JP5703632B2 - Warm press molding material and panel manufacturing method - Google Patents

Warm press molding material and panel manufacturing method Download PDF

Info

Publication number
JP5703632B2
JP5703632B2 JP2010193565A JP2010193565A JP5703632B2 JP 5703632 B2 JP5703632 B2 JP 5703632B2 JP 2010193565 A JP2010193565 A JP 2010193565A JP 2010193565 A JP2010193565 A JP 2010193565A JP 5703632 B2 JP5703632 B2 JP 5703632B2
Authority
JP
Japan
Prior art keywords
less
resistance
steel sheet
hot
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010193565A
Other languages
Japanese (ja)
Other versions
JP2012052157A (en
Inventor
金晴 奥田
金晴 奥田
高橋 健二
健二 高橋
山崎 雄司
雄司 山崎
英之 木村
英之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010193565A priority Critical patent/JP5703632B2/en
Publication of JP2012052157A publication Critical patent/JP2012052157A/en
Application granted granted Critical
Publication of JP5703632B2 publication Critical patent/JP5703632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車、家電等の用途で使用される温間プレス成形用素材およびこの素材を使用してパネル用部材を製造する方法に関する。   The present invention relates to a warm press-molding material used in applications such as automobiles and home appliances, and a method of manufacturing a panel member using this material.

従来、フード、ドア、トランクリッド、バックドア、フェンダーといった耐デント性の要求される自動車外板パネルには、TS:340MPaクラスのBH鋼板(焼付け硬化型鋼板、以後、単に340BHと呼ぶ。)が適用されてきた。340BHはC:0.01質量%未満の極低炭素鋼において固溶C量をNb、Ti等の炭窒化物形成元素の添加により制御し、Mn、Pで固溶強化したフェライト単相鋼である。近年、車体軽量化ニーズが更に高まり、これらの340BHの適用されてきた外板パネルを更に高強度化して鋼板を薄肉化する、あるいは同板厚でR/F(補強部材)を削減する、さらには焼付け塗装工程を低温、短時間化する等の検討が進められている。   Conventionally, automobile outer panel that requires dent resistance such as hood, door, trunk lid, back door, and fender is TS: 340MPa class BH steel plate (bake hardening type steel plate, hereinafter simply referred to as 340BH). Has been applied. 340BH is a ferritic single-phase steel in which the amount of solid solution C is controlled by adding carbonitride-forming elements such as Nb and Ti in a very low carbon steel with C: less than 0.01% by mass, and solid solution strengthened with Mn and P. In recent years, the need for lighter vehicle bodies has further increased, and the outer panel to which these 340BH has been applied has been further strengthened to reduce the thickness of the steel sheet, or to reduce the R / F (reinforcing member) with the same thickness. Study is underway to reduce the baking process time and temperature.

しかしながら、従来の340BHに更にMn、Pを多量添加して高強度化を図ると、降伏応力(YS)の増加に起因してプレス成形品の耐面歪性が著しく劣化する。ここで、面歪とは、ドアのノブ部の外周などに生じやすいプレス成形面の微小なしわ、うねり状の模様である。面歪は自動車の外観品質を著しく損なうので、外板パネルに適用される鋼板には、プレス成形品の強度を高めつつも、プレス成形前の降伏応力は現状の340BHに近い低いYSを有することが要求される。   However, if a large amount of Mn and P is further added to the conventional 340BH to increase the strength, the surface strain resistance of the press-formed product is significantly deteriorated due to an increase in yield stress (YS). Here, the surface distortion is a fine wrinkle or wavy pattern on the press-molded surface that is likely to occur on the outer periphery of the knob portion of the door. Since surface distortion significantly impairs the appearance quality of automobiles, the steel sheet applied to the outer panel must have a low YS that is close to the current 340BH, while increasing the strength of the press-formed product while increasing the strength of the press-formed product. Is required.

一方、低いYSを維持しつつプレス成形および焼付け塗装後の強度を高くするためには、プレス成形時の加工硬化(WH)、プレス成形後の焼付け硬化(BH)を増加させる必要がある。ドアなどの張り出し部位で、デンド性が要求される位置での歪量は数%であり、WHはそのような低歪で高い値が必要となる。また、プレス成形時に付与される歪量に依存せず高い耐デント性を安定して確保するためにはBHを増加させることが好ましい。しかしながら、BHを増加させると耐時効性の劣化が生じる。とりわけ、近年の車両生産拠点のグローバル化により、北米や北東アジア地域だけでなく、東南アジア、南米、インド等においてもパネル用鋼板の需要が増加しつつあり、更なる耐時効性の向上が求められている。例えば、赤道付近の地域で鋼板を使用する場合は、輸送工程や現地の倉庫での保管期間を考慮すると、鋼板は40〜50℃に2〜5ヶ月曝されるので、従来のフェライト単相鋼(340BH)では耐時効性は十分でなく、プレス成形後の外板意匠面にしわ状の模様が発生する。このように、近年は高いBHを保持しつつも従来鋼より優れた耐時効性を有していることが鋼板特性として要求される。   On the other hand, in order to increase the strength after press molding and baking coating while maintaining low YS, it is necessary to increase work hardening (WH) during press molding and baking hardening (BH) after press molding. The amount of strain at a position where dendability is required at a protruding portion such as a door is several percent, and WH requires such a low strain and a high value. Further, it is preferable to increase BH in order to stably ensure high dent resistance without depending on the amount of strain applied during press molding. However, increasing BH results in deterioration of aging resistance. In particular, due to the recent globalization of vehicle production bases, demand for panel steel sheets is increasing not only in North America and Northeast Asia, but also in Southeast Asia, South America, India, etc., and further improvement in aging resistance is required. ing. For example, when using steel sheets in the area near the equator, considering the transportation process and storage period in the local warehouse, the steel sheets are exposed to 40-50 ° C for 2-5 months. In (340BH), the aging resistance is not sufficient, and a wrinkled pattern is generated on the design surface of the outer plate after press molding. Thus, in recent years, it is required as a steel sheet characteristic that it has a higher aging resistance than conventional steel while maintaining a high BH.

このような背景から、例えば、特許文献1には、重量比にて、C:0.005〜0.15%、Mn:0.3〜2.0%、Cr:0.023〜0.8%を含有する鋼の焼鈍後の冷却速度を適正化し、主としてフェライトとマルテンサイトからなる複合組織を形成させることにより、低い降伏応力(YS)、高い焼付け硬化(BH)を兼ね備えた合金化亜鉛めっき鋼板を得る方法が開示されている。また、特許文献2には、重量%で、C:0.01%超0.03%未満、Mn:0.5〜2.5%、B:0.0025%以下を含有する鋼にMoを0.02〜1.5%添加し、さらにsol.Al、N、B、Mn量をsol.Al≧9.7×N、B≧1.5×10-4×(Mn2+1)となるように制御してフェライトと低温変態生成相からなる組織を得ることにより、焼付硬化性と常温耐時効性の両者に優れた溶融亜鉛めっき鋼板を得る方法が開示されている。特許文献3には、質量%で、C:0.005%以上0.04%未満、Mn:0.5〜3.0%を含有する鋼板を熱間圧延する過程において圧延終了後2秒以内に70℃/s以上の冷却速度で650℃以下まで冷却することにより、耐時効性に優れた鋼板を得る方法が開示されている。特許文献4には、質量%で、C:0.02〜0.08%、Mn:1.0〜2.5%、P:0.05%以下、Cr:0.2%超1.5%以下を含有した鋼においてCr/Alを30以上とすることにより、低い降伏比、高いBH、優れた常温耐時効性を有する鋼板を得る方法が開示されている。特許文献5には、mass%で、C:0.005〜0.04%、Mn:1.0〜2.0%、Cr:0.2〜1.0%を含有する鋼においてMn+1.29Crを2.1〜2.8に制御するとともに、Crを比較的多く添加することにより、YSが低くBHの高い溶融亜鉛めっき鋼板を得る方法が開示されている。特許文献6には、質量%で、C:0.01%以上0.040%未満、Mn:0.3〜1.6%、Cr:0.5%以下、Mo:0.5%以下を含有する鋼を焼鈍後550〜750℃の温度までを3〜20℃/sの冷却速度で冷却し、200℃以下の温度までを100℃/s以上の冷却速度で冷却することにより、焼付硬化性に優れた鋼板を得る方法が開示されている。 From such a background, for example, Patent Document 1 discloses the cooling rate after annealing of steel containing C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, Cr: 0.023 to 0.8% in weight ratio. A method for obtaining an alloyed galvanized steel sheet having both low yield stress (YS) and high bake hardening (BH) by optimizing and forming a composite structure mainly composed of ferrite and martensite is disclosed. Further, in Patent Document 2, 0.02 to 1.5% of Mo is added to steel containing, by weight%, C: more than 0.01% and less than 0.03%, Mn: 0.5 to 2.5%, B: 0.0025% or less, and further sol. Control the amount of Al, N, B, and Mn so that sol.Al ≧ 9.7 × N, B ≧ 1.5 × 10 −4 × (Mn 2 +1) to obtain a structure consisting of ferrite and low-temperature transformation generation phase Discloses a method for obtaining a hot-dip galvanized steel sheet excellent in both bake hardenability and room temperature aging resistance. Patent Document 3 discloses that, in the process of hot rolling a steel sheet containing C: 0.005% or more and less than 0.04% and Mn: 0.5 to 3.0% by mass%, cooling at 70 ° C./s or more within 2 seconds after the end of rolling. A method for obtaining a steel sheet having excellent aging resistance by cooling to 650 ° C. or lower at a speed is disclosed. In Patent Document 4, in steel containing, by mass%, C: 0.02 to 0.08%, Mn: 1.0 to 2.5%, P: 0.05% or less, Cr: more than 0.2% and 1.5% or less, Cr / Al is 30 or more. Thus, a method for obtaining a steel sheet having a low yield ratio, high BH, and excellent normal temperature aging resistance is disclosed. In Patent Document 5, in steel containing C: 0.005 to 0.04%, Mn: 1.0 to 2.0%, Cr: 0.2 to 1.0%, Mn + 1.29Cr is controlled to 2.1 to 2.8 and Cr is added. A method of obtaining a hot-dip galvanized steel sheet having a low YS and a high BH by adding a relatively large amount is disclosed. Patent Document 6 discloses that, in mass%, C: 0.01% or more and less than 0.040%, Mn: 0.3 to 1.6%, Cr: 0.5% or less, and Mo: 0.5% or less, a temperature of 550 to 750 ° C. after annealing. A method of obtaining a steel plate having excellent bake hardenability is disclosed by cooling at a cooling rate of 3 to 20 ° C / s and cooling to a temperature of 200 ° C or less at a cooling rate of 100 ° C / s or more. Yes.

特公昭62-40405号公報Japanese Patent Publication No.62-40405 特開2005-8904号公報JP 2005-8904 A 特開2005-29867号公報JP 2005-29867 A 特開2008-19502号公報JP 2008-19502 Gazette 特開2007-211338号公報Japanese Unexamined Patent Publication No. 2007-211338 特開2006-233294号公報JP 2006-233294 A

しかしながら、上記特許文献1〜6に記載の鋼板は、いずれも鋼板の組織としてフェライトとマルテンサイトを主体とした複合組織鋼であり、従来の固溶強化型の鋼板と比べて十分低いYSと高いBHを有しているものの、現状外板パネルに使用されている340BHなどに比べると、YSが高く、耐面歪性の要求の厳しい部材には適用が進んでいなかった。   However, all of the steel sheets described in Patent Documents 1 to 6 are composite structure steels mainly composed of ferrite and martensite as the structure of the steel sheet, and sufficiently low YS and high compared to conventional solid solution strengthened steel sheets. Although it has BH, compared with 340BH currently used for the outer panel, etc., it has high YS, and its application has not progressed to a member that demands surface distortion resistance.

この発明は、このような従来技術の問題点を、パネル用部材を製造する際に、パネル用素材のプレス成形を温間で行うことで解決するものであり、高強度溶融亜鉛めっき鋼板からなる温間プレス成形用素材及び耐面歪性及び耐デント性に優れたパネル用部材の製造方法を提供することを目的とする。   The present invention solves such problems of the prior art by warmly pressing a panel material when manufacturing a panel member, and is made of a high-strength hot-dip galvanized steel sheet. It aims at providing the manufacturing method of the member for panels excellent in the raw material for warm press molding, and surface distortion resistance and dent resistance.

本発明者らは、降伏強度の低い複合組織を有する高強度溶融亜鉛めっき鋼板を対象にプレス成形後の耐面歪性と耐デント性に優れたパネル用部材を提供する手法について鋭意検討を行い以下の結論を得た。   The present inventors have conducted intensive studies on a method for providing a panel member having excellent surface strain resistance and dent resistance after press forming for a high-strength hot-dip galvanized steel sheet having a composite structure with low yield strength. The following conclusions were obtained.

(1)プレス成形を温間成形とすることで、低YS化し、耐面歪性を改善する。その温度としては、めっきの性状に影響の少ない250〜500℃とする。   (1) By using warm forming as the press forming, the YS is reduced and the surface distortion resistance is improved. The temperature is 250 to 500 ° C., which has little influence on the properties of plating.

(2)温間成形することで、コストアップするものの、素材鋼板の組織、機械特性を規定することで温間成形ままで、塗装焼付け工程を経ずとも耐デント性が向上する。   (2) Although the cost is increased by warm forming, the dent resistance can be improved without passing through the paint baking process by prescribing the structure and mechanical properties of the material steel plate as it is.

(3)従来の複合組織鋼板には、低YSを維持しつつ焼入性を確保するためにCrが比較的多量に添加されていたが、ヘム加工部の耐食性はCr添加により著しく劣化する。このため、340BHと同等以上の耐食性を確保するには、Cr含有量を0.5質量%未満に低減する必要がある。   (3) Although a relatively large amount of Cr has been added to the conventional composite steel sheet in order to ensure hardenability while maintaining low YS, the corrosion resistance of the hem-processed portion is significantly degraded by the addition of Cr. For this reason, in order to ensure the corrosion resistance equivalent to or higher than that of 340BH, it is necessary to reduce the Cr content to less than 0.5% by mass.

(4)YSあるいは降伏比(YR)を低く抑え、良好な耐時効性を確保するには、Mn当量を高めてパーライトの生成を抑制してフェライトと主としてマルテンサイトである第2相による複合組織に制御しつつ、マルテンサイト相の面積率を3%以上確保する必要がある。   (4) To keep YS or the yield ratio (YR) low and ensure good aging resistance, the composite structure of ferrite and the second phase, which is mainly martensite, is increased by increasing the Mn equivalent to suppress the formation of pearlite. It is necessary to secure an area ratio of the martensite phase of 3% or more while controlling it.

(5)耐食性確保の観点からCrを低減しつつ十分なMn当量を確保するためには、Mnを活用する必要があるが、Mnを多量添加するとフェライト粒が展伸して不均一な粒度分布になるとともにマルテンサイトが著しく微細化してYSの増加を招く。これに対して、B(ホウ素)やP(リン)は焼入性を改善する効果が顕著であり、なおかつフェライト粒を均一、粗大にポリゴナル化する作用や、第2相をフェライト粒界の3重点に均一に分散させる作用がある。具体的には、Bはフェライト粒を均一、粗大化する作用が強く、Pはマルテンサイトを均一分散させる作用が強い。このため、PとBを所定の範囲で複合添加し、さらにMnの添加量を所定範囲に抑制することで均一、粗大なフェライト粒と均一に分散したマルテンサイト粒が同時に得られ、CrやMoを低減した鋼においても低いYSが得られる。   (5) In order to ensure sufficient Mn equivalent while reducing Cr from the viewpoint of ensuring corrosion resistance, it is necessary to utilize Mn, but when Mn is added in a large amount, ferrite grains expand and uneven particle size distribution At the same time, martensite is remarkably refined and YS increases. On the other hand, B (boron) and P (phosphorus) have a remarkable effect of improving hardenability, and also have the effect of polygonizing the ferrite grains uniformly and coarsely. There is an effect of evenly distributing the emphasis. Specifically, B has a strong action of uniformly and coarsening ferrite grains, and P has a strong action of uniformly dispersing martensite. For this reason, by adding P and B in a predetermined range and further suppressing the addition amount of Mn to a predetermined range, uniform and coarse ferrite grains and uniformly dispersed martensite grains can be obtained at the same time, Cr and Mo Low YS can be obtained even in steels with reduced slag.

(6)Mnの多量添加は固溶Cの減少と第2相の不均一分散化によりBHを著しく劣化させる。一方、PとBは、それ自体、添加することでBHを増加させる効果がある。したがって、PとBを所定量以上添加してMnの添加量を削減することでBHは著しく増加する。このため、Mn当量の制御に加えて、P、B、Mnを特定範囲に制御することで低いYSと高いBHが同時に得られる。   (6) Addition of a large amount of Mn significantly degrades BH due to a decrease in solute C and non-uniform dispersion of the second phase. On the other hand, P and B themselves have the effect of increasing BH when added. Therefore, BH increases remarkably by adding more than a predetermined amount of P and B to reduce the amount of Mn added. For this reason, low YS and high BH can be obtained simultaneously by controlling P, B, and Mn to a specific range in addition to controlling Mn equivalent.

(7)PとBを活用してMn当量を高めた本発明鋼では、熱延後の冷却過程でのフェライト変態が遅延するので、特殊な急速冷却を施さずとも所定の温度で巻取処理を施すことで、熱延組織が微細なフェライトおよび微細なパーライト、もしくはベイナイトとなり冷延、焼鈍後の組織が均一化してより一層BHが向上する。   (7) In the steel of the present invention in which the Mn equivalent is increased by utilizing P and B, the ferrite transformation in the cooling process after hot rolling is delayed, so that the winding process is performed at a predetermined temperature without performing special rapid cooling. By applying the above, the hot rolled structure becomes fine ferrite and fine pearlite, or bainite, and the structure after cold rolling and annealing becomes uniform, and BH is further improved.

このように、Crを0.5質量%未満に低減するとともに、Mn当量を高めつつ、PとBを複合で所定量添加してMnの添加量を所定範囲に制御した溶融亜鉛めっき鋼板を250〜500℃の温間成形を行うことで、従来に比べて製造コストを抑えつつ、耐面歪性、耐デント性、耐食性、耐時効性の全てを兼ね備えたパネル用部材を提供することができる。   Thus, while reducing Cr to less than 0.5% by mass and increasing the Mn equivalent, P and B were added in a predetermined amount and a hot-dip galvanized steel sheet in which the added amount of Mn was controlled within a predetermined range was 250 to 500. By performing warm forming at 0 ° C., it is possible to provide a panel member that has all of surface distortion resistance, dent resistance, corrosion resistance, and aging resistance while suppressing the manufacturing cost as compared with the conventional case.

本発明は、以上の知見に基づきなされたもので、以下の発明を提供する。   The present invention has been made based on the above findings and provides the following inventions.

(1)マルテンサイト相の面積率が3〜15%の複合組織を有し、BH量が45MPa以上、YSが280MPa以下、YRが60%以下である高強度溶融亜鉛めっき鋼板からなることを特徴とする温間プレス成形用素材を提供する。   (1) It is composed of a high strength hot-dip galvanized steel sheet having a composite structure with a martensite phase area ratio of 3-15%, BH content of 45 MPa or more, YS of 280 MPa or less, and YR of 60% or less. A material for warm press molding is provided.

(2)鋼の成分組成として、質量%で、C:0.015%超0.1%未満、Si:0.2%以下、Mn:1.0%以上1.9%未満、P:0.015%以上0.05%以下、S:0.02%以下、sol.Al:0.01%以上0.5%以下、N:0.005%以下、Cr:0.5%未満、B:0.0003%以上0.005%以下、Mo:0.10%以下、Ti:0.014%未満を含有し、更に2.2≦[Mneq]≦3.1を満足し、残部鉄および不可避不純物からなる組成を有することを特徴とする(1)に記載の温間プレス成形用素材を提供する。   (2) As a component composition of steel, in mass%, C: more than 0.015% and less than 0.1%, Si: 0.2% or less, Mn: 1.0% or more and less than 1.9%, P: 0.015% or more and 0.05% or less, S: 0.02% Sol.Al: 0.01% or more and 0.5% or less, N: 0.005% or less, Cr: less than 0.5%, B: 0.0003% or more and 0.005% or less, Mo: 0.10% or less, Ti: containing less than 0.014%, and The warm press-molding material described in (1) is provided, which satisfies 2.2 ≦ [Mneq] ≦ 3.1 and has a composition composed of the balance iron and inevitable impurities.

ここで、[Mneq]=[%Mn]+1.3[%Cr]+8[%P]+3.3[%Mo]+150B*、B*=[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025で表され、[%Mn]、[%Cr]、[%P] 、[%Mo]、[%B]、[%Ti]、[%Al]はMn、Cr、P、Mo、B、Ti、sol.Alのそれぞれの含有量を表す。[%B]=0のときはB*=0、[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025≧0.0022のときはB*=0.0022とする。 Where [Mneq] = [% Mn] +1.3 [% Cr] +8 [% P] +3.3 [% Mo] + 150B * , B * = [% B] + [% Ti] /48×10.8× 0.9 + [% Al] /27×10.8×0.025, [% Mn], [% Cr], [% P], [% Mo], [% B], [% Ti], [% Al] Represents each content of Mn, Cr, P, Mo, B, Ti, sol.Al. When [% B] = 0, B * = 0 and when [% B] + [% Ti] /48×10.8×0.9 + [% Al] /27×10.8×0.025≧0.0022, B * = 0.0022 To do.

(3)更に、質量%で、V:0.4%以下、Nb:0.015%以下、Zr:0.1%以下、Cu:0.5%以下、Ni:0.5%以下のうちの少なくとも1種を含有することを特徴とする(2)に記載の温間プレス成形用素材を提供する。   (3) Furthermore, it is characterized by containing at least one of V: 0.4% or less, Nb: 0.015% or less, Zr: 0.1% or less, Cu: 0.5% or less, Ni: 0.5% or less in mass%. The material for warm press molding described in (2) is provided.

(4) (1)〜(3)のいずれかに記載の温間プレス成形用素材を、250℃〜500℃で温間プレス成形することを特徴とする耐面歪性及び耐デント性に優れたパネル用部材の製造方法を提供する。   (4) Excellent surface distortion resistance and dent resistance, characterized in that the warm press molding material according to any one of (1) to (3) is warm press molded at 250 ° C to 500 ° C. A method for manufacturing a panel member is provided.

本発明の高強度溶融亜鉛めっき鋼板からなる温間プレス成形用素材を用いて、本発明法で温間プレス成形すると、耐面歪性および耐デント性に優れたパネル用部材を得ることができる。また、塗装焼付け工程を省略、簡略化しても耐デント性を確保できるので、大幅なコストアップ無しに耐デント性に優れたパネル用部材の製造が可能になる。   When a warm press-molding material comprising the high-strength hot-dip galvanized steel sheet of the present invention is used and the warm press-molding is performed by the method of the present invention, a panel member having excellent surface distortion resistance and dent resistance can be obtained. . In addition, since the dent resistance can be ensured even if the coating baking process is omitted or simplified, it is possible to manufacture a panel member having excellent dent resistance without a significant cost increase.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

先ず、温間プレス成形用素材である高強度溶融亜鉛めっき鋼板の組織と機械特性について説明する。   First, the structure and mechanical properties of a high-strength hot-dip galvanized steel sheet, which is a warm press-forming material, will be described.

1)組織
鋼板組織は、主としてフェライト、マルテンサイトを有し、その他に残留γ、パーライト、ベイナイトや微量の炭化物を含むでもよい。特に、本発明では、マルテンサイト相の存在が重要である。最初に、マルテンサイト相の面積率の測定方法を説明する。
1) Structure The steel sheet structure mainly includes ferrite and martensite, and may further include residual γ, pearlite, bainite, and a small amount of carbide. In particular, in the present invention, the presence of the martensite phase is important. First, a method for measuring the area ratio of the martensite phase will be described.

マルテンサイト相の面積率は鋼板のL断面(圧延方向に平行な垂直断面)を研磨後ナイタールで腐食し、SEM(走査型電子顕微鏡)で4000倍の倍率にて10視野観察し、撮影した組織写真を画像解析して求めた。組織写真で、白いコントラストの付いている粒子をマルテンサイトとした。なお、SEM写真上で認められる直径0.4μm以下の微細な点状粒子は、TEM(透過型電子顕微鏡)観察より主に炭化物であり、また、これらの面積率は非常に少ないため、材質に殆ど影響しないと考え、ここでは0.4μm以下の粒子径の粒子は面積率の評価から除外した。その他、フェライトはやや黒いコントラストの領域であり、炭化物がラメラー状もしくは点列状に生成している領域をパーライトもしくはベイナイトとし、白いコントラストの付いている粒子で素地にラス状組織が観察されないものを残留γとした。   The area ratio of the martensite phase is that the L section (vertical section parallel to the rolling direction) of the steel sheet was corroded with nital after being polished, and 10 fields of view were observed with a SEM (scanning electron microscope) at a magnification of 4000 times. Obtained by image analysis of photographs. In the tissue photograph, particles with white contrast were martensite. Fine dot-like particles with a diameter of 0.4 μm or less recognized on the SEM photograph are mainly carbides by TEM (transmission electron microscope) observation, and since these area ratios are very small, almost no material is used. In this case, particles having a particle size of 0.4 μm or less were excluded from the evaluation of the area ratio. In addition, ferrite is a region with a slightly black contrast, and the region in which carbides are generated in a lamellar or dotted pattern is pearlite or bainite, and particles with white contrast are not observed in the lath structure on the substrate. Residual γ.

マルテンサイト相の面積率:3〜15%
優れた耐時効性を確保しつつ低いYSを得るためには、マルテンサイト相の面積率を3%以上とする必要がある。マルテンサイト相の面積率が3%未満では、耐時効性が劣化してYSが上昇する。また、マルテンサイト相の面積率が15%を超えるとYSが上昇しBHが低下する。したがって、優れた耐時効性を確保し、低いYSおよび高いBHを得るため、マルテンサイト相の面積率は3〜15%の範囲とする。さらに高いBHを得つつ低いYSを得るためにはマルテンサイト相の面積率は10%以下とするのが好ましく7%以下とすることが更に好ましい。
Martensite phase area ratio: 3-15%
In order to obtain low YS while ensuring excellent aging resistance, the area ratio of the martensite phase needs to be 3% or more. When the area ratio of the martensite phase is less than 3%, aging resistance deteriorates and YS increases. On the other hand, when the area ratio of the martensite phase exceeds 15%, YS increases and BH decreases. Therefore, in order to secure excellent aging resistance and obtain low YS and high BH, the area ratio of the martensite phase is set in the range of 3 to 15%. In order to obtain low YS while obtaining higher BH, the area ratio of the martensite phase is preferably 10% or less, and more preferably 7% or less.

フェライト、残留γ、パーライト、ベイナイトについては特に規定するものではないが、成形性の観点からフェライトは70%以上であることが好ましく、パーライト、ベイナイトは、それぞれ10%以下が好ましい。残留γの存在により延性は向上するので、成形性の観点からはその存在は有効であるが、降伏強度を上昇させるので残留γは10%以下が好ましい。   Ferrite, residual γ, pearlite, and bainite are not particularly specified, but ferrite is preferably 70% or more from the viewpoint of formability, and pearlite and bainite are each preferably 10% or less. Since the ductility is improved by the presence of the residual γ, its presence is effective from the viewpoint of formability, but the residual γ is preferably 10% or less in order to increase the yield strength.

2)機械特性
BH量:45MPa以上
BH量は、引張試験で2%の予歪を付与した試験片を、170℃-20分の熱処理を行い、再度引張試験を行った時の上降伏応力から予歪時の到達応力を差し引いたもの(再引張試験時の上降伏応力と予歪時の到達応力の差)である。一般的なBH鋼はBH量が30MPa以上であるが、本発明では、より耐デント性が必要となる部材を対象とするためBH量は45MPa以上とする。
2) Mechanical properties
BH amount: 45MPa or more
The amount of BH was determined by subtracting the ultimate stress at the time of pre-strain from the upper yield stress when the specimen subjected to 2% pre-strain in the tensile test was heat-treated at 170 ° C for 20 minutes and the tensile test was performed again. (Difference between upper yield stress during re-tension test and ultimate stress during pre-strain). A general BH steel has a BH amount of 30 MPa or more. However, in the present invention, the BH amount is set to 45 MPa or more because it is intended for a member that requires more dent resistance.

YS:280MPa以下
室温でのYSが280MPaを超えると、面歪が温間プレス時に発生し、金型の調整などでも解消が難しくなるため、YSは280MPa以下とする。
YS: 280MPa or less If YS at room temperature exceeds 280MPa, surface distortion occurs during warm pressing and it is difficult to eliminate even by adjusting the mold, so YS should be 280MPa or less.

YR:60%以下
上記のように低YSは重要な要件であるが、同時に耐デント性の観点から、加工硬化とBH量が高いことが必要である。加工硬化の観点からは、YRが60%以下とし、YSに対して、よりTSが高いことが好ましい。
YR: 60% or less As described above, low YS is an important requirement, but at the same time, from the viewpoint of dent resistance, work hardening and a high BH amount are required. From the viewpoint of work hardening, it is preferable that YR is 60% or less and TS is higher than YS.

3)鋼の成分組成
次に、高強度溶融亜鉛めっき鋼板の好ましい鋼の成分組成について説明する。なお、成分の量を表す%は、特に断らない限り質量%を意味する。
3) Steel component composition Next, a preferred steel component composition of the high-strength hot-dip galvanized steel sheet will be described. Note that% representing the amount of a component means mass% unless otherwise specified.

Cr:0.5%未満
Crは本発明において厳密に制御される必要のある重要な元素である。すなわち、従来、CrはYSの低減、BHの向上といった目的で積極的に活用されてきたが、Crは高価な元素であるばかりでなく、多量に添加されるとヘム加工部の耐食性を著しく劣化させることが明らかになった。すなわち、従来のYSの低い複合組織鋼で作製したドアアウタやフードアウタの部品の湿潤環境下での耐食性を評価したところ、ヘム加工部の穴明き寿命が従来鋼より1〜4年も減少する鋼板が認められた。そしてさらに、このような耐食性の劣化は、Crの含有量が0.5%以上で生じることが明らかになった。したがって、十分な耐食性を確保するためには、Crの含有量は0.5%未満とする必要がある。
Cr: Less than 0.5%
Cr is an important element that needs to be strictly controlled in the present invention. In other words, Cr has been actively used for the purpose of reducing YS and improving BH. However, Cr is not only an expensive element, but when it is added in a large amount, the corrosion resistance of the hem-processed part is significantly deteriorated. It was revealed that That is, when evaluating the corrosion resistance of wet outer parts of door outer and hood outer parts made of conventional composite steel with low YS, the pierced life of the hem-processed part is reduced by 1 to 4 years compared to the conventional steel. Was recognized. Furthermore, it has been clarified that such deterioration of corrosion resistance occurs when the Cr content is 0.5% or more. Therefore, in order to ensure sufficient corrosion resistance, the Cr content needs to be less than 0.5%.

[Mneq]:2.2以上3.1以下
高いBHを確保しつつ同時に低いYSと優れた耐時効性を確保するためには鋼組織としてフェライトと第2相として主としてマルテンサイトからなる複合組織とする必要がある。従来鋼では、YSあるいはYRが十分低減されていない鋼板や耐時効性が不十分な鋼板が多く見られ、その原因を調査した結果、このような鋼板では第2相としてマルテンサイトと少量の残留γに加え、パーライトやベイナイトが生成していることが明らかになった。このパーライトは1〜2μm程度と微細でありマルテンサイトに隣接して生成しているので、光学顕微鏡ではマルテンサイトと識別することは難しく、SEMを用いて3000倍以上の倍率で観察することで識別できる。例えば、従来の0.03%C-1.5%Mn-0.5%Cr鋼の組織を詳細に調査すると、光学顕微鏡での観察や1000倍程度の倍率でのSEMでの観察では粗大なパーライトのみが識別され、第2相の面積率に占めるパーライトもしくはベイナイトの面積率は10%程度と測定されるが、4000倍のSEM観察で詳細に調査を行うと、パーライトもしくはベイナイトの第2相の面積率に占める割合は30〜40%を占める。このようなパーライトもしくはベイナイトを抑制することで高いBHを確保しつつ低いYSが得られる。
[Mneq]: 2.2 or more and 3.1 or less In order to secure high BH while simultaneously ensuring low YS and excellent aging resistance, it is necessary to make the steel structure a composite structure mainly composed of ferrite and second phase. . In conventional steels, many steel sheets where YS or YR is not sufficiently reduced and steel sheets with insufficient aging resistance are found, and as a result of investigating the cause, such steel sheets have martensite and a small amount of residual as the second phase. In addition to γ, pearlite and bainite were generated. Since this pearlite is as fine as 1 to 2 μm and is formed adjacent to martensite, it is difficult to distinguish it from martensite with an optical microscope, and it is identified by observing at a magnification of 3000 times or more using SEM. it can. For example, when the structure of the conventional 0.03% C-1.5% Mn-0.5% Cr steel is investigated in detail, only coarse pearlite is identified by observation with an optical microscope or SEM at a magnification of about 1000 times. The area ratio of pearlite or bainite in the area ratio of the second phase is measured to be about 10%, but when investigated in detail by SEM observation 4000 times, the ratio of the area ratio of pearlite or bainite in the second phase Account for 30-40%. By suppressing such pearlite or bainite, low YS can be obtained while ensuring high BH.

このような微細なパーライトもしくはベイナイトを焼鈍後に緩冷却が施されるCGL熱履歴において十分に低減するために、各種元素の焼入性を調査した。その結果、これまでに焼入性元素としてよく知られるMn、Cr、B、Moに加え、Pも大きな焼入性向上効果を有していることが明らかになった。また、BはTiやAlと複合で添加すると焼入性向上効果が顕著に増加するが、所定量以上添加しても焼入性の向上効果は飽和するので、これらの効果は次式の様にMn当量式として表されることがわかった。   In order to sufficiently reduce the CGL thermal history in which such fine pearlite or bainite is slowly cooled after annealing, the hardenability of various elements was investigated. As a result, it has been clarified that, in addition to Mn, Cr, B, and Mo, which are well known as hardenable elements, P has a great effect of improving hardenability. In addition, when B is added in combination with Ti or Al, the effect of improving hardenability is remarkably increased. However, the effect of improving hardenability is saturated even if it is added in a predetermined amount or more. It was found that it is expressed as an Mn equivalent formula.

[Mneq]=[%Mn]+1.3[%Cr]+8[%P]+3.3[%Mo]+150B*
B*=[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025
但し、[%B]=0のときはB*=0、[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025≧0.0022のときはB*=0.0022とする。
ここで、[%Mn]、[%Cr]、[%P]、[%Mo]、[%B]、[%Ti]、[%Al]は、Mn、Cr、P、Mo、B、Ti、sol.Alのそれぞれの含有量を表す。
[Mneq] = [% Mn] +1.3 [% Cr] +8 [% P] +3.3 [% Mo] + 150B *
B * = [% B] + [% Ti] /48×10.8×0.9 + [% Al] /27×10.8×0.025
However, when [% B] = 0, B * = 0, and when [% B] + [% Ti] /48×10.8×0.9 + [% Al] /27×10.8×0.025≧0.0022, B * = 0.0022.
Where [% Mn], [% Cr], [% P], [% Mo], [% B], [% Ti], [% Al] are Mn, Cr, P, Mo, B, Ti , Each content of sol.Al.

B*は、B、Ti、Al添加により固溶Bを残存させて焼入性を向上させる効果を表す指標であり、Bが無添加の鋼ではB添加による効果は得られないのでB*=0である。また、B*が0.0022以上の場合、Bによる焼入性の向上効果は飽和するので、B*は0.0022とする。 B * is an index that represents the effect of improving the hardenability by remaining solid solution B by adding B, Ti, Al, and B * = 0. When B * is 0.0022 or more, the effect of improving hardenability by B is saturated, so B * is set to 0.0022.

この[Mneq]を2.2以上とすることで焼鈍後に緩冷却が施されるCGL熱履歴においてもパーライトもしくはベイナイトが十分抑制される。したがって、YSを低減しつつ優れた耐時効性を得るためには、[Mneq]を2.2以上とする必要がある。さらに低YS化の観点からは[Mneq]は2.3以上とすることが望ましく、2.4以上とすることがさらに望ましい。   By setting this [Mneq] to 2.2 or more, pearlite or bainite is sufficiently suppressed even in the CGL thermal history in which slow cooling is performed after annealing. Therefore, in order to obtain excellent aging resistance while reducing YS, [Mneq] needs to be 2.2 or more. Further, from the viewpoint of lowering YS, [Mneq] is preferably 2.3 or more, and more preferably 2.4 or more.

[Mneq]は、大きすぎると、焼入れ効果は飽和し、合金添加コストアップとなるので、3.1以下とする。   If [Mneq] is too large, the quenching effect will be saturated and the alloy addition cost will be increased.

Mn:1.0%以上1.9%未満
上述のとおり、低YS化しつつ高BH化するには少なくとも[Mneq]の適正化が必要であるが、それだけでは不十分であり、Mn量や後述するP、Bの含有量を所定範囲に制御する必要がある。すなわち、Mnは焼入性を高め、第2相中のマルテンサイトの比率を増加させるために添加される。そのため1.0%以上必要である。しかしながら、その含有量が多すぎると、焼鈍過程におけるα→γ変態温度が低くなり、再結晶直後の微細なフェライト粒界あるいは再結晶途中の回復粒の界面にγ粒が生成するので、フェライト粒が展伸して不均一になるとともに第2相が微細化してYSが上昇する。また、Mnの添加はFe-C状態図のA1線を低温、低C側に移行させることでフェライト中の固溶Cを減少させ、なおかつ第2相を不均一に分散させる作用があるので、BHを著しく低下させる。したがって、低YSと高BHを同時に得るためには、1.9%未満とする必要がある。
Mn: 1.0% or more and less than 1.9% As mentioned above, at least [Mneq] is necessary to achieve high BH while reducing YS, but that alone is not sufficient, and the amount of Mn and P and B described later are insufficient. It is necessary to control the content of to a predetermined range. That is, Mn is added to increase the hardenability and increase the ratio of martensite in the second phase. Therefore, 1.0% or more is necessary. However, if the content is too high, the α → γ transformation temperature in the annealing process becomes low, and γ grains are formed at the fine grain boundary immediately after recrystallization or at the interface of the recovery grains during recrystallization. Expands and becomes non-uniform, and the second phase becomes finer and YS increases. Also, the addition of Mn has the effect of reducing the solid solution C in the ferrite by shifting the A 1 line of the Fe-C phase diagram to low temperature and low C side, and also disperse the second phase non-uniformly. , Significantly reduce BH. Therefore, in order to obtain low YS and high BH simultaneously, it is necessary to make it less than 1.9%.

P:0.015%以上0.05%以下
Pは本発明において低YS化と高BH化を達成する重要な元素である。つまり、Pは後述するBと併用して所定範囲で含有させることで、低い製造コストで低YS化、高BH化、良好な耐時効性が同時に得られるとともに、優れた耐食性の確保も可能になる。
P: 0.015% to 0.05%
P is an important element for achieving low YS and high BH in the present invention. In other words, P can be used in combination with B, which will be described later, in a predetermined range, so that low YS, high BH, and good aging resistance can be simultaneously obtained at a low manufacturing cost, and excellent corrosion resistance can be secured. Become.

Pは従来固溶強化元素として活用されており、低YS化の観点からはむしろ低減することが望ましいと考えられていた。しかしながら、上述したようにPは微量添加でも大きな焼入性の向上効果を有していることが明らかになった。さらに、Pは第2相をフェライト粒界の3重点に均一かつ粗大に分散させる効果や、BHを増加させる効果を有していることが明らかになった。そこで、Pの焼入性向上効果を活用して低YS化、高BH化する手法について鋭意検討した。その結果、所定の[Mneq]を保持しながらMnをPで置換することで、第2相を極めて均一に分散させることができ、YSが低下するとともに大幅にBHが増加することが明らかになった。   Conventionally, P has been used as a solid solution strengthening element, and it was considered desirable to reduce it from the viewpoint of lowering YS. However, as described above, it has been clarified that P has a great effect of improving hardenability even when added in a small amount. Furthermore, it has been clarified that P has an effect of uniformly and coarsely dispersing the second phase at the triple point of the ferrite grain boundary and an effect of increasing BH. Therefore, we have intensively studied methods for reducing YS and increasing BH by utilizing the effect of improving the hardenability of P. As a result, by replacing Mn with P while maintaining a predetermined [Mneq], it was found that the second phase can be dispersed very uniformly, and YS decreases and BH increases significantly. It was.

しかも、Pは耐食性を改善する元素でもあるので、CrをPに代替することで良好な材質を維持しつつ耐食性を向上させることができる。このようなP添加による効果を得るにはPは少なくとも0.015%以上添加する必要があり、0.020%以上添加するのが好ましい。   Moreover, since P is also an element that improves corrosion resistance, replacing Cr with P can improve corrosion resistance while maintaining a good material. In order to obtain such effects by addition of P, it is necessary to add at least 0.015% or more, and it is preferable to add 0.020% or more.

しかしながら、Pは0.05%を超えて添加されると焼入性向上効果や組織の均一化、粗大化効果が飽和するとともに、固溶強化量が大きくなり過ぎて低いYSが得られなくなる。また、BHの増加効果も小さくなる。また、Pは0.05%を超えて添加されると地鉄とめっき層の合金化反応が著しく遅延して耐パウダリング性が劣化する。また、溶接性も劣化する。したがって、P量は0.05%以下とする。   However, if P is added in an amount exceeding 0.05%, the effect of improving hardenability, the homogenization of the structure, and the effect of coarsening are saturated, and the solid solution strengthening amount becomes too large to obtain a low YS. Also, the effect of increasing BH is reduced. Moreover, when P is added in excess of 0.05%, the alloying reaction between the base iron and the plating layer is remarkably delayed, and the powdering resistance is deteriorated. Moreover, weldability also deteriorates. Therefore, the P content is 0.05% or less.

B:0.0003%以上0.005%以下
Bはフェライト粒を均一、粗大化する作用、焼入性を向上させる作用、BHを増加させる作用がある。このため、所定量の[Mneq]を確保しつつMnをBで置換することで低YS化と高BH化が図られる。マルテンサイトを粒界に生成させる作用のあるPとフェライト粒を均一粗大化する作用のあるBを併用することで均一粗大なフェライト粒とその粒界3重点に均一に分散したマルテンサイトを有する鋼組織が得られ、YSの低減、BHの向上が顕著に図られる。このようなB添加の効果を得るには、Bは0.0003%以上必要である。B添加による低YS化の効果をさらに発揮させるにはBは0.0005%以上添加するのが好ましく、さらには0.0010%超添加するのがさらに好ましい。しかしながら、Bは0.005%を超えて添加すると鋳造性や圧延性が著しく低下する。このため、Bは0.005%以下とする。鋳造性、圧延性を確保する観点からBは0.004%以下が好ましい。
B: 0.0003% to 0.005%
B has the effect of making the ferrite grains uniform and coarse, the effect of improving hardenability, and the effect of increasing BH. For this reason, low YS and high BH can be achieved by replacing Mn with B while securing a predetermined amount of [Mneq]. Steel with uniformly coarse ferrite grains and martensite evenly dispersed at the triple point of the grain boundary by using P, which has the effect of forming martensite at grain boundaries, and B, which has the effect of uniformly coarsening ferrite grains A structure is obtained, and YS reduction and BH improvement are remarkably achieved. In order to obtain such an effect of addition of B, B needs to be 0.0003% or more. In order to further exhibit the effect of lowering YS due to the addition of B, B is preferably added in an amount of 0.0005% or more, more preferably more than 0.0010%. However, when B is added in excess of 0.005%, castability and rollability are remarkably lowered. For this reason, B is made 0.005% or less. From the viewpoint of securing castability and rollability, B is preferably 0.004% or less.

C:0.015%超0.1%未満
Cは所定量のマルテンサイト相の面積率を確保するために必要な元素である。C量が少なすぎると十分なマルテンサイト相の面積率が確保できなくなり、十分な耐時効性や低いYSが得られなくなる。従来鋼と同等以上の耐時効性を得るためにはCは0.015%超とする必要がある。耐時効性をさらに向上させ、YSをさらに低減する観点からはCは0.020%以上とすることが望ましい。一方、C量が0.1%以上となるとマルテンサイト相の面積率が多くなりすぎてYSが増加し、BHも低下する。また、溶接性も劣化する。したがって、C量は0.1%未満とする。より低いYSを得つつ高いBHを得るためにはC量は0.06%未満とすることが好ましく、0.04%未満とすることがさらに好ましい。
C: More than 0.015% and less than 0.1%
C is an element necessary for ensuring a predetermined area ratio of the martensite phase. If the amount of C is too small, a sufficient area ratio of the martensite phase cannot be secured, and sufficient aging resistance and low YS cannot be obtained. In order to obtain aging resistance equivalent to or higher than that of conventional steel, C needs to be more than 0.015%. From the viewpoint of further improving the aging resistance and further reducing YS, C is preferably 0.020% or more. On the other hand, when the C content is 0.1% or more, the area ratio of the martensite phase becomes too large, and YS increases and BH also decreases. Moreover, weldability also deteriorates. Therefore, the C content is less than 0.1%. In order to obtain high BH while obtaining lower YS, the C content is preferably less than 0.06%, and more preferably less than 0.04%.

Si:0.2%以下
Siは微量添加することで熱間圧延でのスケール生成を遅延させて表面品質を改善する効果、めっき浴中あるいは合金化処理中の地鉄と亜鉛の合金化反応を適度に遅延させる効果、鋼板のミクロ組織をより均一、粗大化する効果等があるので、このような観点から添加することができる。しかしながら、Siを0.2%超えて添加するとめっき外観品質が劣化して外板パネルへの適用が難しくなるとともにYSの上昇を招く。したがって表面品質を向上させ、YSを低減する観点からSiは0.2%以下とする。
Si: 0.2% or less
Addition of a small amount of Si has the effect of improving the surface quality by delaying the scale formation in hot rolling, the effect of moderately delaying the alloying reaction between the iron and zinc in the plating bath or during alloying, From this point of view, it can be added because of the effect of making the microstructure of the layer more uniform and coarse. However, if Si is added in excess of 0.2%, the appearance quality of the plating deteriorates, making it difficult to apply to the outer panel and causing an increase in YS. Therefore, Si is made 0.2% or less from the viewpoint of improving the surface quality and reducing YS.

S:0.02%以下
Sは適量含有させることで鋼板の一次スケールの剥離性を向上させ、めっき外観品質を向上させる作用があるので、含有させることが出来る。しかしながら、Sはその含有量が多いと鋼中に析出するMnSが多くなりすぎ鋼板の伸びや伸びフランジ性といった延性を低下させ、プレス成形性を低下させる。また、スラブを熱間圧延する際に熱間延性を低下させ、表面欠陥を発生させやすくする。さらには耐食性を低下させる。このため、S量は0.02%以下とする。延性や耐食性を向上させる観点から、Sは0.01%以下とすることが好ましく、0.002%以下とすることがさらに好ましい。
S: 0.02% or less
S can be contained because it has the effect of improving the peelability of the primary scale of the steel sheet and improving the appearance quality of the plating by containing an appropriate amount of S. However, if the content of S is large, too much MnS precipitates in the steel, and ductility such as elongation and stretch flangeability of the steel sheet is lowered, and press formability is lowered. Moreover, when hot-rolling a slab, hot ductility is reduced and surface defects are easily generated. Furthermore, corrosion resistance is reduced. Therefore, the S content is 0.02% or less. From the viewpoint of improving ductility and corrosion resistance, S is preferably 0.01% or less, more preferably 0.002% or less.

sol.Al:0.01%以上0.5%以下
AlはNを固定してBの焼入性向上効果を促進する目的、耐時効性を向上させる目的、介在物を低減して表面品質を向上させる目的で添加される。Alの焼入性向上効果は、B無添加鋼では小さくMnの0.1〜0.2倍程度であるが、Bを添加した鋼ではNをAlNとして固定して固溶Bを残存させる効果により、少量のsol.Alの添加量でも大きい。逆にsol.Alの含有量が適正化されていないとBの焼入性向上効果は得られず、固溶Nが残存して耐時効性も劣化する。Bの焼入性向上効果や耐時効性を向上させる観点からsol.Alの含有量は0.01%以上とする。このような効果をより発揮させるためには、sol.Alは0.015%以上含有させることが好ましく、0.04%以上とすることがさらに好ましい。一方、sol.Alを0.5%を超えて添加しても固溶Bを残存させる効果や耐時効性を向上させる効果は飽和し、徒にコストアップを招く。また、鋳造性を劣化させて表面品質を劣化させる。このためsol.Alは0.5%以下とする。優れた表面品質を確保する観点からはsol.Alは0.2%未満とするのが好ましい。
sol.Al: 0.01% to 0.5%
Al is added for the purpose of fixing N and promoting the hardenability improvement effect of B, the purpose of improving aging resistance, and the purpose of improving the surface quality by reducing inclusions. The effect of improving the hardenability of Al is small in B-free steel and is about 0.1 to 0.2 times Mn. However, in steel with B added, N is fixed as AlN and the effect of leaving solid solution B is small. The amount of sol.Al added is also large. Conversely, if the content of sol.Al is not optimized, the effect of improving the hardenability of B cannot be obtained, and solid solution N remains and the aging resistance deteriorates. From the viewpoint of improving the hardenability and aging resistance of B, the content of sol.Al is 0.01% or more. In order to exert such effects more, sol.Al is preferably contained in an amount of 0.015% or more, more preferably 0.04% or more. On the other hand, even if sol.Al is added in excess of 0.5%, the effect of leaving the solid solution B and the effect of improving the aging resistance are saturated, resulting in a cost increase. In addition, the castability is deteriorated and the surface quality is deteriorated. For this reason, sol.Al is 0.5% or less. From the viewpoint of ensuring excellent surface quality, sol.Al is preferably less than 0.2%.

N:0.005%以下
Nは鋼中でBN、AlN、TiN等の窒化物を形成する元素であり、BNの形成を通じてBの効果を消失させる弊害がある。また、微細なAlNを形成して粒成長性を低下させ、YSの上昇をもたらす。さらには、固溶Nが残存すると耐時効性が劣化する。このような観点からNは厳密に制御されなければならない。N含有量が0.005%を超えるとBの焼入性向上効果が十分得られなくなりYSが上昇する。また、このような成分鋼では耐時効性が劣化し、外板パネルへの適用性が不十分となる。以上より、Nの含有量は0.005%以下とする。Bを有効に活用し、なおかつAlNの析出量を軽減してより一層YSを低減する観点からはNは0.004%以下にすることが好ましい。
N: 0.005% or less
N is an element that forms nitrides such as BN, AlN, and TiN in steel, and has a detrimental effect of eliminating the effect of B through the formation of BN. In addition, fine AlN is formed to lower the grain growth property and increase YS. Furthermore, when solid solution N remains, the aging resistance deteriorates. From this point of view, N must be strictly controlled. If the N content exceeds 0.005%, the effect of improving the hardenability of B cannot be obtained sufficiently and YS increases. Moreover, with such component steels, the aging resistance deteriorates, and the applicability to the outer panel becomes insufficient. From the above, the N content is 0.005% or less. From the viewpoint of effectively utilizing B and further reducing YS by reducing the precipitation amount of AlN, N is preferably 0.004% or less.

Mo:0.10%以下
Moは焼入性を向上させてパーライトの生成を抑制し、低YR化する、あるいは良好な耐時効性を維持しつつBHを向上させる観点から添加することができる。しかしながら、Moは極めて高価な元素であるので、その添加量が多いと著しいコストアップにつながる。また、Moは添加量が増加するとYSが増加する。したがって、YSの低減および低コスト化の観点からMoの添加量は0.10%以下に限定する。より一層低YS化する観点からは0.05%以下とすることが好ましく、無添加(0.02%以下)とすることがより好ましい。
Mo: 0.10% or less
Mo can be added from the viewpoint of improving hardenability to suppress the formation of pearlite, lowering YR, or improving BH while maintaining good aging resistance. However, since Mo is an extremely expensive element, a large amount of addition leads to a significant cost increase. In addition, Y increases as the amount of Mo increases. Therefore, the amount of Mo added is limited to 0.10% or less from the viewpoint of YS reduction and cost reduction. From the viewpoint of further reducing YS, it is preferably 0.05% or less, and more preferably no addition (0.02% or less).

Ti:0.014%未満
TiはNを固定してBの焼入性を向上させる効果、耐時効性を向上させる効果や鋳造性を向上させる効果がある。しかし、その含有量が多くなると鋼中でTiCやTi(C,N)といった微細な析出物を形成して著しくYSを上昇させるとともに、焼鈍後の冷却中にTiCを生成してBHを減少させる作用があるので、Tiの含有量は適正範囲に制御する必要がある。Tiの含有量が0.014%以上になると著しくYSが増加しBHが低下する。したがって、Tiの含有量は0.014%未満とする。TiNの析出によりNを固定してBの焼入性の向上効果を発揮させるためにはTiの含有量は0.002%以上とするのが好ましく、TiCの析出を抑えて低いYSと高いBHを得るためにはTiの含有量は0.010%未満とするのが好ましい。
Ti: Less than 0.014%
Ti has the effect of fixing N and improving the hardenability of B, the effect of improving aging resistance, and the effect of improving castability. However, if the content increases, fine precipitates such as TiC and Ti (C, N) are formed in the steel to significantly increase YS, and TiC is generated during cooling after annealing to reduce BH. Since there exists an effect | action, it is necessary to control content of Ti to an appropriate range. When the Ti content exceeds 0.014%, YS increases remarkably and BH decreases. Therefore, the Ti content is less than 0.014%. In order to fix N by precipitation of TiN and exert the effect of improving the hardenability of B, the Ti content is preferably 0.002% or more, and the TiC precipitation is suppressed and low YS and high BH are obtained. Therefore, the Ti content is preferably less than 0.010%.

残部は、鉄および不可避不純物であるが、更にV:0.4%以下、Nb:0.015%以下、Zr:0.1%以下、Cu:0.5%以下、Ni:0.5%以下のうちの少なくとも1種を含有させることもできる。   The balance is iron and inevitable impurities, but further contains at least one of V: 0.4% or less, Nb: 0.015% or less, Zr: 0.1% or less, Cu: 0.5% or less, Ni: 0.5% or less You can also

V:0.4%以下
Vは焼入性を向上させる元素であり、めっき品質や耐食性を劣化させる作用が小さいので、MnやCrの代替として活用することができる。しかしながら、0.4%を超えて添加すると著しいコスト増になるので、Vは0.4%以下で添加する。
V: 0.4% or less
V is an element that improves hardenability and has a small effect on the deterioration of plating quality and corrosion resistance, so it can be used as an alternative to Mn and Cr. However, if added over 0.4%, the cost increases significantly, so V is added at 0.4% or less.

Nb:0.015%以下
Nbは組織を細粒化するとともにNbC、Nb(C,N)を析出させ鋼板を強化する作用、細粒化によりBHを増加させる作用があるので、高強度化、高BH化の観点から添加することができる。しかしながら、0.015%を超えて添加するとYSが著しく上昇するので、Nbは0.015%以下で添加する。
Nb: 0.015% or less
Nb refines the structure and precipitates NbC and Nb (C, N), strengthens the steel sheet, and has the effect of increasing BH by grain refinement, so it is added from the viewpoint of increasing strength and increasing BH. can do. However, if adding over 0.015%, YS increases remarkably, so Nb is added at 0.015% or less.

Zr:0.1%以下
Zrも同様に焼入性元素、析出強化元素として活用できる。しかしながら、その添加量が多すぎるとYSの上昇を招くのでZrは0.1%以下で添加する。
Zr: 0.1% or less
Zr can also be used as a hardenable element and precipitation strengthening element. However, if the amount added is too large, YS increases, so Zr is added at 0.1% or less.

Cu:0.5%以下
Cuは耐食性を向上させるので、耐食性向上の観点から添加することが好ましい。また、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを削減することができる。耐食性向上の観点からはCuは0.03%以上添加するのが好ましい。しかしながら、その含有量が多くなりすぎると表面欠陥の原因となるので、Cuは0.5%以下とする。
Cu: 0.5% or less
Since Cu improves the corrosion resistance, it is preferably added from the viewpoint of improving the corrosion resistance. Moreover, it is an element mixed when scrap is used as a raw material. By allowing Cu to be mixed, recycled materials can be used as raw materials, and manufacturing costs can be reduced. From the viewpoint of improving the corrosion resistance, Cu is preferably added in an amount of 0.03% or more. However, if the content is too large, it causes surface defects, so Cu is 0.5% or less.

Ni:0.5%以下
Niも耐食性を向上する作用のある元素である。また、NiはCuを含有させる場合に生じやすい表面欠陥を低減する作用がある。したがって、耐食性を向上させつつ表面品質を改善する観点からNiは0.02%以上添加するのが好ましい。しかし、Niの添加量が多くなりすぎると加熱炉内でのスケール生成が不均一になり表面欠陥の原因になるとともに、著しいコスト増となる。したがって、Niは0.5%以下とする。
Ni: 0.5% or less
Ni is also an element having an action of improving the corrosion resistance. Ni also has the effect of reducing surface defects that are likely to occur when Cu is contained. Therefore, Ni is preferably added in an amount of 0.02% or more from the viewpoint of improving the surface quality while improving the corrosion resistance. However, if the amount of Ni added is too large, scale generation in the heating furnace becomes non-uniform, causing surface defects and a significant cost increase. Therefore, Ni is 0.5% or less.

さらに、以下の成分の1種以上を添加することもできる。   Furthermore, 1 or more types of the following components can also be added.

W:0.15%以下
Wは焼入性元素、析出強化元素として活用できる。しかしながら、その添加量が多すぎるとYSの上昇を招くのでWは0.15%以下で添加することが好ましい。
W: 0.15% or less
W can be used as a hardenable element and a precipitation strengthening element. However, if the amount added is too large, YS increases, so W is preferably added at 0.15% or less.

Sn:0.2%以下
Snは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表層の数十ミクロン領域の脱炭や脱Bを抑制する観点から添加するのが望ましい。窒化や酸化を抑制する観点からSnは0.005%以上添加することが望ましいが、0.2%を超えるとYSの上昇や靱性の劣化を招くのでSnは0.2%以下で含有させるのが好ましい。
Sn: 0.2% or less
Sn is preferably added from the viewpoint of suppressing decarburization and de-B in the tens of microns region of the steel sheet surface layer caused by nitridation, oxidation, or oxidation of the steel sheet surface. From the viewpoint of suppressing nitriding and oxidation, it is desirable to add 0.005% or more of Sn, but if it exceeds 0.2%, YS increases and toughness deteriorates, so Sn is preferably contained at 0.2% or less.

Sb:0.2%以下
SbもSnと同様に鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表層の数十ミクロン領域の脱炭や脱Bを抑制する観点から添加するのが望ましい。このような窒化や酸化を抑制することで鋼板表層においてマルテンサイトの生成量が減少するのを防止したり、Bの減少により焼入性が低下するのを防止したり、溶融亜鉛めっきの濡れ性を向上させてめっき外観品質を向上させることが出来る。窒化や酸化を抑制する観点からSbは0.005%以上添加することが望ましいが、0.2%を超えるとYSの上昇や靱性の劣化を招くのでSbは0.2%以下で含有させるのが好ましい。
Sb: 0.2% or less
Sb is also preferably added from the viewpoint of suppressing decarburization and de-B in the tens of microns region of the steel sheet surface layer caused by nitriding, oxidation, or oxidation of the steel sheet surface, as with Sn. By suppressing such nitriding and oxidation, the amount of martensite generated on the steel sheet surface layer can be prevented from decreasing, hardenability can be prevented from decreasing due to the decrease in B, and the wettability of hot dip galvanizing. Can improve the plating appearance quality. From the viewpoint of suppressing nitridation and oxidation, Sb is preferably added in an amount of 0.005% or more. However, if it exceeds 0.2%, YS increases and toughness deteriorates, so Sb is preferably contained in an amount of 0.2% or less.

Ca:0.01%以下
Caは鋼中のSをCaSとして固定し、さらには腐食性生物中のpHを増加させ、ヘム加工部やスポット溶接部周辺の耐食性を向上させる作用がある。また、CaSの生成により伸びフランジ性を低下させるMnSの生成を抑制し、伸びフランジ性を向上させる作用がある。このような観点からCaは0.0005%以上添加することが好ましい。しかしながら、Caは溶鋼中で酸化物として浮上分離しやすく、鋼中に多量に残存させることは難しい。したがって、Caの含有量は0.01%以下とする。
Ca: 0.01% or less
Ca fixes S in steel as CaS, and further increases the pH in corrosive organisms, and has the effect of improving the corrosion resistance around heme-processed parts and spot welds. Moreover, it has the effect | action which suppresses the production | generation of MnS which reduces stretch flangeability by the production | generation of CaS, and improves stretch flangeability. From such a viewpoint, Ca is preferably added in an amount of 0.0005% or more. However, Ca easily floats and separates as an oxide in molten steel, and it is difficult to leave a large amount in Ca. Therefore, the Ca content is 0.01% or less.

Ce:0.01%以下
Ceも鋼中のSを固定する目的で添加することができる。しかし、高価な元素であるので多量添加するとコストアップになる。したがって、Ceは0.01%以下で添加するのが好ましい。
Ce: 0.01% or less
Ce can also be added for the purpose of fixing S in the steel. However, since it is an expensive element, adding a large amount increases the cost. Therefore, Ce is preferably added at 0.01% or less.

La:0.01%以下
Laも鋼中のSを固定する目的で添加することができる。しかし、高価な元素であるので多量添加するとコストアップになる。したがって、Laは0.01%以下で添加するのが好ましい。
La: 0.01% or less
La can also be added for the purpose of fixing S in the steel. However, since it is an expensive element, adding a large amount increases the cost. Therefore, La is preferably added at 0.01% or less.

上記の高強度溶融亜鉛めっき鋼板は、現状の340BHと同程度のYS、より高いTSを有し、耐時効性に優れる。この高強度溶融亜鉛めっき鋼板を温間プレス成形すると、低YS化できることから優れた耐面歪性が得られる。また、低い歪量であっても温間プレス成形時の加工硬化(WH)、温間プレス成形後の焼付け硬化(BH)が得られることから、温間プレス成形された部材は、塗装焼付け工程を経ずとも耐デント性に優れる。   The high-strength hot-dip galvanized steel sheet has YS and TS higher than those of the current 340BH, and has excellent aging resistance. When this high-strength hot-dip galvanized steel sheet is warm-press formed, excellent surface strain resistance can be obtained because YS can be reduced. In addition, work hardening during warm press molding (WH) and bake hardening after warm press molding (BH) can be obtained even with a low amount of strain. Excellent dent resistance without passing through.

4)高強度溶融亜鉛めっき鋼板の製造方法
上記の高強度溶融亜鉛めっき鋼板の製造方法を説明する。
4) Method for producing high-strength hot-dip galvanized steel sheet The method for producing the above-described high-strength hot-dip galvanized steel sheet will be described.

本発明の鋼板は、上述したように、上記のように限定された成分組成を有する鋼スラブを、熱間圧延および冷間圧延した後、連続溶融亜鉛めっきライン(CGL)において、740℃超840℃未満の焼鈍温度で焼鈍し、前記焼鈍温度から2〜30℃/secの平均冷却速度で冷却した後、亜鉛めっき浴に浸漬して亜鉛めっきし、亜鉛めっき後5〜100℃/secの平均冷却速度で100℃以下まで冷却し、あるいは亜鉛めっき後さらにめっきの合金化処理を施し、合金化処理後5〜100℃/secの平均冷却速度で100℃以下まで冷却する方法により製造できる。以下、より詳しく説明する。   As described above, the steel sheet of the present invention, after hot rolling and cold rolling the steel slab having the limited component composition as described above, is in a continuous hot dip galvanizing line (CGL) exceeding 740 ° C. After annealing at an annealing temperature of less than ℃, cooled from the annealing temperature at an average cooling rate of 2 to 30 ℃ / sec, dipped in a galvanizing bath and galvanized, after galvanization, an average of 5 to 100 ℃ / sec It can be manufactured by a method of cooling to 100 ° C. or lower at a cooling rate, or further subjecting it to an alloying treatment after galvanization, and cooling to 100 ° C. or lower at an average cooling rate of 5 to 100 ° C./sec after the alloying treatment. This will be described in more detail below.

熱間圧延:
鋼スラブを熱間圧延するには、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などで行える。熱間圧延は、例えば、スラブ加熱温度は1100〜1300℃、仕上圧延温度はAr3変態点〜Ar3変態点+150℃とし、巻取温度は400〜720℃とすればよい。仕上圧延後、20℃/s以上の平均冷却速度で640℃以下まで冷却し、その後400〜620℃で巻取ることが好ましい。
Hot rolling:
In order to hot-roll steel slabs, a method of rolling the slab after heating, a method of directly rolling the slab after continuous casting without heating, a method of rolling the slab after continuous casting by performing a short heat treatment, etc. You can do it. In the hot rolling, for example, the slab heating temperature may be 1100 to 1300 ° C., the finishing rolling temperature may be Ar 3 transformation point to Ar 3 transformation point + 150 ° C., and the winding temperature may be 400 to 720 ° C. After finish rolling, it is preferable to cool to 640 ° C. or less at an average cooling rate of 20 ° C./s or more, and then to wind at 400 to 620 ° C.

平均冷却速度が20℃/s未満では、熱延板のフェライトが粗大となり、パーライトが粗大に形成される。これは、冷間圧延、焼鈍後にマルテンサイトの分散を不均一にして延性を低下させるなとの不具合が生じるので好ましくない。同一の理由で冷却停止温度は640℃以下が好ましい。巻取温度についても上限の620℃は、上記の理由から好適要件となる。ただし、巻取温度が400℃未満では、熱延板が硬質化して、冷間圧延の負荷が大きくなるので好ましくない。   When the average cooling rate is less than 20 ° C./s, the ferrite of the hot-rolled sheet becomes coarse and pearlite is coarsely formed. This is not preferable because it causes a problem that the martensite dispersion is not made uniform after cold rolling and annealing and ductility is lowered. For the same reason, the cooling stop temperature is preferably 640 ° C. or lower. For the coiling temperature, the upper limit of 620 ° C. is a preferable requirement for the above reason. However, if the coiling temperature is less than 400 ° C., the hot-rolled sheet becomes hard and the cold rolling load increases, which is not preferable.

外板パネル用の美麗なめっき表面品質を得るためには、スラブ加熱温度は好ましくは1250℃以下として鋼板表面に生成した1次、2次スケールを除去するためにデスケーリングを十分行い、仕上圧延温度を好ましくは900℃以下とするのがよい。   In order to obtain a beautiful plating surface quality for the outer panel, the slab heating temperature is preferably 1250 ° C or less, and sufficient descaling is performed to remove the primary and secondary scales generated on the steel sheet surface, and finish rolling. The temperature is preferably 900 ° C. or lower.

冷間圧延:
冷間圧延では、圧延率を50〜85%とすればよい。r値を向上させて深絞り性を向上させる観点からは圧延率は65〜73%とするのが好ましく、r値やYSの面内異方性を低減する観点からは、圧延率は70〜85%にすることが好ましい。
Cold rolling:
In cold rolling, the rolling rate may be 50 to 85%. From the viewpoint of improving the r value and improving the deep drawability, the rolling rate is preferably 65 to 73%, and from the viewpoint of reducing the r value and in-plane anisotropy of YS, the rolling rate is 70 to 73%. 85% is preferable.

連続溶融亜鉛めっき:
冷間圧延後の鋼板には、CGLで焼鈍と亜鉛めっき処理、又は亜鉛めっき処理後さらに合金化処理が施される。焼鈍温度は740℃超840℃未満とする。740℃以下では炭化物の固溶が不十分となり、安定してマルテンサイト相の面積率が確保できなくなる。840℃以上では十分低いYSが得られなくなる。均熱時間は通常の連続焼鈍で実施される740℃超の温度域で20sec以上とすればよく、40sec以上とすることがより好ましい。均熱時間は結晶粒の粗大化による表面品質、延性の低下の点から10min以下が好ましい。
Continuous hot dip galvanizing:
The steel sheet after cold rolling is annealed and galvanized with CGL, or further alloyed after galvanizing. The annealing temperature is more than 740 ° C and less than 840 ° C. Below 740 ° C, the solid solution of carbide becomes insufficient, and the area ratio of the martensite phase cannot be secured stably. Above 840 ° C, a sufficiently low YS cannot be obtained. The soaking time may be 20 seconds or more in a temperature range exceeding 740 ° C., which is carried out by normal continuous annealing, and more preferably 40 seconds or more. The soaking time is preferably 10 min or less from the viewpoint of deterioration of surface quality and ductility due to coarsening of crystal grains.

均熱後は、焼鈍温度から通常450〜500℃に保持されている亜鉛めっき浴の温度までの平均冷却速度2〜30℃/secで冷却する。平均冷却速度が2℃/secより遅い場合、500〜650℃の温度域でパーライトが多量に生成し、十分低いYSが得られなくなる。一方、平均冷却速度が30℃/secより大きくなると、亜鉛めっき浴に浸漬する前後の500℃付近でγ→α変態が顕著に進み、マルテンサイト相が微細化するとともに粒界3重点に存在するマルテンサイト相の面積率が少なくなり、YSが上昇する。   After soaking, cooling is performed at an average cooling rate of 2 to 30 ° C./sec from the annealing temperature to the temperature of the galvanizing bath normally maintained at 450 to 500 ° C. When the average cooling rate is slower than 2 ° C / sec, a large amount of pearlite is generated in the temperature range of 500 to 650 ° C, and a sufficiently low YS cannot be obtained. On the other hand, when the average cooling rate is higher than 30 ° C / sec, the γ → α transformation proceeds remarkably around 500 ° C before and after being immersed in the galvanizing bath, and the martensite phase becomes finer and exists at the triple point of grain boundaries. The area ratio of the martensite phase decreases and YS increases.

その後、亜鉛めっき浴に浸漬して亜鉛めっきする。亜鉛めっき方法は特に限定されないが、浴温:460℃、浴中Al:0.13%程度とするのが好ましい。亜鉛めっき後5〜100℃/secの平均冷却速度で100℃以下まで冷却する。必要に応じて亜鉛めっき後さらに470〜650℃の温度域で30sec以内保持することにより合金化処理を施すこともできる。合金化処理は、めっき浴浸漬後、480〜540℃まで加熱してめっき中Fe%が9〜12%の範囲になるように、10〜25sec保持するのが好ましい。従来の[Mneq]が適正化されていない鋼板ではこのような合金化処理を施すことにより材質が著しく劣化していたが、本発明の鋼板ではYSの上昇が小さく、良好な材質を得ることができる。   Then, it is immersed in a galvanizing bath and galvanized. The galvanizing method is not particularly limited, but it is preferable that the bath temperature is 460 ° C. and the Al in the bath is about 0.13%. After galvanization, cool to 100 ° C or less at an average cooling rate of 5-100 ° C / sec. If necessary, alloying treatment can also be performed by holding within 30 seconds within a temperature range of 470 to 650 ° C. after galvanization. The alloying treatment is preferably held for 10 to 25 seconds after immersion in the plating bath and heated to 480 to 540 ° C. so that the Fe% during plating is in the range of 9 to 12%. In conventional steel sheets that have not been optimized for [Mneq], the material has deteriorated significantly due to such alloying treatment. However, in the steel sheet of the present invention, the increase in YS is small and a good material can be obtained. it can.

亜鉛めっき後合金化処理する場合、合金化処理後平均冷却速度5〜100℃/secの冷却速度で100℃以下まで冷却する。平均冷却速度が5℃/secより小さいと550℃付近でパーライトが、また400℃〜450℃の温度域でベイナイトが生成してYSを上昇させる。一方、平均冷却速度が100℃/secより大きいと連続冷却中に生じるマルテンサイトの自己焼戻しが不十分となってマルテンサイトが硬質化しすぎてYSが上昇すると共に延性が低下する。焼戻し調質処理の可能な設備がある場合は、低YS化の観点から、300℃以下の温度で30sec〜10minの過時効処理を施すことも可能である。   When alloying after galvanization, the alloy is cooled to 100 ° C. or less at an average cooling rate of 5 to 100 ° C./sec after the alloying treatment. When the average cooling rate is less than 5 ° C / sec, pearlite is generated around 550 ° C, and bainite is generated in the temperature range of 400 ° C to 450 ° C, increasing YS. On the other hand, if the average cooling rate is higher than 100 ° C./sec, the self-tempering of martensite that occurs during continuous cooling becomes insufficient, the martensite becomes too hard, YS increases, and ductility decreases. If there is equipment that can be tempered and tempered, it is possible to perform an overaging treatment at a temperature of 300 ° C. or lower for 30 sec to 10 min from the viewpoint of lowering YS.

得られた亜鉛めっき鋼板に、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点からスキンパス圧延を施すことができる。その場合は、低YS、高EL化の観点からスキンパス伸長率は0.2〜0.6%とするのが好ましい。   The obtained galvanized steel sheet can be subjected to skin pass rolling from the viewpoint of stabilizing the press formability such as adjusting the surface roughness and flattening the plate shape. In that case, the skin pass elongation rate is preferably 0.2 to 0.6% from the viewpoint of low YS and high EL.

5)パネル用部材の製造方法
本発明では、上記の高強度溶融亜鉛めっき鋼板を使用して、成形温度:250℃〜500℃で温間プレス成形してパネル用部材を製造する。
5) Method for producing panel member In the present invention, the above-described high-strength hot-dip galvanized steel sheet is used, and a panel member is produced by hot press forming at a forming temperature of 250 ° C to 500 ° C.

成形温度は、プレス成形前の鋼板加熱温度を指す。IF鋼などの固溶Cの少ない鋼板では、温度の上昇ととともにYSが低下するが、本発明で対象とするBH性を有する鋼板では、200℃付近で動的歪時効や、第2相であるマルテンサイトの焼戻しが生じるので、プレス成形前の鋼板加熱温度が250℃未満であると、返ってYSが上昇したり、降伏伸びが発生したりするおそれがある。成形温度が250℃以上では、YSが低下し、耐面歪性が良好になる。耐面歪性の点から成形温度は、250℃以上にする。成形温度が500℃超になると、溶融亜鉛めっきの合金化度が上昇し、パウダリングを悪くする。従って成形温度は250℃〜500℃の範囲に限定する。より好ましい成形温度は400℃以下である。   The forming temperature refers to the steel sheet heating temperature before press forming. In steel sheets with low solid solution C such as IF steel, YS decreases with increasing temperature, but in steel sheets with BH properties that are the subject of the present invention, dynamic strain aging occurs at around 200 ° C, and in the second phase. Since tempering of certain martensite occurs, if the heating temperature of the steel sheet before press forming is less than 250 ° C., there is a risk that YS will rise and yield elongation will occur. When the molding temperature is 250 ° C. or higher, YS decreases and surface distortion resistance is improved. From the viewpoint of surface strain resistance, the molding temperature is 250 ° C or higher. When the molding temperature exceeds 500 ° C., the degree of alloying of hot dip galvanizing increases and powdering is worsened. Therefore, the molding temperature is limited to a range of 250 ° C to 500 ° C. A more preferable molding temperature is 400 ° C. or less.

上記の高強度溶融亜鉛めっき鋼板を用いて上記温度でパネル用部材に温間プレス成形すると、低い歪量であっても温間プレス成形時の加工硬化(WH)、温間プレス成形後の焼付け硬化(BH)が得られることから、塗装焼付け工程を経ずとも優れた耐デント性が得られる。   When the above-mentioned high-strength hot-dip galvanized steel sheet is used for warm press forming on panel members at the above temperature, work hardening (WH) during warm press forming, even after low strain, baking after warm press forming Since curing (BH) can be obtained, excellent dent resistance can be obtained without going through a paint baking process.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

表1に示す成分組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1220℃に加熱し粗圧延してシートバーとし、次いで仕上圧延温度850℃、仕上圧延後の平均冷却速度20℃/sec、巻取温度550℃を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗および圧延率65%の冷間圧延工程により厚さ0.7mmの冷延板とした。得られた冷延板に連続溶融亜鉛めっきライン(CGL)において、均熱時間40secで表2に示す焼鈍温度で焼鈍後溶融亜鉛めっき(めっき浴温:480℃)を施し、溶融亜鉛めっき後さらに合金化処理を施し、めっき皮膜をFe-Zn合金にした溶融亜鉛めっき鋼板を作製した。一部、溶融亜鉛めっき後合金化処理を施さない溶融亜鉛めっき鋼板も作製した。前記で作製した溶融亜鉛めっき鋼板に、伸び率0.5%の調質圧延を施した。亜鉛めっき量は、片面あたり45g/m2に調整し、合金化処理は、めっき皮膜のFe%が9.5%になるようにした。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs are heated to 1220 ° C and roughly rolled into sheet bars, then hot rolled by a hot rolling process in which a finish rolling temperature of 850 ° C, an average cooling rate after finish rolling of 20 ° C / sec, and a winding temperature of 550 ° C are applied. A board was used. These hot-rolled sheets were formed into a cold-rolled sheet having a thickness of 0.7 mm by pickling and a cold rolling process with a rolling rate of 65%. The obtained cold-rolled sheet was subjected to hot dip galvanization (plating bath temperature: 480 ° C) after annealing at the annealing temperature shown in Table 2 with a soaking time of 40 seconds in a continuous hot dip galvanizing line (CGL), and after hot dip galvanizing Alloying treatment was performed to produce a hot dip galvanized steel sheet with a plating film made of an Fe-Zn alloy. Some hot-dip galvanized steel sheets that were not subjected to alloying after hot-dip galvanizing were also produced. The hot-dip galvanized steel sheet produced above was subjected to temper rolling with an elongation of 0.5%. The zinc plating amount was adjusted to 45 g / m 2 per side, and the alloying treatment was performed so that Fe% of the plating film was 9.5%.

得られた各溶融亜鉛めっき鋼板について鋼板組織、引張特性、BH特性、耐食性、温間成形特性を調査した。調査方法は下記の通りである。   Each obtained hot-dip galvanized steel sheet was examined for steel sheet structure, tensile properties, BH properties, corrosion resistance, and warm forming properties. The survey method is as follows.

(1)鋼板組織
マルテンサイト相の面積率は鋼板のL断面(圧延方向に平行な垂直断面)を研磨後ナイタールで腐食し、SEM(走査型電子顕微鏡)で4000倍の倍率にて10視野観察し、撮影した組織写真を画像解析して求めた。その他、フェライトはやや黒いコントラストの領域であり、炭化物がラメラー状もしくは点列状に生成している領域をパーライトもしくはベイナイトとし、白いコントラストの付いている粒子で素地にラス状組織が観察されないものを残留γとした。
(1) Steel plate structure The area ratio of the martensite phase was determined by corroding the L cross-section (vertical cross-section parallel to the rolling direction) of the steel plate with Nital and observing 10 fields of view with a SEM (scanning electron microscope) at a magnification of 4000 times. The obtained tissue photographs were obtained by image analysis. In addition, ferrite is a region with a slightly black contrast, and the region in which carbides are generated in a lamellar or dotted pattern is pearlite or bainite, and particles with white contrast are not observed in the lath structure on the substrate. Residual γ.

(2)引張特性
得られた各溶融亜鉛めっき鋼板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験をおこない、降伏応力(YS)、引張強さ(TS)を求めた。さらに、TSに対するYSの割合、YS/TSからYRを求めた。
(2) Tensile properties JIS No. 5 tensile test specimens were taken from each of the obtained hot-dip galvanized steel sheets in the 90 ° direction (C direction) with respect to the rolling direction, and the crosshead speed was 10 mm / in accordance with the provisions of JIS Z 2241. A tensile test was performed at min, and yield stress (YS) and tensile strength (TS) were determined. Furthermore, YR was calculated from the ratio of YS to TS, YS / TS.

(3)BH特性
得られた各溶融亜鉛めっき鋼板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、クロスヘッド速度10mm/minで引張試験をおこない2%の予歪を付与したのち、一旦引張試験機から試験片を外し、高温槽で170℃-20分の時効処理を行い、再びクロスヘッド速度10mm/minで引張試験を行った。再引張時の上降伏応力から予歪時の到達応力を差し引いたものをBH量とした。
(3) BH characteristics JIS5 tensile test specimens were taken from each obtained galvanized steel sheet in the 90 ° direction (C direction) with respect to the rolling direction, and a tensile test was conducted at a crosshead speed of 10 mm / min. After pre-straining, the test piece was once removed from the tensile tester, subjected to aging treatment at 170 ° C. for 20 minutes in a high-temperature bath, and a tensile test was performed again at a crosshead speed of 10 mm / min. The amount of BH was obtained by subtracting the ultimate stress during pre-strain from the upper yield stress during re-tensioning.

(4)温間成形特性
温間成形特性は、高温引張により評価した。試験片は幅10mm、評点間距離を50mmとした。高温引張試験機で、所定の温度で10分保持したのち、YSまで0.15mm/min、YS以降4.5mm/minのクロスヘッドスピードで引張を行い、2%の予歪を行った。その後、170℃-20分の時効処理をしたものとしないものについて、常温で再引張を行い、その時の上降伏点(YP')を耐デント性の指標とした。耐面歪性は、予歪時のYSで評価した。
耐デント性は、YP'に基づき、320MPa以上で耐デント性が良好、320MPa未満では耐デント性が劣ると評価した。
耐面歪性は、YSに基づき、250MPa以下で耐面歪性が良好、250MPa超では耐面歪性が劣ると評価した。
(4) Warm forming characteristics Warm forming characteristics were evaluated by high-temperature tension. The test piece was 10 mm wide and the distance between grades was 50 mm. After holding at a predetermined temperature for 10 minutes with a high-temperature tensile tester, the YS was pulled at a crosshead speed of 0.15 mm / min and after YS at 4.5 mm / min, and 2% pre-strained. Thereafter, those that were not subjected to aging treatment at 170 ° C. for 20 minutes were re-tensioned at room temperature, and the upper yield point (YP ′) at that time was used as an index of dent resistance. The surface strain resistance was evaluated by YS at the time of pre-strain.
Based on YP ', the dent resistance was evaluated to be good at dent resistance of 320 MPa or more and poor at dent resistance below 320 MPa.
Based on YS, the surface strain resistance was evaluated to be good at a surface strain resistance of 250 MPa or less, and to be poor at a surface strain of over 250 MPa.

(5)耐食性
ヘム加工部やスポット溶接部周辺を模擬した構造体にて各溶融亜鉛めっき鋼板の耐食性を評価した。すなわち、得られた鋼板を2枚重ねてスポット溶接して鋼板同士が密着した状態とし、さらに実車での塗装工程を模擬した化成処理、電着塗装を施した後にSAE J2334腐食サイクル条件にて腐食試験を行なった。電着塗装膜厚は20μmとした。60サイクル経過後の腐食サンプルについて腐食生成物を除去し、あらかじめ測定しておいた元板厚からの板厚の減少量を求め腐食減量とした。腐食減量が0.5mm未満を良好、0.5mm以上を耐食性が劣ると判断した。
(5) Corrosion resistance The corrosion resistance of each hot-dip galvanized steel sheet was evaluated using a structure that simulated the periphery of the hem-processed part and spot welded part. In other words, two steel sheets obtained were spot welded together to bring them into close contact with each other, and after applying chemical conversion treatment and electrodeposition coating to simulate the painting process in an actual vehicle, corrosion was performed under SAE J2334 corrosion cycle conditions. A test was conducted. The electrodeposition coating film thickness was 20 μm. Corrosion products were removed from the corrosion samples after 60 cycles, and the reduction in plate thickness from the original plate thickness measured in advance was determined as the corrosion loss. Corrosion weight loss was judged to be good when it was less than 0.5mm, and corrosion resistance was poor when it was 0.5mm or more.

CGLの焼鈍条件、合金化処理の有無、および調査結果を表2に示す。表2中の1次冷却速度は焼鈍温度からめっき浴に浸漬するまでの平均冷却速度、2次冷却速度は合金化処理温度から100℃に冷却するまでの平均冷却速度(合金化処理を施さないものは溶融亜鉛めっき後100℃に冷却するまでの平均冷却速度)である。   Table 2 shows the annealing conditions for CGL, the presence or absence of alloying treatment, and the survey results. The primary cooling rate in Table 2 is the average cooling rate from the annealing temperature to immersion in the plating bath, and the secondary cooling rate is the average cooling rate from the alloying treatment temperature to 100 ° C (no alloying treatment is applied) The average cooling rate until cooling to 100 ° C. after hot dip galvanization.

Figure 0005703632
Figure 0005703632

Figure 0005703632
Figure 0005703632

表2より明らかなとおり、鋼板組織と機械特性が本発明範囲を満足する溶融亜鉛めっき鋼板を用いて、本発明法で規定する条件で温間成形を行った本発明例は、いずれも耐面歪と耐デント性が良好な評価となっており、耐食性も良好である。   As is clear from Table 2, using the hot-dip galvanized steel sheet whose steel sheet structure and mechanical properties satisfy the scope of the present invention, all of the present invention examples subjected to warm forming under the conditions specified by the present invention method are surface resistant. Strain and dent resistance are good evaluations, and corrosion resistance is also good.

これに対し、鋼板組織と機械特性の少なくとも1つが本発明範囲を満足しない溶融亜鉛めっき鋼板を用い、本発明で規定する条件で温間成形を行った比較例(No.8、10、20〜23)、鋼板組織と機械特性が本発明範囲を満足する溶融亜鉛めっき鋼板を用いても、本発明法を外れる条件で温間成形を行った比較例(No.1〜3)は、耐面歪性、耐デント性のいずれか、または耐食性が劣る。   On the other hand, comparative examples (No. 8, 10, 20 to 20) in which hot-dip galvanized steel sheets in which at least one of the steel sheet structure and mechanical properties do not satisfy the scope of the present invention were used and warm forming was performed under the conditions specified in the present invention. 23), even if a hot-dip galvanized steel sheet whose steel sheet structure and mechanical properties satisfy the scope of the present invention was used, comparative examples (No. Either distortion, dent resistance, or corrosion resistance is poor.

本発明の高強度溶融亜鉛めっき鋼板を用いて、本発明法で温間プレス成形すると、耐面歪性および耐デント性に優れたパネル用部材を得ることができる。また、塗装焼付け工程を省略、簡略化しても耐デント性を確保できるので、大幅なコストアップ無しに耐デント性に優れたパネル用部材の製造が可能になる。   When warm press-molding is performed by the method of the present invention using the high-strength hot-dip galvanized steel sheet of the present invention, a panel member having excellent surface strain resistance and dent resistance can be obtained. In addition, since the dent resistance can be ensured even if the coating baking process is omitted or simplified, it is possible to manufacture a panel member having excellent dent resistance without a significant cost increase.

Claims (3)

鋼の成分組成として、質量%で、C:0.015%超0.06%未満、Si:0.2%以下、Mn:1.0%以上1.9%未満、P:0.015%以上0.05%以下、S:0.02%以下、sol.Al:0.01%以上0.5%以下、N:0.005%以下、Cr:0.5%未満、B:0.0003%以上0.005%以下、Mo:0.10%以下、Ti:0.014%未満を含有し、更に2.2≦[Mneq]≦3.1を満足し、残部鉄および不可避不純物からなる組成を有し、マルテンサイト相の面積率が5〜15%の複合組織を有し、BH量が45MPa以上、YSが280MPa以下、YRが60%以下である高強度溶融亜鉛めっき鋼板からなることを特徴とする、成形温度が250℃〜500℃の温間プレス成形用素材。
ここで、[Mneq]=[%Mn]+1.3[%Cr]+8[%P]+3.3[%Mo]+150B * 、B * =[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025で表され、[%Mn]、[%Cr]、[%P]、[%Mo]、[%B]、[%Ti]、[%Al]はMn、Cr、P、Mo、B、Ti、sol.Alのそれぞれの含有量を表す。[%B]=0のときはB * =0、[%B]+[%Ti]/48×10.8×0.9+[%Al]/27×10.8×0.025≧0.0022のときはB * =0.0022とする。
As composition of steel, in mass%, C: more than 0.015% and less than 0.06%, Si: 0.2% or less, Mn: 1.0% or more and less than 1.9%, P: 0.015% or more and 0.05% or less, S: 0.02% or less, sol Al: 0.01% or more and 0.5% or less, N: 0.005% or less, Cr: Less than 0.5%, B: 0.0003% or more and 0.005% or less, Mo: 0.10% or less, Ti: Less than 0.014%, and 2.2 ≦ [ Mneq] ≦ 3.1, having a composition composed of the balance iron and inevitable impurities, having a composite structure with a martensite phase area ratio of 5 to 15%, BH amount of 45 MPa or more, YS of 280 MPa or less, YR A material for warm press forming with a forming temperature of 250 ° C to 500 ° C, characterized by comprising a high-strength hot-dip galvanized steel sheet having a H of 60% or less.
Where [Mneq] = [% Mn] +1.3 [% Cr] +8 [% P] +3.3 [% Mo] + 150B * , B * = [% B] + [% Ti] /48×10.8× 0.9 + [% Al] /27×10.8×0.025, [% Mn], [% Cr], [% P], [% Mo], [% B], [% Ti], [% Al] Represents each content of Mn, Cr, P, Mo, B, Ti, sol.Al. When [% B] = 0, B * = 0 and when [% B] + [% Ti] /48×10.8×0.9 + [% Al] /27×10.8×0.025≧0.0022, B * = 0.0022 To do.
更に、質量%で、V:0.4%以下、Nb:0.015%以下、Zr:0.1%以下、Cu:0.5%以下、Ni:0.5%以下のうちの少なくとも1種を含有することを特徴とする請求項に記載の温間プレス成形用素材。 Further, it is characterized by containing at least one of V: 0.4% or less, Nb: 0.015% or less, Zr: 0.1% or less, Cu: 0.5% or less, Ni: 0.5% or less in mass%. Item 2. The warm press-molding material according to Item 1 . 請求項1または2に記載の温間プレス成形用素材を、250℃〜500℃で温間プレス成形することを特徴とする耐面歪性及び耐デント性に優れたパネル用部材の製造方法。 A method for producing a panel member having excellent surface strain resistance and dent resistance, wherein the warm press molding material according to claim 1 or 2 is warm press molded at 250 ° C to 500 ° C.
JP2010193565A 2010-08-31 2010-08-31 Warm press molding material and panel manufacturing method Expired - Fee Related JP5703632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193565A JP5703632B2 (en) 2010-08-31 2010-08-31 Warm press molding material and panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193565A JP5703632B2 (en) 2010-08-31 2010-08-31 Warm press molding material and panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2012052157A JP2012052157A (en) 2012-03-15
JP5703632B2 true JP5703632B2 (en) 2015-04-22

Family

ID=45905807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193565A Expired - Fee Related JP5703632B2 (en) 2010-08-31 2010-08-31 Warm press molding material and panel manufacturing method

Country Status (1)

Country Link
JP (1) JP5703632B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907055B2 (en) * 2012-12-14 2016-04-20 Jfeスチール株式会社 Hot-dip galvanized steel sheet
EP3282040B1 (en) * 2015-03-31 2019-12-18 Nippon Steel Nisshin Co., Ltd. Use of a plated steel sheet as heat-absorbing and radiating steel sheet
JP5989274B1 (en) * 2015-03-31 2016-09-07 日新製鋼株式会社 Absorbing / dissipating steel plate and absorbing / dissipating member
KR102031452B1 (en) * 2017-12-24 2019-10-11 주식회사 포스코 Cold rolled steel sheet and hot dip zinc-based plated steel sheet having excellent bake hardenability and plating adhesion, and method for manufaturing the same
CN117619883A (en) * 2023-12-01 2024-03-01 北京理工大学 Three-dimensional brick composite material and technological preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969350B2 (en) * 2003-06-16 2007-09-05 住友金属工業株式会社 High-tensile cold-rolled steel sheet and its manufacturing method
JP4539308B2 (en) * 2004-11-29 2010-09-08 Jfeスチール株式会社 Thin steel plate, method for producing the same, and method for producing parts having excellent shape freezing property
JP4786521B2 (en) * 2006-06-12 2011-10-05 新日本製鐵株式会社 High-strength galvanized steel sheet with excellent workability, paint bake hardenability and non-aging at room temperature, and method for producing the same
JP4816595B2 (en) * 2007-06-22 2011-11-16 住友金属工業株式会社 Cold-rolled steel sheet, plated steel sheet, and method for producing the steel sheet
JP5272548B2 (en) * 2007-07-11 2013-08-28 Jfeスチール株式会社 Manufacturing method of high strength cold-rolled steel sheet with low yield strength and small material fluctuation
JP5332355B2 (en) * 2007-07-11 2013-11-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5012636B2 (en) * 2008-04-08 2012-08-29 住友金属工業株式会社 Galvanized steel sheet
JP4623233B2 (en) * 2009-02-02 2011-02-02 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012052157A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP4623233B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5740847B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5272547B2 (en) High-strength hot-dip galvanized steel sheet with low yield strength and small material fluctuation and method for producing the same
JP4811528B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5545414B2 (en) Cold rolled steel sheet and method for producing cold rolled steel sheet
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
KR101671595B1 (en) High strength steel sheet and method for manufacturing the same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2017169870A1 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat-treated plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
US20180023161A1 (en) High-strength steel sheet and production method therefor
US20180016656A1 (en) High-strength steel sheet and production method therefor
JP5703632B2 (en) Warm press molding material and panel manufacturing method
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP5659604B2 (en) High strength steel plate and manufacturing method thereof
JP5286986B2 (en) High strength hot-dip galvanized steel sheet with low yield strength and high bake hardenability and method for producing the same
WO2020110795A1 (en) High-strength steel sheet and method for manufacturing same
CN113631736A (en) Hot-dip Zn-Al-Mg-based steel sheet and method for producing same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R150 Certificate of patent or registration of utility model

Ref document number: 5703632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees