(Cordyceps sinensis)は、人工的な培養によって子実体形成まで至っておらず、その代用品として、チョウ目カイコガ科を寄主とする冬虫夏草の人工培養方法が多く提案されている。
特許文献6では、冬虫夏草の菌糸又は子座胞子を、既成食品であるニンニク・醤油・砂糖を混合した培養液を殺菌し、常法により液体培養するか、又はこの液体培養液を米・麦・とうもろこし等の穀物又は蚕・セミ等の節足動物の昆虫類の成虫・蛹・幼虫等に吸着させて固体培養を行う方法が提案されている。
特許文献7では、冬虫夏草の菌糸体を、糖類、蛋白物質、ビタミン類、核酸類等の一種又は数種を主成分とし、これらの主成分に穀類を添加して立体固形培地に移植して培養し、この立体固形培地において培養した菌糸を糖類蛋白物質類、ビタミン類、核酸類等の一種又は数種を主成分とし、これにアミノ酸類の一種又は数種を添加し、水を基質としたpH4.0〜7.0の液体培地に移植して静置培養し、液体培地表面に菌座を形成させる方法が提案されている。
特許文献8では、生きている昆虫に冬虫夏草の菌糸体を直接に感染、接種するか、あるいは3分の1量の昆虫組織体を加えた寒天を基質とする純粋分離培地に冬虫夏草の菌糸体を接種する方法である。なお、生きている昆虫を用いる場合としては、繭を形成する直前の蚕を用いている。
特許文献9では、野外に存在する冬虫夏草を採取し、寒天培地、液体培地で菌糸、分生胞子を増殖させ、最終的な大量増殖を野外栽培で行う方法が提案されている。
特許文献10では、蚕の蛹そのものを培地として培養する方法を提案し、特許文献11では、活きた蚕を培地とすることで更に天然に近い培養方法を提案している。
また、特許文献12では、冬虫夏草を製造する培地に、食酢や食酢もろみを含有させることで効能の高い冬虫夏草を製造することを提案している。
Cordyceps has been prized as a secret medicine since ancient China. In recent years, the effect and component analysis of Cordyceps as a secret medicine have been performed. In addition, the use as a health food is also advancing due to changes in lifestyle and increased health consciousness.
Cordyceps is often used as a collective term for mushrooms that parasitize insects, but is positioned as a genus of Ascomycetes, Bacchiaceae, and Bacchiaceae.
It is said that the classification system has not been established yet, but the host that parasitizes differs depending on the fungus species.For the identification of cordyceps, not only the form of the fruiting body that is formed, but also the type of insect that becomes the host It has been helpful.
For example, the black-bellied semi-bamboo (scientific name Cordyceps, sinclairii, Kobayasi) is called the black-headed bovine, and the red-spotted bamboo (scientific name Torrubiella sp.
In addition, there are cordyceps, which are mainly dragonflies, bees, spiders and mites.
For example, Cordyceps militaryis is known to have an immunostimulatory effect using cordycepin as an index, and Futakuso bamboo, which is parasitic on Tsukutsukuboushi, is known to have an immunosuppressive effect of FTY720. Different activities have been found.
In Non-patent Document 1, the report was made on the active ingredients of the Japanese bamboo shoots, the black-bellied semi-bamboo shoots, the Japanese bamboo shoots, the Marmino Aritake (Cordyceps formicarum), and the Ususanagitake (Cordyceps takaomontana) in a medium that does not contain parasite components. ing.
Further, Patent Document 1 discloses that the extract of cultured mycelia of Sanagitake has a cardiotonic action and bronchodilating action, and Patent Document 2 proposes a method for extracting Cordycepin by paying attention to Sanagitake.
In Patent Documents 3, 4, and 5, effective substances are found by paying attention to the bamboo shoot.
Cordyceps sinensis, which is prized as a Chinese herbal medicine, has not reached fruiting body formation by artificial culture, and as a substitute, many artificial culture methods for Cordyceps sinensis have been proposed. ing.
In Patent Document 6, the mycelia of Cordyceps or Aspergillus spores are sterilized in a culture solution in which garlic, soy sauce, and sugar, which are existing foods, are mixed, and liquid culture is performed by a conventional method, or this liquid culture solution is cultivated in rice, wheat, There has been proposed a method of solid culture by adsorbing to cereals such as corn or adults, moths and larvae of insects of arthropods such as moths and cicadas.
In Patent Document 7, mycelia of Cordyceps sinensis are mainly composed of one or several types of sugars, protein substances, vitamins, nucleic acids, etc., and grains are added to these main components, transplanted to a solid solid medium and cultured. The mycelium cultured in this three-dimensional solid medium is mainly composed of one or several kinds of glycoprotein substances, vitamins, nucleic acids, etc., and one or several kinds of amino acids are added thereto, and water is used as a substrate. There has been proposed a method of transplanting to a liquid medium having a pH of 4.0 to 7.0 and culturing it statically to form bacterial loci on the surface of the liquid medium.
In Patent Document 8, the mycelium of Cordyceps sinensis is directly infected and inoculated into living insects, or the mycelium of Cordyceps sinensis is put on a pure isolation medium using agar with a third amount of insect tissue added. It is a method of inoculation. In addition, when using a living insect, the cocoon just before forming a cocoon is used.
Patent Document 9 proposes a method in which cordyceps present in the field is collected, mycelia and conidia are grown on an agar medium and liquid medium, and final mass growth is performed in field cultivation.
Patent Document 10 proposes a method for culturing persimmon persimmon itself as a medium, and Patent Document 11 proposes a culture method that is closer to nature by using live persimmon as a medium.
Moreover, in patent document 12, it proposes manufacturing the caterpillar with a high effect by making the culture medium which manufactures the cordyceps edible vinegar contain vinegar and vinegar mash.

特開平8−12588号公報JP-A-8-12588 特開2004−8938号公報JP 2004-8938 A 特開2002−272267号公報JP 2002-272267 A 特開2003−128515号公報JP 2003-128515 A 特開2005−239585号公報JP 2005-239585 A 特開昭54−80486号公報JP-A-54-80486 特公昭61−53033号公報Japanese Patent Publication No. 61-53033 特開昭62−107725号公報JP 62-107725 A 特開平6−233627号公報JP-A-6-233627 特許第2676502号Japanese Patent No. 2676502 特許第3593429号Japanese Patent No. 3593429 特開2003−116342号公報JP 2003-116342 A

矢萩信夫 「ノムジタケ(Cordyceps)属菌の培養とその生理活性に関する研究」2005年3月29日〜31日 第125回日本薬学会)Nobuo Yabuchi “Culture and Physiological Activity of Cordyceps”, March 29-31, 2005, 125th Annual Meeting of the Pharmaceutical Society of Japan

非特許文献1、特許文献1から特許文献5にも示したように、現在では、冬虫夏草菌の種類に応じた薬理作用の違いが着目され、研究が進められている。
そして、同じチョウ目カイコガ科を寄主とする冬虫夏草であっても、サナギタケとハナサナギタケのように種類の異なる冬虫夏草について、薬理作用の相違が研究されている。
また、特許文献6から特許文献12にも示したように、培地の相違による薬理効果の違いには着目されてきたが、それはあくまでも培地成分の相違、虫体と穀類との相違、虫体の成育段階の相違、又は虫体が活きているか死んだ状態かの相違によるもので、宿主となる蚕種に着目した考えは全く無く、研究もされていなかった。
本発明者らは、寄生種の冬虫夏草にも様々な特性があると同時に、寄主である蚕にも多様な品種と系統が存在することから、寄生種と寄主の組み合わせに着目して研究を行った。
特に、わが国の正倉院の絹織物にも使用されている蚕である「小石丸」は、わが国に限らず世界的視点においても差別化するには十分な歴史的根拠があり、しかも今日まで脈々と飼育が継続されている。さらに、「小石丸」のもうひとつの特性として、生産された生糸は細繊度であり好感触を有しており、幼虫は耐病性に優れていると考えられている。従って、「小石丸」の歴史的価値ならびに生物学的評価から、「小石丸」を冬虫夏草の寄生種として選択することに大きな意義があると考えた。
As shown in Non-Patent Document 1, Patent Document 1 to Patent Document 5, the difference in pharmacological action according to the type of Cordyceps fungus is currently focused on and research is ongoing.
And even in the case of Cordyceps sinensis, whose host is the same Lepidoptera, the difference in pharmacological action has been studied for different types of Cordyceps species such as Sanatake and Sasatake.
In addition, as shown in Patent Document 6 to Patent Document 12, attention has been paid to the difference in pharmacological effect due to the difference in culture medium, but it is only a difference in medium components, a difference between insects and cereals, This was due to the difference in the growth stage, or whether the insect body was alive or dead, and there was no idea focusing on the host moth species, and no research was conducted.
The inventors of the present invention have various characteristics in the parasitic species Cordyceps, and there are various varieties and strains in the host moth. Therefore, the inventors conducted research focusing on the combination of the parasitic species and the host. It was.
In particular, Koishimaru, which is used for silk fabrics in Shosoin in Japan, has a sufficient historical basis for differentiation from a global perspective as well as in Japan. Breeding continues. Furthermore, another characteristic of “Koishimaru” is that the produced raw silk has a fineness and a good feel, and larvae are considered to have excellent disease resistance. Therefore, from the historical value and biological evaluation of “Koishimaru”, we thought that “Koishimaru” was highly significant as a parasitic species of cordyceps.

本発明は、同じ菌種の冬虫夏草でも、蚕種によって優れた活性を示す冬虫夏草を見出すことを目的とする。   An object of the present invention is to find a cordyceps that shows excellent activity depending on the moth species even with cordyceps of the same bacterial species.

請求項1記載の本発明の免疫賦活剤は、蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする。
請求項2記載の本発明のがん細胞増殖抑制剤は、蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする。
請求項3記載の本発明の抗炎症剤は、蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする。
請求項4記載の本発明の抗酸化剤は、蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする。
The immunostimulant of the present invention according to claim 1 is characterized by comprising, as an active ingredient, Cordyceps sinensis or an extract of Cordyceps sinensis, which is obtained by using Koishimaru as the culm seed and mainly cultivating the Koishimaru.
The cancer cell growth inhibitor of the present invention according to claim 2 is characterized by comprising, as an active ingredient, Cordyceps sinensis or an extract of Cordyceps sinensis, which is obtained by using Koishimaru as a soy seed and mainly cultivating the Koishimaru.
The anti-inflammatory agent of the present invention according to claim 3 is characterized by comprising, as an active ingredient, Cordyceps or an extract of Cordyceps cultivated by using Koishimaru as a cultivar.
The antioxidant of the present invention according to claim 4 is characterized by comprising, as an active ingredient, Cordyceps or an extract of Cordyceps cultivated by using Koishimaru as the culm seed.

本発明によれば、同じ種類の冬虫夏草菌であっても、蚕種として小石丸を用いることで、優れた活性が認められた。   According to the present invention, even with the same kind of Cordyceps fungus, excellent activity was recognized when Koishimaru was used as the culm species.

本発明の各冬虫夏草からの抽出物の収量を示す表Table showing the yield of extract from each cordyceps of the present invention 本発明の実施例1(コナサナギタケ(小石丸))によるガン細胞に対する増殖抑制活性を示すグラフThe graph which shows the growth inhibitory activity with respect to the cancer cell by Example 1 (Konasanagitake (Koishimaru)) of this invention. 本発明の実施例2(ハナサナギタケ(小石丸))によるガン細胞に対する増殖抑制活性を示すグラフThe graph which shows the growth inhibitory activity with respect to the cancer cell by Example 2 (Hanasanagitake (Koishimaru)) of this invention. 比較例1(コナサナギタケ(実用品種))によるガン細胞に対する増殖抑制活性を示すグラフThe graph which shows the growth inhibitory activity with respect to the cancer cell by the comparative example 1 (Konasanagitake (practical variety)) 比較例2(ハナサナギタケ(実用品種))によるガン細胞に対する増殖抑制活性を示すグラフThe graph which shows the growth inhibitory activity with respect to the cancer cell by the comparative example 2 (Hanasanagitake (practical variety)) 本発明の実施例1(コナサナギタケ(小石丸))によるリンパ細胞に対する免疫賦活活性を示すグラフThe graph which shows the immunostimulatory activity with respect to the lymphocyte by Example 1 (Konasanagitake (Koishimaru)) of this invention. 本発明の実施例2(ハナサナギタケ(小石丸))によるリンパ細胞に対する免疫賦活活性を示すグラフThe graph which shows the immunostimulatory activity with respect to the lymphocyte by Example 2 (Hanasanagitake (Koishimaru)) of this invention. 比較例1(コナサナギタケ(実用品種))によるリンパ細胞に対する免疫賦活活性を示すグラフGraph showing immunostimulatory activity against lymphocytes by Comparative Example 1 (Konasanagitake (practical variety)) 比較例2(ハナサナギタケ(実用品種))によるリンパ細胞に対する免疫賦活活性を示すグラフThe graph which shows the immunostimulatory activity with respect to the lymphocyte by the comparative example 2 (Hanasanagitake (practical variety)) 本発明の実施例1(コナサナギタケ(小石丸))による抗酸化活性を示すグラフThe graph which shows the antioxidant activity by Example 1 (Konasanagitake (Koishimaru)) of this invention 本発明の実施例2(ハナサナギタケ(小石丸))による抗酸化活性を示すグラフThe graph which shows the antioxidant activity by Example 2 (Hanasanagitake (Koishimaru)) of this invention 比較例1(コナサナギタケ(実用品種))による抗酸化活性を示すグラフGraph showing the antioxidant activity of Comparative Example 1 (Konasanagitake (practical variety)) 比較例2(ハナサナギタケ(実用品種))による抗酸化活性を示すグラフThe graph which shows the antioxidant activity by the comparative example 2 (Hanasanagitake (practical variety)) 本発明の実施例1(コナサナギタケ(小石丸))による抗酸化活性を示すグラフThe graph which shows the antioxidant activity by Example 1 (Konasanagitake (Koishimaru)) of this invention 本発明の実施例2(ハナサナギタケ(小石丸))による抗酸化活性を示すグラフThe graph which shows the antioxidant activity by Example 2 (Hanasanagitake (Koishimaru)) of this invention

1.試料
本発明では、寄主である蚕品種を小石丸とし、比較例としてわが国において普及している実用品種の(錦秋x鐘和)を使用した。寄生種として、コナサナギタケ(Paecilomyces farinosus)とハナサナギタケ(Paecilomyces tenuipes)を使用した。
冬虫夏草(コナサナギタケ及びハナサナギタケ)は、蚕が繭を形成した後に蛹を取り出し、取り出した蛹に冬虫夏草の子実体に形成された子嚢胞子又は分生胞子を接種し、子実体が完全に成育するまで培養したものを用いた。子実体が完全に成育した冬虫夏草を、60℃前後の温度で乾燥させ、その後ブレンダー(WB−1,φ134x270mm,アズワン株式会社)により粉砕し、粉末状にしたものを実験に使用した。乾燥させた冬虫夏草は4℃で保存し、粉末化したものは直ちに抽出を行った。
以降の説明においては、宿主を実用品種とするコナサナギタケはコナサナギタケ(実用品種)、宿主を小石丸とするコナサナギタケはコナサナギタケ(小石丸)、実用品種とするハナサナギタケはハナサナギタケ(実用品種)、宿主を小石丸とするハナサナギタケはハナサナギタケ(小石丸)と称する。
1. Sample In the present invention, the host cultivar, Koishimaru, was used as a comparative example, which was a practical variety (Kinkiaki x Kanwa) popular in Japan. As parasitic species, Paecilomyces farinosus and Paecilomyces tenuipes were used.
Cordyceps sinensis (Rhizopus japonica) and pickled cicada take out the cocoon after the cocoon has formed a cocoon, and inoculate the taken cocoon with the ascospore or conidia formed on the fruiting body of the cordyceps so that the fruiting body grows completely What was cultured until was used. The Cordyceps sinensis in which the fruiting bodies were completely grown was dried at a temperature of about 60 ° C., then pulverized with a blender (WB-1, φ134 × 270 mm, ASONE Co., Ltd.) and used in the experiment. The dried cordyceps was stored at 4 ° C., and the powdered one was immediately extracted.
In the following explanation, Konasanagitake, which uses the host as the practical variety, is Konasanagitake (practical variety), Konasanatake, which uses the host as Koishimaru, Konasanagitake (koishimaru), and The hanasanagitake that is called Koishimaru is called the hanasanagitake (Koishimaru).

2.生理活性化画分の抽出法
コナサナギタケ(実用品種)は200g、ハナサナギタケ(実用品種)は168g、コナサナギタケ(小石丸)・ハナサナギタケ(小石丸)はそれぞれ100gを用いた。秤量瓶で試料中の水分含量が10%前後であることを確認した後に逐次抽出を行った。抽出は試料に3倍量の溶媒を加え、25℃で24時間静置し、ろ過して得られた上清を抽出液とした。逐次抽出法に従い、極性の低い順からn−ヘキサン抽出、酢酸エチル抽出、70%アセトン(30%水)抽出、そして水抽出を行い、それぞれをn−ヘキサン画分、酢酸エチル画分、70%アセトン画分、水画分として各種の生物検定に使用した。なお、抽出はそれぞれ2回ずつ行った。
n−ヘキサン抽出液及び酢酸エチル抽出液は、ロータリーエバポレーター(N−1000,EYELA)を用いて濃縮し、さらに窒素風乾、遠心エバポレーター(C−100,EYELA)により濃縮した後、凍結乾燥機(FDU810,EYELA)を用いて凍結乾燥をして収量を求めた。70%アセトン抽出液は、ロータリーエバポレーターによって濃縮した後、遠心エバポレーターにより濃縮し、凍結乾燥をして収量を求めた。水抽出液は凍結乾燥をして収量を求めた。以降、これらの凍結乾燥物を各抽出の粗抽出物とした。
2. Extraction method of physiologically active fractions 200 g was used for Konasa Gitake (practical variety), 168 g was used for Prunus charcoal (practical variety), and 100 g was used for each Peach bamboo (Koishimaru) and Hanasa Nagatake (Koishimaru). After confirming that the moisture content in the sample was around 10% with a weighing bottle, sequential extraction was performed. For extraction, 3 times the amount of solvent was added to the sample, left to stand at 25 ° C. for 24 hours, and the supernatant obtained by filtration was used as the extract. According to the sequential extraction method, n-hexane extraction, ethyl acetate extraction, 70% acetone (30% water) extraction, and water extraction were performed in the order of low polarity, and each was divided into n-hexane fraction, ethyl acetate fraction, 70% Acetone fraction and water fraction were used for various bioassays. The extraction was performed twice.
The n-hexane extract and the ethyl acetate extract are concentrated using a rotary evaporator (N-1000, EYELA), further air-dried with nitrogen and concentrated using a centrifugal evaporator (C-100, EYELA), and then freeze-dried (FDU810). , EYELA) and lyophilized to determine the yield. The 70% acetone extract was concentrated by a rotary evaporator, then concentrated by a centrifugal evaporator, and freeze-dried to obtain a yield. The aqueous extract was freeze-dried to determine the yield. Hereinafter, these lyophilized products were used as crude extracts for each extraction.

3.生物検定法
1)がん細胞増殖抑制活性試験
がん細胞増殖抑制活性は、還元型発色色素であるMTT法により検討した。MTT{3−(4, 5−Dimethyl−2−thiazolyl)−2,5−diphenyl−2H−tetrazolium bromide}は、細胞内脱水素酵素により還元され、ホルマザンを生成する。細胞数と生成するホルマザンの量は、直線的な比例関係にあり、ホルマザンの吸光度を測定することにより、生細胞数を測定することができる(Oka et al., 1992)。この方法に従い以下の手順で実験を行った。
3. Bioassay method 1) Cancer cell growth inhibitory activity test Cancer cell growth inhibitory activity was examined by the MTT method, which is a reduced coloring dye. MTT {3- (4,5-Dimethyl-2-thiazolyl) -2,5-diphenyl-2H-tetrazole bromide} is reduced by intracellular dehydrogenase to produce formazan. The number of cells and the amount of formazan produced are linearly proportional, and the number of viable cells can be measured by measuring the absorbance of formazan (Oka et al., 1992). According to this method, an experiment was performed according to the following procedure.

1)細胞と培地組成
活性測定は、ラット肝がん細胞(dRLh84)を用い、細胞数の増加変動を指標とした。培地は、10%ウシ新生児血清(NBS),4mMグルタミン,50U/mlペニシリン,50μg/mlストレプトマイシン,100μg/mlカナマイシンを含むダルベッコ変法イーグル培地(DMEM,日本製薬社)を使用した。培養は、5%CO存在下、37℃湿潤条件で行った。
1) Cell and medium composition Activity was measured using rat hepatoma cells (dRLh84), and the increase in the number of cells was used as an index. As the medium, Dulbecco's modified Eagle medium (DMEM, Nippon Pharmaceutical Co., Ltd.) containing 10% newborn calf serum (NBS), 4 mM glutamine, 50 U / ml penicillin, 50 μg / ml streptomycin, 100 μg / ml kanamycin was used. Incubation was performed under humid conditions at 37 ° C. in the presence of 5% CO 2 .

2)細胞浮遊液の調整
細胞は、組織培養用ディッシュ(φ100x20mm,グライナー社)で培養し、対数増殖期に培養液を除去した後、PBS(−){phosphate−buffered saline(−)}(137mM NaCl,2.7mM KCl,2mM NaHPO・12HO,1.5mM KHPO)で洗浄した。その後2.5%トリプシンを加え、ディッシュに付着している細胞を浮遊させた。このディッシュ中の細胞濃度を5×10cell/mLとすべく10mlの培地を加え、細胞浮遊液とした。
2) Preparation of cell suspension The cells were cultured in a tissue culture dish (φ100 × 20 mm, Greiner). After removing the culture solution in the logarithmic growth phase, PBS (−) {phosphate-buffered saline (−)} (137 mM) NaCl, 2.7 mM KCl, 2 mM Na 2 HPO 4 · 12H 2 O, 1.5 mM KH 2 PO 4 ). Thereafter, 2.5% trypsin was added to suspend cells attached to the dish. In order to make the cell concentration in the dish 5 × 10 4 cells / mL, 10 ml of a medium was added to obtain a cell suspension.

3)がん細胞増殖抑制活性の測定
細胞浮遊液を20倍に希釈し、96穴マイクロプレート(旭テクノグラスサイテック)の各wellに200μl(マイクロリットル)ずつ添加した。5%のCO存在下において、37℃の湿潤条件下で24時間培養した。その後、実験区には調整した各粗抽出物を1μl添加し、対照区には試料の代わりに溶媒を1μl添加した。試料添加後48時間同条件で培養した後、0.55mg/mlのMTTを含む培地100μlに入れ替え、4時間培養した。その後、MTTを含む培地を取り除き、Dimetyl sulfoxide(DMSO)を200μlずつ加え、マイクロプレートリーダー(Immuno−Mini NJ−2300,インターメッド社)で590nm、620nmの2波長で吸光度を測定した。なお、使用した試薬や器具は全て滅菌した物を用いた。また、実験操作はクリーンベンチ内で行い、他の微生物による汚染を防いだ。
3) Measurement of cancer cell growth inhibitory activity The cell suspension was diluted 20-fold, and 200 μl (microliter) was added to each well of a 96-well microplate (Asahi Techno Glass Scitech). The cells were cultured for 24 hours under humid conditions at 37 ° C. in the presence of 5% CO 2 . Thereafter, 1 μl of each adjusted crude extract was added to the experimental group, and 1 μl of solvent was added to the control group instead of the sample. After culturing under the same conditions for 48 hours after the addition of the sample, the medium was replaced with 100 μl of a medium containing 0.55 mg / ml MTT and cultured for 4 hours. Thereafter, the medium containing MTT was removed, 200 μl of Dimethylsulfoxide (DMSO) was added, and the absorbance was measured at two wavelengths of 590 nm and 620 nm with a microplate reader (Immuno-Mini NJ-2300, Intermed). All reagents and instruments used were sterilized. The experiment was performed in a clean bench to prevent contamination by other microorganisms.

2)免疫賦活活性試験
免疫賦活活性は、マウス脾臓由来のリンパ球細胞の活性および細胞数の変化を指標とした。活性および細胞数の測定は、還元型発色試薬であるWST−1法を用い、細胞内のミトコンドリアがもつ還元作用によって生成されるホルマザン塩量を測定した。
WST−1法は、細胞内脱水素酵素により還元され、水溶性ホルマザンを生成する。本実験では、この水溶性ホルマザンの吸光度を測定することにより、細胞の活性を測定した。
2) Immunostimulatory activity test The immunostimulatory activity was determined using the activity of lymphocyte cells derived from mouse spleen and changes in the number of cells as indicators. For the measurement of the activity and the number of cells, the amount of formazan salt produced by the reducing action of the intracellular mitochondria was measured using the WST-1 method, which is a reducing chromogenic reagent.
The WST-1 method is reduced by intracellular dehydrogenase to produce water-soluble formazan. In this experiment, the activity of the cells was measured by measuring the absorbance of this water-soluble formazan.

1)実験動物と培地組成
実験動物は、5−7週齢のICR系マウス(雌,日本SLC)を用いた。
リンパ球の培地は、10%ウシ胎児血清(FBS),2mMグルタミン,50μM 2−メルカプトエタノール,100U/mlペニシリン,100μg/mlストレプトマイシンを含むRPMI 1640培地(日水製薬社)を使用した。培養は、5%CO存在下、37℃湿潤条件で培養した。
1) Experimental Animal and Medium Composition As experimental animals, 5-7 week-old ICR mice (female, Japan SLC) were used.
The lymphocyte medium was RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd.) containing 10% fetal bovine serum (FBS), 2 mM glutamine, 50 μM 2-mercaptoethanol, 100 U / ml penicillin, 100 μg / ml streptomycin. Culturing was performed under humid conditions at 37 ° C. in the presence of 5% CO 2 .

2)リンパ球浮遊液の調整
リンパ球浮遊液の調整は、藤原・淀井(1996)の方法を用いた。
ジエチルエーテルで麻酔したマウスを頚椎脱臼して脾臓を摘出した。PBS(−)の入ったディッシュ内で脾臓を磨砕し、セルストレイナー(孔径100μm,FALCON社)でろ過し、細胞懸濁液を50mlコニカルチューブ(FALCON社)に採取した。遠心分離(1,100rpm,10min)後、上清を取り除き、リンパ球を含む沈殿に赤血球除去のために、溶血バッファー{0.14M塩化アンモニウム,1.7mMトリス塩酸緩衝液(pH7.56)}を5ml加えて、5分間インキュベートした。その後、遠心分離(1,100rpm,10min)し、上清を取り除いた。これを2回繰り返し、溶血による赤血球の除去を行った。さらに、上清を取り除き、洗浄のためPBS(−)を30ml加えて、遠心分離(1,100rpm,1min)を2回行った。その後、沈殿に培地を加えて、リンパ球以外の細胞を取り除くために、COインキュベーターで2時間インキュベートした。
インキュベート後、細胞を0.4%トリパンブルー溶液で染色し、ビュルケルチュルク血球計算板を用いて細胞数を計測した。そして、細胞数が5x10cells/mlになるように培地で調整した。
2) Preparation of lymphocyte suspension The method of Fujiwara and Sakurai (1996) was used to adjust the lymphocyte suspension.
Mice anesthetized with diethyl ether were dislocated from the cervical spine and the spleen was removed. The spleen was ground in a dish containing PBS (−), filtered through a cell strainer (pore size 100 μm, FALCON), and the cell suspension was collected in a 50 ml conical tube (FALCON). After centrifugation (1,100 rpm, 10 min), the supernatant is removed, and a hemolysis buffer {0.14 M ammonium chloride, 1.7 mM Tris-HCl buffer (pH 7.56)} is used to remove red blood cells from the lymphocyte-containing precipitate. Was added and incubated for 5 minutes. Thereafter, centrifugation (1,100 rpm, 10 min) was performed, and the supernatant was removed. This was repeated twice to remove erythrocytes by hemolysis. Further, the supernatant was removed, 30 ml of PBS (−) was added for washing, and centrifugation (1,100 rpm, 1 min) was performed twice. Thereafter, a medium was added to the precipitate and incubated for 2 hours in a CO 2 incubator to remove cells other than lymphocytes.
After incubation, the cells were stained with 0.4% trypan blue solution, and the number of cells was counted using a Bürkerturk hemocytometer. And it adjusted with the culture medium so that the cell number might be set to 5x10 < 6 > cells / ml.

3)免疫賦活活性の測定
調製したリンパ球浮遊液200μlを、各検定区の最も濃度が高いwellにのみ添加した。対照区を含む他のwellには、溶媒の濃度が0.5%になるように調製したリンパ球浮遊液100μlを、各wellに添加した。各粗抽出物は、検定濃度が最も高い部分にのみ添加し、それ以外の濃度のwellには、一段階高い濃度のwellから100μlを取り、次のwellに加え希釈した。各粗抽出物を添加後、5%CO存在下、37℃湿潤条件で48時間培養した。その後、WST−1溶液{2−(4−lodophenyl)−3−(4−nitrophenyl)−5−(2,4−disulfophenyl)−2H−tetrazolium, monosodium salt}(和光純薬)と1−Methyl PMS(1−Methoxy−5−methylphenazinium methylsulfate)(和光純薬),PBS(−)からなるWST−1溶液(6.5mg WST−1,0.7mg 1−Methyl PMS,PBS(−)10ml)を10μl添加し、COインキュベーター内で4時間インキュベートした後に、マイクロプレートリーダーで各wellの450nmにおける吸光度を測定した。なお、使用した試薬や器具は全てオートクレーブ(120℃、20分間)で滅菌した物を用いた。また、実験操作はクリーンベンチ内で行い、他の微生物による汚染を防いだ.
3) Measurement of immunostimulatory activity The prepared lymphocyte suspension 200 μl was added only to the well having the highest concentration in each test section. To other wells including the control group, 100 μl of lymphocyte suspension prepared so that the concentration of the solvent was 0.5% was added to each well. Each crude extract was added only to the portion with the highest assay concentration, and 100 μl was taken from the well with one step higher concentration to other wells and diluted by adding to the next well. After each crude extract was added, the cells were cultured for 48 hours in the presence of 5% CO 2 at 37 ° C. wet conditions. Then, WST-1 solution {2- (4-lodophenyl) -3- (4-nitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium, monosodium salt} (Wako Pure Chemicals) and 1-Methyl PMS 10 μl of WST-1 solution (6.5 mg WST-1, 0.7 mg 1-methyl PMS, PBS (−) 10 ml) consisting of (1-Methoxy-5-methylphenylmethylsulfate) (Wako Pure Chemicals), PBS (−) After addition and incubation in a CO 2 incubator for 4 hours, the absorbance of each well at 450 nm was measured with a microplate reader. All reagents and instruments used were sterilized in an autoclave (120 ° C., 20 minutes). The experiment was performed in a clean bench to prevent contamination by other microorganisms.

3)抗酸化活性試験
抗酸化活性の測定試験には、DPPH(1,1−Diphenyl−2−picryhydrazyl)分光測定法(Yamaguchi et al.,2000)を用い、DPPH溶液中の残存ラジカル量について黒紫色の退色を分光学的に分析することで、ラジカル消去能を測定した。
DPPH(1,1−Diphenyl−2−picrylhydrazyl)は、自らが安定なフリーラジカルで黒紫色を呈しているため、DPPH溶液中の残存ラジカル量について黒紫色の退色を分光学的に分析することにより、ラジカル消去能を測定することができる。
また、陽性対照区として、高い抗酸化活性を持つことが確認されているアスコルビン酸を用いた(Arabshahi−Delouee and Urooj,2006).
96 wellマイクロプレートの各wellに各濃度に濃度調整した試料20ml,0.1M Tris−HCl緩衝液(pH7.4)80mlと、エタノールに溶解した500mM DPPH溶液100mlを分注し、室温で20分間放置した後、多目的マイクロプレートリーダー Power scan HT(大日本住友製薬)によって波長517nmにおける吸光度を測定し、残存DPPHラジカル量を定量した。なお、ラジカル消去活性は各吸光度を用いて、以下の式により算出した。
DPPHラジカル消去活性(%)=(1−(試料の吸光度−ブランク値))/(コントロールの吸光度−ブランク値)x100
3) Antioxidant activity test In the test for measuring antioxidant activity, DPPH (1,1-Diphenyl-2-picrylhydryl) spectroscopy (Yamaguchi et al., 2000) was used, and the amount of residual radicals in the DPPH solution was measured in black. The radical scavenging ability was measured by spectroscopic analysis of purple fading.
Since DPPH (1,1-Diphenyl-2-picrylhydrazyl) is a stable free radical and exhibits a black-purple color, the amount of radicals remaining in the DPPH solution is analyzed spectroscopically. , Radical scavenging ability can be measured.
As a positive control, ascorbic acid, which has been confirmed to have a high antioxidant activity, was used (Arabshahi-Delouee and Uroj, 2006).
In each well of a 96-well microplate, 20 ml of a sample adjusted to each concentration, 80 ml of 0.1 M Tris-HCl buffer (pH 7.4) and 100 ml of 500 mM DPPH solution dissolved in ethanol are dispensed, and 20 minutes at room temperature. After standing, the absorbance at a wavelength of 517 nm was measured by a multipurpose microplate reader Power scan HT (Dainippon Sumitomo Pharma Co., Ltd.) to quantify the amount of residual DPPH radicals. The radical scavenging activity was calculated by the following formula using each absorbance.
DPPH radical scavenging activity (%) = (1− (absorbance of sample−blank value)) / (absorbance of control−blank value) × 100

4)抗炎症活性試験
抗炎症活性試験は、奥寺(2005)により導入された方法(Colorimetric COX Inhibitor Screening Assay)を用いた。
シクロオキシゲナーゼ(COX)には、二つの異性体が存在する。COX−1は、各種細胞で常時発現しており、特に消化管、腎臓および血小板で発現し、組織の正常な代謝を維持している。一方、COX−2はプロスタグランジンE2(PGE2)などを生産し、炎症反応を拡大する。そこで本研究においては、COX−2の選択的な阻害物質を探索するため、Clorimetric Cox(ovine)Inhibitor Screening Assay kitを用いて実験を行った。この方法は、COXの酸化能を指標にしており、発色基質N,N,N’,N’,−tetramethyl−p−phenylenediamine(TMPD)を酸化させ、590nmにおける吸光度を測定するものである。
4) Anti-inflammatory activity test For the anti-inflammatory activity test, a method (Colorometric COX Inhibitor Screening Assay) introduced by Okudera (2005) was used.
There are two isomers of cyclooxygenase (COX). COX-1 is constantly expressed in various cells, particularly expressed in the gastrointestinal tract, kidneys and platelets, and maintains normal tissue metabolism. On the other hand, COX-2 produces prostaglandin E2 (PGE2) and the like, and expands the inflammatory reaction. Therefore, in this study, in order to search for a selective inhibitor of COX-2, an experiment was performed using the Corimetric Cox (ovine) Inhibitor Screening Assay kit. This method uses COX oxidation ability as an index, and oxidizes the chromogenic substrate N, N, N ′, N ′,-tetramethyl-p-phenylenediamine (TMPD) and measures the absorbance at 590 nm.

1)抗炎症活性の測定
Assay Buffer(10x)をMQで10倍に希釈し、96穴マイクロプレートの各wellに細胞培養用陰性対照区には160μl、陽性対照区・実験区には150μlずつ分注した。Heme 88μlに、調製したAssay Buffer 1.912mlの割合で希釈し、10μlずつ各wellに分注した。COXはシクロオキシゲナーゼ活性部位とペルオキシゲナーゼ活性部位の2つの活性部位を有しており、後者を活性化させるにはHemeが必要である。COX−1、COX−2は、それぞれ酵素200μlに対し、調製したAssay Buffer 400μlの割合で希釈し、陽性対照区・実験区の各wellに10μlずつ分注した。試料は、終濃度100μg/mlに調製したものを実験区の各wellに10μlずつ加え、陰性・陽性対照区には溶媒を添加し、プレートを水平に静かに振とうして、25℃で5分静置した。その間に、アラキドン酸100μlに水酸化カリウム100μl加え転倒混和し、MQを1.8mlの割合で加えた。TMPD溶液20μl、調製したアラキドン酸20μlの順に各wellに添加した。25℃で5分静置した後、マイクロプレートリーダーで各wellの590nmにおける吸光度を測定した。
1) Measurement of anti-inflammatory activity Assay Buffer (10 ×) was diluted 10-fold with MQ, and 160 μl was added to each well of the 96-well microplate for the negative control group for cell culture and 150 μl for the positive control group and experimental group. Noted. Heme was diluted to 88 μl at a ratio of 1.912 ml of the prepared Assay Buffer, and 10 μl was dispensed into each well. COX has two active sites, a cyclooxygenase active site and a peroxygenase active site, and Heme is required to activate the latter. COX-1 and COX-2 were each diluted at a ratio of 400 μl of the prepared Assay Buffer to 200 μl of the enzyme, and 10 μl was dispensed into each well of the positive control group and the experimental group. The sample was adjusted to a final concentration of 100 μg / ml, 10 μl was added to each well of the experimental group, a solvent was added to the negative / positive control group, the plate was gently shaken horizontally, and 5 ° C. at 25 ° C. Left to stand. Meanwhile, 100 μl of potassium hydroxide was added to 100 μl of arachidonic acid and mixed by inversion, and MQ was added at a rate of 1.8 ml. 20 μl of TMPD solution and 20 μl of prepared arachidonic acid were added to each well in this order. After leaving still at 25 degreeC for 5 minutes, the light absorbency in 590 nm of each well was measured with the microplate reader.

冬虫夏草からの各粗抽出物の収量
図1は、本発明の各冬虫夏草からの抽出物の収量を示す表である。
図1に示すように、実用品種を寄主としたコナサナギタケ200gから、n−ヘキサン抽出画分では5.8%(11.645g)、酢酸エチル画分では2.1%(4.175g)、70%アセトン画分では13%(25.977g)、水画分では18%(35.992g)の回収率となった。また、小石丸を寄主とした同じコナサナギタケ100gからはn−ヘキサン抽出画分で3%、酢酸エチル画分で0.5%、70%アセトンで13.5%、水画分で25.9%であった。また、実用品種を寄主としたハナサナギタケ168gから、n−ヘキサン抽出画分では13.98%(23.3837g)、酢酸エチル画分では0.81%(1.3645g)、70%アセトン画分では12%(20.2655g)、水画分では33.4%(56.122g)の回収率となった。さらに、小石丸を寄主としたハナサナギタケの場合、n−ヘキサン抽出画分で6.3%、酢酸エチル画分で0.6%、70%アセトンで9.4%、水画分で33.5%であった。
本実験結果から、実用品種では酢酸エチル画分が小石丸に比較して4〜5倍の回収率であり、逆に水画分は小石丸の方が1.6倍の回収率であった。すなわち、各抽出画分の収量は冬虫夏草の種の違いよりも、寄主となるカイコの品種によって異なると考えられる。
Yield of Each Crude Extract from Cordyceps FIG. 1 is a table showing the yield of extract from each Cordyceps of the present invention.
As shown in FIG. 1, from 200 g of Konasanagitake hosted with a practical variety, 5.8% (11.645 g) in the n-hexane extract fraction, 2.1% (4.175 g) in the ethyl acetate fraction, The recovery rate was 13% (25.977 g) for the 70% acetone fraction and 18% (35.992 g) for the water fraction. In addition, from 100 g of the same Kosanagitake with Koishimaru as the host, it was 3% in the n-hexane extract fraction, 0.5% in the ethyl acetate fraction, 13.5% in 70% acetone, and 25.9% in the water fraction. Met. In addition, from 168 g of hanasanagitake, which is the main varieties, from n-hexane extracted fraction, 13.98% (23.3837 g), ethyl acetate fraction, 0.81% (1.3645 g), and 70% acetone fraction. The recovery rate was 12% (20.2655 g), and the water fraction was 33.4% (56.122 g). Furthermore, in the case of the Japanese bamboo shoots with Koishimaru as the host, n-hexane extract fraction was 6.3%, ethyl acetate fraction was 0.6%, 70% acetone was 9.4%, and water fraction was 33.5%. Met.
From the results of this experiment, the ethyl acetate fraction was 4 to 5 times more recovered than Koishimaru in practical varieties, and conversely, the water fraction was 1.6 times more recovered than Koishimaru. That is, it is considered that the yield of each extracted fraction differs depending on the host silkworm cultivar rather than the species of cordyceps.

がん細胞増殖抑制活性試験
図2は本発明の実施例1(コナサナギタケ(小石丸))によるガン細胞に対する増殖抑制活性を示すグラフ、図3は本発明の実施例2(ハナサナギタケ(小石丸))によるガン細胞に対する増殖抑制活性を示すグラフ、図4は比較例1(コナサナギタケ(実用品種))によるガン細胞に対する増殖抑制活性を示すグラフ、図5は比較例2(ハナサナギタケ(実用品種))によるガン細胞に対する増殖抑制活性を示すグラフである。
図に示すように、いずれの組み合わせでも酢酸エチル画分が最も強いがん細胞増殖抑制活性を示した。
がん細胞増殖抑制活性は、コナサナギタケで比較すると、比較例1の酢酸エチル区分のIC50値が約80μg/mlに対し、実施例1は約45μg/mlであり、優位性を示している。また、ハナサナギタケで比較しても、比較例2は約50μg/mlに対し、実施例2は約35μg/mlであり、優位性を示している。
従って、小石丸を寄主とした場合には実用品種の場合と比較して優れた活性を示していることが分かる。なお、寄主が同じ場合には、コナサナギタケよりもハナサナギタケの方が活性が強いことが分かる。
Cancer Cell Growth Inhibitory Activity Test FIG. 2 is a graph showing the growth inhibitory activity against cancer cells according to Example 1 of the present invention (Konasanagitake (Koishimaru)), and FIG. 3 is according to Example 2 of the present invention (Hanasanagitake (Koishimaru)). FIG. 4 is a graph showing growth inhibitory activity against cancer cells, FIG. 4 is a graph showing growth inhibitory activity against cancer cells according to Comparative Example 1 (Konasanatake (practical variety)), and FIG. 5 is cancer according to Comparative Example 2 (Hanasanatake (practical variety)). It is a graph which shows the growth inhibitory activity with respect to a cell.
As shown in the figure, the ethyl acetate fraction showed the strongest cancer cell growth inhibitory activity in any combination.
Compared with Konasanagitake, the cancer cell growth inhibitory activity is superior to that of Example 1, in which the IC 50 value of the ethyl acetate section of Comparative Example 1 is about 80 μg / ml, which is about 45 μg / ml. . Further, even when compared with Japanese bamboo shoots, Comparative Example 2 is about 50 μg / ml, while Example 2 is about 35 μg / ml, indicating superiority.
Therefore, it can be seen that when Koishimaru is the host, the activity is superior to that of the practical variety. In addition, when the host is the same, it can be seen that the activity of the bamboo shoot is stronger than that of the bamboo shoot.

免疫賦活活性試験
図6は本発明の実施例1(コナサナギタケ(小石丸))によるリンパ細胞に対する免疫賦活活性を示すグラフ、図7は本発明の実施例2(ハナサナギタケ(小石丸))によるリンパ細胞に対する免疫賦活活性を示すグラフ、図8は比較例1(コナサナギタケ(実用品種))によるリンパ細胞に対する免疫賦活活性を示すグラフ、図9は比較例2(ハナサナギタケ(実用品種))によるリンパ細胞に対する免疫賦活活性を示すグラフである。
図に示すように、実施例1及び実施例2において免疫賦活活性が確認されたのに対し、比較例1及び比較例2では免疫賦活活性が確認されなかった。活性があった水抽出物を比較すると、抽出物の濃度が500μg/mlのとき、コナサナギタケは約140%、ハナサナギタケでは約220%であった。
この結果から、寄主が小石丸のハナサナギタケの水抽出物が最も優れた免疫賦活活性を有していると考えられる。
Immunostimulatory activity test FIG. 6 is a graph showing immunostimulatory activity against lymphocytes according to Example 1 of the present invention (Konasanagitake (Koishimaru)), and FIG. 7 is a graph showing lymphocytes according to Example 2 of the present invention (Ohanasanatake (Koishimaru)). FIG. 8 is a graph showing the immunostimulatory activity, FIG. 8 is a graph showing the immunostimulatory activity against lymphocytes of Comparative Example 1 (Konasanatake (practical variety)), and FIG. 9 is the immunity against lymphocytes according to Comparative Example 2 (Practus varieties). It is a graph which shows activation activity.
As shown in the figure, immunostimulatory activity was confirmed in Example 1 and Example 2, whereas immunostimulatory activity was not confirmed in Comparative Example 1 and Comparative Example 2. Comparing the active water extracts, when the concentration of the extract was 500 μg / ml, it was about 140% for Japanese bamboo shoots and about 220% for Japanese bamboo shoots.
From this result, it can be considered that the water extract of the pine needles of Koishimaru has the most excellent immunostimulatory activity.

抗酸化活性試験
図10は本発明の実施例1(コナサナギタケ(小石丸))による抗酸化活性を示すグラフ、図11は本発明の実施例2(ハナサナギタケ(小石丸))による抗酸化活性を示すグラフ、図12は比較例1(コナサナギタケ(実用品種))による抗酸化活性を示すグラフ、図13は比較例2(ハナサナギタケ(実用品種))による抗酸化活性を示すグラフである。
抗酸化活性は、70%アセトン抽出画分と水抽出物画分において確認された。実施例1を比較例1と比べると、小石丸を寄主とする方が70%アセトン抽出物と水抽出物の両方で活性が高いことが確認された。
Antioxidant Activity Test FIG. 10 is a graph showing the antioxidant activity according to Example 1 of the present invention (Konasanagitake (Koishimaru)), and FIG. 11 is a graph showing the antioxidant activity according to Example 2 of the present invention (Ohanasanagitake (Koishimaru)). FIG. 12 is a graph showing the antioxidant activity according to Comparative Example 1 (Konasanatake (practical variety)), and FIG. 13 is a graph showing the antioxidant activity according to Comparative Example 2 (Pterocarpus (practical variety)).
Antioxidant activity was confirmed in the 70% acetone extract fraction and the water extract fraction. When Example 1 was compared with Comparative Example 1, it was confirmed that the activity with both the 70% acetone extract and the water extract was higher when the host was Koishimaru.

抗炎症活性試験
図14は本発明の実施例1(コナサナギタケ(小石丸))による抗酸化活性を示すグラフ、図15は本発明の実施例2(ハナサナギタケ(小石丸))による抗酸化活性を示すグラフである。
抗炎症活性は、酢酸エチル抽出画分で認められ、コナサナギタケよりもハナサナギタケが高い活性が認められた。
Anti-Inflammatory Activity Test FIG. 14 is a graph showing the antioxidant activity of Example 1 of the present invention (Konasanagitake (Koishimaru)), and FIG. 15 is a graph of the antioxidant activity of Example 2 of the present invention (Ohanasanatake (Koishimaru)). It is.
Anti-inflammatory activity was observed in the ethyl acetate extract fraction, and higher activity was found in the bamboo shoot than in the bamboo shoot.

本発明は、食品、添加物、皮膚外用剤、入浴剤として利用される冬虫夏草に適している。   INDUSTRIAL APPLICABILITY The present invention is suitable for cordyceps used as foods, additives, skin external preparations, and bath preparations.

Claims (4)

蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする免疫賦活剤。   An immunostimulant characterized by comprising, as an active ingredient, Cordyceps edible grass, which is obtained by using Koishimaru as a seed, and mainly cultivating the Pebbles maru. 蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とするがん細胞増殖抑制剤。   A cancer cell growth inhibitor comprising, as an active ingredient, a cordyceps or an extract of cordyceps, which is obtained by cultivating the above-mentioned koishi-maru as a seed. 蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする抗炎症剤。   An anti-inflammatory agent comprising, as an active ingredient, cordyceps or an extract of cordyceps that has been cultivated mainly using koishimaru as a cocoon seed. 蚕種として小石丸を用い、前記小石丸を寄主として培養した冬虫夏草又は前記冬虫夏草の抽出物を有効成分として含むことを特徴とする抗酸化剤。   An anti-oxidant characterized in that it uses Koishimaru as a pod seed and contains, as an active ingredient, Cordyceps sinensis or an extract of Cordyceps sinensis cultivated mainly by Koishimaru.
JP2013096471A 2013-05-01 2013-05-01 Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient Active JP5704544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096471A JP5704544B2 (en) 2013-05-01 2013-05-01 Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096471A JP5704544B2 (en) 2013-05-01 2013-05-01 Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007259053A Division JP5268086B2 (en) 2007-10-02 2007-10-02 Cordyceps culture method and immunostimulant, cancer cell growth inhibitor, anti-inflammatory agent, or antioxidant containing Cordyceps as an active ingredient

Publications (2)

Publication Number Publication Date
JP2013151558A JP2013151558A (en) 2013-08-08
JP5704544B2 true JP5704544B2 (en) 2015-04-22

Family

ID=49048187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096471A Active JP5704544B2 (en) 2013-05-01 2013-05-01 Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient

Country Status (1)

Country Link
JP (1) JP5704544B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037676B2 (en) * 2012-06-22 2016-12-07 津和野町 Cordyceps culture method and culture apparatus used therefor
CN104042722A (en) * 2014-06-12 2014-09-17 济南科纳信息科技有限公司 Anti-tumor traditional Chinese medicine composition
JP7366496B2 (en) 2019-09-09 2023-10-23 株式会社ノエビア mitochondrial activator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228440A (en) * 1998-02-17 1999-08-24 Yasuyuki Shirota Medicament such as anticancer agent or immunostimulator and health food/drink
JPH11315094A (en) * 1998-02-27 1999-11-16 Hisamitsu Pharmaceut Co Inc Material having structure analogous to steroid, its preparation and antitumor agent containing the material
JP2003128515A (en) * 2001-10-17 2003-05-08 Toshikatsu Imamura Cosmetic
JP2004339138A (en) * 2003-05-15 2004-12-02 Kanebo Ltd Skin cosmetic
JP4746260B2 (en) * 2003-07-14 2011-08-10 小林製薬株式会社 Fractionated Cordyceps mycelium extract and composition for oral consumption

Also Published As

Publication number Publication date
JP2013151558A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP5268086B2 (en) Cordyceps culture method and immunostimulant, cancer cell growth inhibitor, anti-inflammatory agent, or antioxidant containing Cordyceps as an active ingredient
US20160367616A1 (en) Mesenchymal stem cell attractant and method for attracting mesenchymal stem cell
Xue et al. Characterization, phylogenetic analyses, and pathogenicity of Colletotrichum species on Morus alba in Sichuan Province, China
JP5704544B2 (en) Immunostimulants, cancer cell growth inhibitors, anti-inflammatory agents, or antioxidants containing Cordyceps as an active ingredient
US20140242036A1 (en) Process for potentiating the production of lingzhi mushroom (ganoderma lucidum) substances and antifungal activity thereof
Shakambari et al. Phlorotannins from Brown Algae: inhibition of advanced glycation end products formation in high glucose induced Caenorhabditis elegans
Mohamed et al. In vitro antioxidant and antifungal activities of different solvent extracts of leaf peel and gel of Aloe succotrina and their bio-control of leaf spot disease of Phaseolus vulgaris seedlings
Estrada et al. Apoptosis of hemocytes from lions-paw scallop Nodipecten subnodosus induced with paralyzing shellfish poison from Gymnodinium catenatum
Tam Modes of action of non-pathogenic Fusarium oxysporum endophytes for bio-ehancement of banana toward Radopholus similis
Mokhtar et al. In vitro anti-protozoal activity of propolis extract and cysteine proteases inhibitor (phenyl vinyl sulfone) on Blastocystis species
Eilenberg et al. Strongwellsea crypta (Entomophthorales: Entomophthoraceae), a new species infecting Botanophila fugax (Diptera: Anthomyiidae)
Rathod et al. Incidence of Alternaria species on different cereals, pulses and oil seeds
Islam et al. In vitro studies on the antimicrobial activity and chemical characterization of six cover crops against the grapevine crown gall pathogen
Gómez et al. Looking beyond Arthrospira: comparison of antioxidant and anti-inflammatory properties of ten cyanobacteria strains
Nagadesi et al. Taxonomy and Bioactive chemicals from Ganoderma and Phellinus of India
Bucini et al. Bio-ethology of Anisandrus dispar F. and its possible involvement in dieback (Moria) diseases of hazelnut (Corylus avellana L.) plants in central Italy
Seoane et al. Haemolytic activity in different species of the genus Prymnesium (Haptophyta)
CN100494141C (en) Compound and magnolol application
Thangamani et al. Morphological characterization and reaction of partial purified toxin of sugarcane red rot pathogen Colletotrichum falcatum collected from Southern India
Bandyopadhyay et al. Characterization of different isolates of Bipolaris/Alternaria causing spot blotch/blight of wheat and their test of pathogenicity
Carocho et al. Antioxidants in Pinus pinaster roots and mycorrhizal fungi during the early steps of symbiosis
Smirnoff Fungus diseases affecting Adelges piceae in the fir forest of the Gaspe Peninsula, Quebec
RU2701687C2 (en) Test method for virus infection of planting material of potatoes grown in vitro
Sharma et al. Antioxidant, antifungal and phytochemical analysis of Bauhinia malabarica: an in vitro study
Tosun et al. Molecular characterization of the Vairimorpha (Nosema) ceranae infection from Bombus terrestris (Linnaeus, 1758)(Hymenoptera: Apidae) in Turkey

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5704544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250