JP5691984B2 - Sliding member and manufacturing method thereof - Google Patents

Sliding member and manufacturing method thereof Download PDF

Info

Publication number
JP5691984B2
JP5691984B2 JP2011221996A JP2011221996A JP5691984B2 JP 5691984 B2 JP5691984 B2 JP 5691984B2 JP 2011221996 A JP2011221996 A JP 2011221996A JP 2011221996 A JP2011221996 A JP 2011221996A JP 5691984 B2 JP5691984 B2 JP 5691984B2
Authority
JP
Japan
Prior art keywords
amorphous carbon
film
nanodiamond particles
nickel plating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221996A
Other languages
Japanese (ja)
Other versions
JP2013082956A (en
Inventor
不破 良雄
良雄 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011221996A priority Critical patent/JP5691984B2/en
Publication of JP2013082956A publication Critical patent/JP2013082956A/en
Application granted granted Critical
Publication of JP5691984B2 publication Critical patent/JP5691984B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非晶質炭素被膜を被覆した摺動部材およびその製造方法に係り、特に、耐摩耗性に優れた摺動部材およびその製造方法に関する。   The present invention relates to a sliding member coated with an amorphous carbon coating and a method for manufacturing the same, and more particularly to a sliding member having excellent wear resistance and a method for manufacturing the same.

従来から、自動車において、エンジン、トランスミッションなど様々な機器に摺動部材が用いられている。そこでは、摺動部材の摺動抵抗を低減してエネルギ損失を減らし、地球環境の保護のための今後の燃費規制に対応すべく、様々な研究開発が進められている。   Conventionally, sliding members are used in various devices such as engines and transmissions in automobiles. There, various research and developments are underway to reduce the sliding resistance of the sliding member to reduce energy loss and to meet future fuel efficiency regulations for protecting the global environment.

例えば、このような研究開発の1つに、構造用鋼または高合金鋼からなる摺動部材の耐摩耗性を向上させると共に低摩擦特性を得るために、その摺動面にコーティングを行う技術がある。近年、このコーティング材料として、ナノダイヤモンド粒子ライクカーボン(DLC)などの非晶質炭素材料が注目されている。この非晶質炭素材料が形成された被膜(非晶質炭素被膜)は、炭素を主成分とする硬質の被膜であり、該硬質の被膜の炭素は固体潤滑剤としても作用するので、低い摺動抵抗と高い耐摩耗性とを両立できる被膜である。   For example, one such research and development is a technique for coating the sliding surface in order to improve the wear resistance of a sliding member made of structural steel or high alloy steel and to obtain low friction characteristics. is there. In recent years, amorphous carbon materials such as nanodiamond particle-like carbon (DLC) have attracted attention as this coating material. The film on which the amorphous carbon material is formed (amorphous carbon film) is a hard film mainly composed of carbon, and since the carbon of the hard film also acts as a solid lubricant, it has a low sliding property. It is a coating that can achieve both dynamic resistance and high wear resistance.

たとえば、このような技術として、ニッケル−リン系メッキ層を基材の下地とし、そのニッケル−リン系メッキ層の上に非晶質炭素被膜(DLC被膜)を施した摺動部材が提案されている(たとえば、特許文献1参照)。   For example, as such a technique, a sliding member has been proposed in which a nickel-phosphorous plating layer is used as a base of a base material and an amorphous carbon coating (DLC coating) is applied on the nickel-phosphorous plating layer. (For example, see Patent Document 1).

このような摺動部材によれば、基材の上に、ニッケル−リン系メッキ層を介して、非晶質炭素被膜を形成することで、密着性を向上させることができる。さらに、基材と非晶質炭素被膜との熱膨張係数差に起因した両者の密着性の低下を抑制することができる。   According to such a sliding member, the adhesion can be improved by forming the amorphous carbon film on the base material via the nickel-phosphorous plating layer. Furthermore, it is possible to suppress a decrease in the adhesiveness due to the difference in thermal expansion coefficient between the base material and the amorphous carbon film.

特開2002−194565号公報JP 2002-194565 A

しかしながら、特許文献1に記載の摺動部材を、潤滑油中で相手部材に対して、繰り返し摺動した場合、その摺動面において著しい摩耗が生じることがあった。特に、内燃機関用のシリンダボアとピストンリング、燃料噴射弁を構成するシリンダとピストンなどに適用した場合、これらの部材は他の部材に比べて小型化、高面圧化となっており、さらには各種燃料の使用等により、摺動部材と相手部材との間に油膜切れが起こり易く、その結果、双方に著しい摩耗が生じることがあった。   However, when the sliding member described in Patent Document 1 is repeatedly slid with respect to the mating member in the lubricating oil, significant wear may occur on the sliding surface. In particular, when applied to a cylinder bore and piston ring for an internal combustion engine, a cylinder and a piston constituting a fuel injection valve, etc., these members are smaller and have higher surface pressure than other members. Due to the use of various fuels and the like, the oil film is easily cut between the sliding member and the counterpart member, and as a result, significant wear may occur on both sides.

そして、近年、自動車エンジン部品の高出力化および高回転化による高性能化が著しくなり、上述したエンジンで使用される摺動部材においては、特許文献1の如く、摺動部材の基材表面に、単に非晶質炭素被膜を被覆しただけでは、充分な摺動特性を得ることができないことがあった。   In recent years, the performance of automobile engine parts has been greatly improved due to higher output and higher rotation. In the sliding member used in the above-described engine, as disclosed in Patent Document 1, the surface of the base member of the sliding member is used. In some cases, sufficient sliding characteristics cannot be obtained by simply coating an amorphous carbon film.

本発明は、このような点を鑑みて、その目的とすることころは、基材表面に、非晶質炭素被膜を被覆し、これを高面圧下でかつ摺動頻度の高い摺動部材として使用したとしても、その表面の非晶質炭素被膜の摩耗を抑制することができる、摺動部材および摺動部材の製造方法を提供することにある。   In view of such a point, the present invention aims to cover the surface of the base material with an amorphous carbon coating, which is used as a sliding member with high surface pressure and high sliding frequency. An object of the present invention is to provide a sliding member and a manufacturing method of the sliding member that can suppress the wear of the amorphous carbon film on the surface even if used.

発明者らは鋭意検討を重ねた結果、非晶質炭素被膜を成膜する際に、その下地となる層(被膜)に、非晶質炭素材料が成長するための核を設けることにより、この核を起点として、膜厚方向に沿って非晶質炭素が広がるように成長し、これにより成長した柱状の非晶質炭素を含む非晶質炭素被膜は、これまでの非晶質炭素被膜に比べて硬くなり、耐摩耗性が向上するとの新たな知見を得た。   As a result of intensive studies, the inventors have provided a nucleus for growing an amorphous carbon material in the underlying layer (coating) when forming an amorphous carbon coating. Starting from the nucleus, the amorphous carbon film that grows so that the amorphous carbon spreads along the film thickness direction. New findings were obtained that it was harder and improved in wear resistance.

本発明は、発明者らのこのような新たな知見に基づくものであり、本発明に係る摺動部材の製造方法は、基材の表面に、ナノダイヤモンド粒子が分散されたニッケルめっき被膜を被覆する工程と、前記ニッケルめっき被膜の表面に露出したナノダイヤモンド粒子を核として、該ナノダイヤモンド粒子から膜厚方向に非晶質炭素を成長させながら、前記ニッケルめっき被膜の表面に非晶質炭素被膜を被覆する工程と、を少なくとも含むことを特徴とするものである。   The present invention is based on such new knowledge of the inventors, and the manufacturing method of the sliding member according to the present invention covers the surface of a substrate with a nickel plating film in which nanodiamond particles are dispersed. And using the nanodiamond particles exposed on the surface of the nickel plating film as a nucleus and growing amorphous carbon from the nanodiamond particles in the film thickness direction, the amorphous carbon film on the surface of the nickel plating film And a step of coating at least.

本発明によれば、基材の表面に被覆されたニッケルめっき被膜の表面に、露出したナノダイヤモンド粒子を核として、非晶質炭素が成長するので、得られた非晶質炭素被膜の硬さは、ナノダイヤモンド粒子を用いないものよりも、高くなる。すなわち、ナノダイヤモンド粒子を核として成長した非晶質炭素は、膜厚方向に沿って柱状体となり、この柱状体は、ナノダイヤモンド粒子に近い結晶構造となる。このような結果、得られた非晶質炭素被膜は、これまでのものに比べて、耐摩耗性に優れ、かつ摩擦係数をも低減することができる。   According to the present invention, since amorphous carbon grows on the surface of the nickel plating film coated on the surface of the base material with the exposed nanodiamond particles as nuclei, the hardness of the obtained amorphous carbon film Is higher than that without using nanodiamond particles. That is, amorphous carbon grown using nanodiamond particles as a nucleus becomes a columnar body along the film thickness direction, and this columnar body has a crystal structure close to that of nanodiamond particles. As a result, the obtained amorphous carbon film is superior in wear resistance and can reduce the friction coefficient as compared with the conventional one.

そして、ナノダイヤモンド粒子を核として、膜厚方向に非晶質炭素を成長させることができるのであれば、ナノダイヤモンド粒子の粒径は特に限定されるものではない。しかしながら、より好ましい態様としては、前記ニッケルめっき被膜を被覆する工程において、前記ナノダイヤモンド粒子の粒径が10〜50nmの範囲にあるナノダイヤモンド粒子を添加する。   The nanodiamond particle size is not particularly limited as long as amorphous carbon can be grown in the film thickness direction using the nanodiamond particle as a nucleus. However, as a more preferred embodiment, in the step of coating the nickel plating film, nanodiamond particles having a nanodiamond particle size in the range of 10 to 50 nm are added.

この態様によれば、ナノダイヤモンド粒子の粒径を上述した範囲にすることにより、非晶質炭素被膜を表面に被覆した摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性を向上させることができる。   According to this aspect, by setting the particle diameter of the nanodiamond particles in the above-described range, the wear resistance of the sliding member coated with the amorphous carbon coating on the surface, and the resistance of the counterpart member sliding on the sliding member. Abrasion can be improved.

すなわち、ナノダイヤモンド粒子の粒径が、10nm未満である場合には、非晶質炭素被膜を成膜する工程において、ナノダイヤモンド粒子を核として非晶質炭素が充分に成長しないと考えられ、これにより非晶質炭素被膜の硬度を充分に高めることができない。また、ナノダイヤモンド粒子の粒径が、50nmを超えた場合には、ニッケルめっき被膜の表面に、ナノダイヤモンド粒子が均一に分散し難くなる。この結果、成膜された非晶質炭素被膜の表面粗さが大きくなり、相手部材の摩耗が増大し、摩擦係数も高くなる。   That is, when the nanodiamond particles have a particle size of less than 10 nm, it is considered that the amorphous carbon does not grow sufficiently with the nanodiamond particles as a nucleus in the step of forming the amorphous carbon film. Therefore, the hardness of the amorphous carbon film cannot be sufficiently increased. In addition, when the particle diameter of the nanodiamond particles exceeds 50 nm, the nanodiamond particles are difficult to uniformly disperse on the surface of the nickel plating film. As a result, the surface roughness of the deposited amorphous carbon coating increases, wear of the mating member increases, and the friction coefficient increases.

また、ナノダイヤモンド粒子を核として、膜厚方向に非晶質炭素を成長させることができるのであれば、ナノダイヤモンド粒子の割合は特に限定されるものではない。しかしながら、より好ましい態様としては、前記ニッケルめっき被膜を被覆する工程において、前記ニッケルめっき被膜中に前記ナノダイヤモンド粒子が5〜20質量%に含有するように、前記ナノダイヤモンド粒子を添加する。   In addition, the ratio of the nanodiamond particles is not particularly limited as long as amorphous carbon can be grown in the film thickness direction using the nanodiamond particles as a nucleus. However, as a more preferred embodiment, in the step of coating the nickel plating film, the nanodiamond particles are added so that the nanodiamond particles are contained in 5 to 20% by mass in the nickel plating film.

この態様によれば、ナノダイヤモンド粒子の添加量を上述した範囲にすることにより、非晶質炭素被膜を表面に被覆した摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性を向上させることができる。   According to this aspect, by setting the addition amount of the nanodiamond particles in the above-described range, the wear resistance of the sliding member coated with the amorphous carbon coating on the surface, and the resistance of the counterpart member sliding on the sliding member. Abrasion can be improved.

すなわち、ニッケルめっき被膜中に含有するナノダイヤモンド粒子が5質量%未満である場合には、非晶質炭素被膜を成膜する工程において、ナノダイヤモンド粒子を核として非晶質炭素が充分に成長しないと考えられ、これにより非晶質炭素被膜の硬度を充分に高めることができない。また、ニッケルめっき被膜中に含有するナノダイヤモンド粒子が20質量%を超えた場合には、ニッケルめっき被膜の表面に、ナノダイヤモンド粒子が均一に分散し難くなる。この結果、成膜された非晶質炭素被膜の表面粗さが大きくなり、相手部材の摩耗が増大し、摩擦係数も高くなる。これに加えて、ニッケルめっき被膜によるナノダイヤモンド粒子の保持力が充分とは言えず、摺動時に、ナノダイヤモンド粒子の脱落が発生し、耐摩耗性が低下する。   That is, when the nanodiamond particles contained in the nickel plating film is less than 5% by mass, amorphous carbon does not grow sufficiently with the nanodiamond particles as a nucleus in the step of forming the amorphous carbon film. Therefore, the hardness of the amorphous carbon film cannot be sufficiently increased. Moreover, when the nanodiamond particle | grains contained in a nickel plating film exceed 20 mass%, it becomes difficult to disperse | distribute nanodiamond particles uniformly on the surface of a nickel plating film. As a result, the surface roughness of the deposited amorphous carbon coating increases, wear of the mating member increases, and the friction coefficient increases. In addition to this, the holding power of the nanodiamond particles by the nickel plating film cannot be said to be sufficient, and the nanodiamond particles fall off during sliding, resulting in a decrease in wear resistance.

本発明として、上述した耐摩耗性を有した摺動部材をも開示する。本発明に係る摺動部材は、基材の表面に、ナノダイヤモンド粒子が分散されたニッケルめっき被膜と、該ニッケルめっき被膜の表面に、前記ナノダイヤモンド粒子を核として、該ナノダイヤモンド粒子から膜厚方向に成長した非晶質炭素を含む非晶質炭素被膜が被覆されていることを特徴とする。   As the present invention, the above-mentioned sliding member having wear resistance is also disclosed. The sliding member according to the present invention includes a nickel plating film in which nanodiamond particles are dispersed on the surface of a base material, and a film thickness from the nanodiamond particles on the surface of the nickel plating film with the nanodiamond particles as a nucleus. An amorphous carbon film containing amorphous carbon grown in the direction is coated.

本発明によれば、ニッケルめっき被膜の表面に分散したナノダイヤモンド粒子が分散され、このナノダイヤモンド粒子から成長した非晶質炭素は、上述したように、非晶質炭素被膜の他の部分に比べて硬質である。これにより、ナノダイヤモンド粒子を含まないものよりも非晶質炭素被膜の硬度を高めることができる。これにより、摺動部材および相手部材の耐摩耗性を向上させ、摩擦係数を低減することができる。   According to the present invention, the nano diamond particles dispersed on the surface of the nickel plating film are dispersed, and the amorphous carbon grown from the nano diamond particles is larger than the other parts of the amorphous carbon film as described above. And hard. Thereby, the hardness of an amorphous carbon film can be raised rather than what does not contain a nano diamond particle. Thereby, the wear resistance of the sliding member and the mating member can be improved, and the friction coefficient can be reduced.

また、より好ましくは、前記ナノダイヤモンド粒子の粒径は、10〜50nmの範囲である。この態様によれば、上述したように、ナノダイヤモンド粒子の粒径を上述した範囲にすることにより、非晶質炭素被膜を表面に被覆した摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性を向上させることができる。   More preferably, the nanodiamond particles have a particle size in the range of 10 to 50 nm. According to this aspect, as described above, by setting the particle diameter of the nanodiamond particles in the above-described range, the wear resistance of the sliding member coated with the amorphous carbon coating on the surface, and sliding on this The wear resistance of the mating member can be improved.

すなわち、上述したように、ナノダイヤモンド粒子の粒径が、10nm未満である場合には、非晶質炭素被膜の硬度は充分に高くなく、ナノダイヤモンド粒子の粒径が、50nmを超えた場合には、非晶質炭素被膜の表面粗さが大きくなり、相手部材の摩耗が増大し、摩擦係数も高くなる。   That is, as described above, when the particle size of the nanodiamond particles is less than 10 nm, the hardness of the amorphous carbon coating is not sufficiently high, and when the particle size of the nanodiamond particles exceeds 50 nm. The surface roughness of the amorphous carbon coating increases, the wear of the mating member increases, and the friction coefficient increases.

また、より好ましくは、前記ニッケルめっき被膜中には、ナノダイヤモンド粒子が5〜20質量%含有している。この態様によれば、ナノダイヤモンド粒子の添加量を上述した範囲にすることにより、非晶質炭素被膜を表面に被覆した摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性を向上させることができる。   More preferably, the nickel plating film contains 5 to 20% by mass of nanodiamond particles. According to this aspect, by setting the addition amount of the nanodiamond particles in the above-described range, the wear resistance of the sliding member coated with the amorphous carbon coating on the surface, and the resistance of the counterpart member sliding on the sliding member. Abrasion can be improved.

すなわち、上述したように、ニッケルめっき被膜中に含有するナノダイヤモンド粒子が5質量%未満である場合には、非晶質炭素被膜の硬度を充分に高めることができない。また、ニッケルめっき被膜中に含有するナノダイヤモンド粒子が20質量%を超えた場合には、非晶質炭素被膜の表面粗さが大きく、相手部材の摩耗が増大し、摩擦係数も高くなる。また、摺動時に、ナノダイヤモンド粒子の脱落が発生し、耐摩耗性が低下する。   That is, as described above, when the nanodiamond particles contained in the nickel plating film is less than 5% by mass, the hardness of the amorphous carbon film cannot be sufficiently increased. Moreover, when the nanodiamond particle | grains contained in a nickel plating film exceed 20 mass%, the surface roughness of an amorphous carbon film is large, wear of a mating member increases, and a friction coefficient also becomes high. In addition, the nanodiamond particles fall off during sliding, and wear resistance decreases.

本発明によれば、基材表面に、非晶質炭素被膜を被覆し、これを高面圧下でかつ摺動頻度の高い摺動部材として使用したとしても、その表面の非晶質炭素被膜の摩耗を抑制することができる。   According to the present invention, even if the surface of the base material is coated with an amorphous carbon coating, and this is used as a sliding member with a high surface pressure and a high sliding frequency, Wear can be suppressed.

本発明の実施形態に係る摺動部材の模式的概念図。The typical conceptual diagram of the sliding member which concerns on embodiment of this invention. 実施例1および2、比較例1〜3に係る摺動部材の摩耗試験の結果を示した図。The figure which showed the result of the abrasion test of the sliding member which concerns on Example 1 and 2, and Comparative Examples 1-3. 実施例3に係る摺動部材の摩耗試験の結果を示した図。FIG. 6 is a diagram illustrating a result of a wear test of a sliding member according to Example 3. 実施例4に係る摺動部材の摩耗試験の結果を示した図。The figure which showed the result of the abrasion test of the sliding member which concerns on Example 4. FIG.

以下の本発明の実施形態を説明する。図1は、本発明の実施形態に係る摺動部材の模式的概念図である。
〔ニッケルめっき被膜被覆工程〕
まず、図1に示すように、摺動部材の基材10を準備する。基材としては、例えば、炭素鋼(JIS:S45C、S30Cなど)、クロム鋼、クロムモリブデン鋼などの合金鋼(JIS規格:SCr、SCMなど)、合金工具鋼(JIS規格:SKS,SKDなど)、ステンレス鋼、軸受鋼、バネ鋼などの特殊用途鋼(JIS規格:SUS、SUJ、SUPなど)の鉄系基材を挙げることができる。しかしながら、これらの金属材料に限定されるものではなく、例えば、後述するニッケルめっき被膜を、基材表面に好適に成膜することができるのであれば、アルミニウム、チタン、シリコン等であってもよい。
The following embodiments of the present invention will be described. FIG. 1 is a schematic conceptual view of a sliding member according to an embodiment of the present invention.
[Nickel plating coating process]
First, as shown in FIG. 1, a base member 10 of a sliding member is prepared. Examples of the base material include carbon steel (JIS: S45C, S30C, etc.), alloy steel such as chromium steel, chromium molybdenum steel (JIS standard: SCr, SCM, etc.), alloy tool steel (JIS standard: SKS, SKD, etc.) And iron-based substrates of special purpose steels (JIS standards: SUS, SUJ, SUP, etc.) such as stainless steel, bearing steel, and spring steel. However, the present invention is not limited to these metal materials. For example, aluminum, titanium, silicon, or the like may be used as long as a nickel plating film described later can be suitably formed on the substrate surface. .

このようにして準備した基材10の表面に、ナノダイヤモンド粒子21が分散されたニッケルめっき被膜20を被覆する。具体的には、ニッケルめっき液中に、ナノダイヤモンド粒子21を分散させ、このニッケルめっき液を用いて、基材10の表面にニッケルめっき被膜20を被覆する。また、ナノダイヤモンド粒子21が分散したニッケルめっき被膜20を基材表面に被覆することができるのであれば、電解めっき、無電解めっきいずれのめっき方法でめっきしてもよく、そのめっき方法は特に限定されるものではない。   The surface of the base material 10 thus prepared is coated with a nickel plating film 20 in which nanodiamond particles 21 are dispersed. Specifically, the nano diamond particles 21 are dispersed in a nickel plating solution, and the nickel plating film 20 is coated on the surface of the substrate 10 using the nickel plating solution. Moreover, as long as the nickel plating film 20 in which the nano diamond particles 21 are dispersed can be coated on the surface of the base material, the plating may be performed by any plating method such as electrolytic plating and electroless plating, and the plating method is particularly limited. Is not to be done.

なお、本実施形態では、ナノダイヤモンド粒子の粒径が10〜50nmの範囲にあるナノダイヤモンド粒子を添加しており、ニッケルめっき被膜20中にナノダイヤモンド粒子21が5〜20質量%に含有するように、ナノダイヤモンド粒子を添加している。これにより、後述する発明者が行った実施例からも明らかなように、非晶質炭素被膜を表面に被覆した摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性を向上させることができる。   In the present embodiment, nanodiamond particles having a nanodiamond particle size in the range of 10 to 50 nm are added, and the nanodiamond particles 21 are contained in the nickel plating film 20 in an amount of 5 to 20% by mass. In addition, nanodiamond particles are added. As a result, as will be apparent from the examples performed by the inventors, which will be described later, the wear resistance of the sliding member with the amorphous carbon coating coated on the surface, and the wear resistance of the mating member that slides on the sliding member. Can be improved.

また、ニッケルめっき被膜の厚みは、0.1μm以上であることが好ましい。この範囲の膜厚とすることにより、基材10と後述する非晶質炭素被膜30との密着性を確保することができる。さらに、摺動時に、ナノダイヤモンド粒子21を被膜内に好適に保持することができる。   Moreover, it is preferable that the thickness of a nickel plating film is 0.1 micrometer or more. By setting it as the film thickness of this range, the adhesiveness of the base material 10 and the amorphous carbon film 30 mentioned later is securable. Furthermore, the nanodiamond particles 21 can be suitably held in the coating during sliding.

〔非晶質炭素被膜被覆工程〕
次に、ニッケルめっき被膜20の表面に非晶質炭素被膜30を被覆する。具体的には、ニッケルめっき被膜20の表面に、露出したナノダイヤモンド粒子21を核として、ナノダイヤモンド粒子21から膜厚方向に非晶質炭素を成長させながら、ニッケルめっき被膜の表面に非晶質炭素被膜30を被覆する。
[Amorphous carbon film coating process]
Next, an amorphous carbon coating 30 is coated on the surface of the nickel plating coating 20. Specifically, amorphous carbon is grown on the surface of the nickel plating film while growing amorphous carbon in the film thickness direction from the nanodiamond particles 21 using the exposed nanodiamond particles 21 as nuclei on the surface of the nickel plating film 20. A carbon coating 30 is applied.

これにより、基材10の表面に被覆されたニッケルめっき被膜20の表面に、露出したナノダイヤモンド粒子21を核として、非晶質炭素が表面に向かって広がるように成長するので、得られた非晶質炭素被膜30の表面硬さは、ナノダイヤモンド粒子を用いないものよりも、高くなる。   As a result, amorphous carbon is grown on the surface of the nickel plating film 20 coated on the surface of the base material 10 so that the exposed nanodiamond particles 21 serve as nuclei so as to spread toward the surface. The surface hardness of the crystalline carbon coating 30 is higher than that without using the nanodiamond particles.

すなわち、ナノダイヤモンド粒子21を核として成長した非晶質炭素は、膜厚方向に沿って、非晶質炭素被膜30の表面へ広がるように成長した柱状体31となり、この柱状体31は、その他の部分32とは異なり、ナノダイヤモンド粒子に近い結晶構造となる。このような結果、得られた非晶質炭素被膜30は、これまでのものに比べて、耐摩耗性に優れ、かつ摩擦係数をも低減することができる。   That is, the amorphous carbon grown using the nanodiamond particles 21 as a nucleus becomes a columnar body 31 that is grown so as to spread on the surface of the amorphous carbon coating 30 along the film thickness direction. Unlike the portion 32, the crystal structure is close to that of nanodiamond particles. As a result, the obtained amorphous carbon film 30 is superior in wear resistance and can reduce the friction coefficient as compared with the conventional one.

非晶質炭素被膜30は、いわゆるDLC(ダイヤモンドライクカーボン)からなる被膜(DLC被膜)であり、非晶質炭素被膜30は、ナノダイヤモンド粒子21を核として、厚さ方向に成長した非晶質炭素の柱状体を得ることができるのであれば、スパッタリング、真空蒸着、イオン化蒸着、イオンプレーティング、などを利用した物理的蒸着法(PVD)により成膜してもよく、プラズマ処理などを利用した化学気相成長法(CVD)により、成膜してもよく、これらの方法を組み合わせた方法により成膜してもよい。非晶質炭素被膜30中に、Si、Ti、Cr、Fe、W、Bなどの添加元素を含有させてもよく、このような元素を添加することにより、被膜の表面硬さを調整することもできる。   The amorphous carbon coating 30 is a coating (DLC coating) made of so-called DLC (diamond-like carbon). If a carbon columnar body can be obtained, the film may be formed by physical vapor deposition (PVD) using sputtering, vacuum vapor deposition, ionization vapor deposition, ion plating, etc., and plasma treatment or the like is utilized. The film may be formed by chemical vapor deposition (CVD), or may be formed by a combination of these methods. The amorphous carbon coating 30 may contain additional elements such as Si, Ti, Cr, Fe, W, and B, and the surface hardness of the coating is adjusted by adding such elements. You can also.

また、非晶質炭素被膜30の被膜厚みは、0.5〜10μmであることが好ましく、表面硬さ(非晶質炭素が成長した部分の硬さ)は、Hv1500以上であることが好ましい。このような範囲とすることにより、被膜の密着性が高く、耐摩耗性を有した摺動部材1を得ることができる。   The film thickness of the amorphous carbon film 30 is preferably 0.5 to 10 μm, and the surface hardness (the hardness of the portion where the amorphous carbon has grown) is preferably Hv1500 or more. By setting it as such a range, the adhesiveness of a film is high and the sliding member 1 with abrasion resistance can be obtained.

なお、非晶質炭素被膜30の硬さは、PVDにより成膜する場合には、バイアス電圧等を変更することにより、調整することができる。また、非晶質炭素被膜30の表面粗さは、成膜前の基材10の表面粗さおよび成膜条件の制御により、所望の値に調整することができる。   Note that the hardness of the amorphous carbon film 30 can be adjusted by changing the bias voltage or the like when the film is formed by PVD. In addition, the surface roughness of the amorphous carbon coating 30 can be adjusted to a desired value by controlling the surface roughness of the substrate 10 before film formation and the film formation conditions.

このようにして、基材10の表面に、ニッケルめっき被膜20を介して非晶質炭素被膜30を被覆し、これを高面圧下でかつ摺動頻度の高い摺動部材1として使用したとしても、その表面の非晶質炭素被膜30の摩耗を抑制することができる。さらに、この摺動部材1と摺動する相手部材の摩耗も低減することができる。   In this way, even if the surface of the substrate 10 is coated with the amorphous carbon coating 30 via the nickel plating coating 20, and this is used as the sliding member 1 having a high surface pressure and a high sliding frequency. The wear of the amorphous carbon coating 30 on the surface can be suppressed. Furthermore, the wear of the mating member sliding with the sliding member 1 can also be reduced.

以下に本発明を実施例により説明する。
(実施例1)
<ニッケルめっき被膜を被覆する工程>
摺動部材の基材として、ステンレス鋼(JIS規格:SUS440C、焼き入れ品、表面硬さHv500)の棒材より、16mm×6mm×10mmのサイコロ試験片(表面粗さRa0.1μm)を準備した。次に、このサイコロ試験片の16mm×6mmを構成する表面に、以下に示すようにナノダイヤモンド粒子が分散されたNi−Pめっき被膜を被覆した。
Hereinafter, the present invention will be described by way of examples.
Example 1
<Process to coat nickel plating film>
As a base material of the sliding member, a 16 mm × 6 mm × 10 mm dice test piece (surface roughness Ra 0.1 μm) was prepared from a rod of stainless steel (JIS standard: SUS440C, hardened product, surface hardness Hv500). . Next, a Ni-P plating film in which nanodiamond particles were dispersed was coated on the surface of the dice test piece constituting 16 mm × 6 mm as shown below.

具体的には、平均粒径20nmの多結晶タイプのナノダイヤモンド粒子の表面に、アニオン官能基を導入したナノダイヤモンド粒子を用いて、これに界面活性剤を添加し、充分に攪拌した後に、無電解Ni−Pめっき液中(pH5.0)に添加した。なお、無電解Ni−Pめっき液の組成は、NiSO・6HOが0.1mol/L、NaHPO・HOが0.25mol/L、錯化剤が0.15〜0.5mol/L、Biが0.1〜0.2mol/L、pH調整剤にNaOH・HSOである。 Specifically, a nano-diamond particle having an anionic functional group introduced on the surface of a polycrystalline nano-diamond particle having an average particle diameter of 20 nm is added with a surfactant and sufficiently stirred. It added in the electrolytic Ni-P plating solution (pH 5.0). The composition of the electroless Ni—P plating solution is as follows: NiSO 4 .6H 2 O is 0.1 mol / L, NaH 2 PO 2 .H 2 O is 0.25 mol / L, and the complexing agent is 0.15 to 0. 0.5 mol / L, Bi is 0.1 to 0.2 mol / L, and the pH adjuster is NaOH · H 2 SO 4 .

この無電解Ni−Pめっき液に対して、ニッケルめっき被膜中にナノダイヤモンド粒子(平均粒径20nm)が10質量%に含有するように、ナノダイヤモンド粒子を添加した。さらに、めっき液中のナノダイヤモンド粒子の分散性を向上させるための界面活性剤として、リジアリルジメチルアンモニウムクロリド(PDADMAC)をさらに添加した。   Nanodiamond particles were added to the electroless Ni—P plating solution so that the nanodiamond particles (average particle size 20 nm) were contained in 10% by mass in the nickel plating film. Furthermore, as a surfactant for improving the dispersibility of the nanodiamond particles in the plating solution, ridialyldimethylammonium chloride (PDADMAC) was further added.

そして、基材であるサイコロ試験片の表面を脱脂および酸活性などの一般的に知られた前処理を行い、上述しためっき液に浸漬してめっき処理を行った。これによりサイコロ試験片の16mm×6mmを構成する表面に0.5μmのNi−Pめっき被膜を被覆した。   Then, generally known pretreatments such as degreasing and acid activity were performed on the surface of the dice specimen as a base material, and the plating treatment was performed by immersing in the above-described plating solution. Thus, a surface of 16 mm × 6 mm of the dice test piece was coated with a 0.5 μm Ni-P plating film.

<非晶質炭素被膜を被覆する工程>
ナノダイヤモンド粒子が分散したNi−Pめっき被膜の表面に、アンバランスドマグネトロンスパッタリング法により、非晶質炭素被膜(DLC被膜)を被覆した。具体的には、グラファイトターゲットを用い、処理室内に基材(サイコロ試験片)を配置し、基材温度を180℃にした。次に、反応ガスとしてArにCH(メタン)5体積%含有したガスを処理室内に流すと共に、バイアス電圧を100V印加した。これにより、基材表面に1.5μmの膜厚の非晶質炭素被膜を被覆し、本発明に相当する摺動部材を得た。なお、得られた非晶質炭素被膜の表面粗さは、Ra0.12μm、表面硬さは、Hv2000であった。
<Process for coating amorphous carbon film>
An amorphous carbon film (DLC film) was coated on the surface of the Ni-P plating film in which nanodiamond particles were dispersed by an unbalanced magnetron sputtering method. Specifically, a graphite target was used, a base material (dice test piece) was placed in the processing chamber, and the base material temperature was 180 ° C. Next, a gas containing 5% by volume of CH 4 (methane) in Ar as a reaction gas was allowed to flow into the processing chamber, and a bias voltage of 100 V was applied. As a result, the surface of the substrate was coated with an amorphous carbon film having a thickness of 1.5 μm, and a sliding member corresponding to the present invention was obtained. The obtained amorphous carbon coating had a surface roughness Ra of 0.12 μm and a surface hardness of Hv2000.

(比較例1)
実施例1と同様に摺動部材を作製した。実施例1と相違する点は、ニッケルめっき被膜を被覆する工程を行っていない点である。すなわち、比較例1の場合、16mm×6mm×10mmのサイコロ試験片(JIS規格:SUS440C、焼き入れ品、表面硬さHv500、表面粗さRa0.1μm)の16mm×6mmを構成する表面に、直接、実施例1と同じ条件で、アンバランスドマグネトロンスパッタリング法により、非晶質炭素被膜を被覆した。これにより、基材表面に1.5μmの膜厚の非晶質炭素被膜を被覆した摺動部材を得た。なお、得られた非晶質炭素被膜の表面粗さは、Ra0.12μm、表面硬さは、Hv1800であった。
(Comparative Example 1)
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that the step of coating the nickel plating film is not performed. That is, in the case of Comparative Example 1, a 16 mm × 6 mm × 10 mm dice test piece (JIS standard: SUS440C, quenched product, surface hardness Hv500, surface roughness Ra 0.1 μm) is directly formed on the surface constituting 16 mm × 6 mm. The amorphous carbon film was coated by the unbalanced magnetron sputtering method under the same conditions as in Example 1. Thereby, the sliding member which coat | covered the amorphous carbon film with a film thickness of 1.5 micrometers on the base-material surface was obtained. The obtained amorphous carbon coating had a surface roughness Ra of 0.12 μm and a surface hardness of Hv1800.

(比較例2)
実施例1と同様に摺動部材を作製した。実施例1と相違する点は、ニッケルめっき被膜を被覆する工程において、無電解Ni−Pめっき液にナノダイヤモンド粒子を添加していない点である。すなわち、比較例2の場合、16mm×6mm×10mmのサイコロ試験片(JIS規格:SUS440C、焼き入れ品、表面硬さHv500、表面粗さRa0.1μm)の16mm×6mmを構成する表面に、ナノダイヤモンド粒子が分散していないNi−Pめっき被膜を被覆した。
(Comparative Example 2)
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that nanodiamond particles are not added to the electroless Ni-P plating solution in the step of coating the nickel plating film. That is, in the case of Comparative Example 2, a 16 mm × 6 mm × 10 mm dice test piece (JIS standard: SUS440C, quenched product, surface hardness Hv500, surface roughness Ra 0.1 μm) is formed on the surface constituting nanometers. A Ni-P plating film in which diamond particles are not dispersed was coated.

そして、実施例1と同じ条件で、Ni−Pめっき被膜の表面に、アンバランスドマグネトロンスパッタリング法により、非晶質炭素被膜を被覆した。これにより、基材表面に1.5μmの膜厚の非晶質炭素被膜を被覆した摺動部材を得た。なお、得られた非晶質炭素被膜の表面粗さは、Ra0.12μm、表面硬さは、Hv1800であった。   And on the same conditions as Example 1, the surface of the Ni-P plating film was coated with an amorphous carbon film by an unbalanced magnetron sputtering method. Thereby, the sliding member which coat | covered the amorphous carbon film with a film thickness of 1.5 micrometers on the base-material surface was obtained. The obtained amorphous carbon coating had a surface roughness Ra of 0.12 μm and a surface hardness of Hv1800.

(実施例2)
実施例1と同様に摺動部材を作製した。実施例1と相違する点は、非晶質炭素被膜を被覆する工程であり、実施例2の場合には、ナノダイヤモンド粒子が分散したNi−Pめっき被膜の表面に、プラズマCVD法により、非晶質炭素被膜(DLC)被膜を被覆した点である。
(Example 2)
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is the step of coating an amorphous carbon film. In Example 2, the surface of the Ni-P plating film in which nanodiamond particles are dispersed is applied to the surface by plasma CVD. It is the point which coat | covered the crystalline carbon film (DLC) film.

具体的には、処理室内に基材(サイコロ試験片)を配置し、基材温度を190℃にした。次に、反応ガスとしてArにCH(メタン)5体積%含有したガスを処理室内に導入と共に、バイアス電圧を100Vにして印加した。これにより、基材表面に1.8μmの膜厚の非晶質炭素被膜を被覆し、本発明に相当する摺動部材を得た。なお、得られた非晶質炭素被膜の表面粗さは、Ra0.13μm、表面硬さは、Hv1700であった。 Specifically, a base material (dice test piece) was placed in the processing chamber, and the base material temperature was set to 190 ° C. Next, a gas containing 5% by volume of CH 4 (methane) in Ar as a reaction gas was introduced into the processing chamber, and a bias voltage was applied at 100V. As a result, the surface of the base material was coated with an amorphous carbon film having a thickness of 1.8 μm, and a sliding member corresponding to the present invention was obtained. The obtained amorphous carbon coating had a surface roughness Ra of 0.13 μm and a surface hardness of Hv1700.

(比較例3)
実施例2と同様に摺動部材を作製した。実施例1と相違する点は、ニッケルめっき被膜を被覆する工程において、無電解Ni−Pめっき液にナノダイヤモンド粒子を添加していない点である。すなわち、比較例2の場合、16mm×6mm×10mmのサイコロ試験片(JIS規格:SUS440C、焼き入れ品、表面硬さHv500、表面粗さRa0.1μm)の16mm×6mmを構成する表面に、ナノダイヤモンド粒子が分散していないNi−Pめっき被膜を被覆した。
(Comparative Example 3)
A sliding member was produced in the same manner as in Example 2. The difference from Example 1 is that nanodiamond particles are not added to the electroless Ni-P plating solution in the step of coating the nickel plating film. That is, in the case of Comparative Example 2, a 16 mm × 6 mm × 10 mm dice test piece (JIS standard: SUS440C, quenched product, surface hardness Hv500, surface roughness Ra 0.1 μm) is formed on the surface constituting nanometers. A Ni-P plating film in which diamond particles are not dispersed was coated.

そして、実施例2と同じ条件で、Ni−Pめっき被膜の表面に、プラズマCVD法により、非晶質炭素被膜を被覆した。これにより、基材表面に1.5μmの膜厚の非晶質炭素被膜を被覆した摺動部材を得た。なお、得られた非晶質炭素被膜の表面粗さは、Ra0.13μm、表面硬さは、Hv1500であった。   And on the same conditions as Example 2, the surface of the Ni-P plating film was coated with an amorphous carbon film by plasma CVD. Thereby, the sliding member which coat | covered the amorphous carbon film with a film thickness of 1.5 micrometers on the base-material surface was obtained. The obtained amorphous carbon film had a surface roughness Ra of 0.13 μm and a surface hardness of Hv1500.

<摩耗試験>
実施例1、2および比較例1〜3の摺動部材の相手部材として、炭素鋼(JIS規格:S30C)を用いて、外径35mm、内径30mm、幅10mmの円筒試験片を作製した。この円筒試験片に対して焼き入れ、焼き戻しを行い、円筒試験片の外周面を研磨した。得られた円筒試験片の周面の表面粗さは、Ra0.16μm、表面硬さは、Hv290であった。
<Abrasion test>
Cylindrical test pieces having an outer diameter of 35 mm, an inner diameter of 30 mm, and a width of 10 mm were produced using carbon steel (JIS standard: S30C) as the mating member of the sliding members of Examples 1 and 2 and Comparative Examples 1 to 3. The cylindrical specimen was quenched and tempered, and the outer peripheral surface of the cylindrical specimen was polished. The surface roughness of the peripheral surface of the obtained cylindrical test piece was Ra 0.16 μm, and the surface hardness was Hv290.

そして、それぞれの実施例1、2および比較例1〜3の摺動部材(サイコロ試験片)の16mm×6mmの表面(すなわち、非晶質炭素被膜が被覆された表面)と、円筒試験片の外周面を接触させ、潤滑油(SAE5W−30)を供給しながら、荷重60kgf、回転数160rpmの条件で、円筒試験片を30分間回転させる摩耗試験を行った。この結果を図2および表1に示す。   Then, the surface of 16 mm × 6 mm (that is, the surface coated with the amorphous carbon film) of the sliding members (dice test pieces) of Examples 1 and 2 and Comparative Examples 1 to 3, and the cylindrical test piece An abrasion test was performed in which a cylindrical test piece was rotated for 30 minutes under the conditions of a load of 60 kgf and a rotation speed of 160 rpm while contacting the outer peripheral surface and supplying lubricating oil (SAE5W-30). The results are shown in FIG.

図2に示す、摺動部材に相当するサイコロ試験片の摩耗量は、摩耗痕深さであり、円筒試験片の摩耗量は摩耗重量である。また、表1に示す摩擦係数の値は、摩耗試験開始30分直後の摩擦係数の値である。   The wear amount of the dice test piece corresponding to the sliding member shown in FIG. 2 is the wear scar depth, and the wear amount of the cylindrical test piece is the wear weight. Moreover, the value of the friction coefficient shown in Table 1 is the value of the friction coefficient immediately after 30 minutes from the start of the wear test.

Figure 0005691984
Figure 0005691984

〔結果1および考察〕
図2に示すように、実施例1および2の場合、サイコロ試験片(摺動部材)および円筒試験片(相手部材)のいずれの摩耗量も、比較例1〜3のものに比べて少なかった。また、表1に示すように、実施例1および2の場合、摩擦係数は、比較例1〜3のものに比べて小さかった。なお、実施例1および2の場合、ニッケルめっき被膜の表面に露出したナノダイヤモンド粒子に隣接する非晶質炭素の硬度は、他の部分に比べて高かった。
[Result 1 and discussion]
As shown in FIG. 2, in the case of Examples 1 and 2, the amount of wear of each of the dice test piece (sliding member) and the cylindrical test piece (mating member) was less than those of Comparative Examples 1 to 3. . As shown in Table 1, in Examples 1 and 2, the friction coefficient was smaller than those in Comparative Examples 1 to 3. In Examples 1 and 2, the hardness of the amorphous carbon adjacent to the nanodiamond particles exposed on the surface of the nickel plating film was higher than that of the other parts.

以上のことから、実施例1および2の場合には、ニッケルめっき被膜の表面に非晶質炭素被膜を被覆する際に、ニッケルめっき被膜の表面に露出したナノダイヤモンド粒子を核として、ナノダイヤモンド粒子から膜厚方向に非晶質炭素を成長したことにより、非晶質炭素被膜の硬度が上昇し、耐摩耗性が向上したものと考えられる。   From the above, in the case of Examples 1 and 2, when the surface of the nickel plating film was coated with the amorphous carbon film, the nano diamond particles exposed on the surface of the nickel plating film were used as nuclei. It is considered that the growth of amorphous carbon in the film thickness direction increased the hardness of the amorphous carbon film and improved the wear resistance.

すなわち、ナノダイヤモンド粒子を核として成長した非晶質炭素は、膜厚方向に沿って柱状体となり、この柱状体は、ナノダイヤモンド粒子に近い結晶構造となったと考えられる。このような結果、得られた非晶質炭素被膜は、これまでのものに比べて、耐摩耗性に優れ、かつ摩擦係数をも低減したと考えられる。   That is, it is considered that amorphous carbon grown using nanodiamond particles as nuclei has a columnar body along the film thickness direction, and this columnar body has a crystal structure close to that of nanodiamond particles. As a result, it is considered that the obtained amorphous carbon film is superior in wear resistance and has a reduced friction coefficient as compared with the conventional one.

(実施例3)
実施例1と同様に摺動部材を作製した。実施例1と相違する点は、ニッケルめっき被膜を被覆する工程において、図3に示すように、ナノダイヤモンド粒子の平均粒径のみを変化させて(順に平均粒径が5nm,10nm,20nm,45nm,60nm)、ニッケルめっき被膜をサイコロ試験片の表面に被覆した点である。いずれの場合も、ナノダイヤモンド粒子の添加量はニッケルめっき被膜に対して10質量%である。
(Example 3)
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that in the step of coating the nickel plating film, as shown in FIG. 3, only the average particle diameter of the nanodiamond particles is changed (in order, the average particle diameter is 5 nm, 10 nm, 20 nm, 45 nm). , 60 nm), a surface of a dice test piece coated with a nickel plating film. In any case, the amount of nanodiamond particles added is 10% by mass with respect to the nickel plating film.

なお、ここでいう平均粒径(粒径)とは、動的光散乱法粒子径分布解析装置(ナノアナライザー(商品名 DelsaNano・S)(仕様:30mW半導体レーザー、測定原理:光子相関法)を用いて、粒子径分布から求めた粒径の平均値である。そして、実施例1と同様に摩耗試験を行った。この結果を、図3に示す。   The average particle size (particle size) here refers to a dynamic light scattering particle size distribution analyzer (nanoanalyzer (trade name: Delsa Nano · S) (specification: 30 mW semiconductor laser, measurement principle: photon correlation method)). The average value of the particle size obtained from the particle size distribution was used, and a wear test was conducted in the same manner as in Example 1. The results are shown in FIG.

〔結果2および考察〕
図3に示すように、ナノダイヤモンド粒子の粒径が10〜50nmの範囲にあるナノダイヤモンド粒子を添加することにより、摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性がさらに向上すると考えられる。
[Result 2 and discussion]
As shown in FIG. 3, by adding nanodiamond particles having a nanodiamond particle size in the range of 10 to 50 nm, the wear resistance of the sliding member and the wear resistance of the mating member sliding on the slide member are added. It is thought that the property is further improved.

ナノダイヤモンド粒子の粒径が、10nm未満である場合には、非晶質炭素被膜を成膜する工程において、ナノダイヤモンド粒子を核として非晶質炭素が充分に成長しないと考えられ、これにより非晶質炭素被膜の硬度を充分に高めることができない。また、ナノダイヤモンド粒子の粒径が、50nmを超えた場合には、ニッケルめっき被膜の表面に、ナノダイヤモンド粒子が均一に分散し難くなると考えられる。この結果、成膜された非晶質炭素被膜の表面粗さが大きくなり、相手部材の摩耗が増大し、摩擦係数も高くなる。   When the nanodiamond particles have a particle size of less than 10 nm, it is considered that the amorphous carbon does not grow sufficiently with the nanodiamond particles as a nucleus in the step of forming the amorphous carbon film. The hardness of the crystalline carbon film cannot be sufficiently increased. Further, when the particle diameter of the nanodiamond particles exceeds 50 nm, it is considered that the nanodiamond particles are difficult to uniformly disperse on the surface of the nickel plating film. As a result, the surface roughness of the deposited amorphous carbon coating increases, wear of the mating member increases, and the friction coefficient increases.

(実施例4)
実施例1と同様に摺動部材を作製した。実施例1と相違する点は、ニッケルめっき被膜を被覆する工程において、図4に示すように、ニッケルめっき被膜に対してナノダイヤモンド粒子の添加する量(分散量)を変化させて(順に平均分散量が、4質量%,5質量%,10質量%,18質量%,25質量%)、それぞれに対してニッケルめっき被膜をサイコロ試験片の表面に被覆した点である。そして、実施例1と同様に摩耗試験を行った。この結果を、図4に示す。
Example 4
A sliding member was produced in the same manner as in Example 1. The difference from Example 1 is that, in the step of coating the nickel plating film, as shown in FIG. 4, the amount (dispersion amount) of nanodiamond particles added to the nickel plating film is changed (average dispersion in order). The amount is 4 mass%, 5 mass%, 10 mass%, 18 mass%, 25 mass%), and a nickel plating film is coated on the surface of the dice test piece. And the abrasion test was done like Example 1. FIG. The result is shown in FIG.

〔結果2および考察〕
図4に示すように、ニッケルめっき被膜中にナノダイヤモンド粒子が5〜20質量%に含有するように、ナノダイヤモンド粒子を添加することにより、摺動部材の耐摩耗性、および、これに摺動する相手部材の耐摩耗性がさらに向上すると考えられる。
[Result 2 and discussion]
As shown in FIG. 4, by adding nanodiamond particles such that the nanodiamond particles are contained in the nickel plating film in an amount of 5 to 20% by mass, the wear resistance of the sliding member, and sliding to this is achieved. It is considered that the wear resistance of the mating member is further improved.

ニッケルめっき被膜中に含有するナノダイヤモンド粒子が5質量%未満である場合には、非晶質炭素被膜を成膜する工程において、ナノダイヤモンド粒子を核として非晶質炭素が充分に成長しないと考えられ、これにより非晶質炭素被膜の硬度を充分に高めることができなかったと考えられる。   When the nanodiamond particles contained in the nickel plating film are less than 5% by mass, it is considered that the amorphous carbon does not grow sufficiently with the nanodiamond particles as a nucleus in the step of forming the amorphous carbon film. Thus, it is considered that the hardness of the amorphous carbon film could not be sufficiently increased.

また、ニッケルめっき被膜中に含有するナノダイヤモンド粒子が20質量%を超えた場合には、ニッケルめっき被膜の表面に、ナノダイヤモンド粒子が均一に分散し難くなる。この結果、成膜された非晶質炭素被膜の表面粗さが大きくなり、相手部材の摩耗が増大し、摩擦係数も高くなると考えられる。これに加えて、ニッケルめっき被膜によるナノダイヤモンド粒子の保持力が充分とは言えず、摺動時に、ナノダイヤモンド粒子の脱落が発生し、耐摩耗性が低下することが確認された。   Moreover, when the nanodiamond particle | grains contained in a nickel plating film exceed 20 mass%, it becomes difficult to disperse | distribute nanodiamond particles uniformly on the surface of a nickel plating film. As a result, it is considered that the surface roughness of the formed amorphous carbon coating increases, wear of the mating member increases, and the friction coefficient increases. In addition to this, it was confirmed that the nanodiamond particles were not sufficiently retained by the nickel plating film, and the nanodiamond particles dropped off during sliding, resulting in a decrease in wear resistance.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.

1:摺動部材、10:基材、20:ニッケルめっき被膜、21:ナノダイヤモンド粒子、30:非晶質炭素被膜、31:柱状体 1: sliding member, 10: base material, 20: nickel plating film, 21: nanodiamond particles, 30: amorphous carbon film, 31: columnar body

Claims (4)

基材の表面に、ナノダイヤモンド粒子が分散されたニッケルめっき被膜を被覆する工程と、
前記ニッケルめっき被膜の表面に露出したナノダイヤモンド粒子を核として、該ナノダイヤモンド粒子から膜厚方向に非晶質炭素を成長させながら、前記ニッケルめっき被膜の表面に非晶質炭素被膜を被覆する工程と、を少なくとも含み、
前記ニッケルめっき被膜を被覆する工程において、前記ナノダイヤモンド粒子の粒径が10〜50nmの範囲にあるナノダイヤモンド粒子を添加することを特徴とする摺動部材の製造方法。
Coating the surface of the substrate with a nickel plating film in which nanodiamond particles are dispersed;
The step of coating the surface of the nickel plating film with the amorphous carbon film while growing the amorphous carbon in the film thickness direction from the nanodiamond particles using the nanodiamond particles exposed on the surface of the nickel plating film as a nucleus and, at least look at including the,
In the step of coating the nickel plating film, a nanodiamond particle having a particle diameter of 10 to 50 nm is added .
前記ニッケルめっき被膜を被覆する工程において、前記ニッケルめっき被膜中に前記ナノダイヤモンド粒子が5〜20質量%有するように、前記ナノダイヤモンド粒子を添加することを特徴とする請求項1記載の摺動部材の製造方法。 In the step of coating said nickel plating film, the so said in the nickel plating film nanodiamond particles have contains 5-20% by weight, sliding according to claim 1, characterized in that the addition of the nanodiamond particles Manufacturing method of moving member. 基材の表面に、ナノダイヤモンド粒子が分散されたニッケルめっき被膜と、該ニッケルめっき被膜の表面に、前記ナノダイヤモンド粒子を核として、該ナノダイヤモンド粒子から膜厚方向に成長した非晶質炭素を含む非晶質炭素被膜が被覆されており、
前記ナノダイヤモンド粒子の粒径は、10〜50nmの範囲であることを特徴とする摺動部材。
A nickel-plated film in which nano-diamond particles are dispersed on the surface of the substrate, and amorphous carbon grown in the film thickness direction from the nano-diamond particles with the nano-diamond particles as a nucleus on the surface of the nickel-plated film. Containing amorphous carbon coating ,
The nanodiamond particles have a particle size in the range of 10 to 50 nm .
前記ニッケルめっき被膜中には、ナノダイヤモンド粒子が5〜20質量%含有していることを特徴とする請求項に記載の摺動部材。 The sliding member according to claim 3 , wherein the nickel plating film contains 5 to 20 mass% of nanodiamond particles.
JP2011221996A 2011-10-06 2011-10-06 Sliding member and manufacturing method thereof Active JP5691984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221996A JP5691984B2 (en) 2011-10-06 2011-10-06 Sliding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221996A JP5691984B2 (en) 2011-10-06 2011-10-06 Sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013082956A JP2013082956A (en) 2013-05-09
JP5691984B2 true JP5691984B2 (en) 2015-04-01

Family

ID=48528426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221996A Active JP5691984B2 (en) 2011-10-06 2011-10-06 Sliding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5691984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628499B2 (en) * 2015-06-05 2020-01-08 株式会社クボタ Sliding member and pump
WO2017061246A1 (en) * 2015-10-08 2017-04-13 株式会社ダイセル Method for recovering nanodiamond from plating solution
JP6597962B2 (en) * 2015-11-13 2019-10-30 日産自動車株式会社 A sliding mechanism, a refrigerant compressor and an air conditioner using the sliding mechanism, and a method for manufacturing the sliding mechanism.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134378B2 (en) * 1991-08-15 2001-02-13 住友電気工業株式会社 Diamond coated hard material
JPH1082390A (en) * 1996-07-18 1998-03-31 Sanyo Electric Co Ltd Sliding member, compressor and rotary compressor
JPH10139590A (en) * 1996-11-14 1998-05-26 Fujitsu Ltd Structural body having diamond thin film and its production
JP2004346353A (en) * 2003-05-21 2004-12-09 Hitachi Ltd Method of forming amorphous carbon film
JP2006225730A (en) * 2005-02-18 2006-08-31 Nagaoka Univ Of Technology Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method
DE102006029817A1 (en) * 2006-06-28 2008-01-03 Siemens Ag Sheet metal and method for producing a metal sheet
JP5435477B2 (en) * 2010-01-22 2014-03-05 アイテック株式会社 Composite plating solution in which fine diamond particles are dispersed and method for producing the same

Also Published As

Publication number Publication date
JP2013082956A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
CN101479401B (en) Wear-resistant coating and production method for the same
KR101282483B1 (en) Wear-resistant coating and method of producing the same
RU2520245C2 (en) Sliding element, particularly, coated piston ring, and method of its fabrication
US20070141347A1 (en) Hard carbon film, production method thereof, and sliding member
EP2940350B1 (en) Combination of cylinder and piston ring
JP2008081522A (en) Slide member
JP5691984B2 (en) Sliding member and manufacturing method thereof
JP2006152428A (en) Hard carbon coated sliding member
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
CN112342525B (en) CVD (chemical vapor deposition) coating suitable for vermicular cast iron cutting processing and preparation method thereof
JP7284700B2 (en) sliding mechanism
JP4730159B2 (en) Sliding member and manufacturing method thereof
JP5629716B2 (en) Hard coating, sliding parts, manufacturing method of sliding parts
JP2005320947A (en) Sliding member and method of manufacturing sliding member
Kostylev et al. Advanced Chromium Carbide Coatings on Piston Rings by CVD: A Highly Adaptable
JP2007032758A (en) Combination of sliding members and internal combustion engine using combination of sliding members and sliding bearing mechanism
JP4135087B2 (en) Hard carbon film for sliding member and manufacturing method thereof
JP5640942B2 (en) Sliding member and manufacturing method thereof
JP2013091823A (en) Sliding component
JP2006257916A (en) Combinational sliding member
JP4968620B2 (en) Hard carbon coating
WO2022209023A1 (en) Piston ring and manufacturing method therefor
EP4080033A1 (en) Piston ring, and method for manufacturing same
WO2022131057A1 (en) Film, and piston ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5691984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151