JP5696481B2 - Method for producing N-vinylformamide - Google Patents

Method for producing N-vinylformamide Download PDF

Info

Publication number
JP5696481B2
JP5696481B2 JP2011001234A JP2011001234A JP5696481B2 JP 5696481 B2 JP5696481 B2 JP 5696481B2 JP 2011001234 A JP2011001234 A JP 2011001234A JP 2011001234 A JP2011001234 A JP 2011001234A JP 5696481 B2 JP5696481 B2 JP 5696481B2
Authority
JP
Japan
Prior art keywords
vinylformamide
pyrolyzer
evaporator
harz
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011001234A
Other languages
Japanese (ja)
Other versions
JP2012140392A (en
JP2012140392A5 (en
Inventor
賢二 津田
賢二 津田
悟 廣井
悟 廣井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011001234A priority Critical patent/JP5696481B2/en
Publication of JP2012140392A publication Critical patent/JP2012140392A/en
Publication of JP2012140392A5 publication Critical patent/JP2012140392A5/ja
Application granted granted Critical
Publication of JP5696481B2 publication Critical patent/JP5696481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、N−ビニルホルムアミドの製造方法に関し、詳しくは、N−(α−置換−エチル)ホルムアミド原料を蒸発させて減圧下に熱分解するN−ビニルホルムアミドの製造方法において、発生するハルツに起因する問題を解決したN−ビニルホルムアミドの製造方法に関する。   The present invention relates to a method for producing N-vinylformamide, and more specifically, in a method for producing N-vinylformamide in which N- (α-substituted-ethyl) formamide raw material is evaporated and thermally decomposed under reduced pressure. The present invention relates to a method for producing N-vinylformamide that solves the problems caused by the problem.

N−(α−置換−エチル)ホルムアミド原料を蒸発させて減圧下に熱分解するN−ビニルホルムアミドの製造方法においてはタール状および固体状のハルツが生成する。そして、長期間の連続運転においては、蒸発器と熱分解器の接続配管のハルツによる閉塞問題が惹起され、安定運転が困難になる。また、ハルツが徐々に配管内に蓄積するとN−ビニルホルムアミドの品質が徐々に悪化するということが知られている。ここでの品質の悪化とは、モノマーの保存安定性の悪化や重合活性の低下、即ち重合開始の遅延や重合で得られる重合対の分子量低下や残存モノマーの増加、不溶解分の増加等を指す。   In the method for producing N-vinylformamide, in which the N- (α-substituted-ethyl) formamide raw material is evaporated and thermally decomposed under reduced pressure, tar-like and solid harz are generated. And in the long-term continuous operation, the blockage problem by Harz of the connection pipe of an evaporator and a pyrolyzer is caused, and stable operation becomes difficult. It is also known that the quality of N-vinylformamide gradually deteriorates when Harz is gradually accumulated in the pipe. Deterioration of quality here means deterioration of storage stability of monomer and decrease of polymerization activity, that is, delay of polymerization start, decrease of molecular weight of polymerization pair obtained by polymerization, increase of residual monomer, increase of insoluble matter, etc. Point to.

ハルツによる閉塞問題などを解決する提案として、反応器の前段を空塔式管状反応器とし、後段を充填式管状反応器により構成された熱分解反応器を使用する方法が提案されている(特許文献1)。しかしながら、斯かる方法は、それなりの効果はあるものの、必ずしも十分とは言えない。   As a proposal to solve the clogging problem caused by Harz, a method of using a pyrolysis reactor in which the front stage of the reactor is an empty tubular reactor and the latter stage is composed of a packed tubular reactor has been proposed (patent) Reference 1). However, such a method is not necessarily sufficient although it has a certain effect.

特開平3−181451号公報JP-A-3-181451

本発明は、上記実情に鑑みなされたものであり、ハルツによる閉塞問題などを一層効果的に解決することが出来るように改良されたN−ビニルホルムアミドの製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an improved method for producing N-vinylformamide so as to more effectively solve the problem of blocking due to Harz.

すなわち、本発明の要旨は、N−(α−置換−エチル)ホルムアミド原料を蒸発させて減圧下に熱分解するN−ビニルホルムアミドの製造方法において、製造装置として、流下式薄膜蒸発器と熱分解器とを備え、両者は流下式薄膜蒸発器の側部下方出口が熱分解器の入口より低くなるように流下式薄膜蒸発器と熱分解器とを高低差を設けて配置され、接続配管の傾斜部には接続配管に開口したハルツ収納容器が接続されている装置を使用することを特徴とするN−ビニルホルムアミドの製造方法に存する。 That is, the gist of the present invention is that, in a method for producing N-vinylformamide in which N- (α-substituted-ethyl) formamide raw material is evaporated and thermally decomposed under reduced pressure, a falling film evaporator and pyrolysis are used as production devices. Both are arranged with a height difference between the flow-through thin film evaporator and the pyrolyzer so that the lower outlet at the side of the flow-through thin film evaporator is lower than the inlet of the pyrolyzer. In the manufacturing method of N-vinylformamide, the apparatus to which the Harz storage container opened to the connection piping is connected to the inclined portion is used.

本発明によれば、長期間の連続運転においてもハルツによる閉塞問題などが惹起されることがない。   According to the present invention, the problem of blockage caused by Harz is not caused even during long-term continuous operation.

本発明で使用する製造装置の一例の説明図Explanatory drawing of an example of the manufacturing apparatus used by this invention

以下、本発明を詳細に説明する。本発明において、出発原料としてN−(α−置換−エチル)ホルムアミドを使用する。ここで、α−置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、s−ブトキシ基、t−ブトキシ基などの低級アルコキシ基又はシアノ基などが挙げられる。なお、高級のアルコキシ基を有するN−(α−置換−エチル)ホルムアミドも原料として使用できるが、蒸発が難しいので上記の化合物が特に好ましい。   Hereinafter, the present invention will be described in detail. In the present invention, N- (α-substituted-ethyl) formamide is used as a starting material. Here, examples of the α-substituent include a lower alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an s-butoxy group, and a t-butoxy group, or a cyano group. Note that N- (α-substituted-ethyl) formamide having a higher alkoxy group can also be used as a raw material, but the above compounds are particularly preferable because evaporation is difficult.

上記のような原料を熱分解すると、N−ビニルホルムアミドと共に副生物が生成する。副生物は、原料のα−置換基にアルコキシ基を採用した場合は、対応するアルコール、シアノ基を採用した場合は、シアン化水素である。また、原料としてエチリデンビスホルムアミド使用すると、副生物としてホルムアミドが生成する。   When the raw materials as described above are pyrolyzed, by-products are produced together with N-vinylformamide. A by-product is hydrogen cyanide when an alkoxy group is employed as the α-substituent of the raw material, and a corresponding alcohol or cyano group is employed. When ethylidene bisformamide is used as a raw material, formamide is produced as a by-product.

本発明においては、N−ビニルホルムアミドの製造装置として、蒸発器と熱分解器とを備え、両者は少なくとも一部に上向き傾斜部を有する接続配管によって接続され、接続配管の傾斜部には接続配管に開口したハルツ収納容器が接続されている装置を使用する。   In the present invention, as an apparatus for producing N-vinylformamide, an evaporator and a pyrolyzer are provided, both of which are connected by a connecting pipe having an upwardly inclined part at least partially, and a connecting pipe is connected to the inclined part of the connecting pipe Use a device to which a Harz container opened to is connected.

蒸発器としては、特に制限されないが、原料の滞留時間を短くし得る観点から、流下式薄膜蒸発器や回転式薄膜蒸発器が好ましい。図示した例の蒸発器(1)は流下式薄膜蒸発器である。なお、蒸発器はまた、ミストの飛散はハルツの原因にもなるのでミストキャッチャーや衝突板をつけた方がよい。一方、熱分解器としては、一般に管状構造のものが使用され、空塔であっても充填塔であってもよい。伝熱効率を上げるために外周部に熱媒体用の多管を付設した多管式構造のものが好ましい。   Although it does not restrict | limit especially as an evaporator, From a viewpoint which can shorten the residence time of a raw material, a falling type thin film evaporator and a rotary thin film evaporator are preferable. The evaporator (1) in the illustrated example is a falling film evaporator. In addition, it is better to attach a mist catcher and a collision plate to the evaporator because the mist scattering also causes Harz. On the other hand, the pyrolyzer generally has a tubular structure and may be an empty tower or a packed tower. In order to increase the heat transfer efficiency, a multi-tube structure having a heat medium multi-tube attached to the outer peripheral portion is preferable.

蒸発器(1)と熱分解器(2)は、少なくとも一部に上向き傾斜部を有する接続配管(3)によって接続されている。図示したように、蒸発器(1)の出口が熱分解器(2)の入口より低くなるように蒸発器(1)と熱分解器(2)とを高低差を設けて配置することにより、両者を接続する接続配管に傾斜部が形成されることとなる。斯かる配置状態であれば、蒸発器(1)から熱分解器(2)への原料ガスの導入を特別な設備を使用せずに容易に行うことが出来る。また、図示した例においては、蒸発器(1)と熱分解器(2)とは一定の間隔を設けて分離して配置されているが、間隔を無くして両者を接触配置させてもよい。   The evaporator (1) and the pyrolyzer (2) are connected by a connecting pipe (3) having an upward inclined portion at least in part. As shown in the figure, by arranging the evaporator (1) and the pyrolyzer (2) with a height difference so that the outlet of the evaporator (1) is lower than the inlet of the pyrolyzer (2), An inclined part will be formed in the connection piping which connects both. In such an arrangement state, it is possible to easily introduce the raw material gas from the evaporator (1) to the thermal cracker (2) without using special equipment. Further, in the illustrated example, the evaporator (1) and the pyrolyzer (2) are arranged separately with a certain interval, but they may be arranged in contact with each other without any interval.

図示した接続配管(3)は、蒸発器(1)の出口に傾斜部が接続されているが、蒸発器(1)の底部に接続された短い直管部を備えていてもよい。図示した接続配管(3)は、熱分解器(2)の入口のコーン部に接続された短い直管部を備えているが、斯かる直管部を無くして傾斜部としてもよい。この場合は、接続配管(3)全体が傾斜管となる。また、蒸発器(1)と熱分解器(2)とを接触配置させたような場合は、蒸発器(1)及び熱分解器(2)の各底部に接続された直管部を備えていてもよい。なお、水平に配置される回転式薄膜蒸発器を使用する場合は、その出口に接続された短い直管部を備えた接続配を使用するならば、回転式薄膜蒸発器と熱分解器との間に高低差を設けるのが容易となる。何れにしても水平部が実質的に存在しない接続配管(3)とするのが好ましい。   The connecting pipe (3) shown in the figure has an inclined portion connected to the outlet of the evaporator (1), but may include a short straight pipe connected to the bottom of the evaporator (1). The illustrated connection pipe (3) includes a short straight pipe connected to the inlet cone of the pyrolyzer (2). However, the straight pipe may be eliminated to form an inclined portion. In this case, the entire connection pipe (3) is an inclined pipe. Further, when the evaporator (1) and the thermal decomposer (2) are arranged in contact with each other, a straight pipe portion connected to each bottom of the evaporator (1) and the thermal decomposer (2) is provided. May be. In addition, when using the rotary thin film evaporator arranged horizontally, if a connection with a short straight pipe connected to the outlet is used, the rotary thin film evaporator and the pyrolyzer are used. It is easy to provide a height difference between them. In any case, it is preferable to use a connection pipe (3) in which a horizontal portion does not substantially exist.

接続配管(3)における傾斜部の傾斜角度(α)は、通常10〜60°、好ましくは20〜40°である。また、接続配管(3)の全体長さにおける傾斜部の割合、通常10〜100%である。   The inclination angle (α) of the inclined portion in the connection pipe (3) is usually 10 to 60 °, preferably 20 to 40 °. Moreover, it is a ratio of the inclination part in the whole length of connection piping (3), and is normally 10 to 100%.

