JP5684764B2 - antenna - Google Patents

antenna Download PDF

Info

Publication number
JP5684764B2
JP5684764B2 JP2012196890A JP2012196890A JP5684764B2 JP 5684764 B2 JP5684764 B2 JP 5684764B2 JP 2012196890 A JP2012196890 A JP 2012196890A JP 2012196890 A JP2012196890 A JP 2012196890A JP 5684764 B2 JP5684764 B2 JP 5684764B2
Authority
JP
Japan
Prior art keywords
antenna
coupling loss
sheath
conductor
outer conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196890A
Other languages
Japanese (ja)
Other versions
JP2014053762A (en
Inventor
文生 鈴木
文生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2012196890A priority Critical patent/JP5684764B2/en
Publication of JP2014053762A publication Critical patent/JP2014053762A/en
Application granted granted Critical
Publication of JP5684764B2 publication Critical patent/JP5684764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

本発明は、漏洩同軸ケーブルを用いたアンテナに関する。   The present invention relates to an antenna using a leaky coaxial cable.

漏洩同軸ケーブル(LCX)は、通常の同軸ケーブルの外部導体に複数のスロットが設けられたものである。このようなスロットを通じて、ケーブル内部の電磁波信号を外部に放射し、また、ケーブル外部の電磁波信号をケーブル内部に取り込むことができる。即ち、LCXはケーブル型アンテナであり、特殊な細長い送受信アンテナと言える。   A leaky coaxial cable (LCX) is one in which a plurality of slots are provided in the outer conductor of a normal coaxial cable. Through such a slot, the electromagnetic wave signal inside the cable can be emitted to the outside, and the electromagnetic wave signal outside the cable can be taken into the cable. That is, LCX is a cable type antenna and can be said to be a special long and narrow transmitting / receiving antenna.

ジグザグ配列のスロットを有するLCXからの電磁波の放射モードには、電界が円周方向及び軸方向のEφ偏波及びEz偏波がある。Eφ偏波及びEz偏波の放射角度は、使用周波数、スロットのピッチ、及び内部導体と外部導体間の絶縁体の比誘電率から定められる(非特許文献1参照)。   The radiation modes of the electromagnetic wave from the LCX having the zigzag slots include Eφ polarization and Ez polarization in the circumferential direction and the axial direction of the electric field. The radiation angles of the Eφ polarization and the Ez polarization are determined from the operating frequency, the slot pitch, and the relative dielectric constant of the insulator between the inner conductor and the outer conductor (see Non-Patent Document 1).

従来のLCXでは、放射電磁波の強度の安定性を確保するため、Eφ偏波単一となる放射モードが採用される。この場合、Eφ偏波の放射角度がLCXの終端部に向かう方向に対して負、即ち給電側に向くバックファイア型アンテナとして使用されることが多い。LCXは複数のスロットの各スロットから電磁波が放射されるので、LCXに沿って安定な通信領域を実現できる。しかも、LCXへの入力電力を適当に弱くすれば、LCX近傍だけに安定な通信領域が得られる。そのため、LCX本体周辺のみに通信対象領域を限定でき、情報漏洩を防止して通信セキュリティを確保するためのアンテナとして使用されている。   In the conventional LCX, a radiation mode having a single Eφ polarization is adopted in order to ensure the stability of the intensity of the radiated electromagnetic wave. In this case, it is often used as a backfire antenna in which the radiation angle of Eφ polarized wave is negative with respect to the direction toward the end of the LCX, that is, toward the feeding side. Since LCX emits electromagnetic waves from each of a plurality of slots, a stable communication area can be realized along LCX. Moreover, if the input power to the LCX is appropriately weakened, a stable communication area can be obtained only in the vicinity of the LCX. Therefore, the communication target area can be limited only to the periphery of the LCX main body, and it is used as an antenna for preventing information leakage and ensuring communication security.

岸本俊彦、佐々木伸著「LCX通信システム」 電子通信学会、昭和57年8月20日出版Toshihiko Kishimoto and Shin Sasaki “LCX Communication System” The Institute of Electronics and Communication, published on August 20, 1982

しかし、LCXの終端部近傍を詳細に調査すると、実際にはEz偏波の放射が存在していることが判明した。このようなLCX終端部近傍での意図していないEz偏波の放射は不要であり、通信セキュリティ確保のためには抑制する必要がある。   However, when the vicinity of the end portion of the LCX was investigated in detail, it was found that there was actually Ez-polarized radiation. Such unintentional emission of Ez polarized waves in the vicinity of the LCX termination is unnecessary, and it is necessary to suppress it in order to ensure communication security.

上記問題点を鑑み、本発明の目的は、終端部での通信セキュリティを確保することが可能なアンテナを提供することにある。   In view of the above-described problems, an object of the present invention is to provide an antenna capable of ensuring communication security at a terminal portion.

本発明の一態様によれば、線状の中心導体、中心導体を覆う絶縁体、絶縁体を挟んで中心導体を覆い、中心導体の軸方向に沿って所定のピッチで複数のスロットが設けられた外部導体、及び、外部導体の外周を覆う厚さが0.01mm以上、1.5mm未満の範囲のシースを有し、信号が供給される一端から他端に向かう軸方向に延伸する漏洩同軸ケーブルと、他端に接続され、漏洩同軸ケーブルの特性インピーダンスで終端する終端器を含み、外部導体に接続された外装導体を有する終端部材とを備えるアンテナが提供される。   According to one aspect of the present invention, a linear center conductor, an insulator covering the center conductor, the center conductor is covered with the insulator interposed therebetween, and a plurality of slots are provided at a predetermined pitch along the axial direction of the center conductor. Leakage coaxial that has an outer conductor and a sheath covering the outer circumference of the outer conductor with a thickness in the range of 0.01 mm or more and less than 1.5 mm and extending in the axial direction from one end to the other end where signals are supplied An antenna is provided that includes a cable and a termination member connected to the other end and including a terminator that terminates at the characteristic impedance of the leaky coaxial cable and having an outer conductor connected to an external conductor.

本発明の他の態様によれば、線状の中心導体、中心導体を覆う絶縁体、及び絶縁体を挟んで中心導体を覆い、中心導体の軸方向に沿って所定のピッチで複数のスロットが設けられた外部導体を有し、外部導体の外周を露出させた、信号が供給される一端から他端に向かう軸方向に延伸する漏洩同軸ケーブルと、他端に接続され、漏洩同軸ケーブルの特性インピーダンスで終端する終端器を含み、外部導体に接続された外装導体を有する終端部材とを備えるアンテナが提供される。   According to another aspect of the present invention, a linear center conductor, an insulator covering the center conductor, and the center conductor is covered with the insulator interposed therebetween, and a plurality of slots are formed at a predetermined pitch along the axial direction of the center conductor. Leakage coaxial cable that has an outer conductor provided and that exposes the outer circumference of the outer conductor and extends in the axial direction from one end to the other end where the signal is supplied, and the characteristics of the leaky coaxial cable connected to the other end An antenna is provided that includes a terminator having an outer conductor connected to an outer conductor, including a terminator that terminates at an impedance.

本発明によれば、終端部での通信セキュリティを確保することが可能なアンテナ及び通信システムを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the antenna and communication system which can ensure the communication security in a termination | terminus part.

本発明の実施の形態に係るアンテナの一例を示す概略図である。It is the schematic which shows an example of the antenna which concerns on embodiment of this invention. 本発明の実施の形態に係るアンテナに用いるLCXの一例を示す概略図である。It is the schematic which shows an example of LCX used for the antenna which concerns on embodiment of this invention. 図2に示したLCXの終端部材の一例を示す概略図である。It is the schematic which shows an example of the termination | terminus member of LCX shown in FIG. 本発明の実施の形態に係るアンテナの結合損失分布の測定系の一例を示す概略図である。It is the schematic which shows an example of the measurement system of the coupling loss distribution of the antenna which concerns on embodiment of this invention. 図4に示した測定系の受信アンテナの配置の一例を示す概略図である。FIG. 5 is a schematic diagram illustrating an example of an arrangement of receiving antennas in the measurement system illustrated in FIG. 4. 本発明の実施の形態に係るアンテナから得られたEφ偏波及びEz偏波の結合損失分布の一例を示す図である。It is a figure which shows an example of the coupling loss distribution of the Ephi polarization obtained from the antenna which concerns on embodiment of this invention, and Ez polarization. シース厚さに対するEφ偏波及びEz偏波の結合損失の関係の一例を示す図である。It is a figure which shows an example of the relationship of the coupling loss of Ephi polarization and Ez polarization with respect to sheath thickness. 本発明の実施の形態に係るアンテナから得られたEφ偏波及びEz偏波の結合損失分布の他の例を示す図である。It is a figure which shows the other example of the coupling loss distribution of Ephi polarization obtained from the antenna which concerns on embodiment of this invention, and Ez polarization.

以下図面を参照して、本発明の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す本発明の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   The following embodiments of the present invention exemplify apparatuses and methods for embodying the technical idea of the present invention. The technical idea of the present invention is based on the material and shape of component parts. The structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

本発明の実施の形態に係るアンテナは、図1に示すように、LCX1及び終端部材3を備える。アンテナを送信アンテナとして用いる場合、LCX1の一端には、同軸ケーブル等のアプローチケーブル9を介して給電部7が接続される。LCX1の他端には、終端部材3が接続される。   The antenna according to the embodiment of the present invention includes an LCX 1 and a termination member 3 as shown in FIG. When the antenna is used as a transmission antenna, the feeding unit 7 is connected to one end of the LCX 1 via an approach cable 9 such as a coaxial cable. The termination member 3 is connected to the other end of the LCX 1.

LCX1の軸方向に平行な面において、LCX1の法線NLに対してLCX1からの放射波Rの放射角をθとする。放射角θが正のとき、放射波Rは、LCX1の法線NLに対して終端部材3側に放射される。放射角θが負のとき、放射波Rは、LCX1の法線NLに対して終端部材3の反対側に放射される。   In a plane parallel to the axial direction of LCX1, the radiation angle of the radiation wave R from LCX1 is defined as θ with respect to the normal line NL of LCX1. When the radiation angle θ is positive, the radiation wave R is radiated toward the termination member 3 with respect to the normal line NL of the LCX1. When the radiation angle θ is negative, the radiation wave R is radiated to the opposite side of the termination member 3 with respect to the normal line NL of LCX1.

LCX1は、図2に示すように、中心導体10、絶縁体12、外部導体14、及びシース16を有する。中心導体10は、給電部7から高周波信号が供給される一端から他端に向かう軸方向に線状に延伸する。絶縁体12は、中心導体10を覆うように設けられる。外部導体14は、絶縁体12を挟んで中心導体10を覆うように設けられる。シース16は、外部導体14の外周を覆うように設けられる。   As shown in FIG. 2, the LCX 1 includes a center conductor 10, an insulator 12, an outer conductor 14, and a sheath 16. The center conductor 10 extends linearly in the axial direction from one end to the other end where the high-frequency signal is supplied from the power supply unit 7. The insulator 12 is provided so as to cover the central conductor 10. The outer conductor 14 is provided so as to cover the central conductor 10 with the insulator 12 interposed therebetween. The sheath 16 is provided so as to cover the outer periphery of the outer conductor 14.

また、図2に示すように、外部導体14には、LCX1の軸(z軸)方向に沿って複数の第1スロット18a及び複数の第2スロット18bがジグザグ状に設けられる。第1及び第2スロット18a、18bは、それぞれ所定のピッチで設けられる。第2スロット18bは、第1スロット18aに対してピッチの1/2の間隔で設けられる。第1及び第2スロット18a、18bはz軸方向に対して、それぞれ異なる傾斜角で傾けて配置される。第1及び第2スロット18a、18bそれぞれのz軸方向に対する傾斜角は互いに補角をなす。   As shown in FIG. 2, the outer conductor 14 is provided with a plurality of first slots 18a and a plurality of second slots 18b in a zigzag shape along the axis (z-axis) direction of the LCX1. The first and second slots 18a and 18b are each provided at a predetermined pitch. The second slots 18b are provided at an interval of 1/2 the pitch with respect to the first slots 18a. The first and second slots 18a and 18b are disposed at different inclination angles with respect to the z-axis direction. The inclination angles of the first and second slots 18a and 18b with respect to the z-axis direction are complementary to each other.

図3に示すように、終端部材3は、LCX1の他端部に取り付けられたコネクタ44、及びコネクタ44に接続された終端器40を含む。終端器40は、不要な反射が発生しないように、LCX1の特性インピーダンスと同じ抵抗値の終端抵抗である。終端器40の外装導体42は、コネクタ44の外装導体46を通して、図2に示した外部導体14に接続される。   As shown in FIG. 3, the terminating member 3 includes a connector 44 attached to the other end of the LCX 1 and a terminator 40 connected to the connector 44. The terminator 40 is a termination resistor having the same resistance value as the characteristic impedance of the LCX 1 so that unnecessary reflection does not occur. The outer conductor 42 of the terminator 40 is connected to the outer conductor 14 shown in FIG. 2 through the outer conductor 46 of the connector 44.

例えば、LCX1には、直径2mmの銅製の中心導体10、直径5mmで比誘電率εrが約1.5の発泡ポリエチレン製の絶縁体12、銅製の外部導体14、及びポリエチレンなどの樹脂製のシース16が用いられる。LCX1の特性インピーダンスは50Ωである。LCX1の他端に50Ωの終端抵抗を有する終端部材3を接続してアンテナとする。アンテナの長さは、約2mとする。   For example, the LCX 1 includes a copper center conductor 10 having a diameter of 2 mm, a foamed polyethylene insulator 12 having a diameter of 5 mm and a relative dielectric constant εr of about 1.5, a copper outer conductor 14, and a sheath made of resin such as polyethylene. 16 is used. The characteristic impedance of LCX1 is 50Ω. A termination member 3 having a termination resistance of 50Ω is connected to the other end of the LCX 1 to form an antenna. The length of the antenna is about 2 m.

第1及び第2スロット18a、18bのピッチは40mmである。図1に示した給電部7から周波数が2.4GHzの高周波信号を供給すると、LCX1に設けた第1及び第2スロット18a、18bから、放射角θが−20度で、電界が円周方向のEφ偏波が放射波Rとして放射される。即ち、アンテナは、バックファイア型アンテナとして動作する。なお、LCX1からは、電界がz軸方向のEz偏波は放射されない。また、アンテナから約1.5m離れた位置での放射波Rの結合損失が約60dBとなるように第1及び第2スロット18a、18bの長さ、幅、及び傾斜角を設定する。   The pitch of the first and second slots 18a and 18b is 40 mm. When a high frequency signal having a frequency of 2.4 GHz is supplied from the power feeding unit 7 shown in FIG. 1, the radiation angle θ is −20 degrees and the electric field is in the circumferential direction from the first and second slots 18a and 18b provided in the LCX1. Eφ polarization is emitted as a radiated wave R. That is, the antenna operates as a backfire antenna. LCX1 does not radiate Ez polarized waves whose electric field is in the z-axis direction. Further, the length, width, and inclination angle of the first and second slots 18a and 18b are set so that the coupling loss of the radiation wave R at a position away from the antenna by about 1.5 m is about 60 dB.

図4に示すように、長さが約2mのアンテナを電波暗室30の床面に設置して、結合損失分布の測定を実施した。電波暗室30内において、LCX1の軸方向をz、LCX1の高さ方向をxとする。アンテナの一端〜他端がz=1m〜3mに位置するように配置する。電波暗室30の外に設けた給電部7が、アプローチケーブル9を介してアンテナの一端に接続される。受信アンテナ20として、例えば半波長標準ダイポールアンテナをアンテナの真上に配置する。受信アンテナ20はアプローチケーブル22を介して、電波暗室30の外に設けた受信部24に接続される。   As shown in FIG. 4, an antenna having a length of about 2 m was installed on the floor of the anechoic chamber 30, and the coupling loss distribution was measured. In the anechoic chamber 30, the axial direction of LCX1 is z, and the height direction of LCX1 is x. The antenna is arranged so that one end to the other end of the antenna is located at z = 1 m to 3 m. A power feeding unit 7 provided outside the anechoic chamber 30 is connected to one end of the antenna via an approach cable 9. As the receiving antenna 20, for example, a half-wave standard dipole antenna is disposed directly above the antenna. The receiving antenna 20 is connected via an approach cable 22 to a receiving unit 24 provided outside the anechoic chamber 30.

給電部7から、アンテナの一端に周波数が2.4GHzで入力電力Ptの信号が供給され、アンテナからの放射波が受信アンテナ20で受信される。受信部24で放射波の受信電力Prが検出される。結合損失Lcは、次式で計算される。   A signal having an input power Pt with a frequency of 2.4 GHz is supplied from the power feeding unit 7 to one end of the antenna, and a radiated wave from the antenna is received by the receiving antenna 20. The reception unit 24 detects the reception power Pr of the radiated wave. The coupling loss Lc is calculated by the following equation.


Lc = −10log(Pr/Pt) (dB) ・・・(1)

上述のように、図4に示したアンテナは、Eφ偏波の放射角θが−20度のバックファイア型アンテナである。例えば、図5に示すように、LCX1の円周方向に合わせ、Eφ偏波が受信可能な受信アンテナ20a、及び軸方向に合わせ、Ez偏波が受信可能な受信アンテナ20bを用いて、結合損失の測定を実施した。

Lc = −10 log (Pr / Pt) (dB) (1)

As described above, the antenna shown in FIG. 4 is a backfire type antenna in which the radiation angle θ of the Eφ polarization is −20 degrees. For example, as shown in FIG. 5, using a receiving antenna 20a that can receive Eφ polarized waves in accordance with the circumferential direction of LCX1 and a receiving antenna 20b that can receive Ez polarized waves in accordance with the axial direction, The measurement of was carried out.

図6に、シース16の厚さが1.5mmのLCX1を用いて、受信アンテナ20a、20bの高さxを0.25m〜1.5mの範囲、位置zを0〜5mの範囲で変化させて結合損失Lcの分布を測定した結果を示す。Eφ偏波に対して測定した結合損失Lcφは、図6に示すように、LCX1側に放射波Rφの放射角θで傾いた分布となり、終端部材3の上方ではEφ偏波の放射は弱い。一方、Ez偏波に対して測定した結合損失Lczは、図6に示すように、終端部材3の上方に偏在した分布となる。即ち、LCX1側の領域CaではEφ偏波が優勢であり、終端部材3側の領域CbではEz偏波が優勢である。   In FIG. 6, using the LCX 1 having a thickness of the sheath 16 of 1.5 mm, the height x of the receiving antennas 20 a and 20 b is changed in the range of 0.25 m to 1.5 m, and the position z is changed in the range of 0 to 5 m. The result of measuring the distribution of coupling loss Lc is shown. As shown in FIG. 6, the coupling loss Lcφ measured with respect to the Eφ polarization has a distribution inclined toward the LCX 1 at the radiation angle θ of the radiation wave Rφ, and the radiation of the Eφ polarization is weak above the termination member 3. On the other hand, the coupling loss Lcz measured with respect to the Ez polarized wave has a distribution unevenly distributed above the termination member 3 as shown in FIG. That is, Eφ polarization is dominant in the region Ca on the LCX1 side, and Ez polarization is dominant in the region Cb on the termination member 3 side.

結合損失LcφとLczは、ほぼ同じ強度である。例えば、高さxが1.5mmで比較すると、結合損失Lcφは領域Caで約60dB、結合損失Lczは領域Cbで約61dBとほぼ同じ強度であった。   The coupling losses Lcφ and Lcz have substantially the same strength. For example, when the height x is 1.5 mm, the coupling loss Lcφ is approximately 60 dB in the region Ca, and the coupling loss Lcz is approximately the same strength as approximately 61 dB in the region Cb.

LCX1を終端部材3で終端した従来のアンテナでは、通信領域としては不要な領域CbにもEz偏波が放射され、情報漏洩が発生していることになる。したがって、通信セキュリティの確保が困難となる。   In the conventional antenna in which the LCX 1 is terminated by the termination member 3, the Ez polarized wave is radiated to the area Cb that is not necessary as the communication area, and information leakage occurs. Therefore, it is difficult to ensure communication security.

そこで、ポリエチレン製のシースの厚さを、0.5mmから3mmまで0.5mmずつ増加して変化させたLCXを用いて、図4に示した測定形で結合損失Lcの測定を行った。図7に、高さxが1.5mで測定した、領域CaにおけるEφ偏波の結合損失Lcφ、及び領域CbにおけるEz偏波の結合損失Lczのシース厚さとの関係を示す。シース厚さが「0mm」は、シースがなく外部導体の外周を露出させたLCXを用いた場合である。図7に示すように、結合損失Lcφはシース厚さに関係なく、約60dBである。一方、シース厚さが減少すると結合損失Lczは大きくなることが判る。   Therefore, the coupling loss Lc was measured in the measurement form shown in FIG. 4 using LCX in which the thickness of the polyethylene sheath was changed by 0.5 mm from 0.5 mm to 3 mm. FIG. 7 shows the relationship between the coupling loss Lcφ of the Eφ polarization in the region Ca and the sheath thickness of the coupling loss Lcz of the Ez polarization in the region Cb, measured at a height x of 1.5 m. The sheath thickness of “0 mm” is a case where LCX having no sheath and exposing the outer periphery of the outer conductor is used. As shown in FIG. 7, the coupling loss Lcφ is about 60 dB regardless of the sheath thickness. On the other hand, it can be seen that the coupling loss Lcz increases as the sheath thickness decreases.

図8に、シース16の厚さが0.5mmのLCX1を用いて、図5に示した受信アンテナ20a、20bの高さxを0.25m〜1.5mの範囲、位置zを0〜5mの範囲で変化させて結合損失分布を測定した結果を示す。図8に示すように、Eφ偏波に対して測定した結合損失Lcφは、図6と同様にLCX1側に放射波Rφの放射角θで傾いた分布となり、終端部材3の上方ではEφ偏波の放射は弱い。一方、Ez偏波に対して測定した結合損失Lczは、終端部材3の上方に偏在した分布となる。即ち、LCX1側の領域CaではEφ偏波が優勢であり、終端部材3側の領域CbではEz偏波が優勢である。   In FIG. 8, using the LCX1 having a thickness of the sheath 16 of 0.5 mm, the height x of the receiving antennas 20a and 20b shown in FIG. 5 is in the range of 0.25 m to 1.5 m, and the position z is 0 to 5 m. The result of measuring the coupling loss distribution while changing the range is shown. As shown in FIG. 8, the coupling loss Lcφ measured with respect to the Eφ polarized wave has a distribution inclined to the LCX 1 side by the radiation angle θ of the radiated wave Rφ as in FIG. The radiation of is weak. On the other hand, the coupling loss Lcz measured with respect to the Ez polarization has a distribution unevenly distributed above the termination member 3. That is, Eφ polarization is dominant in the region Ca on the LCX1 side, and Ez polarization is dominant in the region Cb on the termination member 3 side.

しかし、図8に示すように、領域CbのEz偏波の結合損失Lczは、図6とは異なり、領域CaのEφ偏波の結合損失Lcφよりも大きい。高さxが1.5mにおける結合損失Lcを比較すると、領域Caでの結合損失Lcφが約60dBであるのに対し、領域Cbでの結合損失Lczは約69dBである。   However, as shown in FIG. 8, the coupling loss Lcz of the Ez polarization in the region Cb is larger than the coupling loss Lcφ of the Eφ polarization in the region Ca, unlike FIG. Comparing the coupling loss Lc when the height x is 1.5 m, the coupling loss Lcφ in the region Ca is about 60 dB, while the coupling loss Lcz in the region Cb is about 69 dB.

このように、シース16の厚さを0.5mmと薄くすることにより、Ez偏波の結合損失LczがEφ偏波の結合損失Lcφに比べて約9dB増加する、即ち受信電力が1/8程度に減少することが確認された。シース厚さが1.5mmでは、Lczは約61dBであり、Lcφと同程度となる。シース厚さが1.5mmより厚くなると、Lczは60dB以下となり、Lcφに比べて損失が小さくなる。   Thus, by reducing the thickness of the sheath 16 to 0.5 mm, the coupling loss Lcz of the Ez polarization increases by about 9 dB compared to the coupling loss Lcφ of the Eφ polarization, that is, the received power is about 1/8. It was confirmed that it decreased. When the sheath thickness is 1.5 mm, Lcz is about 61 dB, which is about the same as Lcφ. When the sheath thickness is thicker than 1.5 mm, Lcz becomes 60 dB or less, and the loss becomes smaller than Lcφ.

LCX1の終端部材3側の領域Cbにおける結合損失Lczは、シース16の厚さに依存する。領域CbにおけるEz偏波の結合損失を増加させ、情報漏洩を防止するためには、シース16の厚さを、1.5mm未満の範囲、好ましくは1mm以下の範囲、より好ましくは0.7mm以下にすればよい。シース16の厚さを1.5mm未満にすれば、Ez偏波の結合損失はEφ偏波に比べて増加する。シース16の厚さを1mm以下にすれば、Ez偏波の結合損失はEφ偏波に比べて約3dB増加する、即ち受信電力が約1/2以下に減少する。また、シース16の厚さを0.7mm以下にすれば、Ez偏波の結合損失はEφ偏波に比べて約6dB増加する、即ち受信電力が約1/4以下に減少する。なお、図7に示すように、シース厚さが0mm、即ちシースがないLCXを用いれば、Ez偏波の結合損失はEφ偏波に比べて約10dB増加する、即ち受信電力が約1/10に減少する。また、シースは押し出し機で押し出し成形する事が多く、押し出し成形の場合はシースの厚さは0.1mm〜0.3mmが限界である。しかし、テープを巻き付けたり、収縮チューブを被せてシースを形成する場合はシースの厚さが0.01mmとすることも可能であるため、シース厚さは0.01mm以上とすることが望ましい。   The coupling loss Lcz in the region Cb on the terminal member 3 side of the LCX 1 depends on the thickness of the sheath 16. In order to increase the Ez polarization coupling loss in the region Cb and prevent information leakage, the thickness of the sheath 16 is less than 1.5 mm, preferably less than 1 mm, more preferably less than 0.7 mm. You can do it. If the thickness of the sheath 16 is less than 1.5 mm, the coupling loss of Ez polarization increases as compared to Eφ polarization. If the thickness of the sheath 16 is 1 mm or less, the coupling loss of the Ez polarization increases by about 3 dB as compared to the Eφ polarization, that is, the received power decreases to about ½ or less. Further, if the thickness of the sheath 16 is 0.7 mm or less, the coupling loss of Ez polarization increases by about 6 dB as compared with the Eφ polarization, that is, the received power decreases to about ¼ or less. As shown in FIG. 7, when an LCX having a sheath thickness of 0 mm, that is, without a sheath, is used, the coupling loss of Ez polarization increases by about 10 dB compared to Eφ polarization, that is, the received power is about 1/10. To decrease. Further, the sheath is often extruded by an extruder, and in the case of extrusion molding, the thickness of the sheath is limited to 0.1 mm to 0.3 mm. However, when the sheath is formed by wrapping tape or covering the shrinkable tube, the thickness of the sheath can be 0.01 mm. Therefore, the sheath thickness is desirably 0.01 mm or more.

上記のように、実施の形態に係るアンテナでは、シース16の厚さを1.5mm未満とする。その結果、図7及び図8に示したように、終端部材3の近傍でのEz偏波の結合損失Lczを増加させることができる。なお、Eφ偏波の結合損失Lcφに対しては、シース16の厚さは影響がないことが確認されている。このように、実施の形態に係るアンテナでは、LCX1の終端部での情報漏洩を防止して通信セキュリティを確保することができる。   As described above, in the antenna according to the embodiment, the thickness of the sheath 16 is less than 1.5 mm. As a result, as shown in FIGS. 7 and 8, the coupling loss Lcz of Ez polarization near the termination member 3 can be increased. It has been confirmed that the thickness of the sheath 16 has no effect on the coupling loss Lcφ of Eφ polarization. Thus, in the antenna according to the embodiment, it is possible to prevent information leakage at the terminal portion of the LCX 1 and ensure communication security.

なお、上述の説明においては、シース16としてポリエチレンを用いている。しかし、シース16に用いる樹脂は、ポリエチレンに限定されない。例えば、シース16として、ポリ塩化ビニル(PVC)を用いてもよい。ポリエチレンの比誘電率が約2.3であるのに対し、PVCの比誘電率は約6である。比誘電率の相違に起因して、Ez偏波の結合損失Lczの若干の減少があるものの、ほぼ同様の結合損失となることが確認されている。したがって、シース16として6以下の範囲の比誘電率を有する樹脂を用いれば、LCX1の終端部でのEz偏波の放射を抑制でき、通信セキュリティを確保することができる。   In the above description, polyethylene is used as the sheath 16. However, the resin used for the sheath 16 is not limited to polyethylene. For example, polyvinyl chloride (PVC) may be used as the sheath 16. Polyethylene has a relative dielectric constant of about 2.3, whereas PVC has a relative dielectric constant of about 6. Although there is a slight decrease in the coupling loss Lcz of Ez polarization due to the difference in relative permittivity, it has been confirmed that the coupling loss is almost the same. Therefore, if a resin having a relative dielectric constant in the range of 6 or less is used as the sheath 16, it is possible to suppress the emission of Ez polarized waves at the terminal portion of the LCX 1 and to ensure communication security.

(その他の実施の形態)
上記のように、本発明の実施の形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係わる発明特定事項によってのみ定められるものである。
(Other embodiments)
Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. Accordingly, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1…漏洩同軸ケーブル(LCX)
3…終端部材
10…中心導体
12…絶縁体
14…外部導体
16…シース
18a…第1スロット
18b…第2スロット
40…終端器
42、46…外装導体
44…コネクタ
1 ... Leaky coaxial cable (LCX)
DESCRIPTION OF SYMBOLS 3 ... Termination member 10 ... Center conductor 12 ... Insulator 14 ... External conductor 16 ... Sheath 18a ... 1st slot 18b ... 2nd slot 40 ... Terminator 42, 46 ... Exterior conductor 44 ... Connector

Claims (3)

線状の中心導体、前記中心導体を覆う絶縁体、前記絶縁体を挟んで前記中心導体を覆い、前記中心導体の軸方向に沿って所定のピッチで複数のスロットが設けられた外部導体、及び、前記外部導体の外周を覆うシースを有し、信号が供給される一端から他端に向かう前記軸方向に延伸する漏洩同軸ケーブルと、
前記他端に接続され、前記漏洩同軸ケーブルの特性インピーダンスで終端する終端器を含み、前記外部導体に接続された外装導体を有する終端部材と、を備えたアンテナであり
Ez偏波の結合損失を、前記アンテナから前記軸方向に対し垂直な方向に0.25m〜1.5mの範囲においてEφ偏波の結合損失よりも大きくするために、前記シースの厚さを0.01mm以上、1.5mm未満の範囲としたことを特徴とするアンテナ。
A linear center conductor, an insulator that covers the center conductor, an outer conductor that covers the center conductor across the insulator and is provided with a plurality of slots along the axial direction of the center conductor, and A leaky coaxial cable having a sheath covering the outer periphery of the outer conductor and extending in the axial direction from one end to which the signal is supplied toward the other end;
Connected to said other end, comprises a terminator that terminates in the characteristic impedance of the leakage coaxial cable, an antenna having a, and the end member having connected to said outer conductor outer conductor,
In order to make the coupling loss of Ez polarized wave larger than the coupling loss of Eφ polarized wave in the range of 0.25 m to 1.5 m in the direction perpendicular to the axial direction from the antenna , the thickness of the sheath is set to 0. An antenna having a range of 0.01 mm or more and less than 1.5 mm.
前記シースの比誘電率が、6以下の範囲であることを特徴とする請求項1に記載のアンテナ。   The antenna according to claim 1, wherein the sheath has a relative dielectric constant of 6 or less. 線状の中心導体、前記中心導体を覆う絶縁体、及び前記絶縁体を挟んで前記中心導体を覆い、前記中心導体の軸方向に沿って所定のピッチで複数のスロットが設けられた外部導体を有し、信号が供給される一端から他端に向かう前記軸方向に延伸する漏洩同軸ケーブルと、
前記他端に接続され、前記漏洩同軸ケーブルの特性インピーダンスで終端する終端器を含み、前記外部導体に接続された外装導体を有する終端部材と、を備えたアンテナであり
Ez偏波の結合損失を、前記アンテナから前記軸方向に対し垂直な方向に0.25m〜1.5mの範囲においてEφ偏波の結合損失よりも大きくするために、前記外部導体の外周を露出させたことを特徴とするアンテナ。
A linear center conductor, an insulator covering the center conductor, and an outer conductor provided with a plurality of slots at a predetermined pitch along the axial direction of the center conductor, covering the center conductor with the insulator interposed therebetween. A leaky coaxial cable extending in the axial direction from one end to the other end to which a signal is supplied;
Connected to said other end, comprises a terminator that terminates in the characteristic impedance of the leakage coaxial cable, an antenna having a, and the end member having connected to said outer conductor outer conductor,
In order to make the coupling loss of Ez polarized wave larger than the coupling loss of Eφ polarized wave in the range of 0.25 m to 1.5 m in the direction perpendicular to the axial direction from the antenna , the outer periphery of the outer conductor is exposed. An antenna characterized by having been made.
JP2012196890A 2012-09-07 2012-09-07 antenna Active JP5684764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196890A JP5684764B2 (en) 2012-09-07 2012-09-07 antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196890A JP5684764B2 (en) 2012-09-07 2012-09-07 antenna

Publications (2)

Publication Number Publication Date
JP2014053762A JP2014053762A (en) 2014-03-20
JP5684764B2 true JP5684764B2 (en) 2015-03-18

Family

ID=50611837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196890A Active JP5684764B2 (en) 2012-09-07 2012-09-07 antenna

Country Status (1)

Country Link
JP (1) JP5684764B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126016Y1 (en) * 1973-08-04 1976-07-02
JPS5139437U (en) * 1974-09-17 1976-03-24
JPS5162912A (en) * 1974-11-29 1976-05-31 Dainichi Nippon Cables Ltd Roeidojikukeeburusenro
JP2011244194A (en) * 2010-05-18 2011-12-01 Fujikura Ltd Communication system
JP2012169771A (en) * 2011-02-10 2012-09-06 Fujikura Ltd Leakage coaxial cable

Also Published As

Publication number Publication date
JP2014053762A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP4742154B2 (en) Leakage cable
KR102112263B1 (en) Improved Slotline Antenna
US8237618B2 (en) Slot-fed Yagi aerial
CN110809836A (en) Circularly polarized antenna
JP5712962B2 (en) Electromagnetic radiation coaxial cable and communication system
KR101557291B1 (en) Quadrifilar Helix Antenna
JP5104131B2 (en) Radio apparatus and antenna provided in radio apparatus
JP5631374B2 (en) antenna
JP5622881B2 (en) Leaky coaxial cable
US8809683B2 (en) Leaky coaxial cable
JP5639097B2 (en) antenna
JP5690707B2 (en) Antenna and communication system
US7852277B2 (en) Circularly polarized horn antenna
JP5684764B2 (en) antenna
JP5628879B2 (en) antenna
JP2015080010A (en) Antenna and diversity communication system
US6867747B2 (en) Helical antenna system
JP2015177272A (en) antenna array
JP7549476B2 (en) Leaky Coaxial Cable
CN210607615U (en) Miniaturized ultra-wideband antenna
JP2023057726A (en) Leaky coaxial cable type antenna
JP6469029B2 (en) Cable type antenna
CN110707424A (en) Miniaturized ultra-wideband antenna
Rahman et al. Designing Of Log Periodic Dipole Antenna (Lpda) And It’s Performance Analysis
JP2017139730A (en) Cable type antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150115

R151 Written notification of patent or utility model registration

Ref document number: 5684764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250