JP5685143B2 - Silica-carbon composite porous body and method for producing the same - Google Patents

Silica-carbon composite porous body and method for producing the same Download PDF

Info

Publication number
JP5685143B2
JP5685143B2 JP2011117107A JP2011117107A JP5685143B2 JP 5685143 B2 JP5685143 B2 JP 5685143B2 JP 2011117107 A JP2011117107 A JP 2011117107A JP 2011117107 A JP2011117107 A JP 2011117107A JP 5685143 B2 JP5685143 B2 JP 5685143B2
Authority
JP
Japan
Prior art keywords
silica
carbon
porous body
dispersion
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117107A
Other languages
Japanese (ja)
Other versions
JP2012246153A (en
Inventor
光浩 上村
光浩 上村
一敬 信原
一敬 信原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Silysia Chemical Ltd filed Critical Fuji Silysia Chemical Ltd
Priority to JP2011117107A priority Critical patent/JP5685143B2/en
Publication of JP2012246153A publication Critical patent/JP2012246153A/en
Application granted granted Critical
Publication of JP5685143B2 publication Critical patent/JP5685143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

シリカゲル、メソポーラスシリカ等のシリカ多孔質体は、その高い比表面積から吸着剤、触媒担体等工業的利用の多い材料である。本発明はシリカ多孔質体に電気伝導性を付与してその機能を高め、特に電池材料、触媒担体としての応用優れた材料を提供するものである。   Silica porous bodies such as silica gel and mesoporous silica are materials with many industrial uses such as adsorbents and catalyst carriers because of their high specific surface area. The present invention enhances the function by imparting electrical conductivity to a porous silica material, and particularly provides a material excellent in application as a battery material and a catalyst carrier.

電池材料として鉛蓄電池やリチウム二次電池では、電極材料を多孔化して比表面積を高くすることで、活物質の有効利用による高容量化やリチウムの電極内拡散を早めて、大電流対応や急速充電に対応できる電極材料の開発が行われている。   For lead-acid batteries and lithium secondary batteries as battery materials, the electrode material is made porous to increase the specific surface area, thereby increasing the capacity through effective use of active materials and accelerating the diffusion of lithium in the electrode, enabling rapid response to large currents. Electrode materials that can be used for charging are being developed.

従来、二次電池の電極などに利用される電気伝導性材料として、シリカと炭素を主成分とする電気伝導性材料は、すでに提案されている。例えば、下記特許文献1には、アセチレンブラックを担持させたシリカ粉末が開示されている(特許文献1:段落[0012]等参照。)。   Conventionally, an electrically conductive material mainly composed of silica and carbon has been proposed as an electrically conductive material used for an electrode of a secondary battery. For example, Patent Document 1 below discloses silica powder supporting acetylene black (see Patent Document 1: Paragraph [0012] and the like).

特許文献1に記載の技術では、精製水にアセチレンブラックを加えて懸濁させ、その懸濁液にシリカ粉末を加えて混合し、シリカ粉末の表面にアセチレンブラックを吸着させ、水分を蒸発させることにより、所期のアセチレンブラック担持シリカ粉末を作製する。   In the technique described in Patent Document 1, acetylene black is added to and suspended in purified water, silica powder is added to the suspension and mixed, acetylene black is adsorbed on the surface of the silica powder, and water is evaporated. To produce the desired acetylene black-supported silica powder.

また、テトラメトキシシランオリゴマー、フェノール樹脂、及び黒鉛粒子などを出発原料として、酸化珪素と電気伝導性物質の複合体を得る方法も検討されている(特許文献2:段落[0049]−[0050]等参照。)。   In addition, a method of obtaining a composite of silicon oxide and an electrically conductive substance using tetramethoxysilane oligomer, phenol resin, graphite particles and the like as starting materials has been studied (Patent Document 2: Paragraphs [0049]-[0050]. Etc.).

特許文献2に記載の技術では、テトラメトキシシランオリゴマー、フェノール樹脂、及びメタノールを混合し、そこに黒鉛粒子を添加し、メタノールを留去しながら所定温度まで昇温、その後所定温度で所定時間保持して複合前駆体を得る。その後、900℃まで加熱してフェノール樹脂及びシラン化合物をそれぞれ炭化分解し、1300℃で焼成して炭化樹脂による酸化珪素の熱還元を行って所期の複合体を得ている。   In the technique described in Patent Document 2, a tetramethoxysilane oligomer, a phenol resin, and methanol are mixed, graphite particles are added thereto, the temperature is raised to a predetermined temperature while distilling off the methanol, and then held at the predetermined temperature for a predetermined time. Thus, a composite precursor is obtained. Then, it heats to 900 degreeC, respectively, carbonizes and decomposes | disassembles a phenol resin and a silane compound, calcinates at 1300 degreeC, The thermal reduction of the silicon oxide by a carbonized resin is performed, and the expected composite body is obtained.

特開2000−251896号公報JP 2000-251896 A 特開2007−220411号公報JP 2007-220411 A

しかしながら、アセチレンブラック等を含むカーボンブラック類は、一般に疎水性を示す微粒子であるため、特許文献1に記載の技術のように精製水に懸濁させたとしても、懸濁液中でカーボンブラック類を均一に分散させることは難しい。また、シリカ粉末の表面にアセチレンブラックを吸着させても、アセチレンブラックをシリカ粉末粒子の中心部にまで入り込ませることは難しい。   However, since carbon blacks containing acetylene black or the like are generally fine particles that are hydrophobic, even if they are suspended in purified water as in the technique described in Patent Document 1, carbon blacks are contained in the suspension. Is difficult to disperse uniformly. Further, even if acetylene black is adsorbed on the surface of the silica powder, it is difficult to allow the acetylene black to enter the center of the silica powder particles.

そのため、上記特許文献1に記載の技術では、アセチレンブラックはシリカ粉末粒子の表面付近に偏在する状態になりやすく、シリカ粉末粒子の内部にまでアセチレンブラックを均一に分散させることは困難であった。   Therefore, with the technique described in Patent Document 1, acetylene black tends to be unevenly distributed near the surface of the silica powder particles, and it is difficult to uniformly disperse the acetylene black up to the inside of the silica powder particles.

また、上記特許文献2に記載の技術であれば、電気伝導性物質(炭素)の分散性については、特許文献1に記載の技術よりも改善されるものの、シリカをゲル化させる工程が含まれておらず、かつ高温焼成により材料は表面積の低い多孔度の乏しい材料である。   Moreover, if it is the technique of the said patent document 2, although the dispersibility of an electroconductive substance (carbon) is improved rather than the technique of patent document 1, the process of gelatinizing a silica is included. In addition, the material is a low-porosity material with a low surface area by high-temperature firing.

こうした問題に対し、本件発明者らは、疎水性を示す微粒子状炭素をシリカ骨格の内部にまで均一に分散させることにより、高い比表面積、大きい細孔容積、及び高い電気伝導性を発現させることを主たる目標として、それらの目標を達成する技術について鋭意検討した。   In response to these problems, the inventors of the present invention can achieve a high specific surface area, a large pore volume, and a high electrical conductivity by uniformly dispersing the fine particulate carbon having hydrophobicity to the inside of the silica skeleton. As a main goal, we have intensively studied technologies to achieve these goals.

その結果、従来法とは異なる製法により、多孔質化されたシリカ・炭素複合体が得られることを見いだし、また、そのような製法によって得られたシリカ・炭素複合多孔質体が、優れた電気伝導性を示す材料となることをも見いだし、本発明を完成させるに至った。   As a result, it has been found that a porous silica / carbon composite can be obtained by a production method different from the conventional method, and the silica / carbon composite porous material obtained by such a production method has excellent electrical properties. It has also been found that the material exhibits conductivity, and the present invention has been completed.

本発明は、上記のような知見に基づいて完成されたものであり、その目的は、微粒子状炭素がシリカ骨格の内部にまで均一に分散した状態にあって、高い比表面積、大きい細孔容積、及び高い電気伝導性を示すシリカ・炭素複合多孔質体と、その製造方法を提供することにある。   The present invention has been completed on the basis of the above-described knowledge, and its purpose is that the particulate carbon is uniformly dispersed to the inside of the silica skeleton, and has a high specific surface area and a large pore volume. Another object of the present invention is to provide a silica / carbon composite porous body exhibiting high electrical conductivity and a method for producing the same.

以下、本発明において採用した構成について説明する。
請求項1に記載のシリカ・炭素複合多孔質体は、ケイ酸エステル又はその重合体をシリカ原料として、当該シリカ原料中に微粒子状の炭素を添加、混合して、その混合物中で前記シリカ原料を加水分解することにより、シリカと炭素の共分散体を作製して、当該共分散体中に含まれるシリカをゲル化させることにより、前記共分散体が多孔質化されてなり、比表面積が20−1000m2/g、細孔容積が0.3−2.0ml/g、平均細孔径が2−100nmに調製されていることを特徴とする。
Hereinafter, the configuration employed in the present invention will be described.
The silica-carbon composite porous body according to claim 1, wherein the silica raw material is a silicate ester or a polymer thereof as a silica raw material, fine particle carbon is added and mixed in the silica raw material, and the silica raw material is mixed in the mixture. To produce a co-dispersion of silica and carbon, and by gelling the silica contained in the co-dispersion, the co-dispersion is made porous, and the specific surface area is increased. 20-1000 m 2 / g, pore volume is adjusted to 0.3-2.0 ml / g, and average pore diameter is adjusted to 2-100 nm.

請求項2に記載のシリカ・炭素複合多孔質体は、炭素含有量が1−50%に調製されていることを特徴とする。
請求項3に記載のシリカ・炭素複合多孔質体の製造方法は、ケイ酸エステル又はその重合体をシリカ原料として、当該シリカ原料中に微粒子状の炭素を添加、混合して、その混合物中で前記シリカ原料を加水分解することにより、シリカと炭素の共分散体を作製して、当該共分散体中に含まれるシリカをゲル化させることにより、前記共分散体を多孔質化して、比表面積を20−1000m2/g、細孔容積を0.3−2.0ml/g、平均細孔径を2−100nmに調製することを特徴とする。
The silica / carbon composite porous body according to claim 2 is characterized in that the carbon content is adjusted to 1 to 50%.
The method for producing a silica-carbon composite porous body according to claim 3 uses a silicate ester or a polymer thereof as a silica raw material, and adds and mixes particulate carbon in the silica raw material, and in the mixture. By hydrolyzing the silica raw material, a co-dispersion of silica and carbon is produced, and the co-dispersion is made porous by gelling silica contained in the co-dispersion. Is 20-1000 m 2 / g, the pore volume is 0.3-2.0 ml / g, and the average pore diameter is 2-100 nm.

以下、本発明について、さらに詳細に説明する。
本発明においては、ケイ酸エステル又はその重合体をシリカ原料として利用する。このようなシリカ原料の代表的な例としては、エチルシリケート、メチルシリケート、及びその一部加水分解物などを挙げることができる。もちろん、これら以外のケイ酸エステルであってもよい。
Hereinafter, the present invention will be described in more detail.
In the present invention, a silicate ester or a polymer thereof is used as a silica raw material. Typical examples of such silica raw materials include ethyl silicate, methyl silicate, and a partially hydrolyzed product thereof. Of course, other silicate esters may be used.

また、微粒子状の炭素としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等を含むカーボンブラック類、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛類、カーボンファイバー、及びカーボンナノチューブなどを挙げることができる。これらの微粒子状炭素は、疎水性が高く、水には分散しにくいが、ケイ酸エステルのような有機ケイ素化合物に分散させれば、両者が均一に分散された共分散体を得ることができる。   Examples of fine carbon particles include carbon blacks including furnace black, channel black, acetylene black, thermal black, graphites such as natural graphite, artificial graphite, and expanded graphite, carbon fibers, and carbon nanotubes. Can do. These particulate carbons are highly hydrophobic and difficult to disperse in water, but if dispersed in an organosilicon compound such as a silicate ester, a co-dispersion in which both are uniformly dispersed can be obtained. .

炭素含有量は1−50%(望ましくは5−30%)に調製される。この炭素含有量が1%を下回ると十分な電気伝導性を付与することが難しくなる傾向がある。また、炭素含有量が50%を上回るとシリカ骨格に比して炭素の含有量が過剰に多くなるので、多孔質体の機械的強度が低下し、多孔質体が解砕されやすくなる傾向がある。   The carbon content is adjusted to 1-50% (preferably 5-30%). If the carbon content is less than 1%, it tends to be difficult to impart sufficient electrical conductivity. Further, if the carbon content exceeds 50%, the carbon content is excessively increased compared to the silica skeleton, so that the mechanical strength of the porous body is lowered and the porous body tends to be crushed. is there.

このような共分散体中に、水と少量の酸又はアルカリを触媒として加えれば、ケイ酸エステルが加水分解してコロイド状シリカを形成し、その後ゲル化する。触媒としては、鉱酸を用いると好ましく、鉱酸としては、塩酸、硫酸、硝酸、及び炭酸などを利用することができる。   If water and a small amount of acid or alkali are added to such a co-dispersion as a catalyst, the silicate ester is hydrolyzed to form colloidal silica and then gelled. As the catalyst, a mineral acid is preferably used, and as the mineral acid, hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, or the like can be used.

共分散体を多孔質化する際には、表面積が20−1000m2/g(望ましくは100−700m2/g)、細孔容積が0.3−2.0ml/g(望ましくは0.3−1.2ml/g)、平均細孔径が2−100nm(望ましくは2−30nm)に調製される。このような数値範囲で示される多孔質体よりも多孔質度が低下すると、多孔質体としての効果が小さくなる。また、このような数値範囲で示される多孔質体よりも多孔質度を高めることは、実用上の利点がない。 When the co-dispersion is made porous, the surface area is 20-1000 m 2 / g (preferably 100-700 m 2 / g), and the pore volume is 0.3-2.0 ml / g (preferably 0.3 -1.2 ml / g) and an average pore diameter of 2-100 nm (desirably 2-30 nm). When the degree of porosity is lower than that of the porous body shown in such a numerical range, the effect as the porous body is reduced. Moreover, there is no practical advantage to increase the degree of porosity as compared with the porous body shown in such a numerical range.

こうして得られる本発明のシリカ・炭素複合多孔質体は、ゲル化したシリカ(シリカゲル)の内部に微粒子状の炭素が均一に分散した状態になっているものとなる。シリカゲルは、SiO2を主成分とする多孔材料であり、その高い表面積、大きな内部空間容量(細孔容積)を有し、吸着剤、触媒、塗料へのつや消し剤、及び樹脂などへのフィラーなど、広範囲な用途に使用されている。ただし、シリカゲルのような無機酸化物は、一般に電気伝導性に乏しい。 The silica / carbon composite porous body of the present invention thus obtained has a state in which fine particles of carbon are uniformly dispersed inside gelled silica (silica gel). Silica gel is a porous material mainly composed of SiO 2 , has a high surface area, a large internal space capacity (pore volume), an adsorbent, a catalyst, a matting agent for paint, a filler for resins, etc. Has been used in a wide range of applications. However, inorganic oxides such as silica gel generally have poor electrical conductivity.

これに対し、本発明においては、シリカゲルの内部に微粒子状の炭素を均一に分散させることで、電気伝導性を有した多孔材料を実現しているので、ゲル化工程を経ないことで非多孔質となってしまうものに比べ、高い比表面積、及び大きい細孔容積を有し、且つ、高い電気伝導性を発現させることができる。   On the other hand, in the present invention, a porous material having electrical conductivity is realized by uniformly dispersing fine-particle carbon inside the silica gel. Compared with a material having a high quality, it has a high specific surface area and a large pore volume, and can exhibit high electrical conductivity.

したがって、本発明のシリカ・炭素複合多孔質体のような電気伝導性多孔材料であれば、新しい種々の用途への可能性が大いにある。例えば、二次電池への正極材料や負極材料、あるいは、電気化学反応を利用した触媒反応材料など、様々な新しい用途において、本発明のシリカ・炭素複合多孔質体を利用できるものと期待される。   Therefore, the electroconductive porous material such as the silica / carbon composite porous body of the present invention has great potential for various new uses. For example, it is expected that the silica / carbon composite porous body of the present invention can be used in various new applications such as a positive electrode material and a negative electrode material for a secondary battery, or a catalytic reaction material using an electrochemical reaction. .

次に、本発明の実施形態について一例を挙げて説明する。
[実施例1]
メチルシリケート(製品名:メチルシリケート51、多摩化学工業株式会社製)100gにメタノール80gを加え攪拌した。この混合溶液を攪拌しながらカーボンブラック(製品名:カーボンECP600JD、ライオン株式会社製)7.7gを添加し、攪拌を続けた。
Next, an embodiment of the present invention will be described with an example.
[Example 1]
80 g of methanol was added to 100 g of methyl silicate (product name: methyl silicate 51, manufactured by Tama Chemical Industry Co., Ltd.) and stirred. While stirring this mixed solution, 7.7 g of carbon black (product name: carbon ECP600JD, manufactured by Lion Corporation) was added and stirring was continued.

1mol/Lの塩酸水溶液19.1gを添加し、二相に分離した液体を激しく撹拌し、加水分解反応によりゲル状の固体(ヒドロゲル)を得た。このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。 A 1 mol / L hydrochloric acid aqueous solution (19.1 g) was added, the liquid separated into two phases was vigorously stirred, and a gel-like solid (hydrogel) was obtained by a hydrolysis reaction. This hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion exchange water 5 times.

洗浄終了後のヒドロゲルをイオン交換水1Lに加え、アンモニア水を使用してpH値を10に調整し、その後加熱して85℃で8時間処理を行った。固液分離後180℃10時間乾燥し、シリカ・炭素複合多孔質体55.7gを得た。   The hydrogel after the washing was added to 1 L of ion-exchanged water, the pH value was adjusted to 10 using ammonia water, and then heated and treated at 85 ° C. for 8 hours. After solid-liquid separation, it was dried at 180 ° C. for 10 hours to obtain 55.7 g of a silica / carbon composite porous body.

その物性値は、窒素吸着測定から比表面積301m2/g、細孔容積:0.81ml/g、平均細孔径12.9nm、炭素含有率11.5%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。 Its physical property values were a specific surface area of 301 m 2 / g, a pore volume of 0.81 ml / g, an average pore diameter of 12.9 nm, and a carbon content of 11.5% from the nitrogen adsorption measurement (element analyzer “Vario EL III "(measured by Elementar).

[実施例2]
カーボンブラック(製品名:カーボンECP600JD、ライオン株式会社製)の量を5.1gにした以外は、実施例1に同様の工程で、シリカ・炭素複合多孔質体53.3gを得た。
[Example 2]
A silica / carbon composite porous body 53.3 g was obtained in the same process as in Example 1 except that the amount of carbon black (product name: carbon ECP600JD, manufactured by Lion Corporation) was 5.1 g.

その物性値は、窒素吸着測定から比表面積250m2/g、細孔容積:0.68ml/g、平均細孔径10.9nm、炭素含有率8.2%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。 The physical property values were measured by nitrogen adsorption, and the specific surface area was 250 m 2 / g, the pore volume was 0.68 ml / g, the average pore diameter was 10.9 nm, and the carbon content was 8.2% (element analyzer “Vario EL III "(measured by Elementar).

[実施例3]
カーボンブラック(製品名:カーボンECP600JD、ライオン株式会社製)の量を2.5gにした以外は実施例1に同様の工程で、シリカ・炭素複合多孔質体50.8gを得た。
[Example 3]
50.8 g of a silica / carbon composite porous body was obtained in the same manner as in Example 1 except that the amount of carbon black (product name: carbon ECP600JD, manufactured by Lion Corporation) was 2.5 g.

その物性値は、窒素吸着測定から比表面積209m2/g、細孔容積:0.66ml/g、平均細孔径12.6nm、炭素含有率3.9%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。 Its physical property values were a specific surface area of 209 m 2 / g, a pore volume: 0.66 ml / g, an average pore diameter of 12.6 nm, and a carbon content of 3.9% from the nitrogen adsorption measurement (elemental analyzer “Vario EL III "(measured by Elementar).

[比較例1]
メチルシリケート(製品名:メチルシリケート51、多摩化学工業株式会社製)100gにコハク酸(東京化成工業製)1.5gを加えて攪拌、溶解した。これを攪拌しながらカーボンブラック(製品名:VULCAN XC−72、キャボット社製)5.7gを添加し、攪拌を続けた。
[Comparative Example 1]
1.5 g of succinic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to 100 g of methyl silicate (product name: methyl silicate 51, manufactured by Tama Chemical Co., Ltd.), and the mixture was stirred and dissolved. While stirring this, 5.7 g of carbon black (product name: VULCAN XC-72, manufactured by Cabot) was added and stirring was continued.

イオン交換水8.5gを添加し、更に攪拌を続けることで、加水分解反応によりゲル状の固体(ヒドロゲル)を得た。このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。洗浄終了後のヒドロゲルを180℃で10時間乾燥し、その後350℃で2時間焼成を行い、56.7gのシリカ・炭素複合体を得た。 By adding 8.5 g of ion-exchanged water and continuing stirring, a gel-like solid (hydrogel) was obtained by a hydrolysis reaction. This hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion exchange water 5 times. The washed hydrogel was dried at 180 ° C. for 10 hours and then calcined at 350 ° C. for 2 hours to obtain 56.7 g of a silica / carbon composite.

その物性値は、窒素吸着測定から比表面積106m2/g、細孔容積0.10ml/g、平均細孔径3.6nm、炭素含有率15.9%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。 The physical property values were measured by nitrogen adsorption and had a specific surface area of 106 m 2 / g, a pore volume of 0.10 ml / g, an average pore diameter of 3.6 nm, and a carbon content of 15.9% (element analyzer “Vario EL III [Measured by Elemental Corporation].

[比較例2]
メチルシリケート(製品名:メチルシリケート51、多摩化学工業株式会社製)100gにコハク酸(東京化成工業製)1.5gを加えて攪拌、溶解した。これを攪拌しながら黒鉛(日本黒鉛工業製)14.3gを添加し、攪拌を続けた。
[Comparative Example 2]
1.5 g of succinic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to 100 g of methyl silicate (product name: methyl silicate 51, manufactured by Tama Chemical Co., Ltd.), and the mixture was stirred and dissolved. While stirring this, 14.3 g of graphite (manufactured by Nippon Graphite Industry) was added, and stirring was continued.

イオン交換水8.5gを添加し、更に攪拌を続けることで、加水分解反応によりゲル状の固体(ヒドロゲル)を得た。このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。洗浄終了後のヒドロゲルを180℃で10時間乾燥し、その後350℃で2時間焼成を行い、65.2gの黒鉛とシリカの複合体を得た。 By adding 8.5 g of ion-exchanged water and continuing stirring, a gel-like solid (hydrogel) was obtained by a hydrolysis reaction. This hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion exchange water 5 times. After completion of washing, the hydrogel was dried at 180 ° C. for 10 hours and then calcined at 350 ° C. for 2 hours to obtain 65.2 g of a composite of graphite and silica.

その物性値は、窒素吸着測定から比表面積0.4m2/g、平均細孔径1nm以下、細孔容積0.04ml/g、炭素含有率19.6%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。 The physical property values were a specific surface area of 0.4 m 2 / g, an average pore diameter of 1 nm or less, a pore volume of 0.04 ml / g, and a carbon content of 19.6% from the nitrogen adsorption measurement (elemental analyzer “Vario EL III "(measured by Elementar).

[電気伝導性評価]
実施例1〜3、及び比較例1,2の試料粉末0.9gにバインダーとしてPTFE粉末(3μm品)0.1gを加え、メノウ乳鉢を用いよく混合した。その後、少量のイオン交換水を加え更によく混合した。
[Electrical conductivity evaluation]
0.1 g of PTFE powder (3 μm product) was added as a binder to 0.9 g of the sample powders of Examples 1 to 3 and Comparative Examples 1 and 2, and mixed well using an agate mortar. Thereafter, a small amount of ion-exchanged water was added and mixed well.

それを、直径10mmの錠剤成形用ダイスにて1100kg/cm3で圧縮成形し、120℃に設定したホットプレートで十分乾燥し、厚さ1.0mm、直径10.0mmの電気伝導度測定用サンプルを得た。電気伝導度測定は、抵抗率計ロレスタ−GP(三菱化学株式会社製)にて四探針法により電導率(S/cm)を測定した。 It is compression-molded at 1100 kg / cm 3 with a tableting die having a diameter of 10 mm, sufficiently dried on a hot plate set at 120 ° C., and a sample for measuring electrical conductivity having a thickness of 1.0 mm and a diameter of 10.0 mm. Got. For electrical conductivity measurement, the electrical conductivity (S / cm) was measured by a four-probe method using a resistivity meter Loresta-GP (manufactured by Mitsubishi Chemical Corporation).

測定結果を下記表1に示す。   The measurement results are shown in Table 1 below.

Figure 0005685143
Figure 0005685143

上記表1から明らかなように、実施例1〜3のシリカ・炭素複合多孔質体は、高い比表面積、及び大きい細孔容積を有し、且つ、高い電気伝導性を示すことが明らかとなった。一方、比較例1,2の場合、比表面積は106m2/g,0.4m2/gと小さく、また、細孔容積が0.10ml/g,0.04ml/gと小さく、これらの結果から、実施例1〜3に比べ、十分に多孔質化されていないことがわかる。 As is clear from Table 1 above, the silica / carbon composite porous bodies of Examples 1 to 3 have a high specific surface area, a large pore volume, and high electrical conductivity. It was. On the other hand, in Comparative Examples 1 and 2, the specific surface area is as small as 106m 2 /g,0.4m 2 / g, also pore volume 0.10 ml / g, as small as 0.04 ml / g, these results From this, it can be seen that it is not sufficiently porous as compared with Examples 1 to 3.

したがって、比較例1,2は、シリカ・炭素の複合体という点では、実施例1〜3と同種の成分で構成されているとは言えるものの、実施例1〜3とは異なり、多孔質体としての特性は備えていないので、そのような特性が要求される用途での利用は困難になるなど、実際の応用展開に制限が加わることとなる。   Therefore, although it can be said that Comparative Examples 1 and 2 are composed of the same components as in Examples 1 to 3 in terms of a composite of silica and carbon, unlike Examples 1 to 3, the porous body Therefore, there are restrictions on actual application development, such as difficulty in use in applications where such characteristics are required.

[変形例等]
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[Modifications, etc.]
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific one Embodiment, In addition, it can implement with a various form.

例えば、上記実施形態では、メチルシリケートの一部加水分解物をシリカ原料として利用したが、一部加水分解物を使用するか否かは任意であり、その加水分解の程度も任意である。また、メチルシリケート以外のケイ酸エステルを利用してもよく、例えば、エチルシリケートを利用してもよい。   For example, in the said embodiment, although the partial hydrolyzate of methyl silicate was utilized as a silica raw material, it is arbitrary whether a partial hydrolyzate is used and the extent of the hydrolysis is also arbitrary. Silicate esters other than methyl silicate may be used, for example, ethyl silicate may be used.

Claims (3)

ケイ酸エステル又はその重合体をシリカ原料として、当該シリカ原料中に微粒子状の炭素を添加、混合して、その混合物中で前記シリカ原料を加水分解することにより、シリカと炭素の共分散体を作製して、当該共分散体中に含まれるシリカをゲル化させることにより、前記共分散体が多孔質化されてなり、
比表面積が20−1000m2/g、細孔容積が0.3−2.0ml/g、平均細孔径が2−100nmに調製されている
ことを特徴とするシリカ・炭素複合多孔質体。
Silica ester or a polymer thereof is used as a silica raw material, fine particle carbon is added and mixed in the silica raw material, and the silica raw material is hydrolyzed in the mixture to obtain a co-dispersion of silica and carbon. Producing and gelling the silica contained in the co-dispersion, the co-dispersion is made porous,
A silica / carbon composite porous body having a specific surface area of 20-1000 m 2 / g, a pore volume of 0.3-2.0 ml / g, and an average pore diameter of 2-100 nm.
炭素含有量が1−50%に調製されている
ことを特徴とする請求項1に記載のシリカ・炭素複合多孔質体。
The silica-carbon composite porous body according to claim 1, wherein the carbon content is adjusted to 1 to 50%.
ケイ酸エステル又はその重合体をシリカ原料として、当該シリカ原料中に微粒子状の炭素を添加、混合して、その混合物中で前記シリカ原料を加水分解することにより、シリカと炭素の共分散体を作製して、当該共分散体中に含まれるシリカをゲル化させることにより、前記共分散体を多孔質化して、比表面積を20−1000m2/g、細孔容積を0.3−2.0ml/g、平均細孔径を2−100nmに調製する
ことを特徴とするシリカ・炭素複合多孔質体の製造方法。
Silica ester or a polymer thereof is used as a silica raw material, fine particle carbon is added and mixed in the silica raw material, and the silica raw material is hydrolyzed in the mixture to obtain a co-dispersion of silica and carbon. The co-dispersion is made porous by preparing and gelling the silica contained in the co-dispersion, with a specific surface area of 20-1000 m 2 / g and a pore volume of 0.3-2. A method for producing a silica / carbon composite porous body, wherein 0 ml / g and an average pore diameter are adjusted to 2 to 100 nm.
JP2011117107A 2011-05-25 2011-05-25 Silica-carbon composite porous body and method for producing the same Active JP5685143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117107A JP5685143B2 (en) 2011-05-25 2011-05-25 Silica-carbon composite porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117107A JP5685143B2 (en) 2011-05-25 2011-05-25 Silica-carbon composite porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012246153A JP2012246153A (en) 2012-12-13
JP5685143B2 true JP5685143B2 (en) 2015-03-18

Family

ID=47466998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117107A Active JP5685143B2 (en) 2011-05-25 2011-05-25 Silica-carbon composite porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5685143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500173B2 (en) * 2016-11-25 2019-04-17 富士シリシア化学株式会社 Positive electrode active material, positive electrode, and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807494A (en) * 1994-12-15 1998-09-15 Boes; Ralph Ulrich Gel compositions comprising silica and functionalized carbon products
JP2000251896A (en) * 1999-02-25 2000-09-14 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP2005298321A (en) * 2004-03-15 2005-10-27 Shinano Kenshi Co Ltd Metal oxide composite material and method for producing the same
JP5058494B2 (en) * 2006-02-15 2012-10-24 株式会社クラレ Composite, method for producing the same, and electrode material for power storage device
JP2007254189A (en) * 2006-03-22 2007-10-04 Shinshu Univ Carbon fiber-silica composite material and its manufacturing method
US9272915B2 (en) * 2011-01-11 2016-03-01 Nippon Sheet Glass Company, Limited Flaky mesoporous particles, and method for producing the same

Also Published As

Publication number Publication date
JP2012246153A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5351228B2 (en) Silica-carbon composite porous body and method for producing the same
Hao et al. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties
Liu et al. Three-dimensional carbon foam surrounded by carbon nanotubes and Co-Co3O4 nanoparticles for stable lithium-ion batteries
Anh Cao et al. Controllable synthesis of carbon-coated SiO x particles through a simultaneous reaction between the hydrolysis–condensation of tetramethyl orthosilicate and the polymerization of 3-aminophenol
JP2007039289A (en) Spherical porous carbon particle powder and method for producing the same
CN103058172A (en) Preparation method of carbon nanometer tube-graphene composite material
Kong et al. One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@ carbon for efficient oxygen electroreduction
CN103214245A (en) Carbon/carbon composite microsphere material, production method and lithium ion battery
KR101975033B1 (en) Graphene having pores made by irregular and random, and Manufacturing method of the same
KR101888743B1 (en) Composite including porous grapheme and carbonaceous material
Feng et al. Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites
CN109003826B (en) preparation method of N and S double-doped graphene-graphene nanoribbon aerogel
Hao et al. Nitrogen-doped carbon/NiMoO4 nanospheres assembled by nanosheets and ultrasmall nanoparticles for supercapacitors
KR20190091709A (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
Iuchi et al. Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins
Wang et al. Organic–rare earth hybrid anode with superior cyclability for lithium ion battery
Kang et al. Recent progress in utilizing carbon nanotubes and graphene to relieve volume expansion and increase electrical conductivity of Si-based composite anodes for lithium-ion batteries
Li et al. Pore structure unveiling effect to boost lithium-selenium batteries: selenium confined in hierarchically porous carbon derived from aluminum based MOFs
KR101495045B1 (en) Amorphous silicon oxide coated carbon-based composite, preparation method thereof and electrocatalyst for fuel cell manufactured by using the same
Li et al. Holey graphene/MnO2 nanosheets with open ion channels for high‐performance solid‐state asymmetric supercapacitors
Wan et al. Bioprocess-inspired preparation of silica with varied morphologies and potential in lithium storage
Liu et al. Synthetic strategy for MnO2 nanoparticle/carbon aerogel heterostructures for improved supercapacitor performance
ur Rehman et al. Porous carbon derived from cherry blossom leaves treatment with Fe3O4 enhanced the electrochemical performance of a lithium storage anode
CN101826612B (en) Preparation method of lithium ion battery silicon-carbon cathode material
JP5685143B2 (en) Silica-carbon composite porous body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150116

R150 Certificate of patent or registration of utility model

Ref document number: 5685143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250