ハルツ収納容器(4)は接続配管(3)に開口して接続配管の傾斜部に接続されている。図示したハルツ収納容器(4)は、底部開放型筒状構造を備えているが、球状構造であってもよい。また、大きさによっては必ずしも底部開放型ある必要はない。この場合は、例えば定期点検などの際に接続配管(3)からハルツ収納容器(4)を取り外し、収納されたハルツの回収作業を行う。   The Harz storage container (4) opens to the connecting pipe (3) and is connected to the inclined portion of the connecting pipe. Although the illustrated Harz storage container (4) has a bottom-open cylindrical structure, it may have a spherical structure. Further, depending on the size, it is not always necessary to have an open bottom. In this case, the Harz storage container (4) is removed from the connecting pipe (3), for example, at regular inspections, and the stored Harz is collected.

上述の製造装置は、図示を省略したが、蒸発器(1)、熱分解器(2)、接続配管(3)、ハルツ収納容器(4)は、加熱手段を備えている。通常、加熱手段は、ジャケット構造を採用し、熱媒体を流通することにより達成される。   Although illustration was abbreviate | omitted for the above-mentioned manufacturing apparatus, the evaporator (1), the pyrolyzer (2), the connection piping (3), and the Harz storage container (4) are provided with the heating means. Usually, the heating means is achieved by adopting a jacket structure and circulating a heat medium.

蒸発器(1)に導入された原料は、加熱蒸発させられ、原料ガスとして、接続配管(3)を通し、熱分解器(2)に導入される。蒸発器(1)の操作温度は通常80〜210℃である。熱分解器(2)の操作温度は通常300℃〜600℃、滞留時間は通常0.01〜10秒である。蒸発器(1)〜熱分解器(2)の操作圧力(原料を蒸発させる際の圧力および熱分解する際の圧力)は、通常3〜600Torrである。斯かる減圧状態は、熱分解器(2)の頂部に接続された減圧設備(図示せず)によって達成される。接続配管(3)及びハルツ収納容器(4)の温度は、蒸発器(1)で発生した原料ガスが凝縮しないような温度範囲から適宜選択される。   The raw material introduced into the evaporator (1) is heated and evaporated, and is introduced into the thermal cracker (2) as a raw material gas through the connection pipe (3). The operating temperature of the evaporator (1) is usually 80-210 ° C. The operating temperature of the pyrolyzer (2) is usually 300 ° C. to 600 ° C., and the residence time is usually 0.01 to 10 seconds. The operating pressures of the evaporator (1) to the pyrolyzer (2) (pressure for evaporating the raw material and pressure for pyrolyzing) are usually 3 to 600 Torr. Such a decompressed state is achieved by a decompression facility (not shown) connected to the top of the pyrolyzer (2). The temperatures of the connecting pipe (3) and the Harz storage container (4) are appropriately selected from a temperature range in which the raw material gas generated in the evaporator (1) is not condensed.

本発明においては、接続配管(3)の上向き傾斜部を流下しハルツ収納容器(4)に捕集される。従って、長期間の連続運転においてもハルツによる閉塞問題などは惹起されない。   In the present invention, the upward inclined portion of the connecting pipe (3) flows down and is collected in the Harz storage container (4). Therefore, the problem of blockage due to Harz is not caused even during long-term continuous operation.

以下、本発明を実施例により更に詳細に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the meaning is exceeded.

<N−ビニルホルムアミドの重合試験>
得られた熱分解生成物を蒸留精製して得たN−ビニルホルムアミドを使用し、N−ビニルホルムアミドの重合活性試験を行った。重合は、シクロヘキサンを連続相、N−ビニルホルムアミドを分散相とする逆相懸濁重合であり、分散安定剤としてポリオキシエチレンアルキルエーテルを使用して行った。開始剤は、水溶性のアゾビスアミジノプロパン2塩酸塩を使用し(使用量:4000ppm対モノマー)、モノマー水溶液濃度60%、開始温度55℃の条件で行った。モノマー水溶液は2時間かけて滴下し、その後、60℃に昇温し、1時間熟成した。
<Polymerization test of N-vinylformamide>
The N-vinylformamide polymerization activity test was performed using N-vinylformamide obtained by distillation purification of the obtained thermal decomposition product. The polymerization was reverse phase suspension polymerization using cyclohexane as a continuous phase and N-vinylformamide as a dispersion phase, and was performed using polyoxyethylene alkyl ether as a dispersion stabilizer. As the initiator, water-soluble azobisamidinopropane dihydrochloride was used (amount used: 4000 ppm with respect to monomer), and the conditions were an aqueous monomer concentration of 60% and an initiation temperature of 55 ° C. The monomer aqueous solution was dropped over 2 hours, and then the temperature was raised to 60 ° C. and aged for 1 hour.

実施例1:
図1に示す製造装置を使用した。
Example 1:
The manufacturing apparatus shown in FIG. 1 was used.

蒸発器(1)は、シェル内部に減圧系に連通する多数のチューブが立設され、これらチューブの内壁に液体を流下させる構造を有し、シェル側に190℃の過熱蒸気を導入し、チューブ内壁を流下する原料液体を減圧下に加熱蒸発させる。   The evaporator (1) has a structure in which a large number of tubes communicating with a decompression system are erected inside the shell, and a liquid is allowed to flow down on the inner walls of these tubes. The raw material liquid flowing down the inner wall is evaporated by heating under reduced pressure.

熱分解器(2)は、シェル内部に減圧系に連通する多数のチューブが立設され、これらチューブの内部に原料ガスを導入させる構造を有し、下段シェル側に350℃の過熱窒素を導入し、上段シェル側に430℃の過熱窒素を導入し、チューブの内部に導入された原料ガスを減圧下に熱分解する。   The pyrolyzer (2) has a structure in which a number of tubes communicating with the decompression system are erected inside the shell, and a raw material gas is introduced inside these tubes, and superheated nitrogen at 350 ° C. is introduced into the lower shell side. Then, superheated nitrogen at 430 ° C. is introduced into the upper shell side, and the raw material gas introduced into the tube is pyrolyzed under reduced pressure.

接続配管(3)は、内径が200mmであり、蒸発器(1)の出口に接続された傾斜部(長さ:1800mm、傾斜角度α:30°)と熱分解器(2)の入口のコーン部に接続された直管部(長さ:800mm)を備えており、ハルツ収納容器(4)は、内径が200mm、長さ673mmの底部開放型筒状構造であり、蒸発器側のフランジ前の低端部に接続されている。そして、接続配管(3)及びハルツ収納容器(4)の各ジャケット部に加熱窒素を導入し、稼動時の管壁温を230℃に維持する。   The connecting pipe (3) has an inner diameter of 200 mm, an inclined part (length: 1800 mm, inclined angle α: 30 °) connected to the outlet of the evaporator (1), and a cone at the inlet of the pyrolyzer (2). The Harz storage container (4) has an open bottom cylindrical structure with an inner diameter of 200 mm and a length of 673 mm, and is connected to the front of the flange on the evaporator side. Connected to the low end of the. And heating nitrogen is introduce | transduced into each jacket part of a connection piping (3) and a Harz storage container (4), and the tube wall temperature at the time of operation is maintained at 230 degreeC.

熱分解器(2)の頂部に接続された減圧設備により、熱分解器(2)の出口で80Torrになるよう全体を減圧に保持し、蒸発器(1)の上部より連続供給された原料のN−(α−置換−エチル)ホルムアミドを295kg/hrの速度で蒸発させ、接続配管(3)を通して熱分解器(2)の下端に導入し、熱分解器(2)中で出口ガス温が420℃になるように加熱して熱分解させた。   The pressure reduction equipment connected to the top of the pyrolyzer (2) keeps the whole at a reduced pressure so as to reach 80 Torr at the outlet of the pyrolyzer (2), and the raw material continuously supplied from the top of the evaporator (1) N- (α-substituted-ethyl) formamide is evaporated at a rate of 295 kg / hr, introduced into the lower end of the thermal cracker (2) through the connecting pipe (3), and the outlet gas temperature is increased in the thermal cracker (2). It was thermally decomposed by heating to 420 ° C.

24日間連続運転を行ったが何の問題も発生しなかった。運転を停止し、ハルツ収納容器(4)で捕集されたハルツ量を測定した結果、4.8kgであった(10日当りの量では2kg)。また、得られたN−ビニルホルムアミドについて重合試験を行った結果、重合性能は安定していた。   Although continuous operation was performed for 24 days, no problems occurred. The operation was stopped, and the amount of Harz collected in the Harz container (4) was measured. As a result, it was 4.8 kg (2 kg in the amount per 10 days). Moreover, as a result of conducting a polymerization test on the obtained N-vinylformamide, the polymerization performance was stable.

比較例1:
実施例1において、ハルツ収納容器(4)を撤去した製造装置を使用した以外は、実施例1と同様に連続運転を行ってN−ビニルホルムアミドを製造した。運転開始後10日目に接続配管の閉塞があり、運転を停止した。蒸発器(1)より回収された原料および得られたN−ビニルホルムアミドに着色の増加が観察された。また、得られたN−ビニルホルムアミドについて重合試験を行った結果、重合速度の遅延が観察された。
Comparative Example 1:
In Example 1, N-vinylformamide was produced by performing continuous operation in the same manner as in Example 1 except that the production apparatus in which the Harz storage container (4) was removed was used. On the 10th day after the start of operation, there was a blockage in the connecting pipe, and the operation was stopped. An increase in color was observed in the raw material recovered from the evaporator (1) and the obtained N-vinylformamide. Further, as a result of conducting a polymerization test on the obtained N-vinylformamide, a delay in the polymerization rate was observed.

1:蒸発器
2:熱分解器
3:接続配管
4:ハルツ収納容器
1: Evaporator 2: Pyrolyzer 3: Connection piping 4: Harz storage container

Claims (3)

N−(α−置換−エチル)ホルムアミド原料を蒸発させて減圧下に熱分解するN−ビニルホルムアミドの製造方法において、製造装置として、流下式薄膜蒸発器と熱分解器とを備え、両者は流下式薄膜蒸発器の側部下方出口が熱分解器の入口より低くなるように流下式薄膜蒸発器と熱分解器とを高低差を設けて配置され、接続配管の傾斜部には接続配管に開口したハルツ収納容器が接続されている装置を使用することを特徴とするN−ビニルホルムアミドの製造方法。 In a method for producing N-vinylformamide in which a raw material of N- (α-substituted-ethyl) formamide is evaporated and thermally decomposed under reduced pressure, the production apparatus includes a falling film evaporator and a pyrolyzer, both of which flow down The flow-down thin film evaporator and the pyrolyzer are arranged with a height difference so that the lower outlet of the side of the thin film evaporator is lower than the inlet of the pyrolyzer, and the connection pipe is opened at the inclined part of the connection pipe A method for producing N-vinylformamide, characterized in that a device to which the Harz storage container is connected is used. 接続配管における傾斜部の傾斜角度αが10〜60°である請求項1記載のN−ビニルホルムアミドの製造方法。The method for producing N-vinylformamide according to claim 1, wherein the inclination angle α of the inclined portion in the connecting pipe is 10 to 60 °. 接続配管の全体長さにおける傾斜部の割合が10〜100%である請求項1又は請求項2記載のN−ビニルホルムアミドの製造方法。The method for producing N-vinylformamide according to claim 1 or 2, wherein the proportion of the inclined portion in the entire length of the connecting pipe is 10 to 100%.
JP2011001234A 2011-01-06 2011-01-06 Method for producing N-vinylformamide Expired - Fee Related JP5696481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001234A JP5696481B2 (en) 2011-01-06 2011-01-06 Method for producing N-vinylformamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001234A JP5696481B2 (en) 2011-01-06 2011-01-06 Method for producing N-vinylformamide

Publications (3)

Publication Number Publication Date
JP2012140392A JP2012140392A (en) 2012-07-26
JP2012140392A5 JP2012140392A5 (en) 2014-01-23
JP5696481B2 true JP5696481B2 (en) 2015-04-08

Family

ID=46677072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001234A Expired - Fee Related JP5696481B2 (en) 2011-01-06 2011-01-06 Method for producing N-vinylformamide

Country Status (1)

Country Link
JP (1) JP5696481B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536682B1 (en) 2016-11-01 2022-09-07 Mitsubishi Chemical Corporation Method for producing n-vinylformamide
CN113166041B (en) 2018-11-29 2023-03-17 昭和电工株式会社 Process for producing N-vinylcarboxylic acid amide
CN114787123A (en) * 2019-12-10 2022-07-22 昭和电工株式会社 Process for producing N-vinylacetamide and pyrolysis apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800330B2 (en) * 1989-12-12 1998-09-21 三菱化学株式会社 Method for producing N-vinylformamide
JP3254724B2 (en) * 1992-04-22 2002-02-12 三菱化学株式会社 Method for producing N-vinylformamide
JPH0892763A (en) * 1994-09-26 1996-04-09 Nec Kansai Ltd Gas discharging device for reaction apparatus
JP4802446B2 (en) * 2003-11-12 2011-10-26 三菱化学株式会社 Apparatus and method for producing diphenyl carbonate or aromatic polycarbonate using the apparatus

Also Published As

Publication number Publication date
JP2012140392A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5339782B2 (en) Method for producing alkali metal alcoholate
KR102341197B1 (en) Process for purifying polycarbonate polyols and purifying apparatus therefor
EP2617699B1 (en) Method for dehydrating hydrofluorocarbon or hydrochlorofluorocarbon, and method for producing 1,3,3,3-tetrafluoropropane using said dehydrating method
JP5696481B2 (en) Method for producing N-vinylformamide
CN105636929A (en) Unit and process for purification of crude methyl methacrylate
US20200270195A1 (en) Esterification unit for producing crude methyl methacrylate, esterification process using said unit and plant comprising said unit
CN102336761A (en) Method for capturing and purifying pyromellitic dianhydride
TW201827396A (en) Quench column aftercooler
US20090270652A1 (en) Process for transferring heat to a liquid comprising dissolved monomeric acrylic acid, michael acrylic acid oligomers and acrylic acid polymer
CN102225244A (en) Grading type condensing device for coal/biomass pyrolysis equipment
CN207941495U (en) A kind of shell and tube reactor with double helix baffle plate
CN102992969B (en) Method and device for producing fluorine-containing vinyl ether by acyl fluoride
CN112958030A (en) System and method for efficiently synthesizing glycolide
CN102898304B (en) Method for recovering dimethyl oxalate in preparation process of ethylene glycol from synthetic gas
ES2377448T3 (en) Procedure for obtaining cyclododecatriene by evaporation
CN105731401A (en) Device and method for producing hydroxylamine hydrochloride
CN1045949C (en) Method and apparatus for producing cyclopentadience by depolymerizing dicyclopentadience
US10889541B2 (en) Method for producing N-vinylformamide
CN102266677A (en) High vacuum distillation purification device
JP5374576B2 (en) Trichlorosilane cooling tower and method for producing trichlorosilane using the same
CN103910613B (en) A kind of method utilizing the hydrogen chloride production trimethyl orthoacetate producing tolylene diisocyanate
BRPI0416460B1 (en) column type equipment for an easily polymerizable compound.
JP6300387B1 (en) Acrylonitrile purification method, production method, and distillation apparatus
JP2800330B2 (en) Method for producing N-vinylformamide
CN215002996U (en) Condenser for recovering ethanol from tetraethoxysilane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees