JP5688785B2 - HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD - Google Patents

HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD Download PDF

Info

Publication number
JP5688785B2
JP5688785B2 JP2008226331A JP2008226331A JP5688785B2 JP 5688785 B2 JP5688785 B2 JP 5688785B2 JP 2008226331 A JP2008226331 A JP 2008226331A JP 2008226331 A JP2008226331 A JP 2008226331A JP 5688785 B2 JP5688785 B2 JP 5688785B2
Authority
JP
Japan
Prior art keywords
heat
heat transfer
solid particles
heat recovery
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008226331A
Other languages
Japanese (ja)
Other versions
JP2010060203A (en
Inventor
一佳 春海
一佳 春海
裕幸 村田
裕幸 村田
雅樹 安達
雅樹 安達
正英 高木
正英 高木
冨士夫 稲坂
冨士夫 稲坂
岡 秀行
秀行 岡
克英 平岡
克英 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2008226331A priority Critical patent/JP5688785B2/en
Publication of JP2010060203A publication Critical patent/JP2010060203A/en
Application granted granted Critical
Publication of JP5688785B2 publication Critical patent/JP5688785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Description

本発明は、たとえば熱伝効率の向上を図る流動層装置及び流動層の流動方法に係り、特に熱流体を送気させる流動層が所定の傾斜を静的もしくは動的に持つことで、熱伝達を担う粒子が流動層の壁面に接触する量及び機会を増やし、熱伝効率の向上を図る流動装置及び流動層の流動方法に関する。   The present invention relates to a fluidized bed apparatus and a fluidized bed fluidization method for improving heat transfer efficiency, for example, and in particular, a fluidized bed for supplying a thermal fluid has a predetermined inclination statically or dynamically, thereby transferring heat. The present invention relates to a fluidizing device and a fluidized bed fluidization method that increase the amount and opportunity of contact of the particles bearing the fluidized bed with the wall surface of the fluidized bed to improve heat transfer efficiency.

従来、エンジンその他燃焼機関から排出される熱を回収する技術として、流動層が注目されている。図8は、従来技術による流動層装置1を示す図であり、図9は、従来技術による循環式流動層装置2を示す図である。これらの図に示すように、流動層装置に係る流動層の壁面に伝熱面20−1或いは内部に伝熱面20−2を配置し、流動層内に固体粒子70を混入させ、粒子の存在により熱伝達率の向上を図ろうとしている。この場合、伝熱面における熱伝達率に対しては、壁面に沿って流動層内の固体粒子が流下する「ダウンフロー」(以下、「壁面下降流」ともいう。)と呼ばれる現象が支配的な効果を及ぼす。   Conventionally, fluidized beds have attracted attention as a technique for recovering heat exhausted from engines and other combustion engines. FIG. 8 is a diagram showing a fluidized bed apparatus 1 according to the prior art, and FIG. 9 is a diagram showing a circulating fluidized bed apparatus 2 according to the prior art. As shown in these figures, the heat transfer surface 20-1 is arranged on the wall surface of the fluidized bed according to the fluidized bed apparatus or the heat transfer surface 20-2 is placed inside, and the solid particles 70 are mixed in the fluidized bed, The existence is trying to improve the heat transfer coefficient. In this case, a phenomenon called “down flow” (hereinafter also referred to as “wall downward flow”) in which solid particles in the fluidized bed flow down along the wall surface is dominant for the heat transfer coefficient on the heat transfer surface. Effects.

一方、コンパクトな熱交換システムとして、熱伝達率の向上が可能な固気混相流を用いた流動層の利用が実用化され、たとえば、下記特許文献1乃至2に記述されるような流動層装置の思想が開示されてきた。   On the other hand, the use of a fluidized bed using a solid-gas mixed phase flow capable of improving the heat transfer coefficient as a compact heat exchange system has been put into practical use. For example, a fluidized bed apparatus as described in Patent Documents 1 and 2 below The idea has been disclosed.

特許文献1は、流動層内の傾斜壁により固体粒子の浮上や拡散を抑制し、少ない設置面積でコンパクトに設備を構成し、燃焼効率を向上させる技術思想を開示している。しかし、特許文献1に開示される傾斜壁は、流動化媒体及び/又は未燃焼物からなる固体粒子の該流動層からの浮上を抑制するためのものであり、傾斜壁自体が熱交換と関係しているわけではない。   Patent Document 1 discloses a technical idea of suppressing the floating and diffusion of solid particles by an inclined wall in a fluidized bed, configuring equipment compactly with a small installation area, and improving combustion efficiency. However, the inclined wall disclosed in Patent Document 1 is for suppressing the floating of solid particles made of fluidized medium and / or unburned matter from the fluidized bed, and the inclined wall itself is related to heat exchange. I'm not doing it.

特許文献2は、循環機能を持つ流動装置において、その下部及び上部にそれぞれ斜設された入側斜管及び出側斜管に係る横断面形状を矩形とし、かつ、矩形断面を所定の数値範囲とする技術思想を開示している。しかし、特許文献2に開示される入側斜管及び出側斜管は、予備還元炉の操業について効率性向上及び逆流ガス発生抑止をなそうとするものであり、斜管が熱交換と関係しているわけではない。   Patent Document 2 discloses that in a flow device having a circulation function, the cross-sectional shape of an inlet-side inclined tube and an outlet-side inclined tube inclined at the lower and upper portions thereof is rectangular, and the rectangular cross-section is in a predetermined numerical range. The technical idea is disclosed. However, the inlet-side inclined tube and the outlet-side inclined tube disclosed in Patent Document 2 are intended to improve the efficiency of the operation of the preliminary reduction furnace and to suppress the generation of backflow gas, and the inclined tube is related to heat exchange. I'm not doing it.

特許文献3は、流動層乾燥機に係る乾燥室を下り勾配に傾斜させ乾燥物を自然に流動化させる技術思想を開示している。しかし、特許文献3に開示された思想では、粒子が流動化したとしても壁面に接触する機会を増やすことは困難であるため、ダウンフローから最適な熱伝達率が実現しているわけではない。
特開平10−089649号公報 特開平05−331516号公報 特開平10−54525号公報
Patent document 3 is disclosing the technical idea which makes the drying chamber which concerns on a fluidized bed dryer incline to a downward slope, and fluidizes a dried material naturally. However, according to the idea disclosed in Patent Document 3, it is difficult to increase the chance of contact with the wall surface even if the particles are fluidized, and thus an optimum heat transfer coefficient is not realized from the downflow.
JP-A-10-089649 JP 05-331516 A Japanese Patent Laid-Open No. 10-54525

上述したように、固気混相流を用いた流動層において、循環機能の有無に拘らず、粒子を用いて熱伝達率を向上させるという思想は、上記特許文献等を初め、種々開示されている。しかし、これらのいずれも、ダウンフローの原理を有効に活用しきれておらず、熱伝達を最適に行っていないと考えられる。   As described above, in the fluidized bed using the solid-gas mixed phase flow, the idea of improving the heat transfer coefficient using particles irrespective of the presence or absence of the circulation function has been disclosed in various ways including the above-mentioned patent documents. . However, none of these have effectively utilized the downflow principle, and it is considered that heat transfer is not optimally performed.

すなわち、熱回収では、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されることで、熱伝達率を向上させることができるものと考えられるが、従来技術のように垂直な壁面だとこの接触時間が十分に確保されないことから、結果的に伝熱効率が最適なものになっていなかったものと推定される。   In other words, heat recovery promotes overall heat transfer by allowing the particles to be in contact with each other for a period of time that is moderately transferred to the wall, and the particles that have finished transferring heat change from one to the next. It is thought that the heat transfer coefficient can be improved, but if the wall surface is vertical as in the prior art, this contact time will not be sufficiently secured, and as a result, the heat transfer efficiency will be optimal. It is estimated that it was not.

本願は、こうした従来技術の問題点を解決するもので、熱流体を送気させる熱回収装置において、壁面に接触する粒子の数量を増やし、これによって熱伝達を行う粒子が熱回収装置に接触する機会及び接触している時間を適度に増大させ、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進される、熱伝効率の向上を図る熱回収装置及び熱回収装置の熱回収方法を提供することを課題とする。 The present application solves such problems of the prior art, and in a heat recovery device that sends a thermal fluid, the number of particles that come into contact with the wall surface is increased so that the particles that conduct heat contact the heat recovery device . By increasing the opportunity and the time of contact moderately, the amount of heat that the particles have is transferred to the wall for a reasonable amount of time, and the particles that have finished transferring heat will change from one to the next. It is an object of the present invention to provide a heat recovery device and a heat recovery method for the heat recovery device that can improve heat transfer efficiency and promote efficient heat transfer .

かかる課題を達成するために、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、排気ガスとの直接の熱交換を含む排熱との熱交換により固体粒子を加熱する加熱手段と、前記加熱手段によ加熱前もしくは加熱後の前記固体粒子を搬送させるための気体を送る送気手段と、前記気体により搬送される前記加熱前もしくは加熱後の前記固体粒子及びこれを搬送する前記気体の周囲に設けた外郭とを具備する固気混相流を用いた熱回収装置において前記外郭を前記固体粒子が前記送気手段からの気体により上方へ搬送されるライザー部として重力方向に狭くなるように傾斜させて構成し、浮上した前記固体粒子のダウンフローによる熱伝達を行うために少なくとも前記外郭の下部及び中央部において前記外郭に在させ傾斜させて設けた熱回収用の熱交換器及び/または前記外郭内に斜させて設けた熱回収用の熱交換器をさらに備え前記気体の通過量を前記外郭の内断面積で除した値である空塔速度(m/s)を、前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記外郭の下部の粒子容積分率が急減する下限値である2.21から前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記空塔速度を持たせるためのエネルギー消費量が少なくてすむ上限値である4.0の間に設定したことを特徴とする。本発明では、外郭及び/もしくは伝熱手段を斜めにするという着想を単に着想にとどまらせることなく、後述の実験データによりその効果を実証し、しかも傾斜させた熱交換器(たとえば伝熱板)の最適設置箇所を割り出したものである。 In order to achieve such a problem, the heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application is a heating means for heating solid particles by heat exchange with exhaust heat including direct heat exchange with exhaust gas. When the blowing means for sending the gas for transporting the solid particles after by that heating before or heated to the heating means, the solid particles after the heating before or heated is conveyed by the gas and this transport in the heat recovery apparatus using the solid-gas mixed flow comprising the outer provided around the gas to be gravity direction riser portion of the outer said solid particles being transported upwards by the gas from the gas supply means is inclined configured to be narrower in, it is inclined so Zaisa through the outer at least the lower and middle part of the outer in order to carry out heat transfer by downflow floated said solid particles Digit on an angle to the heat recovery heat exchanger for and / or the inner shell further comprises a heat exchanger for heat recovery which is provided by, is a value of the throughput divided by the inner cross-sectional area of the outer shell of said gas The superficial velocity (m / s) is a lower limit value at which the solid particles can float up to the upper end of the outer shell and circulate in the outer shell, and the particle volume fraction at the lower portion of the outer shell rapidly decreases. Between 4.0, which is an upper limit value that allows the solid particles to float up from 21 to the upper end of the outer shell, circulate in the outer shell, and requires less energy to give the superficial velocity. It is characterized by setting . In the present invention, the idea of tilting the outer shell and / or the heat transfer means is not limited to the idea, but the effect is demonstrated by experimental data described later, and the heat exchanger is inclined (for example, a heat transfer plate). The optimal installation location is determined.

ここで、加熱手段とは、物体の温度を上昇させるための加熱機能を果たす装置、機械、器具、システム等をいい、例えば、主位的には、主機(エンジンやボイラー等)の排熱(排気ガスから直接に、あるいは排熱回収熱交換器や排ガスエコノマイザーから得る。)、過給機の排熱(インタークーラー等から得る。)、或いは発電機の排熱等を再利用することによって実現されるものをいうが、従位的には、重油等の化石燃料燃焼を熱源とするもの、自然エネルギーを利用するもの、ヒートポンプ等によるものをいい、これら総てを含み、かつ、これらに限定されない概念である。また、船舶に係るエンジンからの排熱を回収する排熱回収熱交換器或いは排ガスエコノマイザーを用いるものであってもよい。   Here, the heating means refers to a device, machine, instrument, system, or the like that performs a heating function for increasing the temperature of an object. For example, mainly, exhaust heat (engine, boiler, etc.) of a main machine (engine, boiler, etc.) Realized by reusing the exhaust heat directly from the exhaust gas or from the exhaust heat recovery heat exchanger or exhaust gas economizer), exhaust heat from the turbocharger (obtained from the intercooler, etc.), or exhaust heat from the generator However, the subordinates are those that use fossil fuel combustion such as heavy oil, heat sources, those that use natural energy, heat pumps, etc. Not a concept. Further, an exhaust heat recovery heat exchanger or exhaust gas economizer that recovers exhaust heat from the engine related to the ship may be used.

固体粒子とは、熱を回収し、送気手段により外郭を流動するものであり、石灰石粒子(例えば、好適には、粒径:0.18〜0.35mm)、活性炭、生石灰及び酸化鉄を含み、伝熱効率が高いことが好ましい。さらに、固体粒子が脱硫効果を有し、脱硫作用を複数回繰り返し行うことができる多孔質、及び/或いは、脱硫効果が無くなってしまった固体粒子を都度交換できる仕組みがより好ましい。   Solid particles are those that recover heat and flow through the outer shell by air supply means, and include limestone particles (for example, preferably particle size: 0.18 to 0.35 mm), activated carbon, quick lime, and iron oxide. It is preferable that the heat transfer efficiency is high. Further, a porous structure in which the solid particles have a desulfurization effect and the desulfurization action can be repeated a plurality of times and / or a mechanism capable of exchanging the solid particles that have lost the desulfurization effect each time are more preferable.

外郭とは、固体粒子が飛散しないようにするシェルを指し、本願ではここを傾斜させる構成を有している。外郭はたとえば、固体粒子及び固体粒子を搬送するための気体が通過或いは堆積する内部を形成するように板状物質で折曲もしくは湾曲させたものでもよく、具体的には、固体粒子を気体により上方へ搬送させるためのライザー部を含む。また、外郭の形状に限定はなく、筐体形、筐体斜形、円筒形、円柱形、斜円柱形、多角柱形、多角斜柱形、円錐形、円斜錐形、多角錐形、多角斜錐形を含む。   The outer shell refers to a shell that prevents solid particles from scattering, and in the present application, the outer shell is configured to be inclined. For example, the outer shell may be formed by bending or bending a plate-like substance so as to form a solid particle and an inside through which gas for transporting the solid particle passes or deposits. A riser part for carrying it upward is included. In addition, the shape of the outer shell is not limited, and the case shape, the case oblique shape, the cylindrical shape, the columnar shape, the oblique column shape, the polygonal column shape, the polygonal oblique column shape, the conical shape, the circular cone shape, the polygonal cone shape, the polygonal shape, and the like. Includes an oblique cone.

送気手段とは、外郭内において固体粒子を搬送するための気体を供給する機能を備える機械、装置、器具を含む概念であり、ブロワーやタービン駆動のコンプレッサー、船舶に予め装備されている空気圧供給源、機関の排気ガスを加圧したもの等を含む。エンジンや過給器のように発熱と圧力発生を同時に行うものでもよい。なお、その送気量の変動が少ないものが好ましい。   The air supply means is a concept including a machine, a device, and an instrument having a function of supplying a gas for transporting solid particles in the outer shell, and a pneumatic supply preinstalled in a blower, a turbine driven compressor, or a ship. Source, engine exhaust gas pressurization, etc. It may be one that generates heat and generates pressure simultaneously, such as an engine or a supercharger. In addition, the thing with little fluctuation | variation of the air supply amount is preferable.

伝熱手段とは、温度の高い物体から低い物体へ効率的に熱を移動させる機能を備える機械、装置、器具を含み、例えば、スパイラル式熱交換器、プレート式熱交換器、二重菅式熱交換器、多重円菅式熱交換器、渦巻管式熱交換器、渦巻板式熱交換器、タンクコイル式熱交換器、タンクジャケット式熱交換器、直接接触液式熱交換器、その他の相変化も含めた熱交換器を含むが、これらに限定されることはない。外郭の壁面に介在させることができる寸法、形状及び重量であり、或いは、外郭の内部に設置することができる寸法、形状及び重量であることが好ましい。また、伝熱手段の材質に特に限定はないが、固体粒子との間の熱交換性能の高いものが好ましい。   The heat transfer means includes a machine, a device, and an instrument having a function of efficiently transferring heat from a high temperature object to a low temperature object. For example, a spiral heat exchanger, a plate heat exchanger, and a double saddle type Heat exchangers, multiple circular heat exchangers, spiral tube heat exchangers, spiral plate heat exchangers, tank coil heat exchangers, tank jacket heat exchangers, direct contact liquid heat exchangers, and other phases Including, but not limited to, heat exchangers including changes. It is preferable that the dimensions, shape, and weight can be interposed on the outer wall surface, or the dimensions, shape, and weight can be installed inside the outer wall. Further, the material of the heat transfer means is not particularly limited, but a material having high heat exchange performance with the solid particles is preferable.

「この外郭を重力方向に狭くなるように傾斜させて構成する」とは、外郭がたとえば略多角柱形で形成されるとき、これを縦断面視した際の左側の側面(以下、「第一の側面」ともいう。)及び/または、右側の側面(以下、「第二の側面」ともいう。)と水平面とによって形成される外角が90°以下になるようにすること、或いは、外郭の下部に係る内角が90°以上になるような構造に形成すること、又はその両方を示す。なお、外角及び内角の値に限定はない。   “The outer shell is configured to be inclined so as to become narrower in the direction of gravity” means that, when the outer shell is formed in a substantially polygonal column shape, for example, the left side surface (hereinafter referred to as “first And / or a right side surface (hereinafter also referred to as “second side surface”) and a horizontal plane, or an outer angle of 90 ° or less, or It shows that the inner angle of the lower part is 90 ° or more, or both. There are no limitations on the values of the outer angle and the inner angle.

「外郭内に伝熱手段を傾斜させて設けた」とは、伝熱手段を、角度を持たせて(つまり、鉛直方向と並行とはならないように)付設したことを示し、角度の値及び傾斜の向きに限定はない。   “Inclined heat transfer means in the outer shell” means that the heat transfer means is provided with an angle (that is, not parallel to the vertical direction). There is no limitation on the direction of inclination.

こうした構成を備えることにより、加熱手段により熱を持つ気体が排出され、固体粒子により気体の熱が回収され、送気手段により固体粒子が搬送されて外郭内を流動する。このとき外郭が重力方向に狭くなるように傾斜させるように構成されることで、外郭に介在或いは添設させた伝熱手段に沿って固体粒子を重力の作用により落下させることができる。また、外郭内に伝熱手段を傾斜させて設けることで、傾斜を持った伝熱手段に沿って固体粒子を落下させることができる。これらの落下の際に伝熱手段と固体粒子との接触が増加する。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるから、熱回収を向上させることになる。なお、伝熱手段の位置、大きさ、範囲及びその数に限定はない。   By providing such a configuration, the gas having heat is discharged by the heating means, the heat of the gas is recovered by the solid particles, and the solid particles are conveyed by the air supply means and flow in the outer shell. At this time, the outer shell is configured to be inclined so as to become narrower in the direction of gravity, so that the solid particles can be dropped by the action of gravity along the heat transfer means interposed or attached to the outer shell. In addition, by providing the heat transfer means with an inclination in the outer shell, the solid particles can be dropped along the inclined heat transfer means. During these drops, contact between the heat transfer means and the solid particles increases. In this way, the amount of heat held by the particles is kept in contact for a period of time that is moderately transferred to the wall surface, and the overall heat transfer is promoted by changing the particles that have been transferred from one to the next. Recovery will be improved. There is no limitation on the position, size, range and number of heat transfer means.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記外郭を重力方向に狭くなるように傾斜させて構成しさらにこの外郭に伝熱手段を介在させて設けた及び/または前記外郭内に伝熱手段を傾斜させて設けた構成は、少なくとも前記外郭の下部において採用したことを特徴とする。 Further, a heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application is configured such that the outer shell is inclined so as to be narrowed in the direction of gravity, and further, heat transfer means is provided in the outer shell and / or Alternatively, the structure in which the heat transfer means is inclined in the outer shell is adopted at least in the lower portion of the outer shell.

ここで、「外郭の下部」とは、外郭を上部、中央部及び下部として略三分割した場合の「下部」、或いは、外郭を上部及び下部として略二分割した場合の「下部」を示し、その範囲や寸法に限定はない。また、この分割については、二分割、三分割に限られることはなく、実質的に「下部」といえる箇所を実現するものであればよい。   Here, “the lower part of the outline” means “the lower part” when the outer part is divided into approximately three parts as the upper part, the central part and the lower part, or “the lower part” when the outer part is substantially divided into two parts as the upper part and the lower part. There is no limitation on the range and dimensions. In addition, this division is not limited to two divisions and three divisions, and any division can be used as long as it can substantially be regarded as a “lower part”.

この場合に、固体粒子の形状、寸法又は重量その他の性質の差異によって最適な勾配が異なる。また、送気手段から供給される気体の圧力の差異により、固体粒子を搬送させるのに最適な勾配が異なる。こうした最適な勾配を持たせた上記構成を備えることで、固体粒子の性質や送気手段からの気体圧力の差異に影響されることなく一定以上のダウンフローによる固体粒子を、より多く伝熱手段に沿って落下させることができる。なお、伝熱手段の位置、大きさ及び範囲及びその数は、いわゆる下部の領域を逸脱しないものであれば限定はない。   In this case, the optimum gradient varies depending on differences in the shape, size, weight or other properties of the solid particles. Further, the optimum gradient for transporting the solid particles varies depending on the difference in pressure of the gas supplied from the air feeding means. By providing the above-described configuration with such an optimal gradient, more heat transfer means can obtain solid particles with a certain amount of downflow without being affected by the difference in the properties of the solid particles and the gas pressure from the air supply means. Can be dropped along. The position, size, range, and number of the heat transfer means are not limited as long as they do not deviate from the so-called lower region.

また、本願に係る熱伝達率を向上させる機能を備える熱回収装置は、上記の構成において外郭及び/または熱回収用の熱交換器はさらに揺動させて構成されることを特徴とする。 The heat recovery apparatus having a function of improving the heat transfer rate according to the present application, characterized in that it is constituted by outer and / or heat exchanger for heat recovery is further swung in the above configuration.

ここで、「この外郭を揺動させて構成」するとは、外郭のみを揺動させる構成、熱回収装置自体を揺動させる構成及び熱回収装置が設置されている本体が揺動する構成(例えば、熱回収装置が船舶に設置されている場合等)のうち少なくとも1つの構成を含み、複数の構成を組み合せてもよい。揺動の形態に限定はなく、周期動、上下動、回転動、摺動を含む。また、揺動を発生させる源にも限定はなく、船舶内の振動、浮体の揺れ、車両の揺れなどや、動力(電気、ガス、重油・軽油、自然エネルギー等によるものであってよい)によって意図的に発生させたものでもよい。なお、揺動の度合い(振幅や周期等)に限定はないが、揺動を発生させるために消費するエネルギー量は小さいほど好ましい。 Here, the “configuration by swinging the outer shell” means a configuration for swinging only the outer shell, a configuration for swinging the heat recovery device itself, and a configuration for swinging the main body on which the heat recovery device is installed (for example, In some cases, the heat recovery device is installed on a ship, etc.), and a plurality of configurations may be combined. There is no limitation in the form of rocking | swiveling, A periodic motion, a vertical motion, a rotational motion, and a sliding are included. There is no limitation on the source for generating the swing, depending on the vibration in the ship, the swing of the floating body, the swing of the vehicle, etc., and the power (may be due to electricity, gas, heavy oil / light oil, natural energy, etc.) It may be generated intentionally. The degree of swing (amplitude, period, etc.) is not limited, but the smaller the amount of energy consumed to generate the swing, the better.

また、「外郭内に伝熱手段を揺動させて設けた」とは、伝熱手段自体を揺動させる構成であることを示す。揺動の形態に限定はなく、周期動、上下動、回転動、摺動を含む。また、揺動を発生させる源にも限定はなく、船舶内の振動、浮体の揺れ、車両の揺れなどや、動力(電気、ガス、重油・軽油、自然エネルギー等によるものであってよい)によって意図的に発生させたものでもよい。なお、揺動の度合い(振幅や周期等)に限定はないが、揺動を発生させるために消費するエネルギー量は小さいほど好ましい。   The phrase “provided by swinging the heat transfer means in the outer shell” indicates that the heat transfer means itself is swung. There is no limitation in the form of rocking | swiveling, A periodic motion, a vertical motion, a rotational motion, and a sliding are included. There is no limitation on the source for generating the swing, depending on the vibration in the ship, the swing of the floating body, the swing of the vehicle, etc., and the power (may be due to electricity, gas, heavy oil / light oil, natural energy, etc.) It may be generated intentionally. The degree of swing (amplitude, period, etc.) is not limited, but the smaller the amount of energy consumed to generate the swing, the better.

こうした構成を備えることにより、加熱手段により熱を持つ気体が排出され、固体粒子によりこれらの気体に係る熱を回収し、送気手段により固体粒子を搬送して外郭内を流動させる。その際に、外郭が揺動するように構成されることで、外郭に介在する伝熱手段が揺動の都度傾斜を持つため、或いは、外郭内に伝熱手段を揺動させて設けることで伝熱手段が揺動の都度傾斜を持つため、伝熱手段に沿って落下する固体粒子と伝熱手段との接触の機会を増大させる。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるから、熱回収を向上させることになる。なお、伝熱手段の位置、大きさ、範囲及びその数に限定はない。   By providing such a configuration, the gas having heat is discharged by the heating means, the heat related to these gases is recovered by the solid particles, and the solid particles are conveyed by the air supply means to flow in the outer shell. At that time, since the outer shell is configured to swing, the heat transfer means interposed in the outer shell has an inclination every time it swings, or the heat transfer means is swung in the outer shell. Since the heat transfer means has an inclination every time the rocking means swings, the chance of contact between the heat transfer means and the solid particles falling along the heat transfer means is increased. In this way, the amount of heat held by the particles is kept in contact for a period of time that is moderately transferred to the wall surface, and the overall heat transfer is promoted by changing the particles that have been transferred from one to the next. Recovery will be improved. There is no limitation on the position, size, range and number of heat transfer means.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記外郭を揺動させて構成しさらにこの外郭に伝熱手段を介在させて設けた及び/または前記外郭内に伝熱手段を揺動させて設けた構成は、少なくとも前記外郭の下部において採用したことを特徴とする。 Further, the heat recovery apparatus having the function of improving the heat transfer coefficient according to the present application is configured by swinging the outer shell, and further provided with heat transfer means interposed in the outer shell, and / or transferred to the outer shell. The structure provided by swinging the heat means is adopted at least in the lower part of the outer shell.

この場合に、固体粒子の形状、寸法もしくは重量その他の性質の差異によって最適な勾配が異なる。また、送気手段から供給される気体の圧力の差異により、固体粒子を搬送させるのに最適な勾配が異なる。こうした最適な勾配を持たせた上記構成を備えることで、固体粒子の性質や送気手段からの気体圧力の差異に影響されることなく一定以上のダウンフローによる固体粒子を、より多く伝熱手段に沿って落下させ、これと熱交換を伴う接触の機会を増大させる。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるから、熱回収を向上させることになる。なお、伝熱手段の位置、大きさ、範囲及びその数は、いわゆる下部の領域を逸脱しないものであれば限定はない。   In this case, the optimum gradient varies depending on the shape, size, weight or other properties of the solid particles. Further, the optimum gradient for transporting the solid particles varies depending on the difference in pressure of the gas supplied from the air feeding means. By providing the above-described configuration with such an optimal gradient, more heat transfer means can obtain solid particles with a certain amount of downflow without being affected by the difference in the properties of the solid particles and the gas pressure from the air supply means. To increase the chance of contact with this and heat exchange. In this way, the amount of heat held by the particles is kept in contact for a period of time that is moderately transferred to the wall surface, and the overall heat transfer is promoted by changing the particles that have been transferred from one to the next. Recovery will be improved. The position, size, range and number of heat transfer means are not limited as long as they do not deviate from the so-called lower region.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記気体の通過量を前記外郭の内断面積で除した空塔速度(m/s)を略1.0から略4.0の間に設定したことを特徴とする。 Further, in the heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application, the superficial velocity (m / s) obtained by dividing the amount of gas passing by the inner cross-sectional area of the outer shell from about 1.0 to about It is characterized by being set between 4.0.

この場合、固体粒子が外郭の上端まで浮上する程度の空塔速度を有することが好ましく、空塔速度を持たせるためのエネルギー消費量が少ないほどよいため、好適には略1.0〜略4.0が良く、さらに好適には2m/s〜3.6m/sとする。   In this case, it is preferable that the solid particles have a superficial velocity at which the solid particles ascend to the upper end of the outer shell, and the lower the energy consumption for giving the superficial velocity, the better. 0.0 is good, and more preferably 2 m / s to 3.6 m / s.

こうした構成を備えることにより、空塔速度が略1m/s〜略4m/sと、実験上熱回収装置内での気体の浮上具合が最適化されるので、外郭の上端まで固体粒子を浮上させる作用を最適化することができる。 By providing such a configuration, the superficial velocity is about 1 m / s to about 4 m / s, and the floating state of the gas in the heat recovery apparatus is optimized experimentally, so that the solid particles float to the upper end of the outer shell. The action can be optimized.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記外郭であるライザー部の上部から上部配管を介して接続される前記固体粒子が前記気体によって下方に搬送されるためのダウンカマー部、該ダウンカマー部から前記ライザー部の下部に連接される下部配管をさらに備え、前記ライザー部の上方より飛び出す前記固体粒子が前記ライザー部、前記上部配管、前記ダウンカマー部、前記下部配管によって形成される閉ループ内を循環するように構成し、このダウンカマー部を重力方向に狭くなるように傾斜させて構成し、前記ダウンカマー部に熱回収用のダウンカマー部熱交換器を介在させ傾斜させて設けた及び/または前記ダウンカマー部内に熱回収用のダウンカマー部熱交換器を傾斜させて設けたことを特徴とする。 Further, in the heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application, the solid particles connected via the upper pipe from the upper part of the riser part which is the outer shell are transported downward by the gas. Further comprising a lower pipe connected to the lower part of the riser part from the downcomer part, wherein the solid particles that protrude from above the riser part are the riser part, the upper pipe, the downcomer part, It is configured to circulate in a closed loop formed by the lower pipe , and this downcomer portion is configured to be inclined so as to become narrower in the direction of gravity, and a downcomer portion heat exchanger for heat recovery is provided in the downcomer portion. The heat exchanger is provided with an inclined and / or inclined and / or down-commer section heat exchanger for heat recovery in the down-commer section .

この場合、一例として、外郭のうち、少なくともライザー部、ダウンカマー部及びバルブが所定の配管及び継手その他連結機器もしくは素材で結合されて1つの閉じたループを形成し、固体粒子を循環させることができる熱回収装置を構成する。 In this case, as an example, at least the riser part, the downcomer part, and the valve of the outer shell are combined with predetermined piping, joints, and other connecting devices or materials to form one closed loop, and the solid particles are circulated. A heat recovery device that can be used is configured.

ここで、ライザー部とは、固体粒子が気体に搬送され流動する原理を利用して熱伝達を行う機能を有するものであり、伝熱手段(例えば、壁面に介在させたり、内部に付設したりすることができる伝熱面や発熱板を含む。)をこれに介在もしくは添設させ或いは内包することができるものであってよい。なお、ライザー部の材質、形状及び寸法に限定はない。したがって、ライザー部を重力方向に狭くなるように傾斜させて構成したり、揺動させる構成であってもよい。   Here, the riser portion has a function of performing heat transfer using the principle that solid particles are transported and flowed in gas, and is provided with heat transfer means (for example, intervening on a wall surface or attached inside). A heat transfer surface and a heat generating plate that can be used) may be interposed or attached to or included therein. There is no limitation on the material, shape and dimensions of the riser section. Therefore, the riser portion may be configured to be inclined so as to be narrowed in the direction of gravity, or may be configured to swing.

ダウンカマー部とは、ライザー部を上昇し、ダウンフローしなかった固体粒子を所定の配管を介して回収し、ダウンカマー部の下端からバルブに搬送することができる機能を備えた装置、機械、器具を示し、内部の気体と固体粒子を回転させて気体と固体粒子とを分離し、固体粒子をダウンカマー部下端の中央に集約することができるサイクロン機能を有することが好ましい。なお、ダウンカマー部が伝熱手段(例えば、壁面に介在させたり、内部に付設したりすることができる伝熱面や発熱板を含む。)を備えてもよく、ダウンカマー部の材質、形状及び寸法に限定はない。したがって、ダウンカマー部を重力方向に狭くなるように傾斜させて構成したり、揺動させる構成であってもよい。   The downcomer unit is an apparatus, a machine, and a machine equipped with a function that raises the riser unit, collects solid particles that have not flowed down through a predetermined pipe, and transports the particles from the lower end of the downcomer unit to the valve. It is preferable that the device has a cyclone function that can rotate the gas and solid particles inside to separate the gas and solid particles and collect the solid particles at the center of the lower end of the downcomer portion. In addition, the downcomer part may be provided with a heat transfer means (for example, including a heat transfer surface or a heating plate that can be interposed in the wall surface or attached inside), and the material and shape of the downcomer part There is no limitation on the dimensions. Therefore, the downcomer portion may be configured to be inclined so as to become narrower in the direction of gravity, or may be configured to swing.

バルブとは、ダウンカマー部から固体粒子群を回収し、固体粒子群が堆積することなく再びライザー部に搬送されることができる機能を備えた装置、機械、器具を示し、例えば、ループシールバルブ及びニューマチックバルブを含む。なお、バルブの材質、形状及び寸法に限定はない。   A valve refers to a device, machine, or instrument having a function of recovering a solid particle group from a downcomer unit and transporting the solid particle group to the riser unit again without depositing, for example, a loop seal valve And pneumatic valves. There is no limitation on the material, shape and dimensions of the valve.

こうした構成を備えることにより、ライザー部にてダウンフローしなかった固体粒子をダウンカマー部により回収し、ダウンカマー部ではサイクロン機能により固体粒子群を集約してバルブに搬送し、バルブに堆積した固体粒子群を液体のように流動化させることにより、ライザー部を流動させる固体粒子が不足することなく、一度熱回収に利用した固体粒子を再利用して循環させることができる。   By having such a configuration, solid particles that did not flow down in the riser section are collected by the downcomer section, and in the downcomer section, the solid particles are collected by the cyclone function and transported to the valve, and the solid deposited on the valve By fluidizing the particle group like a liquid, the solid particles once used for heat recovery can be reused and circulated without a shortage of solid particles flowing through the riser section.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記固体粒子が前記気体によって上方に搬送される前記外郭のライザー部において、このライザー部を重力方向に狭くなるように構成しさらにこのライザー部に伝熱手段を介在させて設けた及び/または前記ライザー部内に前記伝熱手段を傾斜させて設けたことを特徴とする。 Further, in the heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application, in the outer riser portion where the solid particles are conveyed upward by the gas, the riser portion is narrowed in the gravity direction. Further, the heat transfer means is provided in the riser part and / or the heat transfer means is inclined in the riser part.

こうした構成を備えることにより、外郭のライザー部を、断面視で第一の側面及び/または第二の側面と水平面とによって形成される外角が90°未満にし、或いは、ライザー部の下部に係る内角が90°を超える角度になるような構造に形成し、又はその両方により、ダウンフローによる固体粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるから、熱回収率を向上させることになる。   By providing such a configuration, the outer riser portion has an outer angle formed by the first side surface and / or the second side surface and the horizontal plane in a cross-sectional view of less than 90 °, or an inner angle according to the lower portion of the riser portion. Particles that are formed in a structure that has an angle exceeding 90 °, or both, so that the amount of heat of the solid particles due to the downflow is in contact with the wall for a reasonable amount of time, and the heat has been transferred. Since the overall heat transfer is promoted by changing from the next to the next, the heat recovery rate is improved.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記固体粒子が前記気体によって下方に搬送される前記外郭のダウンカマー部において、このダウンカマー部を重力方向に狭くなるように構成しさらにこのダウンカマー部に伝熱手段を介在させて設けた及び/または前記ダウンカマー部内に伝熱手段を傾斜させて設けたことを特徴とする。 Further, in the heat recovery apparatus having a function of improving the heat transfer coefficient according to the present application, in the outer downcomer part where the solid particles are conveyed downward by the gas, the downcomer part is narrowed in the direction of gravity. Further, the heat transfer means is provided in the downcomer portion and / or the heat transfer means is inclined in the downcomer portion.

こうした構成を備えることにより、外郭のダウンカマー部を、断面視で第一の側面及び/または第二の側面と水平面とによって形成される外角が90°未満にし、或いは、ダウンカマー部の下部に係る内角が90°を超える角度になるような構造に形成し、又はその両方により、ダウンカマー部に設置した伝熱手段に、サイクロン機能により回転して落下する固体粒子をより多く接触させて、固体粒子と伝熱手段との熱交換の機会を増大させる。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるから、熱回収を向上させることになる。   By providing such a configuration, the outer angle formed by the first side surface and / or the second side surface and the horizontal surface in the cross-sectional view is less than 90 ° in the outer view, or in the lower portion of the downcomer portion. By forming in such a structure that the internal angle exceeds 90 °, or both, the heat transfer means installed in the downcomer section is brought into contact with more solid particles that rotate and fall by the cyclone function, Increase the chance of heat exchange between the solid particles and the heat transfer means. In this way, the amount of heat held by the particles is kept in contact for a period of time that is moderately transferred to the wall surface, and the overall heat transfer is promoted by changing the particles that have been transferred from one to the next. Recovery will be improved.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記加熱手段及び前記送気手段として船舶の主機関から排気される背圧のかかった排気ガスを用い、前記伝熱手段で前記排気ガスからの排熱回収を行ったことを特徴とする。 Further, the heat recovery apparatus having a function of improving the heat transfer rate according to the present application uses exhaust gas with back pressure exhausted from a main engine of a ship as the heating means and the air supply means, and the heat transfer device The exhaust heat recovery from the exhaust gas is performed by the means.

ここで、船舶の主機関とは、ディーゼルエンジンその他船舶に係る駆動機関や熱エネルギーが発生する装置を含むが、排気ガスを供出するあらゆる機関、機構、装置、システムであってもよい。   Here, the main engine of the ship includes a diesel engine and other driving engines related to the ship and a device that generates thermal energy, but may be any engine, mechanism, device, or system that delivers exhaust gas.

こうした構成を備えることにより、本願に係る熱回収装置を船舶に搭載することで、船舶から排出される熱を持った有圧の排気ガスを熱回収装置に送気し、排気ガスによって固体粒子は搬送されて流動し、その過程で外郭のライザー部及び/またはダウンカマー部に係る傾斜を静的もしくは動的に備えた伝熱手段に接触して、より向上された熱交換を行うので、効率の良い熱伝達を行うことができる。 By providing such a configuration, by mounting the heat recovery device according to the present application on the ship, the exhaust gas having a heat discharged from the ship is sent to the heat recovery device, and the solid particles are exhausted by the exhaust gas. Since it is transported and flows, in the process it contacts the heat transfer means statically or dynamically provided with the inclination of the outer riser part and / or downcomer part to improve the heat exchange, so the efficiency Good heat transfer.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置は、前記固体粒子として脱硫剤を用い、前記排気ガス中の硫黄成分の除去も行ったことを特徴とする。 Moreover, the heat recovery apparatus having the function of improving the heat transfer coefficient according to the present application is characterized in that a desulfurizing agent is used as the solid particles and the sulfur component in the exhaust gas is also removed.

加熱手段により発生する排気ガスの中には、硫黄成分を含むものもあり、このまま大気中に解放することは環境汚染にもなり得る。したがって、大気中に解放する前に硫黄成分を回収できる固体粒子を用いることがより好ましい。   Some exhaust gas generated by the heating means contains a sulfur component, and releasing it into the atmosphere as it is may cause environmental pollution. Therefore, it is more preferable to use solid particles that can recover the sulfur component before being released into the atmosphere.

ここで、脱硫剤には、水酸化脱硫が普及しており、水素を利用して各種の石油留分を精製することで、高温・高圧下で石油留分を水素と一緒にアルミナを担体とするモリブデンとコバルトやニッケルの硫化物を使った触媒上に通すことにより、硫黄、窒素、酸素及び金属等の不純物を含む化合物などを分解したりするものが含まれる。なお、本出願人が行ったスクリーニング試験によれば、脱硫剤として、酸化鉄が最も良い脱硫性能を示し、生石灰が比較的良好な脱硫性能を示すことが確認されることから、好適にはこれらを用いるのが良いが、これらに限定されることなく各種の脱硫剤を含んでよい。   Hydrodesulfurization is widely used as a desulfurization agent. By purifying various petroleum fractions using hydrogen, the petroleum fraction is combined with hydrogen at a high temperature and high pressure, and alumina is used as a carrier. And those that decompose compounds containing impurities such as sulfur, nitrogen, oxygen and metals by passing them over a catalyst using molybdenum and cobalt or nickel sulfides. According to the screening test conducted by the present applicant, it is confirmed that iron oxide shows the best desulfurization performance as the desulfurization agent, and quick lime shows relatively good desulfurization performance. However, the present invention is not limited to these, and various desulfurization agents may be included.

こうした構成を備えることにより、固体粒子は熱回収を行いながら排気ガスが有する硫黄成分をも回収することができるため、脱硫した排気ガスを安心して大気中に解放することができる。   By providing such a configuration, the solid particles can recover the sulfur component of the exhaust gas while recovering heat, so that the desulfurized exhaust gas can be released to the atmosphere with peace of mind.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置熱回収方法は、加熱手段により加熱される固体粒子を、流体搬送手段より供給される流体により搬送させ、傾斜させて設けた伝熱手段の伝熱面に対して固体粒子が該伝熱面上を重力の作用により落下流動するように構成して伝熱を行ったことを特徴とする。 Further, the heat recovery method of the heat recovery apparatus having the function of improving the heat transfer coefficient according to the present application is configured such that the solid particles heated by the heating means are transported by the fluid supplied from the fluid transport means and inclined. The heat transfer is performed by configuring the solid particles so as to drop and flow on the heat transfer surface by the action of gravity with respect to the heat transfer surface of the heat transfer means.

ここで、流体搬送手段とは、気体(例えば、空気や排気ガスその他の気体を含み、これらに限定されない。)或いは液体(例えば、清水や海水その他の液体を含み、これらに限定されない。)に係る流体の流動性質を利用して固体粒子を搬送させるものであり、上記記載の送気手段もその一部に含まれるものである。   Here, the fluid conveying means is gas (for example, including but not limited to air, exhaust gas and other gases) or liquid (for example, including but not limited to fresh water, seawater and other liquids). The solid particles are conveyed by utilizing the fluidity of the fluid, and the above-mentioned air supply means is included in a part thereof.

こうした構成を備えることにより、固体粒子は加熱手段によって加熱された後及び/または加熱されつつ、流体搬送手段に係る流体により、その下方から圧力をうけて重力に逆らって上昇するが、一方で、流体搬送手段に係る流体から受ける圧力が固体粒子に係る重力よりも小さくなると、固体粒子は重力の作用により自然落下を始める。このとき、伝熱手段の伝熱面を所定の角度で傾斜させて設けることで、固体粒子を伝熱手段に沿って落下させる。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進される。したがって、熱交換、熱回収効率を増大、向上させることができる。   By providing such a configuration, the solid particles rise against the gravity by being pressurized from below by the fluid relating to the fluid conveying means while being heated by the heating means and / or while being heated, When the pressure received from the fluid related to the fluid conveying means becomes smaller than the gravity related to the solid particles, the solid particles start to fall naturally due to the action of gravity. At this time, the solid particles are dropped along the heat transfer means by providing the heat transfer surface of the heat transfer means inclined at a predetermined angle. Thus, the total amount of heat transfer is promoted by allowing the particles to be in contact with each other for a time during which the amount of heat is moderately transferred to the wall surface, and the particles that have completed the heat transfer to change from one to the next. Therefore, heat exchange and heat recovery efficiency can be increased and improved.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置の熱回収方法は、排気ガスとの直接の熱交換を含む排熱との熱交換による加熱前もしくは加熱後の固体粒子を、送気手段より供給される気体により搬送させ、前記気体の周囲に設けた外郭内で固気混相流を用いた熱回収を行う熱回収装置の熱回収方法において、前記外郭を前記固体粒子が前記送気手段からの気体により上方へ搬送されるライザー部として重力方向に狭くなるように傾斜させて構成し、さらに浮上した前記固体粒子のダウンフローによる熱伝達を行うために少なくとも前記外郭の下部及び中央部において前記外郭に介在させ傾斜させて及び/または前記外郭内に傾斜させて熱回収用の熱交換器を設け、前記気体の通過量を前記外郭の内断面積で除した値である空塔速度(m/s)を、前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記外郭の下部の粒子容積分率が急減する下限値である2.21から前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記空塔速度を持たせるためのエネルギー消費量が少なくてすむ上限値である4.0の間に設定して前記熱回収装置を構成し、前記熱回収装置を揺動させて熱回収を行ったことを特徴とする。 Further, the heat recovery method of the heat recovery apparatus having the function of improving the heat transfer coefficient according to the present application is to apply solid particles before or after heating by heat exchange with exhaust heat including direct heat exchange with exhaust gas. In the heat recovery method of a heat recovery apparatus for carrying out heat recovery using a solid-gas mixed phase flow in an outer shell provided around the gas, transported by a gas supplied from an air supply means , The riser portion conveyed upward by the gas from the air feeding means is configured to be inclined so as to be narrowed in the direction of gravity, and at least a lower portion of the outer shell for performing heat transfer by downflow of the solid particles that have floated In addition, a heat exchanger for heat recovery is provided so as to be inclined and / or inclined in the outer shell at the central portion, and the gas passage amount is divided by the inner sectional area of the outer shell. Sky The velocity (m / s) is from 2.21 which is a lower limit value that allows the solid particles to float up to the upper end of the outer shell and circulate in the outer shell, and the particle volume fraction at the lower portion of the outer shell rapidly decreases. It is set between 4.0, which is an upper limit value that allows the solid particles to float up to the upper end of the outer shell and circulate in the outer shell, and that requires less energy consumption to give the superficial velocity. The heat recovery device is configured, and the heat recovery device is swung to perform heat recovery .

こうした構成を備えることにより、固体粒子は加熱手段によって加熱された後及び/または加熱されつつ、流体搬送手段に係る流体により、その下方から圧力をうけて重力に逆らって上昇するが、一方で、流体搬送手段に係る流体から受ける圧力が固体粒子に係る重力よりも小さくなった場合、固体粒子は自然落下を始める。このとき、伝熱手段の伝熱面を揺動させて設けることで、伝熱手段が揺動の都度傾斜を持つため、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触することができ、伝熱し終えた粒子が次から次と変わっていくことにより、総合的な伝熱が促進される。したがって、熱交換、熱回収効率を増大、向上させることができる。   By providing such a configuration, the solid particles rise against the gravity by being pressurized from below by the fluid relating to the fluid conveying means while being heated by the heating means and / or while being heated, When the pressure received from the fluid related to the fluid conveying means becomes smaller than the gravity related to the solid particles, the solid particles start to fall naturally. At this time, since the heat transfer surface of the heat transfer means is provided by swinging, the heat transfer means has an inclination every time it swings, so that the heat amount of the particles is in contact with the wall surface for a reasonable time. As the particles that have completed heat transfer change from one to the next, comprehensive heat transfer is promoted. Therefore, heat exchange and heat recovery efficiency can be increased and improved.

また、本願に係る熱伝達率を向上させる機能を備えた熱回収装置熱回収方法は、前記加熱手段と前記流体搬送手段を有圧の熱流体としたことを特徴とする。 Moreover, the heat recovery method of the heat recovery apparatus having the function of improving the heat transfer coefficient according to the present application is characterized in that the heating means and the fluid transfer means are made into a hot thermal fluid.

こうした構成を備えることにより、加熱手段と流体搬送手段とから排出される流体が、熱を発する有圧の気体(例えば、主機(エンジン)の排気ガス等)或いは液体(例えば、熱湯等)である場合、固体粒子はかかる流体から熱回収を行い、熱伝達率の向上を実現させることができる。   By providing such a configuration, the fluid discharged from the heating means and the fluid conveying means is a pressurized gas (for example, exhaust gas of the main engine (engine)) or a liquid (for example, hot water) that generates heat. In this case, the solid particles can recover heat from such a fluid and realize an improvement in heat transfer coefficient.

本願によれば、熱回収装置の外郭を重力方向に狭くなるように傾斜させることで、外郭に介在した/添設させた伝熱手段に沿って落下する固体粒子と伝熱手段との接触・熱交換の機会を増大させることができる。また、外郭内に伝熱手段を傾斜させて設けることで、傾斜を持った伝熱手段に沿って落下する固体粒子の数量を増大させて、固体粒子と伝熱手段との接触・熱交換の機会を増大させることができる。すなわち、固体粒子が伝熱手段の表面を転がる状態であったり、滑って下降していく状態であったり、或いは一度伝熱手段上に落下した固体粒子がリバウンドする状況等が形成される。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現することができる。 According to the present application, by inclining the outer shell of the heat recovery device so as to become narrower in the direction of gravity, the contact between the solid particles falling along the heat transfer means interposed / attached to the outer shell and the heat transfer means The opportunity for heat exchange can be increased. In addition, by providing the heat transfer means with an inclination in the outer shell, the number of solid particles falling along the inclined heat transfer means is increased, and contact / heat exchange between the solid particles and the heat transfer means is increased. Opportunities can be increased. That is, a state where the solid particles roll on the surface of the heat transfer means, a state where the solid particles slide down, or a state where the solid particles once dropped on the heat transfer means rebound is formed. In this way, the heat amount of the particles is kept in contact for the time that is moderately transferred to the wall surface, and the heat transfer is promoted by changing the particles after the heat transfer from the next to the next. Improvement of transmission rate can be realized.

また、本願によれば、熱回収装置の外郭を揺動させて構成することで、外郭に介在する伝熱手段が揺動の都度傾斜を持つため、伝熱手段に沿って落下する固体粒子と伝熱手段との接触・熱交換の機会を増大させることができる。また、外郭内に伝熱手段を揺動させて設けることで、伝熱手段が揺動の都度傾斜を持ち、伝熱手段に沿って落下する固体粒子と伝熱手段との接触・熱交換の機会を増大させることができる。すなわち、外郭或いは外郭内に伝熱手段を傾斜させて設けることなく、伝熱手段に傾斜を動的にもたらすことができる。また、揺動によって伝熱手段が左右或いは多方向に揺れる効果を利用することで、固体粒子が伝熱手段の表面を転がる状態であったり、滑って下降していく状態であったり、或いは一度伝熱手段上に落下した固体粒子がリバウンドする状況等が形成される。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現することができる。 In addition, according to the present application, by configuring the outer shell of the heat recovery device by swinging, the heat transfer means interposed in the outer shell has an inclination every time the swing is performed, so that the solid particles falling along the heat transfer means and Opportunities for contact and heat exchange with the heat transfer means can be increased. In addition, by providing the heat transfer means in the outer wall in a swinging manner, the heat transfer means has an inclination every time it swings, and contact / heat exchange between the solid particles falling along the heat transfer means and the heat transfer means is performed. Opportunities can be increased. That is, it is possible to dynamically bring the inclination to the heat transfer means without providing the outer heat or the heat transfer means inclined in the outer shell. Further, by utilizing the effect that the heat transfer means swings left and right or in multiple directions by swinging, the solid particles roll on the surface of the heat transfer means, or slide and descend, or once A situation where solid particles falling on the heat transfer means rebound is formed. In this way, the heat amount of the particles is kept in contact for the time that is moderately transferred to the wall surface, and the heat transfer is promoted by changing the particles after the heat transfer from the next to the next. Improvement of transmission rate can be realized.

さらに、本願によれば、傾斜させた外郭の下部に伝熱手段を介在させ、及び/または外郭内の下部に伝熱手段を傾斜させて設けることで、固体粒子の性質の差異及び送気手段からの気体圧力の差異に影響されることなく、ダウンフローによる固体粒子を、より多く伝熱手段に沿って落下させることができる。すなわち、ダウンフローによる固体粒子は外郭の下部まで落下することで、外郭の下部には固体粒子が滞留する。したがって、伝熱手段を少なくとも外郭の下部において設けることで、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、より一層熱伝達率の向上を実現させることができる。また、外郭の下部で効率の良い熱回収が実現すれば、上部或いは中部に伝熱手段を設ける必要がなくなることから、その分の経費を節約することができる。   Further, according to the present application, the heat transfer means is interposed in the lower part of the inclined outer shell and / or the heat transfer means is provided to be inclined in the lower part of the outer shell, whereby the difference in the properties of the solid particles and the air supply means are provided. More solid particles due to the downflow can be dropped along the heat transfer means without being affected by the difference in gas pressure from. That is, the solid particles by the downflow fall to the lower part of the outer shell, and the solid particles stay in the lower part of the outer shell. Therefore, by providing the heat transfer means at least in the lower part of the outer shell, the particles are in contact with each other only for a time during which the heat quantity of the particles is moderately transferred to the wall surface, and the particles that have completed the heat transfer change from one to the next. As a result, the overall heat transfer is promoted, so that the heat transfer coefficient can be further improved. Further, if efficient heat recovery is realized at the lower part of the outer shell, it is not necessary to provide heat transfer means in the upper part or the middle part, so that the cost can be saved.

また、本願によれば、揺動させた外郭の下部に伝熱手段を介在させ、及び/または外郭内の下部に伝熱手段を揺動させて設けることで、上記記載同様、固体粒子の性質の差異に影響されることなく、ダウンフローによる固体粒子を、より多く伝熱手段に沿って落下させることができる。すなわち、ダウンフローによる固体粒子は外郭の下部まで落下することで、外郭の下部には固体粒子が滞留する。また、揺動によって伝熱手段が左右或いは多方向に揺れる効果を利用することができる。したがって、伝熱手段を少なくとも外郭の下部において採用することで、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、一層熱伝達率の向上を実現させることができる。また、外郭の下部で効率の良い熱回収が実現すれば、上部或いは中部に伝熱手段を設ける必要がなくなるため、その分の経費を節約することができる。   In addition, according to the present application, the heat transfer means is interposed in the lower part of the outer shell and / or the heat transfer means is provided in the lower part of the outer shell so that the properties of the solid particles are the same as described above. Without being influenced by the difference, more solid particles due to the downflow can be dropped along the heat transfer means. That is, the solid particles by the downflow fall to the lower part of the outer shell, and the solid particles stay in the lower part of the outer shell. Further, it is possible to use the effect that the heat transfer means swings left and right or in multiple directions by swinging. Therefore, by adopting the heat transfer means at least in the lower part of the outer shell, the particles are in contact with each other only for the time when the heat quantity of the particles is moderately transferred to the wall surface, and the particles that have completed the heat transfer change from one to the next. As a result, overall heat transfer is promoted, so that the heat transfer coefficient can be further improved. Further, if efficient heat recovery is realized at the lower part of the outer shell, it is not necessary to provide a heat transfer means in the upper part or the middle part, so that the cost can be saved.

さらに、本願によれば、空塔速度を略1m/s〜略4m/sになるように送気させることで、外郭の上端まで固体粒子を浮上させることができる。すなわち、固体粒子を上端まで浮上させることにより、伝達手段に沿って落下する固体粒子の数も増加し、伝熱手段を外郭に設けることで、熱伝達率の向上を実現させることができる。さらに、固体粒子を上端まで浮上させることで、循環流動層としても活用することができる。   Furthermore, according to the present application, the solid particles can be levitated to the upper end of the outer shell by supplying air so that the superficial velocity is about 1 m / s to about 4 m / s. That is, by floating the solid particles to the upper end, the number of solid particles falling along the transfer means is increased, and by providing the heat transfer means on the outer shell, an improvement in heat transfer coefficient can be realized. Furthermore, it can be utilized as a circulating fluidized bed by floating solid particles to the upper end.

また、本願によれば、外郭を閉ループ状に構成し、固体粒子を循環させることで、一度熱回収に利用した固体粒子を再利用して循環させることができる。すなわち、固体粒子が有する熱を閉ループの過程で再び回収することができるため、より効率の良いエネルギー回生効果を実現させることができる。   According to the present application, the outer shell is configured in a closed loop shape, and the solid particles are circulated, so that the solid particles once used for heat recovery can be recycled and circulated. That is, since the heat of the solid particles can be recovered again in the closed loop process, a more efficient energy regeneration effect can be realized.

さらに、本願によれば、外郭としてライザー部を用いることができ、外郭のライザー部を、断面視で第一の側面及び/または第二の側面と水平面とによって形成される外角が90°未満にし、或いは、ライザー部の下部に係る内角が90°を超える角度になるような構造に形成し、又はその両方により、ダウンフローする固体粒子を、より多く伝熱手段に沿って落下させることができる。すなわち、ライザー部を設けて循環流動層を形成することができるところ、ライザー部内壁面近傍に浮遊し、循環せずにダウンフローした固体粒子において、固体粒子が伝熱手段の表面を転がる状態であったり、滑って下降していく状態であったり、或いは一度伝熱手段上に落下した固体粒子がリバウンドする状況等が形成される。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現させることができる。このとき、さらに好適には、傾斜角度を下方から上方に向かい少ない角度、すなわち空気の自然拡散に合った広がり(たとえば片側5〜6°)で拡大する。この場合には、摩擦抵抗が減る現象を踏まえた適度な広がり角を選定することになり、摩擦抵抗の低減で送気手段の使用エネルギーが低減できる。   Furthermore, according to the present application, a riser portion can be used as the outer shell, and the outer angle of the outer riser portion formed by the first side surface and / or the second side surface and the horizontal plane in a cross-sectional view is less than 90 °. Alternatively, it is possible to form a structure in which the inner angle of the lower portion of the riser part is an angle exceeding 90 °, or both, so that more solid particles that flow down can be dropped along the heat transfer means. . That is, a circulating fluidized bed can be formed by providing a riser part. In the solid particles floating near the inner wall surface of the riser part and flowing down without circulation, the solid particles roll on the surface of the heat transfer means. Or a state where the solid particles once fall on the heat transfer means are rebounded. In this way, the heat amount of the particles is kept in contact for the time that is moderately transferred to the wall surface, and the heat transfer is promoted by changing the particles after the heat transfer from the next to the next. An improvement in transmission rate can be realized. At this time, more preferably, the inclination angle is increased from the lower side to the upper side with a small angle, that is, an expansion suitable for natural diffusion of air (for example, 5 to 6 ° on one side). In this case, an appropriate spread angle is selected based on the phenomenon that the frictional resistance is reduced, and the energy used by the air feeding means can be reduced by reducing the frictional resistance.

また、本願によれば、外郭としてダウンカマー部を用いることができ、外郭のダウンカマー部を、断面視で第一の側面及び/または第二の側面と水平面とによって形成される外角が90°未満にし、或いは、ダウンカマー部の下部に係る内角を90°を超える角度になるような構造に形成し、又はその両方により、ダウンカマー部に設置した伝熱手段に、サイクロン機能により回転して落下する固体粒子を接触させることができる。すなわち、ダウンカマー部を設けて循環流動層を形成することができ、ライザー部でダウンフローしなかった固体粒子を回収し、かつ、残熱を有する固体粒子がダウンカマー部の壁面に介在した伝熱手段或いはダウンカマー部の内部に設けられた伝熱手段に接触する機会が増加する。こうして、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、極めて効率よく熱伝達率の向上を実現させることができる。   Further, according to the present application, a downcomer portion can be used as the outer shell, and the outer angle formed by the first side surface and / or the second side surface and the horizontal plane is 90 ° in the sectional view. Or the inner angle related to the lower part of the downcomer part is formed in a structure exceeding 90 °, or both, the heat transfer means installed in the downcomer part is rotated by the cyclone function. Falling solid particles can be brought into contact. That is, a circulating fluidized bed can be formed by providing a downcomer part, collecting solid particles that have not been downflowed by the riser part, and transferring the solid particles having residual heat to the wall of the downcomer part. The opportunity to contact the heat transfer means provided in the heat means or the downcomer portion is increased. In this way, the amount of heat that the particles have is transferred to the wall for a reasonable amount of time, so that the heat transfer is promoted by changing the particles that have been transferred from one to the next. It is possible to efficiently improve the heat transfer coefficient.

さらに、本願によれば、加熱手段及び送気手段として船舶の主機関から排気される背圧のかかった排気ガスを用い、伝熱手段で排気ガスからの排熱回収を行うことができる。すなわち、排気ガスに係る排熱を固体粒子が熱回収し、かかる固体粒子が伝熱手段に接触することで排熱回収することができるため、排気ガスからの排熱を利用して熱伝達の向上を実現させることができる。また、大気中に高温ガスを放出することを防げるため、温暖化防止の対策にも繋がる。さらに、回収した排熱は再び船舶の運用(例えば、洗浄用水、調理用水及びバラスト水の加熱を含む。)として再利用することができるため、船舶駆動の省エネ化にも通ずる。   Furthermore, according to the present application, exhaust heat with back pressure exhausted from the main engine of the ship is used as the heating means and the air supply means, and the exhaust heat recovery from the exhaust gas can be performed by the heat transfer means. That is, the exhaust heat associated with the exhaust gas is recovered by the solid particles, and the exhaust heat can be recovered by contacting the solid particles with the heat transfer means. Improvements can be realized. Moreover, since it can prevent discharge | release of high temperature gas in air | atmosphere, it leads also to the measure against global warming. Furthermore, since the recovered waste heat can be reused again for ship operation (for example, heating for cleaning water, cooking water, and ballast water), it leads to energy saving for ship driving.

また、本願によれば、固体粒子として脱硫剤を用い、排気ガス中の硫黄成分の除去も行うことができる。すなわち、固体粒子は熱回収を行いながら排気ガスが有する硫黄成分をも回収することができるため、脱硫した排気ガスを安心して大気中に解放し、環境汚染を未然に防ぐことができる。また別途、脱硫装置や脱硫手段を設ける必要がなく、構成の簡素化とコストの低減が図れる。   Moreover, according to this application, a sulfur component in exhaust gas can also be removed using a desulfurization agent as solid particles. That is, the solid particles can also recover the sulfur component of the exhaust gas while recovering heat, so the desulfurized exhaust gas can be released into the atmosphere with peace of mind, and environmental pollution can be prevented. In addition, there is no need to provide a separate desulfurization apparatus or desulfurization means, and the configuration can be simplified and the cost can be reduced.

さらに、本願に係る熱回収装置熱回収方法によれば、流体により加熱された固体粒子から熱伝達を行うため、伝熱手段の伝熱面を所定の角度で傾斜させて設けることで、固体粒子を伝熱手段に沿って落下させることができる。すなわち、物体の自由落下の原理を利用して、その落下地点に傾斜を持った伝熱手段の伝熱面を設けることで、より多くの落下する固体粒子が伝熱面に接触する機会が増加する。このように、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現させることができる。 Furthermore, according to the heat recovery method of the heat recovery apparatus according to the present application, in order to perform heat transfer from the solid particles heated by the fluid, the heat transfer surface of the heat transfer means is inclined at a predetermined angle to provide a solid. Particles can be dropped along the heat transfer means. In other words, by using the principle of free fall of an object and providing the heat transfer surface of the heat transfer means having an inclination at the point of drop, the chance of more falling solid particles to contact the heat transfer surface increases. To do. In this way, since the amount of heat that the particles have is moderately transferred to the wall surface, they are kept in contact with each other, and the overall heat transfer is promoted by the particles that have finished transferring heat changing from one to the next. Improvement of heat transfer rate can be realized.

また、本願に係る熱回収装置熱回収方法によれば、伝熱手段の伝熱面を揺動させて設けることで、伝熱手段が揺動の都度傾斜を持つため、固体粒子を、傾斜を持った伝熱手段に沿って落下させることができる。すなわち、外郭或いは外郭内に伝熱手段を傾斜させて設けることなく、伝熱手段に傾斜をもたらせることができる。また、揺動によって伝熱手段が左右或いは多方向に揺れる効果を利用することで、接触する固体粒子の数量、接触する機会が増加する。このように、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現させることができる。 Further, according to the heat recovery method of the heat recovery apparatus according to the present application, by providing the heat transfer surface of the heat transfer means by swinging, the heat transfer means has an inclination every time the swing is performed. It can be dropped along the heat transfer means with In other words, the heat transfer means can be inclined without providing the outer shell or the heat transfer means inclined in the outer shell. Further, by utilizing the effect that the heat transfer means swings left and right or in multiple directions by swinging, the number of contacting solid particles and the chance of contacting increase. In this way, since the amount of heat that the particles have is moderately transferred to the wall surface, they are kept in contact with each other, and the overall heat transfer is promoted by the particles that have finished transferring heat changing from one to the next. Improvement of heat transfer rate can be realized.

さらに、本願に係る熱回収装置熱回収方法によれば、加熱手段と流体搬送手段とから排出される流体が、熱を発する有圧の気体(例えば、主機(エンジン)の排気ガス等)或いは液体(例えば、熱湯等)である場合、固体粒子はかかる流体から熱回収を行い、熱伝達率の向上を実現させることができる。すなわち、燃焼機関(例えば、プラントの燃焼装置及び船舶のエンジンを含む。)においては有圧の熱流体を発するため、固体粒子が熱回収を行うことができれば、かかる燃焼機関にも本願に係る技術思想を応用することができる。
Furthermore, according to the heat recovery method of the heat recovery apparatus according to the present application, the fluid discharged from the heating means and the fluid transport means is a pressurized gas (for example, exhaust gas of the main engine (engine)) or the like that generates heat, or In the case of a liquid (for example, hot water), the solid particles can recover heat from the fluid and realize an improvement in heat transfer coefficient. That is, in a combustion engine (for example, including a plant combustion device and a ship engine), a pressurized thermal fluid is generated. Therefore, if the solid particles can recover heat, the technology according to the present application also applies to such a combustion engine. The idea can be applied.

特に船舶の場合、動力機関として高効率なディーゼルエンジン(低質油)を利用している場合には、排気ガス性状の悪さ(すす(スート)やSOx等)が際立つ。一方では、船舶は装置の設置スペースの制限や波浪による船体の揺動といった制約があるため、省エネ対策が困難となっている。したがって本願は、スート対策やSOx対策としてコンパクトで信頼性が高く、揺動にも強い、船舶における省エネ対策として顕著な効果を発揮する。   In particular, in the case of a ship, when a highly efficient diesel engine (low quality oil) is used as a power engine, poor exhaust gas properties (soot, SOx, etc.) stand out. On the other hand, energy saving measures are difficult because the ship has restrictions such as the installation space of the device and the swing of the hull caused by waves. Therefore, the present application exhibits a remarkable effect as an energy saving measure in a ship, which is compact and reliable as a soot measure and a SOx measure, and is resistant to rocking.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following, the range necessary for the description for achieving the object of the present invention is schematically shown, and the range necessary for the description of the relevant part of the present invention will be mainly described. Are according to known techniques.

本発明の一実施形態に係る流動層装置及び循環式流動層装置における構成は、ライザー部及び/またはダウンカマー部において、従来技術とその構成を異にする。具体的には、ライザー部及びダウンカマー部の形状は筐体形、筐体斜形、円柱形、円筒形、斜円柱形、多角柱形、多角斜柱形、円錐形、円斜錐形、多角錐形、多角斜錐形のいずれでもよいが、直立状態で第一の側面及び/または第二の側面が重力方向に狭くなるように傾斜させて構成し(側面と水平面とによって形成される外角が90°未満になるように構成し)、側面に略平行となるように伝熱面を介在もしくは添設させる。または、直立状態の断面視で、第一の内壁面及び/または第二の内壁面に傾斜を設けて構成し(内壁面と水平面とによって形成される内角が90°を超える角度になるように構成し)、内壁面に平行に伝熱面を介在もしくは添設させる。さらに、ライザー部及びダウンカマー部の内部に傾斜を有する伝熱面を付設できる構成とする。伝熱面はライザー部及び/またはダウンカマー部を三分割したとき、上部、中央部及び下部のいずれにも設けることができる。このとき、さらに好適には、傾斜角度を下方から上方に向かい少ない角度、すなわち空気の自然拡散に合った広がり(たとえば片側5〜6°)で拡大することにより、摩擦抵抗が減る現象を踏まえ、適度な広がり角を選定することにより、摩擦抵抗の低減で送気手段の使用エネルギーが低減できる。   The configuration of the fluidized bed apparatus and the circulating fluidized bed apparatus according to an embodiment of the present invention is different from the conventional technology in the riser section and / or the downcomer section. Specifically, the shape of the riser part and downcomer part is a case shape, a case oblique shape, a columnar shape, a cylindrical shape, a slanted column shape, a polygonal column shape, a polygonal oblique column shape, a conical shape, a circular cone shape, a multiple shape. Either a pyramid shape or a polygonal oblique pyramid shape may be used, but the first side surface and / or the second side surface is inclined so as to narrow in the direction of gravity in an upright state (an outer angle formed by the side surface and the horizontal surface). And a heat transfer surface is interposed or attached so as to be substantially parallel to the side surface. Alternatively, the first inner wall surface and / or the second inner wall surface is provided with an inclination in a sectional view in an upright state (the inner angle formed by the inner wall surface and the horizontal surface is an angle exceeding 90 °). The heat transfer surface is interposed or attached in parallel to the inner wall surface. Furthermore, it is set as the structure which can attach the heat-transfer surface which has an inclination inside a riser part and a downcomer part. When the riser part and / or the downcomer part is divided into three parts, the heat transfer surface can be provided on any of the upper part, the central part and the lower part. More preferably, based on the phenomenon that the frictional resistance is reduced by increasing the inclination angle from the lower side to the lower side, that is, by expanding with a spread suitable for the natural diffusion of air (for example, 5 to 6 ° on one side), By selecting an appropriate divergence angle, the energy used by the air supply means can be reduced by reducing the frictional resistance.

また、上記構成の有無に関わらず、ライザー部及び/またはダウンカマー部を揺動させる構成でもよい(揺動の方向、振幅及び周期に限定はないものとする。)。ここで、揺動とは、振幅動、上下動、回転動、摺動を問わず、固体粒子が伝熱手段(たとえば伝熱板)に角度をもって衝突することを動的に可能にする作用・動作総てを含む概念をいう。また、ライザー部及び/またはダウンカマー部のみを揺動させる構成、ライザー部及び/またはダウンカマー部を含む流動層装置及び循環式流動層装置を揺動させる構成、及び流動層装置及び/または循環式流動層装置を搭載した本体(例えば、プラントや船舶等)を揺動させる構成のうち少なくとも1つの構成を含めばよく、複数の構成の組合せでもよい。   Moreover, the structure which rocks | rises a riser part and / or a downcomer part irrespective of the presence or absence of the said structure may be sufficient (There is no limitation in the direction, amplitude, and period of a rocking | swiveling). Here, rocking is an action that dynamically enables solid particles to collide with heat transfer means (for example, a heat transfer plate) at an angle regardless of amplitude movement, vertical movement, rotation movement, or sliding. A concept that includes all operations. Moreover, the structure which rocks only a riser part and / or a downcomer part, the structure which rocks a fluidized bed apparatus and a circulating fluidized bed apparatus including a riser part and / or a downcomer part, and a fluidized bed apparatus and / or circulation It is only necessary to include at least one configuration among the configurations for swinging a main body (for example, a plant or a ship) on which the fluidized bed apparatus is mounted, and a combination of a plurality of configurations may be used.

次に、本願に係るライザー部及び/またはダウンカマー部を含む流動層装置及び/または循環式流動層装置の動作原理について、説明する。   Next, the operation principle of the fluidized bed apparatus and / or the circulating fluidized bed apparatus including the riser section and / or the downcomer section according to the present application will be described.

図1は、流動層装置及び/または循環式流動層装置におけるライザー部の内壁面の状態を表す状態図である。同図(a)は、ライザー部を正立させたときの状態を示すところ、重力(自然落下)の影響により固体粒子70が内壁面に接触するタイミングがまばらである。したがって、熱伝達率の向上は困難と想定される。一方、同図(b)は、ライザー部を傾斜させて設けた構成或いはライザー部の内部に傾斜させて設けた伝熱面の表面の状態を示すところ、固体粒子70に係る自然落下の過程でこれらの傾斜が障害となり、固体粒子70が傾斜面に沿って滑って下降していく状態であったり、或いは一度伝熱手段上に落下した固体粒子がリバウンドする状況等が形成される。また、落下せずに壁面に付着する固体粒子もある。固気混相流の熱伝達においては、粒子と壁面との接触頻度が重要であることが推定されるところ、粒子の持っている熱量が程よく壁面に伝達される時間だけ接触(程良く付着)するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されることになるから、傾斜壁による熱伝達率の向上が期待される。   FIG. 1 is a state diagram illustrating a state of an inner wall surface of a riser section in a fluidized bed apparatus and / or a circulating fluidized bed apparatus. FIG. 4A shows a state when the riser portion is erected, and the timing at which the solid particles 70 come into contact with the inner wall surface due to the influence of gravity (natural fall) is sparse. Therefore, it is assumed that it is difficult to improve the heat transfer coefficient. On the other hand, FIG. 5B shows a configuration in which the riser portion is inclined or a state of the surface of the heat transfer surface provided to be inclined inside the riser portion. These inclinations become obstacles, and the solid particles 70 slide and fall along the inclined surface, or the solid particles once dropped on the heat transfer means are rebounded. Some solid particles adhere to the wall without falling. In heat transfer of solid-gas mixed phase flow, it is presumed that the contact frequency between the particles and the wall surface is important. In this way, the heat transfer is promoted by the inclined wall because the total heat transfer is promoted by changing the particles after the heat transfer from the next to the next.

この場合、傾斜を持った伝熱手段の表面等に付着した固体粒子が堆積しない構成、例えば、伝熱手段の表面の摩擦力を低下させる加工を施したり、摩擦力を低減させる部材を塗布したりすることが好ましい。しかしたとえ固体粒子が堆積したとしても、固体粒子同士が熱伝達を行い、最終的に伝熱手段に熱伝達される構成であればよい。このようにすることにより、外郭を重力方向に狭く傾斜させることは、流動層装置における熱伝達率の向上を実現させるものである。   In this case, a configuration in which solid particles attached to the surface of the heat transfer means having an inclination do not accumulate, for example, a process for reducing the frictional force on the surface of the heat transfer means or a member for reducing the frictional force is applied. Is preferable. However, even if solid particles are deposited, any structure may be used as long as the solid particles transfer heat to each other and finally transfer heat to the heat transfer means. In this way, the slanting of the outer shell in the direction of gravity makes it possible to improve the heat transfer coefficient in the fluidized bed apparatus.

図2は、本発明の一実施形態に係る流動層装置及び/または循環式流動層装置の熱伝達率に関するグラフである。同図(a)は、流動層装置及び/または循環式流動層装置におけるライザー部の空塔速度と熱伝達率との関係を示すグラフである。同図において、正立させたライザー部を、断面視にて第一の外壁面及び/または第二の外壁面が重力方向に狭くなるように傾斜させたライザー部(以下、「傾斜させたライザー部」ともいう。)及び揺動させたライザー部のそれぞれの上部、中央部及び下部における空塔速度Ug(m/s)と熱伝達率h(W/m2k)の値を示す。なお、ライザー部各部には計測用の発熱板を介在させている。   FIG. 2 is a graph relating to the heat transfer rate of the fluidized bed apparatus and / or the circulating fluidized bed apparatus according to an embodiment of the present invention. The figure (a) is a graph which shows the relationship between the superficial velocity of the riser part in a fluidized bed apparatus and / or a circulating fluidized bed apparatus, and a heat transfer rate. In the same figure, the riser portion that is upright is inclined so that the first outer wall surface and / or the second outer wall surface is narrowed in the direction of gravity in a cross-sectional view (hereinafter referred to as “inclined riser”). And the superficial velocity Ug (m / s) and the heat transfer coefficient h (W / m2k) at the upper, middle and lower parts of the swung riser part. Note that a heating plate for measurement is interposed in each part of the riser section.

実験装置及び実験方法は以下のとおりである。
・ ライザー部側面の3箇所に、厚さ:0.1mmのステンレス発熱板(寸法:126mm×324mmまたは126mm×424mm)を内壁面に貼付した同一寸法のベークライト製側壁を設置し、ステンレス発熱板を通電加熱して、その表面温度を外径:1mmのT型シース熱電対で計測すると共に、分散板から766mm上方のライザー中央部の固気混相流温度を計測して熱伝達率を求めた。
・ 固体粒子は、粒径0.18〜0.35mmの石灰石粒子(充填量:40kg)とした。
・ ライザー部の傾斜は、傾斜角=15°として構成した。
・ ライザー部の揺動は、実験装置に揺動台を搭載し、揺動に係る横揺れ振幅=±15°、周期=6sの横揺れ運動として構成した。
The experimental apparatus and experimental method are as follows.
・ At the three locations on the side of the riser section, bakelite side walls of the same dimensions with 0.1 mm thick stainless steel heating plates (dimensions: 126 mm x 324 mm or 126 mm x 424 mm) attached to the inner wall are installed. The surface temperature was measured with a T-sheath thermocouple having an outer diameter of 1 mm while energized and heated, and the solid-gas mixed phase flow temperature at the center of the riser 766 mm above the dispersion plate was measured to obtain the heat transfer coefficient.
The solid particles were limestone particles having a particle size of 0.18 to 0.35 mm (filling amount: 40 kg).
・ The riser was inclined at an inclination angle of 15 °.
The rocking of the riser part was configured as a rolling motion with a swinging amplitude = ± 15 ° and a period = 6 s associated with the swinging by mounting a swinging table in the experimental apparatus.

同図に示すとおり、ライザー部の中央部及び上部では、正立させたライザー部より、揺動させたライザー部及び傾斜させたライザー部のほうが、熱伝達率が数倍大きいことが確認できる。このことから、熱伝達率の増大は壁面下降流による固体粒子の発熱板へ程よく付着することに起因すると考えられる。また、空塔速度の増大に伴い壁面下降流が増大することによると考えられる。   As shown in the figure, it can be confirmed that the heat transfer coefficient is several times larger in the central part and the upper part of the riser part than the upright riser part. From this, it is considered that the increase in the heat transfer coefficient is due to the solid adhesion of the solid particles to the heat generating plate due to the wall surface downflow. In addition, it is considered that the downflow on the wall surface increases as the superficial velocity increases.

一方、ライザー部の下部での熱伝達率は、Ug≦2.21(m/s)では中央部及び上部に比べて遥かに大きい。これは下部の粒子容積分率が中央部及び上部に比べて高いためであると考えられる。しかし、Ug>2.21(m/s)では熱伝達率は急激に減少する。これは、空塔速度の増大に伴って下部の粒子容積分率が急減するため、下部に介在する発熱板に程よく付着する粒子量が減少するからであると考えられる。   On the other hand, the heat transfer coefficient in the lower part of the riser part is much larger than that in the central part and the upper part when Ug ≦ 2.21 (m / s). This is presumably because the lower particle volume fraction is higher than the central and upper parts. However, when Ug> 2.21 (m / s), the heat transfer coefficient decreases rapidly. This is presumably because the particle volume fraction in the lower part rapidly decreases as the superficial velocity increases, so that the amount of particles adhering to the heat generating plate interposed in the lower part is reduced.

また、同図では同時に、横揺れ状態及び傾斜状態における各部熱伝達率を示すところ、横揺れ時の中央部及び上部では正立時と比べると顕著に増大することが確認できる。これは、横揺れ運動によりライザー部の側面の壁面下降流が周期的に変動し、粒子流下量も大幅に増加するためと考えられる。一方、下部の熱伝達率は、空塔速度が小さいUg≦2.21(m/s)を除いて正立時の熱伝達率よりも大きい。これは流下量が増加した石灰石粒子が下部に滞留するため、正立状態に比べると粒子容積分率が増大するためであると考えられる。さらに、傾斜状態における熱伝達率はいずれも正立時、横揺れ時よりも遥かに大きい。これは、発熱板が傾斜したライザー部の側面の下側となるため、壁面下降流が発熱板に接触する度合いが高まるからであると考えられる。   In addition, in the same figure, the heat transfer coefficient of each part in the rolling state and the inclined state is shown at the same time, and it can be confirmed that the central part and the upper part in the rolling state are remarkably increased as compared with the upright state. This is thought to be because the wall wall downflow on the side surface of the riser portion periodically fluctuates due to the rolling motion, and the particle flow amount also increases significantly. On the other hand, the heat transfer coefficient in the lower part is larger than the heat transfer coefficient in the upright state except for Ug ≦ 2.21 (m / s) where the superficial velocity is small. This is thought to be because the limestone particles with increased flow amount stay in the lower part and the particle volume fraction increases compared to the upright state. Furthermore, the heat transfer coefficient in the tilted state is much higher than when erecting and rolling. This is considered to be because the degree of the wall surface downward flow coming into contact with the heat generating plate is increased because the heat generating plate is below the side surface of the inclined riser portion.

同図(b)は、流動層装置及び/または循環式流動層装置におけるライザー部の粒子容積分率と熱伝達率との関係を示すグラフである。図中の実線は、正立状態のライザー部の上部及び下部の熱伝達データの整理式を指標するものである。これにより、ライザー部の中央部及び上部での熱伝達は内壁面に沿って流下する粒子が壁面と接触することにより促進されることが認識できる。一方、壁面下降流によってライザー部の下部に滞留する粒子が直接発熱板に接触することにより熱伝達が促進され、伝熱促進のメカニズムも中央部及び上部とは異なるものと考えられる。   FIG. 5B is a graph showing the relationship between the particle volume fraction of the riser section and the heat transfer coefficient in the fluidized bed apparatus and / or the circulating fluidized bed apparatus. The solid line in the figure indicates the rearrangement formula of the heat transfer data of the upper and lower portions of the riser portion in the upright state. Thereby, it can be recognized that the heat transfer in the central part and the upper part of the riser part is promoted by the particles flowing down along the inner wall surface coming into contact with the wall surface. On the other hand, it is considered that the heat transfer is promoted by the particles staying in the lower part of the riser part directly coming into contact with the heat generating plate by the wall descending flow, and the mechanism of the heat transfer promotion is also different from the central part and the upper part.

ライザー部の上部の熱伝達率に注目すると、横揺れ時の熱伝達(整理式を破線で示す。)は、正立状態と比べると(粒子容積率が同じでも)増大していることが確認される。これは、横揺れ運動により内壁面に付着する固体粒子の数量が増大し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、(粒子容積分率が同じでも)熱伝達率が増大することによるものと考えられる。また、壁面下降流により上部を流下する粒子は、引き続き中央部も流下するため、中央部の熱伝達率は(粒子容積分率が同じでも)上部に比較すると熱伝達率が大きくなっているものと考えられる。さらに、上部と同様、横揺れ運動により内壁面に付着する固体粒子の数量が増大し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、正立状態に比べると横揺れ時の熱伝達率の方が大きくなると考えられる。   Focusing on the heat transfer coefficient at the top of the riser part, it is confirmed that the heat transfer during rolling (the arrangement formula is shown by a broken line) is increased compared to the upright state (even if the particle volume ratio is the same). Is done. This is because the number of solid particles adhering to the inner wall surface increases due to the rolling motion, and the amount of heat that the particles have is in contact with the wall surface for a reasonable amount of time. This is thought to be due to an increase in the heat transfer coefficient (even if the particle volume fraction is the same) because the overall heat transfer is promoted. In addition, the particles that flow down the upper part due to the wall-down flow continue to flow down in the central part, so the heat transfer coefficient in the central part is higher than that in the upper part (even if the particle volume fraction is the same). it is conceivable that. Furthermore, as with the upper part, the number of solid particles adhering to the inner wall surface increases due to the rolling motion, so that the amount of heat that the particles have is properly transferred to the wall surface, and the particles that have finished transferring heat Since the overall heat transfer is promoted by changing from one to the next, it is considered that the heat transfer coefficient during rolling is greater than in the upright state.

一方、下部における横揺れ時の熱伝達率は、実線で示す正立状態の整理式に対応する場合とほとんど一致しており、下部においては正立状態と横揺れ時で熱伝達率の実態は変わらないと考えられる。ただし、横揺れにより粒子容積分率が増大するため、横揺れ時の熱伝達率は正立状態のものより増大するものと考えられる。   On the other hand, the heat transfer coefficient during rolling in the lower part is almost the same as that corresponding to the arrangement formula of the upright state shown by the solid line, and the actual heat transfer coefficient in the lower part in the upright state and rolling is It is thought that it does not change. However, since the particle volume fraction increases due to rolling, it is considered that the heat transfer coefficient during rolling is higher than that in the upright state.

次に、本願に係るライザー部及び/またはダウンカマー部を含む流動層装置及び/または循環式流動層装置の構成について、説明する。図3は、本発明の一実施形態に係る流動層装置3及び4の構成を示す図である。同図(a)の流動層装置3は、ライザー部10、分散板30、伝熱面20−1を備えて形成され、ライザー部10の内部を固体粒子70が流動する仕組みになっている。固体粒子70は、分散板30を介して加熱部100、送気部200を有した燃焼機関(例えば、プラントの燃焼装置及び船舶のエンジン等)から供給される高温ガス(例えば、二酸化硫黄(SO2)をはじめとするSOx類を含む排気ガス等)の流れによって上昇し、ライザー部10内を流動する。このとき、ライザー部10を、断面視で第一の側面を重力方向に狭くなるように傾斜させて構成すること(第一の側面と水平面とによって形成される外角が90°未満になるようにすること)で、第一の内壁面付近に浮遊する固体粒子70は、ダウンフローにより第一の内壁面に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面20−1が介在する第一の内壁面に固体粒子70が接触する機会が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。なお、図示はしないが、伝熱面20−1をライザー部10の下部の内壁面に介在させることで、ライザー部10の下部に滞留する固体粒子70が伝熱面20−1に接触するため、さらに熱伝達率を向上させることができる。また、分散板30の下部から空気を供給し、ライザー部10から燃料ガスを吹き込んだり可燃材を入れることにより、ライザー部10内で燃焼による発熱が同時に行われるような方式にしてもよい。   Next, the structure of the fluidized bed apparatus and / or the circulating fluidized bed apparatus including the riser section and / or downcomer section according to the present application will be described. FIG. 3 is a diagram showing a configuration of fluidized bed apparatuses 3 and 4 according to an embodiment of the present invention. The fluidized bed apparatus 3 of FIG. 1A is formed with a riser unit 10, a dispersion plate 30, and a heat transfer surface 20-1, and has a mechanism in which solid particles 70 flow inside the riser unit 10. The solid particles 70 are supplied from a combustion engine (for example, a plant combustion apparatus and a ship engine) having a heating unit 100 and an air supply unit 200 via the dispersion plate 30 (for example, sulfur dioxide (SO2)). ) And other exhaust gas containing SOx, etc.) and flows in the riser section 10. At this time, the riser portion 10 is configured by inclining the first side surface in the direction of gravity in a cross-sectional view (so that the outer angle formed by the first side surface and the horizontal plane is less than 90 °. Thus, the solid particles 70 floating near the first inner wall surface descend while sliding, rolling, and rebounding along the first inner wall surface by downflow. Therefore, the chance that the solid particles 70 come into contact with the first inner wall surface on which the heat transfer surface 20-1 is interposed is increased, and the amount of heat that the particles have is moderately transferred to the wall surface. Since the heat transfer is promoted by the change of the heated particles from the next to the next, the heat transfer rate can be improved. Although not shown, since the heat transfer surface 20-1 is interposed in the inner wall surface of the lower portion of the riser unit 10, the solid particles 70 staying in the lower portion of the riser unit 10 come into contact with the heat transfer surface 20-1. Further, the heat transfer rate can be improved. Alternatively, a method may be employed in which heat is simultaneously generated in the riser unit 10 by supplying air from the lower part of the dispersion plate 30 and blowing fuel gas from the riser unit 10 or inserting a combustible material.

同図(b)の流動層装置4は、ライザー部10の内部に伝熱面20−2を1又は複数個設ける構成を有している。このとき、ライザー部10を、断面視で第一の側面及び第二の側面が重力方向に狭くなるように傾斜させて構成し(第一の側面と水平面とによって形成される外角及び第二の側面と水平面とによって形成される外角が90°未満になるようにすること)、かつ、内部に伝熱面20−2を傾斜させて設けることで、第一の内壁面、第二の内壁面及び伝熱面20−2付近に浮遊する固体粒子70は、ダウンフローにより第一の内壁面、第二の内壁面及び伝熱面20−2に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面20−1が介在する第一の内壁面、第二の内壁面及び伝熱面20−2に固体粒子70が接触する機会が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。なお、図示はしないが、伝熱面20−1をライザー部10の下部の内壁面に介在させるか、或いは伝熱面20−2をライザー部の下部に設けることで、ライザー部10の下部に滞留する固体粒子70が伝熱面20−1或いは伝熱面20−2に接触するため、さらに熱伝達率を向上させることができる。   The fluidized bed apparatus 4 in FIG. 4B has a configuration in which one or a plurality of heat transfer surfaces 20-2 are provided inside the riser section 10. At this time, the riser unit 10 is configured to be inclined so that the first side surface and the second side surface are narrowed in the direction of gravity in a cross-sectional view (the outer angle formed by the first side surface and the horizontal plane and the second side surface). The outer angle formed by the side surface and the horizontal plane is less than 90 °), and the heat transfer surface 20-2 is inclined inside to provide the first inner wall surface and the second inner wall surface. The solid particles 70 floating in the vicinity of the heat transfer surface 20-2 descend while sliding, rolling, and rebounding along the first inner wall surface, the second inner wall surface, and the heat transfer surface 20-2 by downflow. To do. Therefore, the chance that the solid particles 70 come into contact with the first inner wall surface, the second inner wall surface, and the heat transfer surface 20-2 with the heat transfer surface 20-1 interposed therebetween increases the amount of heat that the particles have. The heat transfer rate can be improved since the heat transfer is promoted by changing the particles after the heat transfer from the next time to the next time. Although not shown, the heat transfer surface 20-1 is interposed on the inner wall surface of the lower portion of the riser portion 10, or the heat transfer surface 20-2 is provided at the lower portion of the riser portion, so that the lower portion of the riser portion 10 is provided. Since the staying solid particles 70 come into contact with the heat transfer surface 20-1 or the heat transfer surface 20-2, the heat transfer rate can be further improved.

図4は、本発明の別の一実施形態に係る循環式流動層装置5の構成を示す図である。同図に示すとおり、循環式流動層装置5は、図3の流動層装置3及び4に係る構成に加え、固気分離部40、ダウンカマー部50、バルブ60(例えば、ループシールバルブ或いはニューマチックバルブ等)、粒子供給装置80及び粒子回収装置90をさらに備えて構成される。このとき、ライザー部10を、断面視で第一の側面を重力方向に狭くなるように傾斜させて構成すること(第一の側面と水平面とによって形成される外角が90°未満になるようにすること)で、第一の内壁面付近に浮遊する固体粒子70は、ダウンフローにより第一の内壁面に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面20−1が介在する第一の内壁面に固体粒子70が接触する時間が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。なお、図示はしないが、伝熱面20−1をライザー部10の下部の内壁面に介在させることで、ライザー部10の下部に滞留する固体粒子70が伝熱面20−1に接触するため、より熱伝達率を向上させることができる。また、ライザー部10の内部の下部に伝熱面を傾斜させて設ければ、一層伝熱率を向上させることができる。   FIG. 4 is a diagram showing a configuration of a circulating fluidized bed apparatus 5 according to another embodiment of the present invention. As shown in the figure, the circulating fluidized bed device 5 includes a solid gas separation unit 40, a downcomer unit 50, a valve 60 (for example, a loop seal valve or a new valve) in addition to the configuration related to the fluidized bed devices 3 and 4 in FIG. And a particle supply device 80 and a particle recovery device 90. At this time, the riser portion 10 is configured by inclining the first side surface in the direction of gravity in a cross-sectional view (so that the outer angle formed by the first side surface and the horizontal plane is less than 90 °. Thus, the solid particles 70 floating near the first inner wall surface descend while sliding, rolling, and rebounding along the first inner wall surface by downflow. Accordingly, the time during which the solid particles 70 are in contact with the first inner wall surface on which the heat transfer surface 20-1 is interposed is increased, and the amount of heat that the particles have is appropriately transferred to the wall surface so as to be in contact. Since the heat transfer is promoted by the change of the heated particles from the next to the next, the heat transfer rate can be improved. Although not shown, since the heat transfer surface 20-1 is interposed in the inner wall surface of the lower portion of the riser unit 10, the solid particles 70 staying in the lower portion of the riser unit 10 come into contact with the heat transfer surface 20-1. As a result, the heat transfer rate can be improved. In addition, if the heat transfer surface is provided at a lower portion inside the riser portion 10, the heat transfer rate can be further improved.

また図5は、本発明のまた別の一実施形態に係る循環式流動層装置6を示す図である。同図に示すとおり、ライザー部10を、断面視で第一の側面及び第二の側面が重力方向に狭くなるように傾斜させて構成すること(第一の側面と水平面とによって形成される外角及び第二の側面と水平面とによって形成される外角が90°未満になるようにすること)で、第一の内壁面及び第二の内壁面付近に浮遊する固体粒子70は、ダウンフローにより第一の内壁面及び第二の内壁面に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面20−1が介在する第一の内壁面及び第二の内壁面に固体粒子70が接触する時間が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。なお、図示はしないが、伝熱面20−1をライザー部10の下部の内壁面に介在させることで、ライザー部10の下部に滞留する固体粒子70が伝熱面20−1に接触するため、より熱伝達率を向上させることができる。また、ライザー部10の内部の下部に伝熱面を傾斜させて設ければ、一層熱伝達率を向上させることができる。   FIG. 5 is a view showing a circulating fluidized bed apparatus 6 according to another embodiment of the present invention. As shown in the figure, the riser portion 10 is configured to be inclined so that the first side surface and the second side surface are narrowed in the direction of gravity in a cross-sectional view (the outer angle formed by the first side surface and the horizontal surface). And the external angle formed by the second side surface and the horizontal plane is less than 90 °), the solid particles 70 floating near the first inner wall surface and the second inner wall surface are It descends while sliding, rolling, and rebounding along one inner wall surface and the second inner wall surface. Therefore, the time during which the solid particles 70 are in contact with the first inner wall surface and the second inner wall surface where the heat transfer surface 20-1 is interposed increases, and the amount of heat that the particles have is moderately transferred to the wall surface. Since the heat transfer is promoted by bringing the particles that have been brought into contact with each other and the heat-transferred particles are changed from one to the next, the heat transfer coefficient can be improved. Although not shown, since the heat transfer surface 20-1 is interposed in the inner wall surface of the lower portion of the riser unit 10, the solid particles 70 staying in the lower portion of the riser unit 10 come into contact with the heat transfer surface 20-1. As a result, the heat transfer rate can be improved. In addition, if the heat transfer surface is provided at a lower portion inside the riser portion 10, the heat transfer coefficient can be further improved.

一方、図4及び図5に係る循環式流動層装置5及び6で、ダウンフローせずに上昇した固体粒子70は、所定の配管等を介して搬送され、固気分離器40で気体及び微小の粒子と分別される。そして、固体粒子70は、サイクロン機能によってダウンカマー部50の下部中央に集約される。このとき、図6において、本発明の一実施形態に係る循環式流動層装置7を示すところ、ダウンカマー部50を、断面視で第一の側面及び第二の側面が重力方向に狭くなるように傾斜させて構成されること(第一の側面と水平面とによって形成される外角及び第二の側面と水平面とによって形成される外角が90°未満になるようにすること)により、第一の内壁面及び第二の内壁面に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面20−3が介在する第一の内壁面及び第二の内壁面に固体粒子70が接触する機会が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。なお、図示はしないが、伝熱面20−3をダウンカマー部50の下部の内壁面に介在させることで、ダウンカマー部50の下部に滞留する固体粒子70が伝熱面20−3に接触するため、さらに熱伝達率を向上させることができる。また、ダウンカマー部50の内部の下部に伝熱面を傾斜させて設ければ、より一層伝熱率を向上させることができる。   On the other hand, the solid particles 70 that have risen without downflow in the circulating fluidized bed apparatuses 5 and 6 according to FIGS. 4 and 5 are transported through a predetermined pipe or the like, and are gas and microscopically separated by the solid-gas separator 40. The particles are separated. The solid particles 70 are collected at the lower center of the downcomer portion 50 by the cyclone function. At this time, in FIG. 6, the circulating fluidized bed apparatus 7 according to the embodiment of the present invention is shown, and the first side surface and the second side surface of the downcomer portion 50 are narrowed in the direction of gravity in a cross-sectional view. (The outer angle formed by the first side surface and the horizontal plane and the outer angle formed by the second side surface and the horizontal plane are less than 90 °). It descends while sliding, rolling or rebounding along the inner wall surface and the second inner wall surface. Therefore, the chance that the solid particles 70 come into contact with the first inner wall surface and the second inner wall surface where the heat transfer surface 20-3 intervenes increases, and the amount of heat possessed by the particles is moderately transferred to the wall surface, Since the heat transfer is promoted by bringing the particles that have been brought into contact with each other and the heat-transferred particles are changed from one to the next, the heat transfer coefficient can be improved. In addition, although not shown in figure, the solid particle 70 which stays in the lower part of the downcomer part 50 contacts the heat transfer surface 20-3 by interposing the heat transfer surface 20-3 in the inner wall surface of the lower part of the downcomer part 50. Therefore, the heat transfer rate can be further improved. In addition, if the heat transfer surface is provided at a lower portion inside the downcomer portion 50, the heat transfer rate can be further improved.

また、循環式流動層装置5、6及び7に係る粒子供給装置80にて、不足した固体粒子70を供給することができ、粒子回収装置90にてその効用を終えた固体粒子70(例えば、複数回循環を繰り返して熱回収効果や脱硫効果が著しく低減してしまった粒子等)を回収することができる。一方さらに、ダウンカマー部50で集約した固体粒子70は、バルブ60に堆積せずに流動が可能な状態にし、再びライザー部10に搬送される。またさらに、内壁面に介在させた伝熱面20−1及び20−3は、熱媒体(例えば、清水等の伝熱効果を有するものを含む。)の入口と出口を設けることで、熱伝達された熱媒体を他の用途(例えば、洗浄用水及び調理用水等)に利用することができる。   In addition, the solid particle 70 (for example, for which the lack of the solid particles 70 can be supplied by the particle supply device 80 according to the circulating fluidized bed devices 5, 6 and 7 and whose utility is finished by the particle recovery device 90 (for example, By repeating the circulation a plurality of times, particles and the like in which the heat recovery effect and desulfurization effect have been significantly reduced can be recovered. On the other hand, the solid particles 70 aggregated in the downcomer unit 50 are brought into a flowable state without being deposited on the valve 60 and are transported to the riser unit 10 again. Furthermore, the heat transfer surfaces 20-1 and 20-3 interposed on the inner wall surface are provided with an inlet and an outlet of a heat medium (including those having a heat transfer effect such as fresh water), thereby transferring heat. The used heat medium can be used for other purposes (for example, water for washing and water for cooking).

また、上記に記載した実施形態における個体粒子70を、酸化鉄の粒子や生石灰の粒子とすることにより、高温ガスや燃焼ガス中に含まれるSOx等の硫黄成分の脱硫を同時に行うことができる。 Moreover, by using the solid particles 70 in the embodiment described above as iron oxide particles or quicklime particles, sulfur components such as SOx contained in high-temperature gas or combustion gas can be simultaneously desulfurized.

図7は、本発明のさらに別の一実施形態に係る循環式流動層装置を揺動させる構成にした状態を示す概念図である。ここで、揺動とは、振幅動、上下動、回転動、摺動を問わず、固体粒子が伝熱手段(たとえば伝熱板)に角度をもって衝突することを動的に可能にする作用・動作総てを含む概念をいう。同図に示されるように、揺動により周期的に傾斜面が形成される流動層となるため、上記で説明した傾斜による熱伝達効率の向上が動的にもたらされることとなる。また、循環式流動層装置を船舶等に搭載した場合には、船舶は波浪の影響により所定の周期で揺れるため、揺動のための動力を特に別途設ける必要なく、ライザー部及びダウンカマー部は都度傾斜を動的に構成する。この場合、図示はしないが、固体粒子70は傾斜した内壁面に沿って滑ったり転がったりリバウンドしたりしながら下降する。したがって、伝熱面が介在する第一の内壁面及び第二の内壁面に固体粒子70が接触する機会が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率を向上させることができる。   FIG. 7 is a conceptual diagram showing a state in which a circulating fluidized bed apparatus according to still another embodiment of the present invention is configured to swing. Here, rocking is an action that dynamically enables solid particles to collide with heat transfer means (for example, a heat transfer plate) at an angle regardless of amplitude movement, vertical movement, rotation movement, or sliding. A concept that includes all operations. As shown in the figure, a fluidized bed in which inclined surfaces are periodically formed by rocking, and thus the heat transfer efficiency is improved dynamically by the inclination described above. In addition, when the circulating fluidized bed apparatus is mounted on a ship or the like, the ship sways at a predetermined cycle due to the influence of waves, so there is no need to provide power for swinging in particular, the riser part and the downcomer part are The slope is dynamically configured each time. In this case, although not shown, the solid particles 70 descend while sliding, rolling, and rebounding along the inclined inner wall surface. Therefore, the chance that the solid particles 70 come into contact with the first inner wall surface and the second inner wall surface where the heat transfer surface is interposed increases, and the amount of heat of the particles is in contact with the wall surface for a reasonable time. In addition, the heat transfer rate can be improved because the overall heat transfer is promoted by changing the particles after the heat transfer from the next to the next.

なお、本発明は上述した各実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

また、上述した実施例は、本発明に係る技術思想を具現化するための実施形態の一例を示したにすぎないものであり、他の実施形態でも本発明に係る技術思想を適用することが可能である。たとえば、上記では、揺動が自発的にもたらされる産業的応用の例として船舶の燃焼機関(例えば、船舶のボイラーやエンジン等)を取り上げて説明したが、本願は船舶に限定されることなく、たとえば、海洋に設けた浮体、車両等であっても、同じように、そこから供給される高温ガスや燃焼ガスから熱を回収しながらライザー部10内を流動させることで、本願の技術的思想を適用して本願による効果を奏することが可能である。   Further, the above-described examples are merely examples of embodiments for embodying the technical idea according to the present invention, and the technical ideas according to the present invention can be applied to other embodiments. Is possible. For example, in the above description, a combustion engine of a ship (for example, a boiler or an engine of a ship) is described as an example of an industrial application in which the oscillation is spontaneously generated. However, the present application is not limited to a ship. For example, even in the case of a floating body, a vehicle, etc. provided in the ocean, the technical idea of the present application can be obtained by causing the inside of the riser unit 10 to flow while recovering heat from high-temperature gas or combustion gas supplied therefrom. Can be applied to achieve the effects of the present application.

さらにまた、本発明を用いて生産される装置、方法、システムが、その2次的生産品に搭載されて商品化された場合であっても、本発明の価値は何ら減ずるものではない。   Furthermore, even when the apparatus, method, and system produced using the present invention are mounted on the secondary product and commercialized, the value of the present invention is not reduced at all.

上述したように、本願に係る流動層装置若しくは循環式流動層装置の外郭(ライザー部及び/またはダウンカマー部を含む。)を重力方向に狭くなるように傾斜させることで、外郭に介在した伝熱手段(伝熱面、発熱板を含む。)に沿って固体粒子を落下させることができる。また、外郭内に伝熱手段を傾斜させて設けることで、傾斜を持った伝熱手段に沿って固体粒子を落下させることができる。すなわち、固体粒子が伝熱手段の表面を転がる状態であったり、滑って下降していく状態であったり、或いは一度伝熱手段上に落下した固体粒子がリバウンドしたりする状況が形成される。したがって、接触する固体粒子の数量、固体粒子が伝熱手段に接触する機会が増加し、粒子の持っている熱量が程よく壁面に伝達される時間だけ、接触するようにし、伝熱し終えた粒子が次から次と変わっていくことにより総合的な伝熱が促進されるため、熱伝達率の向上を実現させることができる。   As described above, the outer wall (including the riser part and / or the downcomer part) of the fluidized bed apparatus or the circulating fluidized bed apparatus according to the present application is inclined so as to become narrower in the direction of gravity, so Solid particles can be dropped along the heat means (including the heat transfer surface and the heat generating plate). In addition, by providing the heat transfer means with an inclination in the outer shell, the solid particles can be dropped along the inclined heat transfer means. That is, a state is formed in which the solid particles are rolling on the surface of the heat transfer means, are in a state of sliding down, or the solid particles once dropped on the heat transfer means are rebounded. Therefore, the number of solid particles that come into contact with each other and the chance that the solid particles come into contact with the heat transfer means are increased. Since the overall heat transfer is promoted by changing from one to the next, an improvement in the heat transfer coefficient can be realized.

特に船舶の場合、動力機関として高効率なディーゼルエンジン(低質油)を利用しているため、排気ガス性状の悪さ(すす(スート)やSOx等)が際立つが、その一方では、船舶は装置の設置スペースの制限や波浪による船体の揺動といった制約があるため、省エネ対策が困難となっている。よって本願は、スート対策やSOx対策がなされたコンパクトで信頼性が高く、かつ揺動を有効活用した船舶での省エネ対策として顕著な効果を発揮する。さらに本願では環境保全や汚染の抑制を行う効果を発揮し得る。排熱の熱回収は地球の温暖化を、脱硫は空気汚染を防止するため、これらの要素は今後ますます重要性が高いものといえる。 Especially in the case of a ship, since a high-efficiency diesel engine (low quality oil) is used as a power engine, the bad exhaust gas properties (soot, SOx, etc.) stand out. Due to restrictions such as installation space limitations and ship sway due to waves, energy-saving measures are difficult. Therefore, the present application exhibits a remarkable effect as an energy-saving measure in a ship that is compact and reliable with soot countermeasures and SOx countermeasures, and that makes effective use of rocking. Furthermore, in this application, the effect of carrying out environmental conservation and pollution control can be exhibited. These factors will become increasingly important in the future because heat recovery from waste heat will prevent global warming and desulfurization will prevent air pollution.

したがって、本願の技術思想は船舶にその適用範囲を限定されることなく、海洋に設けた浮体、車両等であってもよく、また、燃焼機関を有するプラント、発電所及び製造業に係る工場にも利用可能性が高く、省エネ効果、環境保全対策といった現代及び将来のニーズに合致し、各種産業全般に対して大きな有益性をもたらすものである。   Accordingly, the technical idea of the present application may be a floating body, a vehicle, etc. provided in the ocean without being limited to the scope of the ship, and is also applicable to a plant having a combustion engine, a power plant, and a factory related to the manufacturing industry. Is highly available and meets modern and future needs such as energy saving effects and environmental conservation measures, and brings great benefits to various industries in general.

本発明の一実施形態に係る流動層装置及び/または循環式流動層装置におけるライザー部の内壁面の状態を表す状態図であり、同図(a)は、ライザー部を正立させたときの状態を示し、同図(b)は、ライザー部を傾斜させて設けた構成或いはライザー部の内部に傾斜させて設けた伝熱面の表面の状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a state figure showing the state of the inner wall face of the riser part in the fluidized-bed apparatus and / or circulating fluidized-bed apparatus which concerns on one Embodiment of this invention, The figure (a) is when a riser part is made upright. The state (b) shows a configuration in which the riser portion is inclined or a state of the surface of the heat transfer surface provided by being inclined inside the riser portion. 本発明の一実施形態に係る流動層装置及び/または循環式流動層装置の熱伝達率に関するグラフであり、同図(a)は、流動層装置及び/または循環式流動層装置におけるライザー部の空塔速度と熱伝達率との関係を示すグラフを示し、同図(b)は、流動層装置及び/または循環式流動層装置におけるライザー部の粒子容積分率と熱伝達率との関係を示すグラフを示す。It is a graph regarding the heat transfer rate of the fluidized-bed apparatus and / or circulating fluidized-bed apparatus which concerns on one Embodiment of this invention, The same figure (a) is the riser part in a fluidized-bed apparatus and / or a circulating-type fluidized-bed apparatus. The graph which shows the relationship between a superficial velocity and a heat transfer coefficient is shown, The figure (b) shows the relationship between the particle | grain volume fraction of a riser part in a fluidized bed apparatus and / or a circulating fluidized bed apparatus, and a heat transfer coefficient. The graph shown is shown. 本発明の一実施形態に係る流動層装置3及び4を示す図であり、同図(a)ではライザー部10の内部を固体粒子70が流動する仕組みを示し、同図(b)の流動層装置4は、ライザー部10の内部に伝熱面20−2を1又は複数個設ける構成を示す。It is a figure which shows the fluidized bed apparatus 3 and 4 which concerns on one Embodiment of this invention, The figure (a) shows the mechanism in which the solid particle 70 flows through the inside of the riser part 10, and the fluidized bed of the figure (b) The device 4 shows a configuration in which one or a plurality of heat transfer surfaces 20-2 are provided inside the riser unit 10. 本発明の一実施形態に係る循環式流動層装置5を示す図である。It is a figure which shows the circulation type fluidized-bed apparatus 5 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る循環式流動層装置6を示す図である。It is a figure which shows the circulation type fluidized-bed apparatus 6 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る循環式流動層装置7を示す図である。It is a figure which shows the circulation type fluidized bed apparatus 7 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る循環式流動層装置を揺動させる構成にした状態を示す概念図である。It is a conceptual diagram which shows the state made into the structure which rocks | circulates the circulating fluidized-bed apparatus which concerns on one Embodiment of this invention. 従来技術による流動層装置を示す図である。It is a figure which shows the fluidized bed apparatus by a prior art. 従来技術による循環式流動層装置を示す図である。It is a figure which shows the circulation type fluidized bed apparatus by a prior art.

符号の説明Explanation of symbols

7…船舶、10…ライザー部(外郭)、20−1…伝熱面(伝熱手段)、20−2…伝熱面(伝熱手段)、30…分散板、40…固気分離部、50…ダウンカマー部(外郭)、60…バルブ、70…固体粒子、80…粒子供給装置、90…粒子回収装置、100…加熱部(加熱手段)、200…送気部(送気手段) DESCRIPTION OF SYMBOLS 7 ... Ship, 10 ... Riser part (outside), 20-1 ... Heat transfer surface (heat transfer means), 20-2 ... Heat transfer surface (heat transfer means), 30 ... Dispersion plate, 40 ... Solid-gas separation part, DESCRIPTION OF SYMBOLS 50 ... Downcomer part (outer), 60 ... Valve, 70 ... Solid particle, 80 ... Particle supply apparatus, 90 ... Particle recovery apparatus, 100 ... Heating part (heating means), 200 ... Air supply part (air supply means)

Claims (7)

排気ガスとの直接の熱交換を含む排熱との熱交換により固体粒子を加熱する加熱手段と、前記加熱手段によ加熱前もしくは加熱後の前記固体粒子を搬送させるための気体を送る送気手段と、前記気体により搬送される前記加熱前もしくは加熱後の前記固体粒子及びこれを搬送する前記気体の周囲に設けた外郭とを具備する固気混相流を用いた熱回収装置において
前記外郭を前記固体粒子が前記送気手段からの気体により上方へ搬送されるライザー部として重力方向に狭くなるように傾斜させて構成し
浮上した前記固体粒子のダウンフローによる熱伝達を行うために少なくとも前記外郭の下部及び中央部において前記外郭に在させ傾斜させて設けた熱回収用の熱交換器及び/または前記外郭内に斜させて設けた熱回収用の熱交換器をさらに備え
前記気体の通過量を前記外郭の内断面積で除した値である空塔速度(m/s)を、前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記外郭の下部の粒子容積分率が急減する下限値である2.21から前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記空塔速度を持たせるためのエネルギー消費量が少なくてすむ上限値である4.0の間に設定した
ことを特徴とする熱伝達率を向上させる機能を備えた熱回収装置。
Feeding sending a heating means for heating the solid particles by heat exchange with exhaust heat including direct heat exchange with the exhaust gas, a gas for transporting the solid particles after by that heating before or heated to the heating means a gas unit, the heat recovery apparatus using the solid-gas mixed flow comprising the outer provided around the gas which conveys the heated prior to or the solid particles after heating and this is conveyed by said gas,
The outer shell is configured to be inclined so as to be narrowed in the direction of gravity as a riser portion in which the solid particles are conveyed upward by the gas from the air feeding means ,
Tilting at least the outer shell of the heat exchanger of the heat recovery provided by inclined so Zaisa through the outer in the lower and central portion and / or the inner shell in order to carry out heat transfer by downflow floated said solid particles It further includes a heat exchanger for heat recovery provided at an angle ,
The superficial velocity (m / s), which is a value obtained by dividing the amount of gas passing by the inner cross-sectional area of the outer shell, can be circulated in the outer shell by allowing the solid particles to float up to the upper end of the outer shell and In order to allow the solid particles to float from the lower limit of 2.21 at which the particle volume fraction at the lower part of the outer shell rapidly decreases to the upper end of the outer shell and circulate in the outer shell and to have the superficial velocity. A heat recovery apparatus having a function of improving the heat transfer rate, characterized in that it is set between 4.0, which is an upper limit value that requires less energy consumption .
記外郭及び/または前記熱回収用の熱交換器はさらに揺動させて構成されることを特徴とする請求項1記載の熱伝達率を向上させる機能を備えた熱回収装置。 Heat recovery apparatus having a function of improving the pre Kigaikaku and / or heat transfer coefficient of claim 1, wherein the heat exchanger for the heat recovery is further swung, characterized in that it is configured. 前記外郭であるライザー部の上部から上部配管を介して接続される前記固体粒子が前記気体によって下方に搬送されるためのダウンカマー部、該ダウンカマー部から前記ライザー部の下部に連接される下部配管をさらに備え、前記ライザー部の上方より飛び出す前記固体粒子が前記ライザー部、前記上部配管、前記ダウンカマー部、前記下部配管によって形成される閉ループ内を循環するように構成し
このダウンカマー部を重力方向に狭くなるように傾斜させて構成し
前記ダウンカマー部に熱回収用のダウンカマー部熱交換器を介在させ傾斜させて設けた及び/または前記ダウンカマー部内に熱回収用のダウンカマー部熱交換器を傾斜させて設けたことを特徴とする請求項1もしくは請求項2記載の熱伝達率を向上させる機能を備えた熱回収装置。
A downcomer part for transporting the solid particles downward from the upper part of the riser part, which is the outer shell, by the gas , and a lower part connected to the lower part of the riser part from the downcomer part Further comprising a pipe, the solid particles jumping out from above the riser part is configured to circulate in a closed loop formed by the riser part, the upper pipe, the downcomer part, the lower pipe ,
The downcomer portion configured to be inclined to be narrower in the direction of gravity,
The downcomer section is provided with a downcomer section heat exchanger for heat recovery interposed and inclined and / or the downcommer section heat exchanger for heat recovery is provided inclined within the downcommer section. The heat recovery apparatus provided with the function to improve the heat transfer rate of Claim 1 or Claim 2 .
前記排熱として船舶の主機関から排気される背圧のかかった排気ガスを用い、前記熱交換器で前記排気ガスからの回収をおこなったことを特徴とする請求項記載の熱伝達率を向上させる機能を備えた熱回収装置。 4. The heat transfer coefficient according to claim 3 , wherein exhaust gas with back pressure exhausted from a main engine of a ship is used as the exhaust heat , and heat recovery from the exhaust gas is performed by the heat exchanger. Heat recovery device with a function to improve 前記固体粒子として脱硫剤を用い、前記排気ガス中の硫黄成分の除去も行ったことを特徴とする請求項記載の熱伝達率を向上させる機能を備えた熱回収装置。 The heat recovery apparatus having a function of improving the heat transfer coefficient according to claim 4 , wherein a desulfurization agent is used as the solid particles and a sulfur component in the exhaust gas is also removed. 排気ガスとの直接の熱交換を含む排熱との熱交換によ加熱前もしくは加熱後の固体粒子を、送気手段より供給される気体により搬送させ、前記気体の周囲に設けた外郭内で固気混相流を用いた熱回収を行う熱回収装置の熱回収方法において
前記外郭を前記固体粒子が前記送気手段からの気体により上方へ搬送されるライザー部として重力方向に狭くなるように傾斜させて構成し、さらに浮上した前記固体粒子のダウンフローによる熱伝達を行うために少なくとも前記外郭の下部及び中央部において前記外郭に介在させ傾斜させて及び/または前記外郭内に傾斜させて熱回収用の熱交換器を設け、前記気体の通過量を前記外郭の内断面積で除した値である空塔速度(m/s)を、前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記外郭の下部の粒子容積分率が急減する下限値である2.21から前記外郭の上端まで前記固体粒子を浮上させて前記外郭内を循環させることができかつ前記空塔速度を持たせるためのエネルギー消費量が少なくてすむ上限値である4.0の間に設定して前記熱回収装置を構成し、前記熱回収装置を揺動させて熱回収を行ったことを特徴とする熱伝達率を向上させる機能を備えた熱回収装置の熱回収方法
The solid particles after heating before or heated that by the heat exchange with the exhaust heat including direct heat exchange with the exhaust gas, is conveyed by the gas supplied from the air supply means, the enclosure provided around the gas In the heat recovery method of the heat recovery device that performs heat recovery using a solid-gas mixed phase flow at
The outer shell is configured to be inclined so as to be narrowed in the direction of gravity as a riser portion in which the solid particles are conveyed upward by the gas from the air supply means, and further heat transfer is performed by downflow of the solid particles that have floated. Therefore, a heat exchanger for heat recovery is provided at least in a lower part and a central part of the outer shell so as to be inclined and / or inclined in the outer shell, and the amount of gas passing through the inner shell is cut off. The superficial velocity (m / s), which is a value divided by the area, allows the solid particles to float up to the upper end of the outer shell and circulates in the outer shell, and the particle volume fraction at the lower portion of the outer shell decreases rapidly. It requires only a energy consumption is small for the 2.21 which is the lower limit have the outline of the upper end to thereby float the said solid particles can be circulated within the outer shell and and the superficial velocity of Set between 4.0 which is a limit value constitutes the heat recovery device, having a function of improving the heat transfer rate, characterized in that by swinging the heat recovery device was heat recovery Heat recovery method for heat recovery device .
前記排熱船舶の主機関から排気される排気ガスとしたことを特徴とする請求項記載の熱伝達率を向上させる機能を備えた熱回収装置の熱回収方法 The heat recovery method for a heat recovery apparatus having a function of improving a heat transfer rate according to claim 6, wherein the exhaust heat is exhaust gas exhausted from a main engine of a ship .
JP2008226331A 2008-09-03 2008-09-03 HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD Expired - Fee Related JP5688785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226331A JP5688785B2 (en) 2008-09-03 2008-09-03 HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226331A JP5688785B2 (en) 2008-09-03 2008-09-03 HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD

Publications (2)

Publication Number Publication Date
JP2010060203A JP2010060203A (en) 2010-03-18
JP5688785B2 true JP5688785B2 (en) 2015-03-25

Family

ID=42187198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226331A Expired - Fee Related JP5688785B2 (en) 2008-09-03 2008-09-03 HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD

Country Status (1)

Country Link
JP (1) JP5688785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093302B1 (en) * 2018-07-19 2020-04-23 한국생산기술연구원 Sand falling type circulating fluidized bed boiler having a plurality of riser and its operation method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914719Y2 (en) * 1980-07-11 1984-04-28 石川島播磨重工業株式会社 Fluidized bed furnace
JPS606981U (en) * 1983-06-22 1985-01-18 日本建鐵株式会社 Oscillating disc heat exchanger
JPS6114455A (en) * 1984-06-29 1986-01-22 Takuma Co Ltd Exhaust heat recovery plant
JPS62204173U (en) * 1986-06-19 1987-12-26
JP2690172B2 (en) * 1990-05-22 1997-12-10 森永乳業株式会社 Heat exchange device for powdery particles
JPH087224Y2 (en) * 1990-06-01 1996-03-04 三井造船株式会社 Fluidized bed waste incinerator
JP2560897B2 (en) * 1990-08-17 1996-12-04 宇部興産株式会社 Fluidized bed boiler
JP2927603B2 (en) * 1992-04-08 1999-07-28 シャープ株式会社 Particle flow heat exchanger
JP2659889B2 (en) * 1992-05-29 1997-09-30 川崎製鉄株式会社 Particle circulation device of circulating fluidized bed pre-reduction furnace
JPH1054525A (en) * 1996-08-13 1998-02-24 Kubota Corp Circulation fluidized bed incinerator integral with fluidized bed drier
JPH1089649A (en) * 1996-09-12 1998-04-10 Nippon Steel Corp Fluidized bed boiler
JP2989783B2 (en) * 1997-05-22 1999-12-13 株式会社荏原製作所 Heat recovery device from fluidized bed
JPH11148625A (en) * 1997-11-20 1999-06-02 Hitachi Ltd Device and method of recovering combustion heat of waste
JP2008275290A (en) * 2007-05-07 2008-11-13 National Maritime Research Institute Exhaust heat recovery device

Also Published As

Publication number Publication date
JP2010060203A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
AU2014348839B2 (en) Integrated sorbent injection and flue gas desulfurization system
Spinelli et al. One-dimensional model of entrained-flow carbonator for CO2 capture in cement kilns by Calcium looping process
PL117560B1 (en) Method of starting of the fluidized bed system for activation of high-duty reaction between at least two reactantsja dlja aktivirovanija reakcii s wysokim wykhodom mezhdu po krajjnejj mere dvumja reagentami
KR101426333B1 (en) Spouted bed type reactor for dry flue gas desulfurization and multi- stage desulfurization method using thereof
Flamant et al. Opportunities and challenges in using particle circulation loops for concentrated solar power applications
CN102159888A (en) Air-fired co2 capture ready circulating fluidized bed steam generators
CN109073213B (en) System and method for oxygen carrier assisted oxygen combustion fluidized bed combustion
CN101970938A (en) Reducing carbon dioxide (co2) emissions from the burning of a fossil fuel
CN103889548A (en) Absorber for capturing co2 in ammoniated solution
CN108332193A (en) A kind of coal-burned industrial boiler burning of super burn gas cleaning and flue gas purification system
JP5688785B2 (en) HEAT RECOVERY DEVICE HAVING FUNCTION TO IMPROVE HEAT TRANSFER RATE AND HEAT RECOVERY METHOD
KR20030066714A (en) A recuperative and conductive heat transfer system
JP2008275290A (en) Exhaust heat recovery device
CN104696951A (en) Boiler-in integrated coupled desulfurization and denitrification method for circulating fluidized bed boiler
CN105879633A (en) Smoke desulfurization and denitrification device of coal-fired boiler
KR100242226B1 (en) Heat exchanger with circulating layer of solid particle for collecting waste heat of exhaust gas
JP3797781B2 (en) Waste treatment equipment
CN106152799A (en) A kind of flue gas of sintering machine denitration device
CN203131785U (en) Powdery solid fuel boiler
Levy et al. Kinetics of coal drying in bubbling fluidized beds
KR101542845B1 (en) Bubbling fluidized bed combustor system
Hoke Studies of the pressurized fluidized-bed coal combustion process
CN106402850B (en) The heat-transfer pipe of fluid-bed combustion boiler
CN110115925A (en) A kind of process and device reducing activated coke adsorption column inlet flue-gas temperature
CN208886758U (en) A kind of coal slime processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131021

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150123

R150 Certificate of patent or registration of utility model

Ref document number: 5688785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees