JP5703947B2 - Bolt tightening method and apparatus - Google Patents

Bolt tightening method and apparatus Download PDF

Info

Publication number
JP5703947B2
JP5703947B2 JP2011104921A JP2011104921A JP5703947B2 JP 5703947 B2 JP5703947 B2 JP 5703947B2 JP 2011104921 A JP2011104921 A JP 2011104921A JP 2011104921 A JP2011104921 A JP 2011104921A JP 5703947 B2 JP5703947 B2 JP 5703947B2
Authority
JP
Japan
Prior art keywords
tightening
torque
bolt
angle
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011104921A
Other languages
Japanese (ja)
Other versions
JP2012236235A (en
Inventor
敏揮 岡田
敏揮 岡田
善太 戸川
善太 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2011104921A priority Critical patent/JP5703947B2/en
Publication of JP2012236235A publication Critical patent/JP2012236235A/en
Application granted granted Critical
Publication of JP5703947B2 publication Critical patent/JP5703947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Description

本発明は、ボルトの締付管理を行うためのボルトの締付方法及びその装置に関する技術分野に属する。   The present invention belongs to a technical field related to a bolt tightening method and apparatus for bolt tightening management.

一般に、機械部品を組み付ける際、ボルトの締付によってその部品の長期的な耐久信頼性を確保することが求められる。そのため、ボルト締付の管理が行われている。この管理手法としては、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う手法(本明細書では、トルク法という)や、ボルトの締付トルクが予め設定されたスナッグトルクに達した時点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行う手法(本明細書では、角度法という)、ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度及び締付トルクを2軸とする二次元直交グラフ上において、該トルク勾配の傾き線とトルク値が0である線との交点を理論着座点とし、該理論着座点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行う手法(本明細書では、トルクテンション法という)等が知られている。これらの手法をベースにした種々の手法も提案されている(例えば特許文献1〜3参照)。   Generally, when assembling a machine part, it is required to secure long-term durability reliability of the part by tightening a bolt. Therefore, bolt tightening is managed. As this management method, a bolt tightening torque is controlled so that the bolt tightening torque becomes a preset torque (referred to as a torque method in this specification), or the bolt tightening torque is set in advance. A method of performing bolt tightening management (referred to as an angle method in this specification) such that the bolt tightening angle from the time when the set snag torque is reached becomes a preset set angle, bolt tightening During tightening, after the bolt tightening torque reaches a preset snag torque, a torque gradient that is a tightening torque increment relative to the tightening angle increment is calculated, and the bolt tightening angle and tightening torque are calculated. On the two-dimensional orthogonal graph with two axes, the intersection of the slope of the torque gradient and the line where the torque value is 0 is defined as the theoretical seating point, and the bolt tightening angle from the theoretical seating point is set in advance. At the set angle. (In this specification, the torque that tension method) technique for bolt fastening management as such are known. Various techniques based on these techniques have also been proposed (see, for example, Patent Documents 1 to 3).

特開2006−272512号公報JP 2006-272512 A 特開2009−083025号公報JP 2009-083025 A 特開2009−083026号公報JP 2009-083026 A

しかし、上記トルク法等のようなボルトの締付管理手法では、ボルトの締付時のねじ面及び座面の摩擦係数の大小によって、ボルト締付終了時における締付角度及び締付トルクのうちの一方のばらつき量が大きくなり、このため、該締付角度又は締付トルクが、正常な締付状態として管理している角度管理範囲又はトルク管理範囲を超える場合が生じる。また、上記特許文献1〜3のような手法では、ばらつき量が改善されるものの、複雑な手法であり、簡便な方法で管理できるようにするためには改善の余地がある。   However, in the bolt tightening management method such as the torque method described above, the tightening angle and tightening torque at the end of bolt tightening depend on the friction coefficient of the screw surface and seating surface when tightening the bolt. Therefore, there is a case where the tightening angle or the tightening torque exceeds the angle management range or the torque management range managed as a normal tightening state. Moreover, although the amount of dispersion | variation is improved by the methods like the said patent documents 1-3, it is a complicated method and there exists room for improvement in order to enable it to manage by a simple method.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、簡便でありながら、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを抑えることができるようにすることにある。   The present invention has been made in view of such points, and the object of the present invention is to be able to suppress variations in both the tightening angle and the tightening torque at the end of bolt tightening, while being simple. Is to make it.

上記の目的を達成するために、本発明では、ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した時点からのボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたときに、上記ボルトの締付けを終了する、ボルトの締付方法を対象として、上記所定の関係は、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上において、上記スナッグトルクからの締付角度が大きいほど上記締付トルクが小さくなる特定線で表され、上記特定線は、上記二次元直交グラフ上において、上記締付トルクが所定トルクとして一定である締付トルク基準線よりも上記締付トルクが大で、かつ、上記スナッグトルクからの締付角度が大きいほど締付トルクが大きくなる直線からなる締付基準線よりも上記締付角度が小である第1の領域と、上記締付トルク基準線よりも上記締付トルクが小で、かつ、上記締付基準線よりも上記締付角度が大である第2の領域とを通る線であり、上記所定トルクは、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う場合の該設定トルクであり、上記締付基準線は、上記ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度と締付トルクとを2軸とする二次元直交グラフ上で該トルク勾配の傾き線と上記締付トルクが0である線との交点を理論着座点とし、該理論着座点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行った場合において、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上にプロットした、ボルト締付終了時における上記スナッグトルクからの締付角度及び上記締付トルクからなる複数組のデータ点の回帰直線として予め求めた線である、とした。   In order to achieve the above object, according to the present invention, during the bolt tightening, the bolt tightening angle from the time when the bolt tightening torque reaches a preset snag torque, and the tightening angle. For the bolt tightening method in which the bolt tightening torque is terminated when the bolt tightening torque satisfies the predetermined relationship, the predetermined relationship is the tightening angle from the snag torque. On the two-dimensional orthogonal graph with the tightening torque as two axes, the tightening torque is expressed as a specific line that decreases as the tightening angle from the snag torque increases, and the specific line is the two-dimensional orthogonal In the graph, the tightening torque is larger as the tightening torque is larger than the tightening torque reference line where the tightening torque is constant as the predetermined torque and the tightening angle from the snag torque is larger. A tightening angle smaller than the tightening torque reference line, and a tightening torque smaller than the tightening reference line. The predetermined torque is a line passing through the second region where the tightening angle is large, and the predetermined torque is a value when the bolt tightening management is performed so that the bolt tightening torque becomes a preset torque. The tightening reference line is a tightening torque increment with respect to a tightening angle increment after the tightening torque of the bolt reaches a preset snag torque during tightening of the bolt. Calculate the torque gradient, and on the two-dimensional orthogonal graph with the bolt tightening angle and tightening torque as two axes, the intersection of the slope of the torque gradient and the line where the tightening torque is zero is the theoretical seating point. The bolt tightening angle from the theoretical seating point is set in advance. At the end of bolt tightening, plotted on a two-dimensional orthogonal graph with the tightening angle from the snag torque and the tightening torque as two axes The line was determined in advance as a regression line of a plurality of data points composed of the tightening angle from the snag torque and the tightening torque.

すなわち、トルク法では、ボルト締付終了時における締付トルクは、二次元直交グラフ上の締付トルク基準線上に位置して略一定になるものの、ボルトの締付時のねじ面及び座面の摩擦係数の大小によって、ボルト締付終了時におけるスナッグトルクからの締付角度(以下、スナッグトルクからの締付角度を、単に締付角度という)がばらつく。つまり、ボルト締付終了時における締付角度は、二次元直交グラフ上において、締付トルク基準線上における摩擦係数最大線(上記摩擦係数が最大である場合の、締付角度と締付トルクとの関係を示す線であって、締付角度が大きいほど締付トルクが大きくなる直線となる)と摩擦係数最小線(上記摩擦係数が最小である場合の、締付角度と締付トルクとの関係を示す線であって、締付角度が大きいほど締付トルクが大きくなる直線(摩擦係数最大線とは傾きが異なる)となる)との間でばらつく。このばらつき量は比較的大きくて、通常、正常な締付状態として管理している角度管理範囲よりも大きくなる。一方、トルクテンション法では、ボルト締付終了時における締付角度は、二次元直交グラフ上の締付基準線上ないしその近傍に位置し、締付基準線上ないしその近傍における摩擦係数最大線と摩擦係数最小線との間でばらつく。締付基準線は、締付角度が大きいほど締付トルクが大きくなる直線であり、また、締付基準線と、締付角度が一定である直線との間の鋭角の角度は、比較的小さくなるため、締付角度のばらつき量は小さくて、通常、角度管理範囲内にあるものの、締付トルクのばらつき量は、正常な締付状態として管理しているトルク管理範囲よりも大きくなる。   That is, in the torque method, the tightening torque at the end of bolt tightening is positioned on the tightening torque reference line on the two-dimensional orthogonal graph and becomes substantially constant. Depending on the size of the friction coefficient, the tightening angle from the snag torque at the end of bolt tightening (hereinafter, the tightening angle from the snag torque is simply referred to as the tightening angle) varies. That is, the tightening angle at the end of bolt tightening is the friction coefficient maximum line on the tightening torque reference line on the two-dimensional orthogonal graph (the tightening angle and the tightening torque when the friction coefficient is the maximum). This is a line showing the relationship, and the larger the tightening angle, the more the tightening torque becomes a straight line) and the friction coefficient minimum line (the relationship between the tightening angle and the tightening torque when the above friction coefficient is the minimum) And a straight line (the inclination is different from the maximum friction coefficient line) in which the tightening torque increases as the tightening angle increases. This variation amount is relatively large and is usually larger than the angle management range managed as a normal tightening state. On the other hand, in the torque tension method, the tightening angle at the end of bolt tightening is located on or near the tightening reference line on the two-dimensional orthogonal graph, and the maximum friction coefficient line and the friction coefficient on or near the tightening reference line. It varies between the minimum line. The tightening reference line is a straight line in which the tightening torque increases as the tightening angle increases, and the acute angle between the tightening reference line and the straight line with a constant tightening angle is relatively small. Therefore, although the variation amount of the tightening angle is small and normally within the angle management range, the variation amount of the tightening torque is larger than the torque management range managed as a normal tightening state.

これに対して、本発明では、ボルト締付終了時における締付角度及び締付トルクは、二次元直交グラフ上の特定線上における摩擦係数最大線と摩擦係数最小線との間でばらつく。上記特定線は、締付角度が大きいほど締付トルクが小さくなるので、特定線と摩擦係数最大線との交点及び特定線と摩擦係数最小線との交点間の、締付角度の軸に沿った距離は、締付トルク基準線と摩擦係数最大線との交点及び締付トルク基準線と摩擦係数最小線との交点間の距離よりも短くなる。また、特定線と摩擦係数最大線との交点及び特定線と摩擦係数最小線との交点間の、締付トルクの軸に沿った距離は、締付基準線と摩擦係数最大線との交点及び締付基準線と摩擦係数最小線との交点間の、締付トルクの軸に沿った距離よりも短くなる。   On the other hand, in the present invention, the tightening angle and the tightening torque at the end of bolt tightening vary between the friction coefficient maximum line and the friction coefficient minimum line on a specific line on the two-dimensional orthogonal graph. As the tightening angle increases, the tightening torque decreases with the specific line. Therefore, along the axis of the tightening angle between the intersection of the specific line and the friction coefficient maximum line and the intersection of the specific line and the friction coefficient minimum line. The distance is shorter than the intersection between the tightening torque reference line and the friction coefficient maximum line and the distance between the intersection between the tightening torque reference line and the friction coefficient minimum line. The distance along the axis of tightening torque between the intersection of the specific line and the maximum friction coefficient line and the intersection of the specific line and the minimum friction coefficient line is the intersection of the tightening reference line and the maximum friction coefficient line and The distance between the intersections of the tightening reference line and the friction coefficient minimum line is shorter than the distance along the tightening torque axis.

したがって、本発明では、上記摩擦係数がばらついても、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを小さくすることができ、ボルト締付終了時における締付角度及び締付トルクを、それぞれ角度管理範囲内及びトルク管理範囲内に入るようにすることができる。また、ボルトの締付中に、ボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたとき(特定線上に位置したとき)にモータを停止させるという簡便な手法で、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを抑えることができる。   Therefore, in the present invention, even if the friction coefficient varies, variations in both the tightening angle and the tightening torque at the end of the bolt tightening can be reduced, and the tightening angle and the tightening torque at the end of the bolt tightening can be reduced. Can fall within the angle management range and the torque management range, respectively. Further, during bolt tightening, the motor is stopped when the bolt tightening angle and the bolt tightening torque at the tightening angle satisfy a predetermined relationship (when positioned on a specific line). With this simple method, it is possible to suppress variations in both the tightening angle and the tightening torque at the end of bolt tightening.

本発明の一実施形態によれば、上記特定線は、上記二次元直交グラフ上において、上記締付トルク基準線と上記締付基準線との交点を通る。   According to an embodiment of the present invention, the specific line passes through an intersection of the tightening torque reference line and the tightening reference line on the two-dimensional orthogonal graph.

このことにより、ボルト締付終了時における締付角度及び締付トルクを、締付トルク基準線と締付角度基準線との交点である理想的な位置へ近付けることができ、ボルト締付終了時における締付角度及び締付トルクが、それぞれ角度管理範囲内及びトルク管理範囲内に入り易くなる。   This makes it possible to bring the tightening angle and tightening torque at the end of bolt tightening closer to the ideal position that is the intersection of the tightening torque reference line and the tightening angle reference line, and at the end of bolt tightening. The tightening angle and the tightening torque at are easily within the angle management range and the torque management range, respectively.

本発明の他の実施形態によれば、上記特定線は、直線であり、上記二次元直交グラフ上において、上記締付トルク基準線と上記締付基準線との間の上記第1の領域を挟む角度をα1としたとき、上記特定線と上記締付基準線との間の鋭角の角度αが、
α1/2−α1/4≦α≦α1/2+α1/4
を満たす。
According to another embodiment of the present invention, the specific line is a straight line, and the first region between the tightening torque reference line and the tightening reference line is defined on the two-dimensional orthogonal graph. When the sandwiching angle is α1, the acute angle α between the specific line and the tightening reference line is
α1 / 2−α1 / 4 ≦ α ≦ α1 / 2 + α1 / 4
Meet.

このことで、ボルト締付終了時における締付角度及び締付トルクを、それぞれ角度管理範囲内及びトルク管理範囲内により一層入り易くすることができる。   As a result, the tightening angle and the tightening torque at the end of the bolt tightening can be more easily entered within the angle management range and the torque management range, respectively.

本発明の別の態様は、ボルトを締め付けるための締付用部材を回転させるモータと、該締付用部材の回転により締め付けられるボルトの締付角度を検出する締付角度検出手段と、該ボルトの締付トルクを検出する締付トルク検出手段と、該締付角度検出手段及び締付トルク検出手段による検出情報を入力しかつ上記モータの駆動及び停止を制御するとともに、該モータの駆動によるボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した時点からのボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたときに、上記モータを停止させるコントローラとを備えたボルトの締付装置の発明であり、この発明では、上記所定の関係は、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上において、上記スナッグトルクからの締付角度が大きいほど上記締付トルクが小さくなる特定線で表され、上記特定線は、上記二次元直交グラフ上において、上記締付トルクが所定トルクとして一定である締付トルク基準線よりも上記締付トルクが大で、かつ、上記スナッグトルクからの締付角度が大きいほど締付トルクが大きくなる直線からなる締付基準線よりも上記締付角度が小である第1の領域と、上記締付トルク基準線よりも上記締付トルクが小で、かつ、上記締付基準線よりも上記締付角度が大である第2の領域とを通る線であり、上記所定トルクは、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う場合の該設定トルクであり、上記締付基準線は、上記ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度と締付トルクとを2軸とする二次元直交グラフ上で該トルク勾配の傾き線と上記締付トルクが0である線との交点を理論着座点とし、該理論着座点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行った場合において、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上にプロットした、ボルト締付終了時における上記スナッグトルクからの締付角度及び上記締付トルクからなる複数組のデータ点の回帰直線として予め求めた線であるものとする。   Another aspect of the present invention includes a motor that rotates a tightening member for tightening a bolt, a tightening angle detection unit that detects a tightening angle of the bolt that is tightened by the rotation of the tightening member, and the bolt A tightening torque detecting means for detecting the tightening torque of the motor, and input of detection information by the tightening angle detecting means and the tightening torque detecting means to control the driving and stopping of the motor, During the tightening of the bolt, the bolt tightening angle from when the bolt tightening torque reaches a preset snag torque and the bolt tightening torque at the tightening angle have a predetermined relationship. A bolt tightening device including a controller for stopping the motor when it is satisfied, wherein the predetermined relationship includes the tightening angle from the snag torque and the tightening torque. On a two-dimensional orthogonal graph with two axes as a center, the tightening angle from the snag torque is larger, and the tightening torque is expressed as a smaller specific line. Tightening consisting of a straight line in which the tightening torque is larger than the tightening torque reference line where the tightening torque is constant as a predetermined torque, and the tightening torque increases as the tightening angle from the snag torque increases. A first region in which the tightening angle is smaller than the reference line; and the tightening torque is smaller than the tightening torque reference line and the tightening angle is larger than the tightening reference line. The predetermined torque is a set torque when the bolt tightening management is performed so that the bolt tightening torque becomes a preset torque set in advance. Tightening reference line is During bolt tightening, after the bolt tightening torque reaches a preset snag torque, a torque gradient that is the tightening torque increment relative to the tightening angle increment is calculated, and the bolt tightening angle and tightening torque are calculated. On the two-dimensional orthogonal graph with the attached torque as two axes, the intersection of the inclination line of the torque gradient and the line where the tightening torque is 0 is the theoretical seating point, and the bolt tightening angle from the theoretical seating point Is plotted on a two-dimensional orthogonal graph with the tightening angle from the snag torque and the tightening torque as two axes when the tightening management of the bolt is performed so as to be a preset set angle. It is assumed that this is a line obtained in advance as a regression line of a plurality of sets of data points composed of the tightening angle from the snag torque and the tightening torque at the end of bolt tightening.

この発明により、上記ボルトの締付方法と同様に、簡便でありながら、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを抑えることができる。   According to the present invention, similar to the above-described bolt tightening method, it is possible to suppress variations in both the tightening angle and the tightening torque at the end of bolt tightening while being simple.

以上説明したように、本発明によると、ボルトの締付中に、ボルトの締付角度(スナッグトルクからの締付角度)と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたとき(特定線上に位置したとき)にモータを停止させるようにしたので、簡単な方法で、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを抑えることができ、そのボルトにより締結される部品の長期的な耐久信頼性を確保することができる。   As described above, according to the present invention, during the bolt tightening, the bolt tightening angle (the tightening angle from the snag torque) and the bolt tightening torque at the tightening angle are determined as follows. Since the motor is stopped when the relationship is satisfied (when it is located on a specific line), it is possible to suppress variations in both the tightening angle and the tightening torque at the end of bolt tightening with a simple method. The long-term durability reliability of the component fastened by the bolt can be ensured.

本発明の実施形態に係るボルト締付装置を示す側面図である。It is a side view which shows the bolt fastening apparatus which concerns on embodiment of this invention. スナッグトルクからのボルトの締付角度を横軸とし、ボルトの締付トルクを縦軸とする二次元直交グラフである。It is a two-dimensional orthogonal graph with the bolt tightening angle from the snag torque as the horizontal axis and the bolt tightening torque as the vertical axis. 特定線における摩擦係数最大線との交点及び摩擦係数最小線との交点間の部分と管理範囲との関係を示す図2相当のグラフである。FIG. 3 is a graph corresponding to FIG. 2 illustrating a relationship between a management range and a portion between an intersection with a friction coefficient maximum line and a friction coefficient minimum line on a specific line. トルクテンション法を説明するための、ボルトの締付角度とボルトの締付トルクとの関係を示すグラフである。It is a graph which shows the relationship between the bolt tightening angle and bolt tightening torque for demonstrating the torque tension method.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係るボルト締付装置1を示す。このボルト締付装置1は、ボルトを締め付けるための締付用部材としてのソケット2と、該ソケット2を減速ギヤ(図示せず)を介して回転させるモータ(図示せず)とを備えている。上記ソケット2は、その先端面に、ボルトの頭部外周面、又は、ボルトのねじ部に螺号するナットの外周面に嵌合する凹部(図示せず)を有していて、該嵌合状態で回転することで、ボルトを締め付ける。   FIG. 1 shows a bolt fastening device 1 according to an embodiment of the present invention. The bolt fastening device 1 includes a socket 2 as a fastening member for fastening a bolt, and a motor (not shown) that rotates the socket 2 via a reduction gear (not shown). . The socket 2 has a concave portion (not shown) that fits on the outer peripheral surface of the bolt head or on the outer peripheral surface of a nut that is screwed into the threaded portion of the bolt at the tip end surface thereof. Tighten the bolt by rotating with.

上記ボルトにより締結される部品は、どのようなものであってもよいが、特に、長期的な耐久信頼性を確保する必要がある機械部品(例えば自動車の走行系の部品(アクスル部品等))である場合に、上記ボルト締付装置1による締付方法が有効になる。   The parts to be fastened by the bolts may be any kind, but in particular, mechanical parts that need to ensure long-term durability and reliability (for example, parts for automobile traveling systems (axle parts, etc.)). In this case, the tightening method by the bolt tightening device 1 is effective.

上記モータ及び減速ギヤは、本体ケース3のモータ部3a及びギヤ部3bにそれぞれ収容されており、ギヤ部3bがモータ部3aよりもソケット2に近い側に位置する。   The motor and the reduction gear are accommodated in the motor part 3a and the gear part 3b of the main body case 3, respectively, and the gear part 3b is located closer to the socket 2 than the motor part 3a.

本体ケース3のギヤ部3bとは反対側には、ソケット2の回転により締め付けられるボルトの締付角度を検出する締付角度検出手段としてのレゾルバ5が配設されている。また、減速ギヤ(本体ケース3のギヤ部3b)とソケット2との間には、ソケット2の回転により締め付けられるボルトの締付トルクを検出する締付トルク検出手段としてのトルクトランスデューサ6が配設されている。   On the opposite side of the main body case 3 from the gear portion 3b, a resolver 5 is disposed as a tightening angle detecting means for detecting a tightening angle of a bolt tightened by the rotation of the socket 2. In addition, a torque transducer 6 serving as a tightening torque detecting means for detecting a tightening torque of a bolt tightened by the rotation of the socket 2 is disposed between the reduction gear (the gear portion 3b of the main body case 3) and the socket 2. Has been.

上記ボルト締付装置1は、上記レゾルバ5及びトルクトランスデューサ6による検出情報を入力するコントローラ8を更に備えている。このコントローラ8は、周知のマイクロコンピュータをベースとするものであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラムおよびデータを格納するメモリと、種々の信号の入出力を行うための入出力(I/O)バスとを含む。   The bolt tightening device 1 further includes a controller 8 for inputting detection information from the resolver 5 and the torque transducer 6. The controller 8 is based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory configured by, for example, RAM and ROM, and stores programs and data, and various types. And an input / output (I / O) bus for inputting and outputting signals.

コントローラ8には、上記モータの駆動及び停止を制御するモータ制御部8aと、予め設定した後述の特定線L1や、予め設定したスナッグトルクTsの値等を格納記憶した格納部8bとが設けられている。そして、コントローラ8のモータ制御部8aは、作業者の不図示の操作スイッチの操作により上記モータを駆動させ、該モータの駆動によるボルトの締付中に、該ボルトの締付トルクが上記スナッグトルクTsに達した時点からのボルトの締付角度θと、該締付角度θでのボルトの締付トルクTとが、所定の関係を満たしたときに、上記モータを停止させる。   The controller 8 includes a motor control unit 8a that controls driving and stopping of the motor, and a storage unit 8b that stores and stores a preset specific line L1, a preset value of the snag torque Ts, and the like. ing. Then, the motor control unit 8a of the controller 8 drives the motor by operating an operation switch (not shown) of the operator, and during the bolt tightening by driving the motor, the tightening torque of the bolt is the snag torque. When the bolt tightening angle θ from the point of time Ts and the bolt tightening torque T at the tightening angle θ satisfy a predetermined relationship, the motor is stopped.

上記所定の関係は、図2に示すように、上記スナッグトルクTsからの締付角度θ及び上記締付トルクTを2軸とする(図2では、締付角度θを横軸とし、締付トルクTを縦軸としている)二次元直交グラフ上において、上記締付角度θが大きいほど上記締付トルクTが小さくなる特定線L1で表される。   As shown in FIG. 2, the predetermined relationship is that the tightening angle θ from the snag torque Ts and the tightening torque T are two axes (in FIG. 2, the tightening angle θ is a horizontal axis, On a two-dimensional orthogonal graph (with the torque T as the vertical axis), the tightening angle T is represented by a specific line L1 that decreases as the tightening angle θ increases.

上記特定線L1は、上記二次元直交グラフ上において、上記締付トルクTが所定トルクT1として一定である締付トルク基準線L2よりも上記締付トルクTが大で、かつ、上記スナッグトルクTsからの締付角度θが大きいほど締付トルクTが大きくなる直線からなる締付基準線L3よりも上記締付角度θが小である第1の領域Aと、上記締付トルク基準線L2よりも上記締付トルクTが小で、かつ、上記締付基準線L3よりも上記締付角度θが大である第2の領域Bとを通る線である。   The specific line L1 indicates that the tightening torque T is larger than the tightening torque reference line L2 on the two-dimensional orthogonal graph where the tightening torque T is constant as the predetermined torque T1, and the snag torque Ts. From the first region A in which the tightening angle θ is smaller than the tightening reference line L3 that is a straight line in which the tightening torque T increases as the tightening angle θ from the second position increases, and from the tightening torque reference line L2 Is a line passing through the second region B in which the tightening torque T is small and the tightening angle θ is larger than the tightening reference line L3.

本実施形態では、上記特定線L1は、上記二次元直交グラフ上において、上記締付トルク基準線L2と上記締付角度基準線L3との交点P1を通る直線であり、締付トルク基準線L2と締付基準線L3との間の上記第1の領域Aを挟む角度をα1としたとき、上記特定線L1と上記締付基準線L3との間の鋭角の角度αが、
α1/2−α1/4≦α≦α1/2+α1/4
を満たす。尚、図2では、α=α1/2として、特定線L1が第1の領域A及び第2の領域Bをそれぞれ2等分している。
In the present embodiment, the specific line L1 is a straight line passing through the intersection point P1 between the tightening torque reference line L2 and the tightening angle reference line L3 on the two-dimensional orthogonal graph, and the tightening torque reference line L2 When the angle between the first region A and the tightening reference line L3 is α1, the acute angle α between the specific line L1 and the tightening reference line L3 is
α1 / 2−α1 / 4 ≦ α ≦ α1 / 2 + α1 / 4
Meet. In FIG. 2, α = α1 / 2, and the specific line L1 divides the first region A and the second region B into two equal parts.

上記所定トルクT1は、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う場合の該設定トルクである。すなわち、上記所定トルクT1は、ボルト締付管理をトルク法により行う場合の目標トルクである。このトルク法では、ボルト締付終了時における締付トルクは、締付トルク基準線L2上に位置して略一定になるものの、ボルトの締付時のねじ面及び座面の摩擦係数の大小によって、ボルト締付終了時における締付角度(つまりボルト締付軸力)は、締付トルク基準線L2上における摩擦係数最大線U1と摩擦係数最小線U2との間(締付トルク基準線L2と摩擦係数最大線U1との交点P4及び締付トルク基準線L2と摩擦係数最小線U2と交点P5の間)でばらつくことになる。この締付角度のばらつき量は、通常、正常な締付状態として管理している角度管理範囲(図3参照)よりも大きく、このため、ボルト締付終了時における上記締付角度が角度管理範囲を超える場合が生じ、このように角度管理範囲を超えたものは不良品となる。   The predetermined torque T1 is a set torque when the bolt tightening management is performed so that the bolt tightening torque becomes a preset torque. That is, the predetermined torque T1 is a target torque when the bolt tightening management is performed by the torque method. In this torque method, the tightening torque at the end of bolt tightening is positioned on the tightening torque reference line L2 and becomes substantially constant. However, depending on the friction coefficient of the thread surface and the seat surface during bolt tightening, The tightening angle at the end of bolt tightening (that is, the bolt tightening axial force) is between the maximum friction coefficient line U1 and the minimum friction coefficient line U2 on the tightening torque reference line L2 (the tightening torque reference line L2 and It varies at the intersection point P4 with the friction coefficient maximum line U1 and between the tightening torque reference line L2, the friction coefficient minimum line U2 and the intersection point P5). The amount of variation in the tightening angle is usually larger than the angle management range (see FIG. 3) that is managed as a normal tightening state. Therefore, the tightening angle at the end of bolt tightening is the angle management range. If the angle management range is exceeded, a defective product is produced.

ここで、上記摩擦係数最大線U1は、ボルトの締付時において、上記摩擦係数が最大である場合の、スナッグトルクからの締付角度と締付トルクとの関係を示す線であって、該締付角度が大きいほど締付トルクが大きくなる直線となる。また、上記摩擦係数最小線U2は、ボルトの締付時において、上記摩擦係数が最小である場合の、スナッグトルクからの締付角度と締付トルクとの関係を示す線であって、該締付角度が大きいほど締付トルクが大きくなる直線となるとともに、スナッグトルクからの締付角度を横軸とした場合、摩擦係数最小線U2の傾きが摩擦係数最大線U1よりも小さくなる。   Here, the friction coefficient maximum line U1 is a line indicating the relationship between the tightening angle from the snag torque and the tightening torque when the friction coefficient is the maximum when the bolt is tightened. The larger the tightening angle, the straighter the tightening torque. The friction coefficient minimum line U2 is a line indicating the relationship between the tightening angle from the snag torque and the tightening torque when the friction coefficient is the minimum when the bolt is tightened. As the attachment angle increases, the tightening torque becomes a straight line. When the tightening angle from the snag torque is taken as the horizontal axis, the inclination of the friction coefficient minimum line U2 becomes smaller than the friction coefficient maximum line U1.

上記締付基準線L3は、トルクテンション法によりボルトの締付管理を行った場合において、上記スナッグトルクTsからの締付角度θ及び上記締付トルクTを2軸とする二次元直交グラフ上にプロットした、ボルト締付終了時における上記スナッグトルクTsからの締付角度θ及び上記締付トルクTからなる複数組のデータ点の回帰直線として予め求めた線である。上記トルクテンション法は、以下に示すような締付管理手法である。   The tightening reference line L3 is displayed on a two-dimensional orthogonal graph with the tightening angle θ from the snag torque Ts and the tightening torque T as two axes when bolt tightening management is performed by the torque tension method. Plotted lines obtained in advance as regression lines of a plurality of sets of data points including the tightening angle θ from the snag torque Ts and the tightening torque T at the end of bolt tightening. The torque tension method is a tightening management method as described below.

すなわち、図4に示すように、ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクTsに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度(図4では、ボルト締付装置1によるボルトの締付開始からの締付角度であるが、図2の二次元直交グラフの横軸と同様に、スナッグトルクからのボルトの締付角度としてもよい)とボルトの締付トルクとを2軸とする二次元直交グラフ上で該トルク勾配の傾き線と締付トルクが0である線(図4では、横軸)との交点を理論着座点Pとし、該理論着座点Pからのボルトの締付角度を、予め設定された設定角度θ1になるようにボルトの締付管理を行う。このようなトルクテンション法により締付管理を行った場合、ボルト締付終了時におけるスナッグトルクからの締付角度及び締付トルクは、上記スナッグトルクTsからの締付角度θ及び上記締付トルクTを2軸とする二次元直交グラフ(図2)上において、おおよそ直線上に位置する。この直線を、上記複数組のデータ点の回帰直線として求める。   That is, as shown in FIG. 4, during the bolt tightening, after the bolt tightening torque reaches the preset snag torque Ts, the torque gradient that is the tightening torque increment with respect to the tightening angle increment is set. Calculate the bolt tightening angle (in FIG. 4, it is the tightening angle from the start of bolt tightening by the bolt tightening device 1, but from the snag torque as in the horizontal axis of the two-dimensional orthogonal graph of FIG. On the two-dimensional orthogonal graph with two bolts as the bolt tightening angle and the bolt tightening torque (the horizontal axis in FIG. 4). ) Is a theoretical seating point P, and bolt tightening management is performed so that the bolt tightening angle from the theoretical seating point P becomes a preset set angle θ1. When tightening management is performed by such a torque tension method, the tightening angle and the tightening torque from the snag torque at the end of bolt tightening are the tightening angle θ from the snag torque Ts and the tightening torque T. Is approximately on a straight line on a two-dimensional orthogonal graph (FIG. 2) with two axes. This straight line is obtained as a regression line of the plurality of sets of data points.

上記回帰直線(つまり締付基準線L3)は、スナッグトルクからの締付角度が大きいほど締付トルクが大きい直線となり、締付基準線L3と、スナッグトルクからの締付角度が一定である直線との間の鋭角の角度は、比較的小さい(図2において締付基準線L3の傾きが比較的大きい)。そして、上記摩擦係数の大小によって、ボルト締付終了時におけるスナッグトルクからの締付角度及び締付トルクは、締付基準線L3上ないしその近傍における摩擦係数最大線U1と摩擦係数最小線U2との間(締付基準線L3と摩擦係数最大線U1との交点P6及び締付基準線L3と摩擦係数最小線U2と交点P7の間)でばらつくことになる。締付基準線L3の傾きが比較的大きいことから、スナッグトルクからの締付角度のばらつき量は小さくて、通常、角度管理範囲内にあるものの、締付トルクのばらつき量は、正常な締付状態として管理しているトルク管理範囲(図3参照)よりも大きく、このため、ボルト締付終了時における締付トルクがトルク管理範囲を超える場合が生じ、このようにトルク管理範囲を超えたものは不良品となる。   The regression line (that is, the tightening reference line L3) is a straight line having a larger tightening torque as the tightening angle from the snag torque is larger. The tightening reference line L3 and a straight line having a constant tightening angle from the snag torque are constant. Is relatively small (the inclination of the tightening reference line L3 is relatively large in FIG. 2). Depending on the magnitude of the friction coefficient, the tightening angle and the tightening torque from the snag torque at the end of bolt tightening are the friction coefficient maximum line U1 and the friction coefficient minimum line U2 on or near the tightening reference line L3. Between the tightening reference line L3 and the friction coefficient maximum line U1 and between the tightening reference line L3 and the friction coefficient minimum line U2 and the intersection P7. Since the inclination of the tightening reference line L3 is relatively large, the amount of variation in the tightening angle from the snag torque is small and is normally within the angle control range, but the amount of variation in the tightening torque is normal tightening This is larger than the torque management range managed as a condition (see Fig. 3). For this reason, the tightening torque at the end of bolt tightening may exceed the torque management range, thus exceeding the torque management range Becomes defective.

本実施形態では、ボルトの締付中に、スナッグトルクTsからのボルトの締付角度θと、該締付角度θでのボルトの締付トルクTとが、所定の関係を満たしたとき、つまり、スナッグトルクTsからの締付角度θ及び締付トルクTを2軸とする二次元直交グラフ上において上記締付角度θ及び上記締付トルクT(座標)が上記特定線L1上に位置したときに、モータを停止させる。これにより、ボルト締付終了時における上記スナッグトルクTsからの締付角度θ及び上記締付トルクTは、上記特定線L1上における摩擦係数最大線U1と摩擦係数最小線U2との間(特定線L1と摩擦係数最大線U1との交点P2及び特定線L1と摩擦係数最小線U2との交点P3の間)でばらつく。ここで、特定線L1と摩擦係数最大線U1との交点P2及び特定線L1と摩擦係数最小線U2との交点P3間の、締付角度の軸(横軸)に沿った距離は、締付トルク基準線L2と摩擦係数最大線U1との交点P4及び締付トルク基準線L2と摩擦係数最小線U2との交点P5間の距離よりも短くなるとともに、締付基準線L3と摩擦係数最大線U1との交点P6及び締付トルク基準線L3と摩擦係数最小線U2との交点P7間の、横軸に沿った距離と略同じになる。また、特定線L1と摩擦係数最大線U1との交点P2及び特定線L1と摩擦係数最小線U2との交点P3間の、締付トルクの軸(縦軸)に沿った距離は、締付基準線L3と摩擦係数最大線U1との交点P6及び締付トルク基準線L3と摩擦係数最小線U2との交点P7間の、縦軸に沿った距離よりも短くなる。この結果、ボルト締付終了時における締付角度のばらつき量を、トルク法によりボルトの締付管理を行う場合の締付角度のばらつき量よりも小さくすることができるとともに、ボルト締付終了時における締付トルクのばらつき量を、トルクテンション法によりボルトの締付管理を行う場合の締付トルクのばらつき量よりも小さくすることができる。   In the present embodiment, during bolt tightening, when the bolt tightening angle θ from the snag torque Ts and the bolt tightening torque T at the tightening angle θ satisfy a predetermined relationship, that is, When the tightening angle θ and the tightening torque T (coordinates) are positioned on the specific line L1 on a two-dimensional orthogonal graph with the tightening angle θ and the tightening torque T from the snag torque Ts as two axes. Then stop the motor. Thus, the tightening angle θ from the snag torque Ts and the tightening torque T at the end of bolt tightening are between the friction coefficient maximum line U1 and the friction coefficient minimum line U2 on the specific line L1 (specific line). And the intersection point P2 between L1 and the friction coefficient maximum line U1 and the intersection point P3 between the specific line L1 and the friction coefficient minimum line U2. Here, the distance along the axis (horizontal axis) of the tightening angle between the intersection point P2 between the specific line L1 and the friction coefficient maximum line U1 and the intersection point P3 between the specific line L1 and the minimum friction coefficient line U2 is the tightening distance. It is shorter than the distance between the intersection point P4 between the torque reference line L2 and the maximum friction coefficient line U1 and the intersection point P5 between the tightening torque reference line L2 and the minimum friction coefficient line U2, and the tightening reference line L3 and the maximum friction coefficient line. The distance along the horizontal axis between the intersection point P6 with U1 and the intersection point P7 between the tightening torque reference line L3 and the friction coefficient minimum line U2 is substantially the same. In addition, the distance along the axis (vertical axis) of the tightening torque between the intersection point P2 between the specific line L1 and the maximum friction coefficient line U1 and the intersection point P3 between the specific line L1 and the minimum friction coefficient line U2 is a tightening standard. The distance between the intersection point P6 between the line L3 and the maximum friction coefficient line U1 and the intersection point P7 between the tightening torque reference line L3 and the minimum friction coefficient line U2 is shorter than the distance along the vertical axis. As a result, the amount of variation in tightening angle at the end of bolt tightening can be made smaller than the amount of variation in tightening angle when bolt tightening is managed by the torque method, and at the end of bolt tightening. The variation amount of the tightening torque can be made smaller than the variation amount of the tightening torque when the bolt tightening management is performed by the torque tension method.

したがって、上記摩擦係数がばらついても、ボルト締付終了時における締付角度及び締付トルク双方のばらつき量が小さくなり、ボルト締付終了時における締付角度及び締付トルクが、それぞれ角度管理範囲内及びトルク管理範囲内に入り易くなる。   Therefore, even if the friction coefficient varies, the amount of variation in both the tightening angle and the tightening torque at the end of bolt tightening is reduced, and the tightening angle and the tightening torque at the end of bolt tightening are each within the angle management range. And within the torque management range.

ここで、図3に示すように、スナッグトルクからの締付角度及び締付トルクを2軸とする二次元直交グラフ上に、上記角度管理範囲の最小値及び最大値をそれぞれ通る、締付角度が一定である2つの直線と、上記トルク管理範囲の最小値及び最大値をそれぞれ通る、締付トルクが一定である2つの直線とで囲まれた四角形の管理範囲Sを設定する。特定線L1における摩擦係数最大線U1との交点P2及び摩擦係数最小線U2との交点P3間の部分が、上記管理範囲S内に入るように、上記角度αを設定すれば、上記摩擦係数がばらついても、ボルト締付終了時における締付角度及び締付トルクが、それぞれ角度管理範囲内及びトルク管理範囲内に入ることになる。上記角度αを、
α1/2−α1/4≦α≦α1/2+α1/4
を満たすように設定すれば、特定線L1における摩擦係数最大線U1との交点P2及び摩擦係数最小線U2との交点P3間の部分が、一般的に設定される管理範囲S内に十分に入る。
Here, as shown in FIG. 3, the tightening angle that passes through the minimum value and the maximum value of the angle management range on a two-dimensional orthogonal graph with the tightening angle from the snag torque and the tightening torque as two axes. A square management range S surrounded by two straight lines having a constant tightening torque and two straight lines passing through the minimum value and the maximum value of the torque management range is set. If the angle α is set so that the portion between the intersection point P2 with the friction coefficient maximum line U1 and the intersection point P3 with the friction coefficient minimum line U2 in the specific line L1 is within the management range S, the friction coefficient is Even if there is a variation, the tightening angle and the tightening torque at the end of bolt tightening are within the angle management range and the torque management range, respectively. The angle α is
α1 / 2−α1 / 4 ≦ α ≦ α1 / 2 + α1 / 4
If it is set so as to satisfy, the portion between the intersection point P2 of the specific line L1 with the friction coefficient maximum line U1 and the intersection point P3 with the friction coefficient minimum line U2 is sufficiently within the generally set management range S. .

したがって、本実施形態では、ボルトの締付中に、スナッグトルクからのボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたとき(特定線L1上に位置したとき)にモータを停止させるという簡便な手法で、ボルト締付終了時における締付角度及び締付トルク双方のばらつきを抑えることができるようになる。   Therefore, in this embodiment, when the bolt is tightened, the bolt tightening angle from the snag torque and the bolt tightening torque at the tightening angle satisfy a predetermined relationship (specific line L1). With this simple method of stopping the motor when it is positioned above, variations in both the tightening angle and the tightening torque at the end of bolt tightening can be suppressed.

本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。   The present invention is not limited to the embodiment described above, and can be substituted without departing from the spirit of the claims.

例えば、上記実施形態では、特定線L1を、締付トルク基準線L2と締付角度基準線L3との交点P1を通る直線としたが、必ずしも締付トルク基準線L2と締付角度基準線L3との交点P1を通る必要はない。   For example, in the above embodiment, the specific line L1 is a straight line passing through the intersection point P1 between the tightening torque reference line L2 and the tightening angle reference line L3, but the tightening torque reference line L2 and the tightening angle reference line L3 are not necessarily limited. There is no need to pass through the intersection P1.

また、上記角度αが、α1/2−α1/4≦α≦α1/2+α1/4を満たす必要は必ずしもなく、管理範囲Sの角度管理範囲とトルク管理範囲との大きさの関係によっては、その角度範囲外であってもよい。   Further, the angle α is not necessarily required to satisfy α1 / 2−α1 / 4 ≦ α ≦ α1 / 2 + α1 / 4. Depending on the relationship between the angle management range of the management range S and the torque management range, It may be outside the angular range.

さらに、上記実施形態では、特定線L1を直線としたが、スナッグトルクTsからの締付角度θが大きいほど締付トルクTが小さくなりかつ第1の領域Aと第2の領域Bとを通る曲線として設定してもよい。   Furthermore, in the above-described embodiment, the specific line L1 is a straight line. However, as the tightening angle θ from the snag torque Ts increases, the tightening torque T decreases and passes through the first region A and the second region B. It may be set as a curve.

上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   The above-described embodiments are merely examples, and the scope of the present invention should not be interpreted in a limited manner. The scope of the present invention is defined by the scope of the claims, and all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、ボルトの締付管理を行うためのボルトの締付方法及びその装置に有用であり、特に、長期的な耐久信頼性を確保する必要がある機械部品を締結するためのボルトの締付に適用する場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a bolt tightening method and apparatus for performing bolt tightening management, and particularly for tightening a bolt for fastening a machine part that needs to ensure long-term durability and reliability. This is useful when applied to the appendix.

1 ボルト締付装置
2 ソケット(締付用部材)
5 レゾルバ(締付角度検出手段)
6 トルクトランスデューサ(締付トルク検出手段)
8 コントローラ
L1 特定線
L2 締付トルク基準線
L3 締付基準線
1 Bolt tightening device 2 Socket (Tightening member)
5 Resolver (Tightening angle detection means)
6 Torque transducer (Tightening torque detection means)
8 Controller L1 Specified line L2 Tightening torque reference line L3 Tightening reference line

Claims (4)

ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した時点からのボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたときに、上記ボルトの締付けを終了する、ボルトの締付方法であって、
上記所定の関係は、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上において、上記スナッグトルクからの締付角度が大きいほど上記締付トルクが小さくなる特定線で表され、
上記特定線は、上記二次元直交グラフ上において、上記締付トルクが所定トルクとして一定である締付トルク基準線よりも上記締付トルクが大で、かつ、上記スナッグトルクからの締付角度が大きいほど締付トルクが大きくなる直線からなる締付基準線よりも上記締付角度が小である第1の領域と、上記締付トルク基準線よりも上記締付トルクが小で、かつ、上記締付基準線よりも上記締付角度が大である第2の領域とを通る線であり、
上記所定トルクは、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う場合の該設定トルクであり、
上記締付基準線は、上記ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度と締付トルクとを2軸とする二次元直交グラフ上で該トルク勾配の傾き線と上記締付トルクが0である線との交点を理論着座点とし、該理論着座点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行った場合において、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上にプロットした、ボルト締付終了時における上記スナッグトルクからの締付角度及び上記締付トルクからなる複数組のデータ点の回帰直線として予め求めた線であることを特徴とするボルトの締付方法。
During the bolt tightening, the bolt tightening angle from the time when the bolt tightening torque reaches the preset snag torque and the bolt tightening torque at the tightening angle have a predetermined relationship. A bolt tightening method that terminates the bolt tightening when
In the two-dimensional orthogonal graph with the tightening angle from the snag torque and the tightening torque as two axes, the predetermined relationship is such that the tightening torque decreases as the tightening angle from the snag torque increases. Represented by a line,
In the two-dimensional orthogonal graph, the specific line indicates that the tightening torque is larger than a tightening torque reference line in which the tightening torque is constant as a predetermined torque, and the tightening angle from the snag torque is A first region in which the tightening angle is smaller than a tightening reference line formed of a straight line that increases as the tightening torque increases; the tightening torque is smaller than the tightening torque reference line; and A line passing through the second region where the tightening angle is larger than the tightening reference line,
The predetermined torque is the set torque in the case of performing bolt tightening management so that the bolt tightening torque becomes a preset torque set in advance.
The tightening reference line calculates a torque gradient that is a tightening torque increment with respect to a tightening angle increment after the bolt tightening torque reaches a preset snag torque during tightening of the bolt. On the two-dimensional orthogonal graph with the bolt tightening angle and tightening torque as two axes, the intersection of the slope of the torque gradient and the line where the tightening torque is zero is the theoretical seating point, and the theoretical seating When the bolt tightening management is performed so that the bolt tightening angle from the point becomes a preset set angle, the tightening angle from the snag torque and the tightening torque are two axes. Bolt characterized by being a line obtained in advance as a regression line of a plurality of data points comprising the tightening angle from the snag torque and the tightening torque at the end of bolt tightening plotted on a two-dimensional orthogonal graph Tightening Method.
請求項1記載のボルトの締付方法において、
上記特定線は、上記二次元直交グラフ上において、上記締付トルク基準線と上記締付基準線との交点を通ることを特徴とするボルトの締付方法。
In the bolt fastening method according to claim 1,
The bolt tightening method, wherein the specific line passes through an intersection of the tightening torque reference line and the tightening reference line on the two-dimensional orthogonal graph.
請求項1又は2記載のボルトの締付方法において、
上記特定線は、直線であり、
上記二次元直交グラフ上において、上記締付トルク基準線と上記締付基準線との間の上記第1の領域を挟む角度をα1としたとき、上記特定線と上記締付基準線との間の鋭角の角度αが、
α1/2−α1/4≦α≦α1/2+α1/4
を満たすことを特徴とするボルトの締付方法。
In the bolt fastening method according to claim 1 or 2,
The specific line is a straight line,
On the two-dimensional orthogonal graph, when the angle sandwiching the first region between the tightening torque reference line and the tightening reference line is α1, the distance between the specific line and the tightening reference line. The acute angle α of
α1 / 2−α1 / 4 ≦ α ≦ α1 / 2 + α1 / 4
A bolt tightening method characterized by satisfying
ボルトを締め付けるための締付用部材を回転させるモータと、該締付用部材の回転により締め付けられるボルトの締付角度を検出する締付角度検出手段と、該ボルトの締付トルクを検出する締付トルク検出手段と、該締付角度検出手段及び締付トルク検出手段による検出情報を入力しかつ上記モータの駆動及び停止を制御するとともに、該モータの駆動によるボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した時点からのボルトの締付角度と、該締付角度でのボルトの締付トルクとが、所定の関係を満たしたときに、上記モータを停止させるコントローラとを備えたボルトの締付装置であって、
上記所定の関係は、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上において、上記スナッグトルクからの締付角度が大きいほど上記締付トルクが小さくなる特定線で表され、
上記特定線は、上記二次元直交グラフ上において、上記締付トルクが所定トルクとして一定である締付トルク基準線よりも上記締付トルクが大で、かつ、上記スナッグトルクからの締付角度が大きいほど締付トルクが大きくなる直線からなる締付基準線よりも上記締付角度が小である第1の領域と、上記締付トルク基準線よりも上記締付トルクが小で、かつ、上記締付基準線よりも上記締付角度が大である第2の領域とを通る線であり、
上記所定トルクは、ボルトの締付トルクを、予め設定された設定トルクになるようにボルトの締付管理を行う場合の該設定トルクであり、
上記締付基準線は、上記ボルトの締付中に、該ボルトの締付トルクが予め設定されたスナッグトルクに達した以降に、締付角度増分に対する締付トルク増分であるトルク勾配を算出し、ボルトの締付角度と締付トルクとを2軸とする二次元直交グラフ上で該トルク勾配の傾き線と上記締付トルクが0である線との交点を理論着座点とし、該理論着座点からのボルトの締付角度を、予め設定された設定角度になるようにボルトの締付管理を行った場合において、上記スナッグトルクからの締付角度及び上記締付トルクを2軸とする二次元直交グラフ上にプロットした、ボルト締付終了時における上記スナッグトルクからの締付角度及び上記締付トルクからなる複数組のデータ点の回帰直線として予め求めた線であることを特徴とするボルトの締付装置。
A motor for rotating a tightening member for tightening the bolt, a tightening angle detecting means for detecting a tightening angle of the bolt tightened by the rotation of the tightening member, and a tightening for detecting the tightening torque of the bolt Torque detection means, and detection information by the tightening angle detection means and the tightening torque detection means are inputted and the driving and stopping of the motor are controlled, and the bolt is tightened during the tightening of the bolt by the driving of the motor. When the bolt tightening angle from when the tightening torque reaches a preset snag torque and the bolt tightening torque at the tightening angle satisfy a predetermined relationship, the motor is A bolt tightening device comprising a controller for stopping,
In the two-dimensional orthogonal graph with the tightening angle from the snag torque and the tightening torque as two axes, the predetermined relationship is such that the tightening torque decreases as the tightening angle from the snag torque increases. Represented by a line,
In the two-dimensional orthogonal graph, the specific line indicates that the tightening torque is larger than a tightening torque reference line in which the tightening torque is constant as a predetermined torque, and the tightening angle from the snag torque is A first region in which the tightening angle is smaller than a tightening reference line formed of a straight line that increases as the tightening torque increases; the tightening torque is smaller than the tightening torque reference line; and A line passing through the second region where the tightening angle is larger than the tightening reference line,
The predetermined torque is the set torque in the case of performing bolt tightening management so that the bolt tightening torque becomes a preset torque set in advance.
The tightening reference line calculates a torque gradient that is a tightening torque increment with respect to a tightening angle increment after the bolt tightening torque reaches a preset snag torque during tightening of the bolt. On the two-dimensional orthogonal graph with the bolt tightening angle and tightening torque as two axes, the intersection of the slope of the torque gradient and the line where the tightening torque is zero is the theoretical seating point, and the theoretical seating When the bolt tightening management is performed so that the bolt tightening angle from the point becomes a preset set angle, the tightening angle from the snag torque and the tightening torque are two axes. Bolt characterized by being a line obtained in advance as a regression line of a plurality of data points comprising the tightening angle from the snag torque and the tightening torque at the end of bolt tightening plotted on a two-dimensional orthogonal graph Tightening Apparatus.
JP2011104921A 2011-05-10 2011-05-10 Bolt tightening method and apparatus Expired - Fee Related JP5703947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104921A JP5703947B2 (en) 2011-05-10 2011-05-10 Bolt tightening method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104921A JP5703947B2 (en) 2011-05-10 2011-05-10 Bolt tightening method and apparatus

Publications (2)

Publication Number Publication Date
JP2012236235A JP2012236235A (en) 2012-12-06
JP5703947B2 true JP5703947B2 (en) 2015-04-22

Family

ID=47459622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104921A Expired - Fee Related JP5703947B2 (en) 2011-05-10 2011-05-10 Bolt tightening method and apparatus

Country Status (1)

Country Link
JP (1) JP5703947B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619628B2 (en) * 1986-08-23 1997-06-11 マツダ株式会社 Bolt tightening method
US5131130A (en) * 1990-10-09 1992-07-21 Allen-Bradley Company, Inc. Torque-angle window control for threaded fasteners
JPH1071576A (en) * 1996-06-20 1998-03-17 Nissan Motor Co Ltd Impact type screw driving method and device
JP2009083024A (en) * 2007-09-28 2009-04-23 Yokota Kogyo Kk Impact fastening tool with angle detection

Also Published As

Publication number Publication date
JP2012236235A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
US20200023893A1 (en) Steer-by-wire feedback torque
KR101234645B1 (en) Drive shaft protectiion system and method
CN105899332A (en) A power tool for tightening a fastener and a method
JP2014512800A5 (en) Torque control device, method, computer program product, device, electronic device
US9700970B2 (en) Fastening device and control method of the same
US11214303B2 (en) Control device for vehicle
CN107600169A (en) The steering reversal control device and method of motor driven power steering
US10953750B2 (en) Input device
JP7081117B2 (en) Steering control device and steering control method
US20160009260A1 (en) Control method of electro-mechanical brake
JP5703947B2 (en) Bolt tightening method and apparatus
CN107128212B (en) The control device of vehicle and the control method of vehicle
JP5760663B2 (en) Bolt tightening method and apparatus
JP7096544B2 (en) Screw tightening device and screw tightening method
US9964457B2 (en) Rotary force diagnostic tools and methods
US10466121B2 (en) Force-based detection systems and methods
JP2013099813A (en) Screw fastening device
KR101756013B1 (en) Method for controlling haptic function with steering of vehicles
JP5304630B2 (en) Fastening torque inspection method and fastening torque inspection system for fastening members
US11235799B2 (en) Limit cycle detection and cessation system and method
US20160318443A1 (en) Controlling oscillatory feedback provided through vehicle steering
US8818631B2 (en) Vehicle steering control unit
KR102083839B1 (en) Memory protection apparatus and method of motor driven power steering system
JP2016114493A (en) Electrically-driven power steering inspection device
JP7351691B2 (en) Steering control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees