JP5704295B2 - Process for producing α-methylene-γ-butyrolactone - Google Patents

Process for producing α-methylene-γ-butyrolactone Download PDF

Info

Publication number
JP5704295B2
JP5704295B2 JP2009178453A JP2009178453A JP5704295B2 JP 5704295 B2 JP5704295 B2 JP 5704295B2 JP 2009178453 A JP2009178453 A JP 2009178453A JP 2009178453 A JP2009178453 A JP 2009178453A JP 5704295 B2 JP5704295 B2 JP 5704295B2
Authority
JP
Japan
Prior art keywords
methylene
butyrolactone
solvent
added
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009178453A
Other languages
Japanese (ja)
Other versions
JP2010207211A (en
Inventor
加藤 康夫
康夫 加藤
範行 中島
範行 中島
荻田 信二郎
信二郎 荻田
幸生 佐藤
幸生 佐藤
和明 荘司
和明 荘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2009178453A priority Critical patent/JP5704295B2/en
Publication of JP2010207211A publication Critical patent/JP2010207211A/en
Application granted granted Critical
Publication of JP5704295B2 publication Critical patent/JP5704295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、酵素反応を活用したα−メチレン−γ−ブチロラクトン類の製造方法に関する。   The present invention relates to a method for producing α-methylene-γ-butyrolactone utilizing an enzymatic reaction.

α−メチレン−γ−ブチロラクトン類は、耐熱性透明樹脂の原材料,各種生理活性物質の中間体,害虫忌避剤及び抗変異原性剤等の多くの利用価値がある。
従来、α−メチレン−γ−ブチロラクトン類は、化学合成にて製造されていた(特許文献1)。
しかし、化学合成による製造方法は、専用設備が必要となるだけでなく、多大なエネルギーを消費するものであり、環境負荷が大きいものであった。
α-methylene-γ-butyrolactone has many utility values such as raw materials for heat-resistant transparent resins, intermediates of various physiologically active substances, pest repellents and antimutagenic agents.
Conventionally, α-methylene-γ-butyrolactone has been produced by chemical synthesis (Patent Document 1).
However, the production method by chemical synthesis requires not only dedicated equipment but also consumes a lot of energy and has a large environmental load.

本願発明者らは、これまでに植物中には下記化学式(1)に示すチューリッポシド−A(Tuliposide−A)及びその類縁体又は化学式(2)に示すチューリッポシド−B(Tuliposide−B)及びその類縁体等の多量のチューリッポシド類が存在し、これらのチューリッポシド類は抗菌性を有するが、チューリップ組織の中にはチューリッポシド類よりさらに抗菌性の強い化学式(3)及び化学式(4)に示すα−メチレン−γ−ブチロラクトン類に変換する酵素を見い出し、本発明に至った。
本明細書では、この酵素をチューリッポシド変換酵素と称し、その後の研究でチューリップ以外の植物組織にも存在することが明らかになった。
なお、化学式(3)に示すα−メチレン−γ−ブチロラクトンは、チューリッパリン−Aとも称され、化学式(4)に示すα−メチレン−β−ヒドロキシ−γ−ブチロラクトンは、チューリッパリン−Bとも称される。

Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295
The inventors of the present invention have so far found that in plants, Tuliposide-A (Tuliposide-A) represented by the following chemical formula (1) and analogs thereof or Tulipposide-B (Tuliposide-B) represented by Chemical Formula (2) ) And its analogs and the like, and these turliposides have antibacterial properties, but some tulip tissues have a more antibacterial chemical formula (3). And the enzyme which converts into (alpha) -methylene-gamma-butyrolactone shown to Chemical formula (4) was discovered, and it reached to this invention.
In the present specification, this enzyme is referred to as a tulipposide converting enzyme, and subsequent studies have revealed that it exists in plant tissues other than tulips.
Note that α-methylene-γ-butyrolactone represented by the chemical formula (3) is also referred to as tulipperin-A, and α-methylene-β-hydroxy-γ-butyrolactone represented by the chemical formula (4) is also referred to as tulipperin-B. Is done.
Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295

特開平10−298172号公報JP 10-298172 A

本発明は、植物中に多種の形態で存在するチューリッポシド類を植物組織に存在する酵素による酵素反応を用いてα−メチレン−γ−ブチロラクトン類を製造する方法の提供を目的とする。   An object of the present invention is to provide a method for producing α-methylene-γ-butyrolactone by using an enzymatic reaction of an enzyme present in plant tissue with turliposides present in various forms in a plant.

本発明に係る下記一般式(5)で示されるα−メチレン−γ−ブチロラクトン類の製造方法は、植物組織内に存在するチューリッポシド類に植物組織から抽出したチューリッポシド変換酵素を用いて酵素反応をさせることを特徴とする。

Figure 0005704295
(式中、R,Rは独立して水素、水酸基又は炭素数1〜8のアルキル基を示し、R,Rは独立して水素又は炭素数1〜8のアルキル基を示す。)
α−メチレン−γ−ブチロラクトン類の製造方法としては、植物組織内に存在するチューリッポシド−A[化学式(1)]及びその類縁体又はチューリッポシド−B[化学式(2)]及びその類縁体を植物組織から抽出したチューリッポシド変換酵素を用いてα−メチレン−γ−ブチロラクトン[化学式(3)]及びα−メチレン−β−ヒドロキシ−γ−ブチロラクトン[化学式(4)]を生成し、分別抽出してもよい。
原材料となる植物体は、組織内にチューリッポシド−A及びその類縁体が存在すると、α−メチレン−γ−ブチロラクトンが得られ、チューリッポシド−B及びその類縁体が存在するとα−メチレン−β−ヒドロキシ−γ−ブチロラクトンが得られる。
そのような植物体としては、チューリップ(Tulipa spp.)が好ましく、α−メチレン−γ−ブチロラクトンを製造するには、アルストロメリア(Alstromeria spp.)、セリバオウレン(Coptis japonica)、ユキヤナギ(Spiraea thunbergii)、シジミバナ(Spiraea prunifolia)、ピンクユキヤナギ(Spiraea thunbergii)、カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)のうち、いずれかの植物体にチューリッポシド変換酵素を用いた酵素反応により製造することができる。
また、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンを製造するには、植物体は、チューリップ(Tulipa spp.)、シジミバナ(Spiraea prunifolia)、ユキヤナギ(Spiraea thunbergii)、ピンクユキヤナギ(Spiraea thunbergii)、カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)のうち、いずれかの植物体にチューリッポシド変換酵素を用いて酵素反応させるのがよい。
チューリッポシド変換酵素は、分子量約70,200、サブユニット分子量約34,900,至適温度25〜30℃、至適pH6.5〜7.0、エステラーゼやフォスファターゼの阻害剤である重金属、NaF、PMSFにより阻害され、チューリッポシド−A及びBに基質特異性を有することを特徴とする。
ここで、チューリッポシド変換酵素を抽出する植物組織が、チューリップ(Tulipa spp.)、アルストロメリア(Alstromeria spp.)、カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)のうち、いずれかに由来する植物組織であってよい。 The production method of α-methylene-γ-butyrolactones represented by the following general formula (5) according to the present invention uses a tulipposide converting enzyme extracted from a plant tissue to a tulipposide present in the plant tissue. It is characterized by causing an enzyme reaction.
Figure 0005704295
(In the formula, R 1, R 2 represents hydrogen, a hydroxyl group or an alkyl group having 1 to 8 carbon atoms independently, R 3, R 4 represents hydrogen or an alkyl group having 1 to 8 carbon atoms independently. )
As a method for producing α-methylene-γ-butyrolactones, there may be mentioned chulipposide-A [Chemical Formula (1)] and its analog or turipposide-B [Chemical Formula (2)] existing in plant tissues and the like. Α-methylene-γ-butyrolactone [Chemical Formula (3)] and α-methylene-β-hydroxy-γ-butyrolactone [Chemical Formula (4)] are produced using a chulipposide converting enzyme extracted from plant tissue. Separation and extraction may be performed.
The plant as a raw material is obtained when α-methylene-γ-butyrolactone is obtained when turipposide-A and its analog are present in the tissue, and α-methylene- when turipposide-B and its analog are present. β-hydroxy-γ-butyrolactone is obtained.
As such a plant, tulipa (Tulipa spp.) Is preferable, and in order to produce α-methylene-γ-butyrolactone, Alstroemeria (Alstromeria spp.), Seriba auren (Coptis japonica), Yukiyanagi (Spiraea thunbergii), Ji (Spiraea prunifolia), Pink snow willow (Spiraea thunbergii), Katakuri (Erythronium japonicum Decne.), Kibana Katakuri (Erythronium grandiflorum) Can do.
Moreover, in order to produce α-methylene-β-hydroxy-γ-butyrolactone, plants are prepared from tulipa spp., Spiraea prunifolia, Spiraea thunbergii, Spiraea thibergi, Spiraea thi (Erythronium japonicum Decne.), Erythronium grandiflorum Pursh., Any of the plants may be subjected to an enzymatic reaction using a tulipposide converting enzyme.
The tulipposide converting enzyme has a molecular weight of about 70,200, a subunit molecular weight of about 34,900, an optimum temperature of 25-30 ° C., an optimum pH of 6.5-7.0, a heavy metal that is an inhibitor of esterase and phosphatase, NaF Inhibited by PMSF, and has substrate specificity for chulipposide-A and B.
Here, the plant tissues from which the tulipposide converting enzyme is extracted are Tulipa spp., Alstroemeria spp. It may be a plant tissue derived from.

本発明に係るα−メチレン−γ−ブチロラクトン類の製造方法においては、チューリップ等の植物体を原材料とし、酵素反応により製造するものであることから従来の化学合成に比較して、エネルギー消費が少なく、安全である。
これまでは、チューリップの花弁等が富山県内分推定で約100トン/年強も廃棄されている現状からすると、石油に依存しない優れた製造方法となる。
In the method for producing α-methylene-γ-butyrolactone according to the present invention, the plant body such as tulip is used as a raw material, and it is produced by an enzymatic reaction, so that it consumes less energy compared to conventional chemical synthesis. , Safe.
Up to now, tulip petals, etc., are estimated to be about 100 tons / year in Toyama Prefecture.

チューリッポシド−Aの検量線を示す。The calibration curve of turipposide-A is shown. チューリッポシド−Bの検量線を示す。The calibration curve for chulipposide-B is shown. α−メチレン−γ−ブチロラクトンの検量線を示す。A calibration curve of α-methylene-γ-butyrolactone is shown. α−メチレン−β−ヒドロキシ−γ−ブチロラクトンの検量線を示す。A calibration curve of α-methylene-β-hydroxy-γ-butyrolactone is shown.

本発明は、植物体に有するチューリッポシド−A又はB及びその類縁体から、α−メチレン−γ−ブチロラクトン又はα−メチレン−β−ヒドロキシ−γ−ブチロラクトンを製造する点に特徴があり、類縁体には例えば化学式(6)(Phytochemistry 65(2004)731−739;Plant Growth Regulation(2005)46:125−131)、化学式(7)(Biosci.Biotechnol.Biochem.,63(1),152−154,1999)、、化学式(8)(Natural Medicines 51(3),244−248(1997))、化学式(9)及び(10)(Phytochemistry,Vol.40 No.1 49−51(1995))等が例として挙げられる。

Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295
The present invention is characterized in that α-methylene-γ-butyrolactone or α-methylene-β-hydroxy-γ-butyrolactone is produced from chulipposide-A or B and its analogs contained in a plant body. Examples of the body include chemical formula (6) (Phytochemistry 65 (2004) 731-739; Plant Growth Regulation (2005) 46: 125-131), chemical formula (7) (Biosci. Biotechnol. Biochem., 63 (1), 152- 154, 1999), chemical formula (8) (Natural Medicines 51 (3), 244-248 (1997)), chemical formula (9) and (10) (Phytochemistry, Vol. 40 No. 1 49-51 (1995)). Etc. as an example That.
Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295
Figure 0005704295

(チューリップ球根粗酵素液の調製)
凍結乾燥したチューリップ(Tulipa spp.):「紫水晶」の球根2g(生重量)をビーズショッカーにて破砕し、10mMリン酸カリウム緩衝液(KPB)(pH 7.0)を20ml加えてボルテックスで撹拌後、低温室にて1時間静置した。
遠心分離(21,500×g,15min,4℃)後、上清を10mM KPBにて平衡化したDEAE−Toyopearlカラム(ゲル3ml)にかけ、10mM KPB及び100mM KPB(0.1MNaCl)で溶出し、活性のあるフラクションを回収後、セントリプレップにて濃縮(4,000×g,40min,4℃)した。
これにより、100U/mgの比活性を有する粗酵素500Uを得ることができた。
酵素活性の測定法は以下に示す手法にて行った。
0.5M KPB(pH6.5)を5μl、酵素液を10μl、HOを30μl、基質として6−Tuliposide A(10mg/ml)5μlを加え、全量を50μlとし、室温にて10分間静置、酵素反応を行った。
10分後、メタノール100μl、0.5M HPO 50μl、HO 300μlを加えて反応を停止し、25μlをHPLCにインジェクションして活性を測定した。
HPLC分析は、流速:0.65ml/min、検出:208nm、カラム:RP−18GP 250×4.6(関東化学製)、溶媒:20%メタノール(10mM HPO)の条件で行った。
タンパク量は、ブラッドフォード法(Bio Rad Protein Assay Kit)を用いて定量した。
タンパク溶液10μlにブラッドフォード試薬250μlを加え、30分後、595nmの吸光度を測定した。
規定濃度溶液(1.44mg/ml)のBSAを用いて各々の濃度と吸光度の検量線を作成した。
これを元に、球根無細胞抽出液中のタンパク含量を定量した。
(Preparation of crude tulip bulb enzyme solution)
Freeze-dried tulipa (Tulipa spp.): 2 g (fresh weight) bulbs of “purple crystal” were crushed with a bead shocker, 20 ml of 10 mM potassium phosphate buffer (KPB) (pH 7.0) was added, and vortexed. After stirring, the mixture was allowed to stand in a low temperature room for 1 hour.
After centrifugation (21,500 × g, 15 min, 4 ° C.), the supernatant was applied to a DEAE-Toyopearl column (3 ml of gel) equilibrated with 10 mM KPB, and eluted with 10 mM KPB and 100 mM KPB (0.1 M NaCl). The active fraction was collected and concentrated with a centriprep (4,000 × g, 40 min, 4 ° C.).
Thereby, 500 U of crude enzyme having a specific activity of 100 U / mg could be obtained.
The enzyme activity was measured by the following method.
Add 5 μl of 0.5 M KPB (pH 6.5), 10 μl of enzyme solution, 30 μl of H 2 O, and 5 μl of 6-Tuliposide A (10 mg / ml) as a substrate to make a total volume of 50 μl, and let stand at room temperature for 10 minutes. The enzyme reaction was performed.
Ten minutes later, 100 μl of methanol, 50 μl of 0.5 MH 3 PO 4 and 300 μl of H 2 O were added to stop the reaction, and 25 μl was injected into HPLC to measure the activity.
The HPLC analysis was performed under the conditions of flow rate: 0.65 ml / min, detection: 208 nm, column: RP-18GP 250 × 4.6 (manufactured by Kanto Chemical), solvent: 20% methanol (10 mM H 3 PO 4 ).
The amount of protein was quantified using the Bradford method (Bio Rad Protein Assay Kit).
250 μl of Bradford reagent was added to 10 μl of protein solution, and after 30 minutes, the absorbance at 595 nm was measured.
A calibration curve of each concentration and absorbance was prepared using BSA in a normal concentration solution (1.44 mg / ml).
Based on this, the protein content in the bulb-free cell extract was quantified.

(チューリップ花弁組織からのα−メチレン−γ−ブチロラクトン類の抽出)
チューリップ:「紫水晶」の花弁100mg(生重量)に1mlの冷水を加え、ビーズショッカー(2500rpm、4℃、30秒×10回)で破砕抽出した。
綿ろ過後、抽出液490μlを量りとり、10mM KPB(pH7.0)5μl、実施例1にて得られた粗酵素液(3100U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、各溶媒(トルエン、酢酸ブチル、酢酸プロピル、ヘキサン、キシレン)200μlで2回、100μlで1回の計3回で溶媒抽出してHPLC分析にて抽出効率を求めた。
なお、HPLC分析については、流速:0.35ml/min、検出:208nm、カラム:TSKgel ODS−100V 5mm 4.6mm×15cm(東ソー株式会社製)、溶媒:10%メタノール(10mM HPO)、イソクラティックの条件で行った。
ここで抽出効率は、図1〜4にそれぞれ示すような既知の濃度に基づいて検量線を作成し、チューリッポシド−A又はBがα−メチレン−γ−ブチロラクトン又はα−メチレン−β−ヒドロキシ−γ−ブチロラクトンに変換後、酵素反応液から溶媒抽出できた割合を示す。

Figure 0005704295
抽出溶媒として非極性溶媒を用いたので、ヒドロキシ基を有するα−メチレン−β−ヒドロキシ−γ−ブチロラクトンの抽出効率が低かった。 (Extraction of α-methylene-γ-butyrolactone from tulip petal tissue)
Tulip: 1 ml of cold water was added to 100 mg (fresh weight) of petals of “purple crystal” and crushed and extracted with a bead shocker (2500 rpm, 4 ° C., 30 seconds × 10 times).
After cotton filtration, 490 μl of the extract was weighed, 5 μl of 10 mM KPB (pH 7.0) and 5 μl of the crude enzyme solution (3100 U / ml) obtained in Example 1 were added, and allowed to stand at room temperature for 2 hours. .
A saturated amount of NaCl is added to this, and solvent extraction is performed three times, each with 200 μl each solvent (toluene, butyl acetate, propyl acetate, hexane, xylene) and once with 100 μl, and the extraction efficiency is improved by HPLC analysis. Asked.
For HPLC analysis, flow rate: 0.35 ml / min, detection: 208 nm, column: TSKgel ODS-100V 5 mm 4.6 mm × 15 cm (manufactured by Tosoh Corporation), solvent: 10% methanol (10 mM H 3 PO 4 ) , Performed under isocratic conditions.
Here, for the extraction efficiency, a calibration curve is prepared based on the known concentrations as shown in FIGS. 1 to 4, and the tulipposide-A or B is α-methylene-γ-butyrolactone or α-methylene-β-hydroxy. The ratio of solvent extraction from the enzyme reaction solution after conversion to -γ-butyrolactone is shown.
Figure 0005704295
Since a nonpolar solvent was used as the extraction solvent, the extraction efficiency of α-methylene-β-hydroxy-γ-butyrolactone having a hydroxy group was low.

(チューリップ花弁組織からのα−メチレン−γ−ブチロラクトン類の分別抽出)
チューリップ:「紫水晶」花弁100mg(生重量)に1mlの冷水を加え、ビーズショッカー(2500rpm、4℃、30秒×10)で破砕抽出した。
綿ろ過後、抽出液490μlを量りとり、10mM KPB(pH7.0)5μl、実施例1にて得られた粗酵素液(580U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン200μlで2回、100μlで1回溶媒抽出した。
残りの水層より、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンを各溶媒(ブタノール、酢酸エチル、2−プロパノール、酢酸プロピル、イソアミルアルコール)にて200μlで2回、100μlで1回溶媒抽出、HPLC分析にて抽出効率を算出した。

Figure 0005704295
α−メチレン−γ−ブチロラクトンを非極性溶媒で抽出した後に極性溶媒を用いてα−メチレン−β−ヒドロキシ−γ−ブチロラクトンを抽出したので抽出効率が向上した。 (Fractionation extraction of α-methylene-γ-butyrolactone from tulip petal tissue)
Tulip: 1 ml of cold water was added to 100 mg (raw weight) of “purple crystal” petals, and the mixture was crushed and extracted with a bead shocker (2500 rpm, 4 ° C., 30 seconds × 10).
After cotton filtration, 490 μl of the extract was weighed, 5 μl of 10 mM KPB (pH 7.0) and 5 μl of the crude enzyme solution (580 U / ml) obtained in Example 1 were added, and allowed to stand at room temperature for 2 hours. .
A saturated amount of NaCl was added to this, and α-methylene-γ-butyrolactone was solvent extracted twice with 200 μl of toluene and once with 100 μl.
From the remaining aqueous layer, α-methylene-β-hydroxy-γ-butyrolactone was subjected to solvent extraction with each solvent (butanol, ethyl acetate, 2-propanol, propyl acetate, isoamyl alcohol) twice at 200 μl and once at 100 μl. Extraction efficiency was calculated by HPLC analysis.
Figure 0005704295
Extraction efficiency was improved because α-methylene-β-hydroxy-γ-butyrolactone was extracted with a polar solvent after α-methylene-γ-butyrolactone was extracted with a nonpolar solvent.

(チューリップ根粗酵素液の調製)
凍結乾燥したチューリップ:「紫水晶」の根1.3g(乾燥重量)を乳鉢にて破砕し、10mMリン酸カリウム緩衝液(KPB)(pH7.0)を150ml加えて低温室にて1時間攪拌した。
ガーゼにて組織を濾別後、遠心分離(21,500×g,15min,4℃)した上清に10mM KPBにて平衡化したDEAE−Toyopearl 4gを加え、低温室にて1.5時間攪拌した。懸濁液を25mlの注射筒に流し入れゲルを回収した。
このゲルより各20mlの10mM KPB、100mM KPB、100mM KPB(0.1M NaCl)にて順次酵素を溶出し、活性のあるフラクションを回収後、セントリプレップ(4,000×g,40min,4℃)及びセントリコン(10,000×g,20min,4℃)にて濃縮した。
これにより、18.7U/mgの比活性を有する粗酵素約17Uを得ることができた。
(Preparation of crude tulip root enzyme solution)
Freeze-dried tulip: 1.3 g (dry weight) roots of “purple crystal” were crushed in a mortar, 150 ml of 10 mM potassium phosphate buffer (KPB) (pH 7.0) was added, and the mixture was stirred in a low temperature room for 1 hour. did.
After filtering the tissue with gauze, 4 g of DEAE-Toyopearl equilibrated with 10 mM KPB was added to the centrifuged supernatant (21,500 × g, 15 min, 4 ° C.), and the mixture was stirred for 1.5 hours in a low temperature chamber. did. The suspension was poured into a 25 ml syringe and the gel was collected.
From this gel, the enzyme was sequentially eluted with 20 ml each of 10 mM KPB, 100 mM KPB, and 100 mM KPB (0.1 M NaCl), and the active fraction was collected and then centriprep (4,000 × g, 40 min, 4 ° C.). And centricon (10,000 × g, 20 min, 4 ° C.).
As a result, about 17 U of crude enzyme having a specific activity of 18.7 U / mg could be obtained.

(チューリップ茎粗酵素液の調製)
凍結乾燥したチューリップ:「紫水晶」の茎2.2g(乾燥重量)から実施例4と同様の手法で精製を行い、11.1U/mgの比活性を有する粗酵素約12Uを得ることができた。
(Preparation of crude tulip stem enzyme solution)
Freeze-dried tulip: Purified from 2.2 g (dry weight) stem of “purple crystal” in the same manner as in Example 4 to obtain about 12 U of crude enzyme having a specific activity of 11.1 U / mg. It was.

(チューリップ葉粗酵素液の調製)
凍結乾燥したチューリップ:「紫水晶」の葉2.2g(乾燥重量)から実施例4と同様の手法で精製を行い、15.4U/mgの比活性を有する粗酵素約63Uを得ることができた。
(Preparation of tulip leaf crude enzyme solution)
Freeze-dried tulip: Purified from 2.2 g (dry weight) of “purple crystal” in the same manner as in Example 4 to obtain about 63 U of crude enzyme having a specific activity of 15.4 U / mg. It was.

(チューリップ花弁粗酵素液の調製)
凍結乾燥したチューリップ:「紫水晶」の花弁1.2g(乾燥重量)から実施例4と同様の手法で精製を行い、68.0U/mgの比活性を有する粗酵素約60Uを得ることができた。
(Preparation of tulip petal crude enzyme solution)
Freeze-dried tulip: Purified from 1.2 g (dry weight) of petals of “purple crystal” in the same manner as in Example 4 to obtain about 60 U of crude enzyme having a specific activity of 68.0 U / mg. It was.

(チューリップ葯粗酵素液の調製)
凍結乾燥した「紫水晶」の葯2.0g(乾燥重量)から実施例B−1と同様の手法で精製を行い、42.1U/mgの比活性を有する粗酵素約72Uを得ることができた。
(Preparation of tulip koji crude enzyme solution)
Purification can be performed from 2.0 g (dry weight) of freeze-dried “purple crystal” in the same manner as in Example B-1 to obtain about 72 U of a crude enzyme having a specific activity of 42.1 U / mg. It was.

(チューリップ雌しべ粗酵素液の調製)
凍結乾燥したチューリップ:「紫水晶」の雌しべ1.2g(乾燥重量)から実施例4と同様の手法で精製を行い、11.4U/mgの比活性を有する粗酵素約17Uを得ることができた。
(Preparation of tulip pistil crude enzyme solution)
Freeze-dried tulip: Purified from 1.2 g (dry weight) pistil of “purple crystal” in the same manner as in Example 4 to obtain about 17 U of crude enzyme having a specific activity of 11.4 U / mg. It was.

(チューリップ各組織由来粗酵素を用いたα−メチレン−γ−ブチロラクトン類の調製)
チューリップ:「紫水晶」の花弁(乾重量1g)を乳鉢で破砕し、冷メタノール50mlを加え低温室(4℃)にて30分間撹拌抽出した。
ろ過後、ろ液をシロップ状になるまで減圧濃縮し、メタノールと同量の冷水(4℃)に再溶解して抽出液とした。
このものを均等に分け、酵素反応に供した。
抽出液490μlを量りとり、1M KPB(pH7.0)5μl、各組織由来粗酵素液(球根1000U/ml、葉630U/ml、茎123U/ml、根171U/ml、葯719U/ml、花弁601U/ml、雌しべ167U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン(200μl 2回、100μl 1回)、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンをブタノール/アセトン=1/1(200μl 2回、100μl 1回)にて分別抽出し、HPLCにてα−メチレン−γ−ブチロラクトン及びα−メチレン−β−ヒドロキシ−γ−ブチロラクトンの濃度を求めた。
酵素による変換率と抽出効率を表3に示す。
ここで変換率は、チューリッポシド−A又はBがα−メチレン−γ−ブチロラクトン又はα−メチレン−β−ヒドロキシ−γ−ブチロラクトンに変換した割合を示し、抽出効率は酵素反応液から溶媒抽出できた割合を示す。

Figure 0005704295
(Preparation of α-methylene-γ-butyrolactones using crude enzymes derived from tulip tissues)
Tulip: Petal of “purple crystal” (dry weight 1 g) was crushed in a mortar, 50 ml of cold methanol was added, and the mixture was stirred and extracted for 30 minutes in a cold room (4 ° C.).
After filtration, the filtrate was concentrated under reduced pressure until it became a syrup, and redissolved in cold water (4 ° C.) in the same amount as methanol to obtain an extract.
This was divided equally and subjected to enzymatic reaction.
490 μl of the extract was weighed, 5 μl of 1M KPB (pH 7.0), crude enzyme solution derived from each tissue (bulb 1000 U / ml, leaf 630 U / ml, stem 123 U / ml, root 171 U / ml, moth 719 U / ml, petal 601 U / Ml, pistil 167 U / ml) was added, and the mixture was allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, α-methylene-γ-butyrolactone was added to toluene (200 μl twice, 100 μl once), α-methylene-β-hydroxy-γ-butyrolactone was added to butanol / acetone = 1/1 (200 μl 2 times, 100 μl once), and the concentrations of α-methylene-γ-butyrolactone and α-methylene-β-hydroxy-γ-butyrolactone were determined by HPLC.
Table 3 shows the conversion rate and extraction efficiency by the enzyme.
Here, the conversion rate indicates the ratio of turipposide-A or B converted to α-methylene-γ-butyrolactone or α-methylene-β-hydroxy-γ-butyrolactone, and the extraction efficiency can be solvent extracted from the enzyme reaction solution. The ratio is shown.
Figure 0005704295

(比較例1)
(市販リパーゼを用いたα−メチレン−γ−ブチロラクトン類の調製)
実施例10同様の抽出液を用い、このものを均等に分け、酵素反応に供した。
抽出液490μlを量りとり、1M KPB(pH7.0)5μl、各種リパーゼ10mgを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン(200μl 2回、100μl 1回)、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンをブタノール/アセトン=1/1(200μl 2回、100μl 1回)にて分別抽出し、HPLCにてα−メチレン−γ−ブチロラクトン及びα−メチレン−β−ヒドロキシ−γ−ブチロラクトンの濃度を求めた。
酵素による変換率と抽出効率を表4に示す。

Figure 0005704295
この結果、チューリップ組織から抽出したチューリッポシド変換酵素の方が市販のリパーゼよりも優れていることが明らかになった。 (Comparative Example 1)
(Preparation of α-methylene-γ-butyrolactones using commercially available lipase)
Using the same extract as in Example 10, this was equally divided and subjected to an enzymatic reaction.
490 μl of the extract was weighed, 5 μl of 1M KPB (pH 7.0) and 10 mg of various lipases were added, and allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, α-methylene-γ-butyrolactone was added to toluene (200 μl twice, 100 μl once), α-methylene-β-hydroxy-γ-butyrolactone was added to butanol / acetone = 1/1 (200 μl 2 times, 100 μl once), and the concentrations of α-methylene-γ-butyrolactone and α-methylene-β-hydroxy-γ-butyrolactone were determined by HPLC.
Table 4 shows the conversion rate and extraction efficiency by the enzyme.
Figure 0005704295
As a result, it was revealed that the tulipposide converting enzyme extracted from the tulip tissue was superior to the commercially available lipase.

(チューリップ各組織中からのα−メチレン−γ−ブチロラクトン類の調製)
チューリップ:「紫水晶」の各組織(球根250mg、葉100mg、茎100mg、根100mg、葯50mg、花弁100mgいずれも生重量)に冷水1mlを加え、ビーズショッカー(2500 rpm、4℃、30秒×10回)で破砕抽出した。
綿ろ過後、抽出液490μlを量りとり、10mM KPB(pH7.0)5μl、粗酵素液(1000U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン(200μl 2回、100μl 1回)、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンをブタノール/アセトン=1/1(200 μl 2回、100μl 1回)にて分別抽出し、HPLCにてα−メチレン−γ−ブチロラクトン及びα−メチレン−β−ヒドロキシ−γ−ブチロラクトンの濃度を求めた。
酵素による変換率と抽出効率を表5に示す。

Figure 0005704295
(Preparation of α-methylene-γ-butyrolactone from tulip tissues)
Tulip: 1 ml of cold water was added to each tissue of “purple crystal” (bulb 250 mg, leaf 100 mg, stem 100 mg, root 100 mg, cocoon 50 mg, petal 100 mg all raw weight), and bead shocker (2500 rpm, 4 ° C., 30 seconds × 10 times).
After cotton filtration, 490 μl of the extract was weighed, 5 μl of 10 mM KPB (pH 7.0) and 5 μl of crude enzyme solution (1000 U / ml) were added, and allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, α-methylene-γ-butyrolactone was added to toluene (200 μl twice, 100 μl once), α-methylene-β-hydroxy-γ-butyrolactone was butanol / acetone = 1/1 (200 (μl twice, 100 μl once), and the concentrations of α-methylene-γ-butyrolactone and α-methylene-β-hydroxy-γ-butyrolactone were determined by HPLC.
Table 5 shows the conversion rate and extraction efficiency by the enzyme.
Figure 0005704295

(アルストロメリア抽出液の調製)
アルストロメリア(Alstromeria spp.)植物体60mg(乾燥重量)より冷メタノール3mlにて、ビーズショッカー(2500rpm、4℃、30秒×10)で破砕することで抽出物を得た。
綿ろ過後、ろ液を集め減圧濃縮し、ろ液と同量の冷水に再溶解して抽出液とした。
このものを均等に分け、酵素反応に供した。
なお、抽出にはラピッドスター、マリレーン、エラの3栽培品種を用いた。
(Preparation of Alstroemeria extract)
An extract was obtained from 60 mg (dry weight) of an Alstroemeria plant by crushing with 3 ml of cold methanol with a bead shocker (2500 rpm, 4 ° C., 30 seconds × 10).
After cotton filtration, the filtrate was collected, concentrated under reduced pressure, and redissolved in the same amount of cold water as the filtrate to obtain an extract.
This was divided equally and subjected to enzymatic reaction.
For the extraction, three cultivars of Rapid Star, Marilane and Ella were used.

(セリバオウレン抽出液の調製)
セリバオウレン(Coptis japonica)植物体600mg(乾燥重量)を乳鉢で破砕後冷メタノール30mlを加え、室温にて30分間撹拌した。
ろ過後、ろ液をシロップ状になるまで減圧濃縮し、冷水3mlに再溶解して抽出液とした。このものを均等に分け、酵素反応に供した。
(Preparation of Ceribaurene extract)
After crushing 600 mg (dry weight) of Ceribauren plant (Coptis japonica) in a mortar, 30 ml of cold methanol was added and stirred at room temperature for 30 minutes.
After filtration, the filtrate was concentrated under reduced pressure until it became a syrup, and redissolved in 3 ml of cold water to obtain an extract. This was divided equally and subjected to enzymatic reaction.

(各植物体からのα−メチレン−γ−ブチロラクトン類の生成及び抽出)
上記で調製した抽出液490μlを量りとり、1M KPB(pH7.0)5ml、球根粗酵素液(1,063U/ml)5mlまたはHOを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン(200μl 2回、100μl 1回)にて抽出し、HPLCにてα−メチレン−γ−ブチロラクトンの濃度を求めた。
酵素変換により生成したα−メチレン−γ−ブチロラクトンの濃度及び抽出効率を表6に示す。

Figure 0005704295
(Generation and extraction of α-methylene-γ-butyrolactone from each plant)
490 μl of the extract prepared above was weighed, 5 ml of 1M KPB (pH 7.0), 5 ml of bulbous crude enzyme solution (1,063 U / ml) or H 2 O was added, and the mixture was allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, and α-methylene-γ-butyrolactone was extracted with toluene (200 μl twice, 100 μl once), and the concentration of α-methylene-γ-butyrolactone was determined by HPLC.
Table 6 shows the concentration and extraction efficiency of α-methylene-γ-butyrolactone produced by enzymatic conversion.
Figure 0005704295

紫水晶の各組織(球根、葉、茎、根、葯、花弁、雌しべ)100mg(生重量、但し球根は250mg、葯は50mg)に1mlのメタノールを加え、ビーズショッカー(2500rpm、4℃、30秒×10)で破砕し、綿ろ過後、ろ液を減圧濃縮し、1mLの冷水(4℃)に再溶解して抽出液とした。
抽出液490μlを量りとり、1M KPB(pH7.0)5μl、球根粗酵素液(1,063U/ml)5μlを添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン200μlで2回、100μlで1回溶媒抽出した。
残りの水層より、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンをブタノール:アセトン= 1:1にて200μlで2回、100μlで1回溶媒抽出した。
4つの段階(抽出直後、2時間反応後、トルエン抽出後の水層、混合溶媒抽出後の水層)に分け、HPLC分析を行った。
なお、HPLC分析条件は実施例2と同条件である。
分析結果を表7に示す。
ここで濃度は、酵素反応液における両化合物の濃度を、変換率は、チューリッポシド−A又はBがα−メチレン−γ−ブチロラクトン又はα−メチレン−β−ヒドロキシ−γ−ブチロラクトンに変換した割合を示し、抽出効率は酵素反応液から溶媒抽出できた割合を示す。

Figure 0005704295
1 ml of methanol was added to 100 mg of each of the quartz crystals (bulb, leaf, stem, root, bud, petal, pistil) (fresh weight, but 250 mg for bulb and 50 mg for bud), and bead shocker (2500 rpm, 4 ° C., 30 Second × 10), and after cotton filtration, the filtrate was concentrated under reduced pressure and redissolved in 1 mL of cold water (4 ° C.) to obtain an extract.
490 μl of the extract was weighed, 5 μl of 1M KPB (pH 7.0) and 5 μl of bulbous crude enzyme solution (1,063 U / ml) were added, and the mixture was allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, and α-methylene-γ-butyrolactone was solvent extracted twice with 200 μl of toluene and once with 100 μl.
From the remaining aqueous layer, α-methylene-β-hydroxy-γ-butyrolactone was subjected to solvent extraction with butanol: acetone = 1: 1, 200 μl twice, and 100 μl once.
HPLC analysis was performed by dividing into four stages (immediately after extraction, after reaction for 2 hours, aqueous layer after toluene extraction, aqueous layer after mixed solvent extraction).
The HPLC analysis conditions are the same as in Example 2.
The analysis results are shown in Table 7.
Here, the concentration is the concentration of both compounds in the enzyme reaction solution, and the conversion rate is the rate at which Tulipposide-A or B is converted to α-methylene-γ-butyrolactone or α-methylene-β-hydroxy-γ-butyrolactone. The extraction efficiency indicates the ratio of solvent extraction from the enzyme reaction solution.
Figure 0005704295

これにより、植物体の各組織からの破砕抽出にメタノールを用いてもα−メチレン−γ−ブチロラクトン類を効率よく得られることが明らかになった。   As a result, it has been clarified that α-methylene-γ-butyrolactone can be efficiently obtained even when methanol is used for crushing extraction from each tissue of a plant.

チューリップの各品種(アーリーグローリー、ありさ、アルビノ、ウエディングベールエンパイヤステート、カーニバルデリオ、黄小町、クインオブナイト、グリーンランド、ゲリットファンデルボルク、ゴールデンエンパイヤステート、ゴールデンメロディー、コンプリメント、白雪姫、紫雲、ジュディレスター、スターファイター、デザインインプレッション、初桜、ハミルトン、春乙女、春万葉、バレリーナ、ピンクダイヤモンド、ピンクレディパーロット、ファンシーフリル、フライアウェイ、フランソワーゼ、紫水晶、フレーミングパーロット、メセアポゼラン、ラリベラ、ランバダ、レーンファンデルマーク、レッドウィング、レッドファボリット、ワシントン)の花弁100mg(生重量)に1mLのメタノールを加え、ビーズショッカー(2500rpm、4℃、30秒×10)で破砕し、綿ろ過後、ろ液を減圧濃縮し、1mLの冷水(4℃)に再溶解して抽出液とした。
上記、抽出液490μlを量りとり、実施例13と同様に反応を行い、抽出、定量を行った結果を表8に示す。
なお、濃度、変換率、抽出効率の定義は、実施例13と同様である。

Figure 0005704295
Tulip varieties (Early Glory, Arisa, Albino, Wedding Veil Empire State, Carnival Derio, Yellow Komachi, Quinn of Night, Greenland, Gerrit van der Bork, Golden Empire State, Golden Melody, Complement, Snow White, Purple Cloud, Judy Leicester, Star Fighter, Design Impression, First Cherry Blossom, Hamilton, Haru Otome, Spring Manyo, Ballerina, Pink Diamond, Pink Lady Parrot, Fancy Frill, Fly Away, Francoise, Purple Crystal, Framing Parrot, Messiapozellan, Lalibela, Lambada, Lane 1 mL of methanol is added to 100 mg (fresh weight) of petals of van der Mark, Red Wing, Red Favorite, Washington. Shocker (2500rpm, 4 ℃, × 10 30 seconds) and disrupted by, after cotton filtration, the filtrate was concentrated under reduced pressure, and the extract was redissolved in cold water 1 mL (4 ° C.).
Table 8 shows the results obtained by measuring 490 μl of the extract and reacting in the same manner as in Example 13 and performing extraction and quantification.
The definitions of density, conversion rate, and extraction efficiency are the same as in Example 13.
Figure 0005704295

これにより、チューリップの品種によらずにα−メチレン−γ−ブチロラクトン類が得られることが明らかになった。   This revealed that α-methylene-γ-butyrolactone can be obtained regardless of tulip varieties.

シジミバナ(Spiraea prunifolia)、ユキヤナギ(Spiraea thunbergii)、ピンクユキヤナギ(Spiraea thunbergii)、カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)植物体50mg(乾燥重量)に冷メタノール1mlを加え、ビーズショッカー(2500rpm、4℃、30秒×10)で破砕し、綿ろ過後、ろ液を集め減圧濃縮し、ろ液と同量の冷水に再溶解して抽出液とした。
植物抽出液490μlを量りとり、実施例13と同様に反応を行い、抽出、定量を行った結果を表9に示す。
なお、濃度、抽出効率の定義は、実施例13と同様である。

Figure 0005704295
White spruce (Spiraea prunifolia), Snow willow (Spiraea thunbergii), Pink snow willow (Spiraea thunbergii), Cranberry (Erythronium japonicum decne.) After crushing at (2500 rpm, 4 ° C., 30 seconds × 10) and cotton filtration, the filtrate was collected and concentrated under reduced pressure, and redissolved in the same amount of cold water as the filtrate to obtain an extract.
Table 9 shows the results of measuring 490 μl of plant extract, performing the reaction in the same manner as in Example 13, and performing extraction and quantification.
The definitions of concentration and extraction efficiency are the same as in Example 13.
Figure 0005704295

これにより、植物組織中にチューリッポシド−β及びその類縁体が存在すると、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンを得ることができることも明らかになった。   This also revealed that α-methylene-β-hydroxy-γ-butyrolactone can be obtained when turipposide-β and its analogs are present in plant tissues.

実施例10で調製した紫水晶花弁抽出液490μlに、10mM KPB(pH7.0)5μl、実施例1にて得られた粗酵素液(580U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加、無添加下で、各種溶媒にて200μlで各回数抽出することで、α−メチレン−γ−ブチロラクトン類を溶媒抽出した。
HPLC分析にて抽出効率を算出した結果を表10に示す。

Figure 0005704295
To 490 μl of the purple crystal petal extract prepared in Example 10, 5 μl of 10 mM KPB (pH 7.0) and 5 μl of the crude enzyme solution (580 U / ml) obtained in Example 1 were added, respectively, at room temperature for 2 hours. Left to stand.
The α-methylene-γ-butyrolactone was extracted with a solvent by adding 200 μl each time with various solvents with or without a saturated amount of NaCl added thereto.
Table 10 shows the results of calculating the extraction efficiency by HPLC analysis.
Figure 0005704295

実施例13と同様の酵素反応後、ベンゾトリフルオリドにてα−メチレン−γ−ブチロラクトンを抽出(NaCl無添加、200μl×5回抽出)した残りの水層にNaClを飽和量添加し、2,2,2−トリフルオロエタノールまたは2,2,3,3−テトラフルオロ−1−プロパノールにて200μlで2回、100μlで1回溶媒抽出したところ、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンを94.7及び95.8%の効率で抽出できた。   After enzymatic reaction similar to Example 13, α-methylene-γ-butyrolactone was extracted with benzotrifluoride (no NaCl added, 200 μl × 5 times extraction), and a saturated amount of NaCl was added to the remaining aqueous layer, When solvent extraction with 2,2-trifluoroethanol or 2,2,3,3-tetrafluoro-1-propanol was performed twice with 200 μl and once with 100 μl, α-methylene-β-hydroxy-γ-butyrolactone was obtained. Extraction was possible with an efficiency of 94.7 and 95.8%.

アルストロメリア(Alstromeria spp.)植物体200mg(乾燥重量)を乳鉢にて破砕し、10mMリン酸カリウム緩衝液(KPB)(pH7.0)を15ml加えて低温室にて1時間攪拌した。
ガーゼにて組織を濾別後、遠心分離(21,500×g,15min,4℃)した上清に10mM KPBにて平衡化したDEAE−Toyopearl 1gを加え、低温室にて1.5時間攪拌した。
懸濁液を10mlの注射筒に流し入れゲルを回収した。
このゲルより各5mlの10mM KPB、100mM KPB、100mM KPB(0.1M NaCl)にて順次酵素を溶出し、活性のあるフラクションを回収後、セントリプレップ(4,000×g,40min,4℃)及びセントリコン(10,000×g,20min,4℃)にて濃縮した。
これにより、8.9U/mgの比活性を有する「エラ」粗酵素約5.6U、7.5U/mgの比活性を有する「マリレーン」粗酵素約 2.3U、3.5U/mgの比活性を有する「ラピッドスター」粗酵素約1.2Uを得ることができた。
200 mg (dry weight) of an Alstroemeria spp. Plant was crushed in a mortar, 15 ml of 10 mM potassium phosphate buffer (KPB) (pH 7.0) was added, and the mixture was stirred in a cold room for 1 hour.
After filtering the tissue with gauze, 1 g of DEAE-Toyopearl equilibrated with 10 mM KPB was added to the supernatant centrifuged (21,500 × g, 15 min, 4 ° C.), and stirred for 1.5 hours in a low temperature chamber. did.
The suspension was poured into a 10 ml syringe and the gel was collected.
From this gel, the enzyme was sequentially eluted with 5 ml each of 10 mM KPB, 100 mM KPB, and 100 mM KPB (0.1 M NaCl), and the active fraction was collected and then centriprep (4,000 × g, 40 min, 4 ° C.). And centricon (10,000 × g, 20 min, 4 ° C.).
This gives a ratio of about 5.6 U of “Ella” crude enzyme having a specific activity of 8.9 U / mg, a ratio of about 2.3 U, 3.5 U / mg of “Malilane” crude enzyme having a specific activity of 7.5 U / mg. About 1.2 U of “Rapid Star” crude enzyme with activity could be obtained.

カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)植物体50mg(乾燥重量)に1mlの10mM KPBを加え、ビーズショッカー(2500rpm、4℃、30秒×10回)で破砕抽出した。
綿ろ過後、得られた酵素液をマイクロコン(8,000×g,20min,4℃)にて濃縮した。
これにより、85.3U/mgの比活性を有するカタクリ粗酵素約4.9U、126U/mgの比活性を有するキバナカタクリ粗酵素約 7.7Uを得ることができた。
1 ml of 10 mM KPB was added to 50 mg (dry weight) plant body of erythronium japonicum decne, Erythronium grandiflorum Pursh., And crushed and extracted with a bead shocker (2500 rpm, 4 ° C., 30 seconds × 10 times).
After cotton filtration, the resulting enzyme solution was concentrated with a microcon (8,000 × g, 20 min, 4 ° C.).
As a result, about 4.9 U of a crude enzyme with a specific activity of 85.3 U / mg and about 7.7 U of a crude enzyme with a specific activity of 126 U / mg were obtained.

実施例10に用いた抽出液490μlを量りとり、1M KPB(pH7.0)5μl、各植物由来粗酵素液(アルストロメリア「エラ」112U/ml、アルストロメリア「マリレーン」47U/ml、アルストロメリア「ラピッドスター」24U/ml、カタクリ92U/ml、キバナカタクリ153U/ml)5μlを各々添加し、常温にて2時間静置した。
このものにNaClを飽和量添加し、α−メチレン−γ−ブチロラクトンをトルエン(200μl 2回、100μl 1回)、α−メチレン−β−ヒドロキシ−γ−ブチロラクトンをブタノール/アセトン=1/1(200μl 2回、100μl 1回)にて分別抽出し、HPLCにてα−メチレン−γ−ブチロラクトン及びα−メチレン−β−ヒドロキシ−γ−ブチロラクトンの濃度を求めた。
酵素による変換率と抽出効率を表11に示す。

Figure 0005704295
490 μl of the extract used in Example 10 was weighed out, 5 μl of 1M KPB (pH 7.0), each plant-derived crude enzyme solution (Alstroemeria “Ella” 112 U / ml, Alstroemeria “Malilane” 47 U / ml, Alstroemeria “Rapid Star”. 24 U / ml, Katakuri 92 U / ml, Kibana Katakuri 153 U / ml) was added, and the mixture was allowed to stand at room temperature for 2 hours.
A saturated amount of NaCl was added to this, α-methylene-γ-butyrolactone was added to toluene (200 μl twice, 100 μl once), α-methylene-β-hydroxy-γ-butyrolactone was added to butanol / acetone = 1/1 (200 μl 2 times, 100 μl once), and the concentrations of α-methylene-γ-butyrolactone and α-methylene-β-hydroxy-γ-butyrolactone were determined by HPLC.
Table 11 shows the enzyme conversion and extraction efficiency.
Figure 0005704295

これにより、チューリッポシド変換酵素はチューリップのみならず、アルストロメリア、カタクリ、キバナカタクリ等の植物組織にも存在することが明らかになった。   As a result, it has been clarified that the tulipposide converting enzyme is present not only in tulips but also in plant tissues such as alstroemeria, katakuri and kibana katakuri.

Claims (3)

下記化学式(1)及び(2)で示すチューリッポシド類を含有する植物組織を、水で破砕抽出した抽出液又は、メタノールで破砕抽出後に水に再溶解した抽出液に、
チューリッポシド変換酵素を用いて酵素反応させるステップと、
得られた酵素反応液から非極性溶媒を用いてα−メチレンーγ−ブチロラクトンを溶媒抽出するステップと、
前記溶媒抽出後の水層から極性溶媒を用いてα−メチレン−β−ヒドロキシ−γ−ブチロラクトンを溶媒抽出するステップを有し、
前記非極性溶媒はトルエン又はキシレンであり、
前記極性溶媒はブタノール、ブタノールとアセトンとの1:1混合溶媒及び2−プロパノールのうち、いずれかであることを特徴とするα−メチレン−γ−ブチロラクトン類の製造方法。
Figure 0005704295
Figure 0005704295
To an extract obtained by crushing and extracting a plant tissue containing turipposides represented by the following chemical formulas (1) and (2) with water, or an extract obtained by redissolving in water after crushing and extracting with methanol,
An enzymatic reaction using a tulipposide converting enzyme;
Solvent-extracting α-methylene-γ-butyrolactone from the resulting enzyme reaction solution using a nonpolar solvent;
A step of solvent-extracting α-methylene-β-hydroxy-γ-butyrolactone from the aqueous layer after the solvent extraction using a polar solvent ;
The nonpolar solvent is toluene or xylene;
The method for producing α-methylene-γ-butyrolactone is characterized in that the polar solvent is any one of butanol, a 1: 1 mixed solvent of butanol and acetone, and 2-propanol .
Figure 0005704295
Figure 0005704295
前記チューリッポシド類を含有する植物組織は、チューリップ(Tulipa spp.)、アルストロメリア(Alstromeria spp.)、セリバオウレン(Coptis japonica)、ユキヤナギ(Spiraea thunbergii)、シジミバナ(Spiraea prunifolia)、ピンクユキヤナギ(Spiraea thunbergii)、カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)のうち、いずれかの植物体からの植物組織であることを特徴とする請求項1記載のα−メチレン−γ−ブチロラクトン類の製造方法。   Plant tissues containing the tulipposides are Tulipa spp., Alstroemeria spp., Coptis japonica, Spiraea thunbergii, Spirae suna suna. 2. The production of α-methylene-γ-butyrolactone according to claim 1, wherein the α-methylene-γ-butyrolactone is a plant tissue from any of the following plants: erythronium japonicum Decne. Method. 前記チューリッポシド変換酵素は、チューリップ(Tulipa spp.)カタクリ(Erythronium japonicum Decne.)、キバナカタクリ(Erythronium grandiflorum Pursh.)のうち、いずれかに由来する植物組織を破砕し、リン酸カリウム緩衝液を用いて抽出及びクロマトグラフィーにより精製したものであることを特徴とする請求項1記載のα−メチレン−γ−ブチロラクトン類の製造方法。 The tulipposide converting enzyme disrupts plant tissue derived from any one of tulipa spp. , Erythronium japonicum decne, and erythronium grandiflorum Pursh. Potassium phosphate buffer. The method for producing α-methylene-γ-butyrolactone according to claim 1, wherein the α-methylene-γ-butyrolactone is purified by extraction and chromatography.
JP2009178453A 2009-02-12 2009-07-30 Process for producing α-methylene-γ-butyrolactone Expired - Fee Related JP5704295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178453A JP5704295B2 (en) 2009-02-12 2009-07-30 Process for producing α-methylene-γ-butyrolactone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009030548 2009-02-12
JP2009030548 2009-02-12
JP2009178453A JP5704295B2 (en) 2009-02-12 2009-07-30 Process for producing α-methylene-γ-butyrolactone

Publications (2)

Publication Number Publication Date
JP2010207211A JP2010207211A (en) 2010-09-24
JP5704295B2 true JP5704295B2 (en) 2015-04-22

Family

ID=42968101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178453A Expired - Fee Related JP5704295B2 (en) 2009-02-12 2009-07-30 Process for producing α-methylene-γ-butyrolactone

Country Status (1)

Country Link
JP (1) JP5704295B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125162A (en) * 2010-12-13 2012-07-05 Toyama Prefecture Peptide having enzymatic activity converting tuliposides to tulipalins and polynucleotide encoding the same
JP6093938B2 (en) * 2012-11-15 2017-03-15 公立大学法人 富山県立大学 Method for producing tulipperins
JP2015057996A (en) * 2013-09-20 2015-03-30 富山県 Protein with high enzyme activity which converts tuliposide b into tulipalin b and polynucleotide encoding the same
JP7387951B2 (en) 2022-02-10 2023-11-29 前田薬品工業株式会社 Skin external preparations
KR102538354B1 (en) * 2022-11-22 2023-06-01 한국콜마주식회사 Perfume composition for expressing the fragrance of spiraea prunifolia flowers

Also Published As

Publication number Publication date
JP2010207211A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5704295B2 (en) Process for producing α-methylene-γ-butyrolactone
Karppinen et al. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.)
KR101952466B1 (en) Novel strain of microalga that produces squalene
JP4769868B2 (en) Method for producing corosolic acid by plant cell suspension culture
Rios et al. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae)
CN101544995A (en) Method for extracting sulforaphen
Torres et al. Gene expression and flavonolignan production in fruits and cell cultures of Silybum marianum
KR101884298B1 (en) Fermentation Method for Increasing Content of Total Phenolic Compounds and ß-Glucan with Solid Fermented Doraji, Platycodon grandiflorum, using mushroom mycelia
Cheng et al. Production of flavonoids and terpene lactones from optimized Ginkgo biloba tissue culture
EP1517694B1 (en) Plant extracts
KR20130051181A (en) Extract from barley sprout and metabolic disease prevention comprising policosanol compounds separated from the same and treatment pharmaceutical composition
Kato et al. A facile method for the preparation of α-methylene-γ-butyrolactones from tulip tissues by enzyme-mediated conversion
CH393637A (en) Process for preparing psilocybin and psilocin
CN108913499A (en) A kind of tartary buckwheat extract and preparation method thereof, application and health liquor
Mangas et al. Centella asiatica (L) Urban: An updated approach
JP5184144B2 (en) Method for producing highly bioactive garlic mushroom
JP2008000081A (en) New cinnamic acid derivative, method for producing the same and fermented product of propolis
JP6095591B2 (en) Method for producing yam extract
JP2009040691A (en) Skin-lightening ingredient
KR101529709B1 (en) Method for production of soybean isoflavone aglycone
CN106148454A (en) A kind of preparation method of baohuoside Ⅰ
CN107890506A (en) The extraction process of flavone compound in a kind of garlic
Soliman et al. Microbial transformation of the labdane diterpene 13-epi-cupressic acid
JP6093938B2 (en) Method for producing tulipperins
WO2005063227A1 (en) Process for producing triterpene composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5704295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees