JP5681408B2 - Capacitance type acceleration detection apparatus and calibration method thereof - Google Patents

Capacitance type acceleration detection apparatus and calibration method thereof Download PDF

Info

Publication number
JP5681408B2
JP5681408B2 JP2010176623A JP2010176623A JP5681408B2 JP 5681408 B2 JP5681408 B2 JP 5681408B2 JP 2010176623 A JP2010176623 A JP 2010176623A JP 2010176623 A JP2010176623 A JP 2010176623A JP 5681408 B2 JP5681408 B2 JP 5681408B2
Authority
JP
Japan
Prior art keywords
heavy cone
detection electrode
capacitance
substrate
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010176623A
Other languages
Japanese (ja)
Other versions
JP2012037341A (en
Inventor
加藤 静一
静一 加藤
金山 裕一
裕一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2010176623A priority Critical patent/JP5681408B2/en
Publication of JP2012037341A publication Critical patent/JP2012037341A/en
Application granted granted Critical
Publication of JP5681408B2 publication Critical patent/JP5681408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

本発明は、クーロン力を用いた感度の調整とオフセットの調整とを行うキャリブレーション機能を備えた静電容量型加速度検出装置及びそのキャリブレーション方法に関する。   The present invention relates to a capacitance type acceleration detection apparatus having a calibration function for performing sensitivity adjustment and offset adjustment using Coulomb force, and a calibration method thereof.

一般に、電極間距離の変化を利用して物理量を検出する装置及びその動作試験方法については良く知られている。例えば、2枚の基板を対向させて配置し、それぞれの基板上に電極を形成した単純な構造の検出装置が知られている。この検出装置においては、加速度などの物理量に基づいて一方の基板を変位させ、この変位により両基板上に形成した電極間距離を変化させ、これを両電極間の静電容量の変化として検出している。また、この検出装置は、一方の基板に重錘体を接合しておき、この重錘体に作用した加速度に基づいて基板を変位させれば、作用した加速度を検出する加速度検出装置として使用できるものである。   In general, a device for detecting a physical quantity using a change in the distance between electrodes and an operation test method thereof are well known. For example, a detection device having a simple structure in which two substrates are arranged to face each other and electrodes are formed on the respective substrates is known. In this detection device, one substrate is displaced based on a physical quantity such as acceleration, the distance between the electrodes formed on both substrates is changed by this displacement, and this is detected as a change in capacitance between both electrodes. ing. In addition, this detection device can be used as an acceleration detection device that detects the applied acceleration if a weight body is bonded to one substrate and the substrate is displaced based on the acceleration applied to the weight body. Is.

通常、何らかの物理量の検出装置を製品化する場合、この検出装置が正しい検出信号を出力するか否かの動作試験を行う必要が生じる。従来、このような動作試験は、検出対象となる物理量を実際にその検出装置に作用させ、そのときの検出信号を調べるという方法が採られている。例えば、加速度の検出装置であれば、実際に所定の大きさの加速度を所定の方向から検出装置に作用させ、そのときの検出信号が、与えた加速度に応じた正しいものになっているか否かを判定する。   Usually, when a detection device of some physical quantity is commercialized, it is necessary to perform an operation test as to whether or not this detection device outputs a correct detection signal. Conventionally, in such an operation test, a method has been adopted in which a physical quantity to be detected is actually applied to the detection device and a detection signal at that time is examined. For example, in the case of an acceleration detection device, whether or not an acceleration of a predetermined magnitude is actually applied to the detection device from a predetermined direction, and the detection signal at that time is correct according to the applied acceleration. Determine.

この種の加速度検出装置として、例えば、特許文献1及び2のものが提案されている。特許文献1に記載の加速度検出装置は、直交3軸方向(X軸、Y軸、Z軸)の加速度測定が可能な加速度センサの電気的特性を測定する際に、各検出軸方向に重力加速度を印加するための加速度発生装置及びこれを用いた加速度センサ測定装置に関するものである。   As this type of acceleration detection device, for example, those disclosed in Patent Documents 1 and 2 have been proposed. The acceleration detection device described in Patent Document 1 is a gravitational acceleration in each detection axis direction when measuring electrical characteristics of an acceleration sensor capable of measuring acceleration in three orthogonal axes (X axis, Y axis, and Z axis). The present invention relates to an acceleration generating device for applying a voltage and an acceleration sensor measuring device using the same.

また、特許文献2に記載の加速度検出装置は、互いに直交する3軸の加速度成分を検出して加速度成分信号を出力する3軸加速度センサと、3軸加速度センサが装着され、装着された3軸加速度センサの加速度検出信号を測定する測定板と、測定板を回転支持する支持板と、支持板を回転させる主回転軸とを備えたものである。   In addition, the acceleration detection device described in Patent Document 2 is equipped with a triaxial acceleration sensor that detects triaxial acceleration components orthogonal to each other and outputs an acceleration component signal, and a triaxial acceleration sensor. A measurement plate for measuring an acceleration detection signal of the acceleration sensor, a support plate for rotating and supporting the measurement plate, and a main rotation shaft for rotating the support plate are provided.

しかしながら、このような動作試験を行うには、専用の試験設備が必要になり、試験作業も煩雑で時間のかかるものとなる。特に、専用の試験設備で試験できる数量が限定され、生産性の低下を招くことになる。したがって、このような従来の試験方法は、大量生産される装置に対する動作試験としては不適当であるという問題があった。   However, in order to perform such an operation test, a dedicated test facility is required, and the test work is complicated and time-consuming. In particular, the quantity that can be tested with a dedicated test facility is limited, leading to a decrease in productivity. Therefore, such a conventional test method has a problem that it is not suitable as an operation test for a mass-produced apparatus.

そこで、例えば、特許文献3のような加速度センサの検査装置及びその動作試験方法が提案されている。この特許文献3のものは、外力の作用により変位しうるように支持された変位電極と、この変位電極に対向する位置において装置筐体に固定された固定電極と、これら両電極の間の距離の変化を電気信号として取り出す検出手段とを備え、外力に対応した加速度を電気信号として検出する加速度検出装置の動作試験方法であって、両電極の間に所定の電圧を印加し、この印加電圧に基づいて発生するクーロン力により変位電極を変位させた状態において、両電極の一方の電極に所定の大きさをもった時間的変動成分を有する電気信号を与え、このときに他方の電極に伝達される変動成分の大きさを、印加電圧と比較することにより、この検出装置の動作を試験するようにした、電極間距離の変化を利用して加速度を検出する加速度検出装置の動作試験方法である。   Thus, for example, an acceleration sensor inspection device and an operation test method thereof have been proposed as disclosed in Patent Document 3. In this patent document 3, a displacement electrode supported so as to be able to be displaced by the action of an external force, a fixed electrode fixed to an apparatus housing at a position facing the displacement electrode, and a distance between these electrodes. An acceleration detecting device operation test method for detecting an acceleration corresponding to an external force as an electrical signal, wherein a predetermined voltage is applied between both electrodes, and the applied voltage In the state where the displacement electrode is displaced by the Coulomb force generated based on the electric signal, an electric signal having a temporal variation component having a predetermined magnitude is given to one electrode of both electrodes, and transmitted to the other electrode at this time By comparing the magnitude of the fluctuation component to be applied with the applied voltage, the operation of this detection device is tested, and the acceleration detection device that detects the acceleration using the change in the distance between the electrodes is used. It is a work test method.

さらに、これ以外の電極間距離の変化を利用して物理量を検出する装置及びその動作試験方法、つまり、試験電極に電圧をかけてクーロン力で変位させ、印加電圧の大きさと変位量(容量変化)を比較して動作試験を行うものとしては、例えば、特許文献4及び5が提案されている。   In addition, a device for detecting a physical quantity using other changes in the distance between electrodes and its operation test method, that is, applying a voltage to the test electrode and displacing it by Coulomb force, the magnitude of the applied voltage and the amount of displacement (capacity change) For example, Patent Documents 4 and 5 have been proposed for performing an operation test in comparison with (1).

特開平10−002914号公報Japanese Patent Laid-Open No. 10-002914 特開2007−322337号公報JP 2007-322337 A 特開2002−221463号公報JP 2002-221463 A 国際公開WO1992/17759号公報International Publication WO1992 / 17759 特開2000−146729号公報JP 2000-146729 A

しかしながら、上述した検査装置及びその動作試験方法では、基本的に故障検出などの大まかな動作試験しかできないという問題があった。これは、加速度センサで感度やオフセットのばらつきに対して較正を行う場合、加速度センサの形状のばらつきにより、リファレンスにするクーロン力自体もばらつくため、感度及びオフセットを正確に較正できないためである。   However, the above-described inspection apparatus and its operation test method have a problem that basically only a rough operation test such as failure detection can be performed. This is because when the acceleration sensor is calibrated with respect to variations in sensitivity and offset, the Coulomb force itself used as a reference varies due to variations in the shape of the acceleration sensor, and thus the sensitivity and offset cannot be accurately calibrated.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、変位可能な重錘体と、この重錘体に対向して配置された検出電極間の静電容量を正確に検出して感度の調整とオフセットの調整とを行うキャリブレーション機能を備えた静電容量型加速度検出装置及びそのキャリブレーション方法を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a capacitance between a displaceable weight body and a detection electrode disposed opposite to the weight body. It is an object of the present invention to provide a capacitance type acceleration detection apparatus having a calibration function for accurately detecting and adjusting sensitivity and offset and a calibration method thereof.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、錘体の変位によって第1の検出電極と第2の検出電極のうち一方の検出電極と前記重錘体との間の容量増加し、他方の検出電極と前記重錘体との間の容量減少する一対の検出電極から構成される静電容量型加速度センサを複数備えた静電容量型加速度検出装置であって、前記第1の検出電極と前記重錐体との間の容量、前記第2の検出電極と前記重錘体との間の容量、及び前記第1の検出電極と前記重錐体との間の容量と、前記第2の検出電極と前記重錘体との間の容量との差を検出する容量検出手段と、第1の検出電極又は前記第2の検出電極に電圧を印加する電圧印加手段と、前記一対の検出電極、前記容量検出手段の端子、前記電圧印加手段及びグラウンドに接続され、前記第1の検出電極と前記重錘体との間のクーロン力印加による容量を検出するために、1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続し、前記1つの静電容量型加速度センサの第2の検出電極を、前記グラウンドに接続する第1の接続方法と、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記電圧印加手段に接続する第2の接続方法とを切り替え、前記第2の検出電極と前記重錘体との間のクーロン力印加による容量を検出するために、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記前記グラウンドに接続し、前記第2の検出電極を、前記容量検出手段の一方の端子接続する第3の接続方法と、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記前記電圧印加手段に接続し、前記第2の検出電極を、前記容量検出手段の一方の端子接続する第4の接続方法とを切り替え、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記容量検出手段の他方の端子に接続する第5の接続方法とを切替可能な電極選択手段と、所定の目標値と、前記第1乃至第4の接続方法により検出されたクーロン力印加による容量及び前記検出電極に印加された電圧から求められる感度とに基づいて求めた感度補正値と、前記第5の接続方法によって検出された容量の差に基づいて求めたオフセット補正値とを保持する記憶手段と、該記憶手段によって保持された前記感度補正値に従って感度調整を行う感度調整手段と、前記記憶手段によって保持された前記オフセット補正値によりオフセット調整を行うオフセット調整手段とを備えていることを特徴とする。 The present invention has been made in order to achieve the above object, a first aspect of the present invention, one of the detection electrodes of the first detection electrode and the second detection electrode by the displacement of the weight body and the capacitance is increased between the weight body and the other of the detection electrode and the electrostatic capacity between the weight body is provided with a plurality of capacitive acceleration sensor that consists of a pair of sensing electrodes to reduce met capacitance type acceleration detector, the capacitance between the first detection electrode and the heavy cones, capacitance between the second detection electrode and the weight body, and the first detection and capacitance between the the electrode proof masses, and the capacitance detection means for detecting a difference between the capacitance between the second detection electrode and the weight body, before Symbol first detecting electrode or the second voltage applying means for applying a voltage to the second detecting electrodes, the pair of detection electrodes, terminals of said capacitance detecting means, said voltage application In order to detect the capacitance due to the application of Coulomb force between the first detection electrode and the weight body, the first detection electrode of one capacitive acceleration sensor A first connection method that connects to one of the two terminals of the capacitance detection means, and connects a second detection electrode of the one capacitive acceleration sensor to the ground; and The first detection electrode of the capacitive acceleration sensor is connected to one terminal of the capacitance detection means, and the second connection method is switched between connecting the second detection electrode to the voltage application means. The first detection electrode of the one capacitive acceleration sensor is connected to the ground in order to detect the capacitance due to the application of Coulomb force between the second detection electrode and the weight body. And the second detection electrode A third connection method of connecting one terminal of the capacitance detection means, and the first detection electrode of the one capacitive acceleration sensor is connected to the voltage application means, and the second detection The electrode is switched to a fourth connection method for connecting one terminal of the capacitance detection means, and the first detection electrode of the one capacitive acceleration sensor is connected to one terminal of the capacitance detection means. And an electrode selection means capable of switching the fifth connection method for connecting the second detection electrode to the other terminal of the capacitance detection means, a predetermined target value, and the first to fourth connections. a sensitivity correction value calculated based on the sensitivity obtained from the voltage applied to the capacitor and the detecting electrode due to the detected Coulomb force applied by the method, based on a difference in capacitance detected by the fifth connection Calculated offset correction value Offset adjusting means for performing storage means, and sensitivity adjustment means for performing sensitivity adjustment in accordance with the sensitivity correction value held by the storage means, the offset adjustment by the offset correction value held by said storage means for holding the door It is characterized by having.

また、請求項2に記載の発明は、請求項1に記載の発明において、前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成されることを特徴とする。 The invention according to claim 2 is the invention according to claim 1, wherein the heavy cone is a heavy cone main body formed in a rectangular plate shape, and a fixed anchor for attaching the heavy cone to a substrate. A beam member connecting the two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor, and a plurality of comb members extending in parallel with the substrate from the two end faces in the width direction of the heavy cone main body The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body, and the pair of detections The electrode is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitive electrode portions, respectively .

また、請求項3に記載の発明は、請求項1に記載の発明において、前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 The invention according to claim 3 is the invention according to claim 1 , wherein the heavy cone has a heavy cone main body formed in a rectangular plate shape, and a longitudinal direction from the center to the heavy cone main body. A fixed anchor for mounting the heavy cone to the substrate, and an inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor. The heavy cone main body and a beam member connected to the fixed anchor extend parallel to the substrate, and the heavy cone main body is arranged in a separated state parallel to the substrate, and the beam member is used as an axis. The pair of detection electrodes are displaced in the vertical direction of the substrate, and the pair of detection electrodes are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. It is characterized in that consists of two detection electrodes .

また、請求項4に記載の発明は、請求項1に記載の発明において、前記複数の静電容量型加速度センサは第1、第2及び第3の静電容量化速度センサから構成され、前記第1及び第2の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、前記第3の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 According to a fourth aspect of the present invention, in the first aspect of the invention, the plurality of capacitive acceleration sensors include first, second, and third capacitive velocity sensors, The heavy cones of the first and second capacitive velocity sensors include a heavy cone main body formed in a rectangular plate shape, a fixed anchor for attaching the heavy cone to a substrate, and the heavy cone main body. A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from the two end surfaces in the width direction of the heavy cone main body, and a beam member connecting the two end surfaces in the longitudinal direction and the fixed anchor The heavy cone main body is disposed in parallel with the substrate in a spaced state, is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body, and the pair of detection electrodes has the plurality of capacitors A first detection electrode and a second detection electrode arranged so as to sandwich the electrode portions, respectively. The heavy cone of the third capacitance speed sensor is displaced in the longitudinal direction from the center to the heavy cone main body formed in a rectangular plate shape, and the heavy cone main body. A fixed anchor for mounting the heavy cone to the substrate, and the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body to the fixed anchor. The heavy cone main body and a beam member connected to the fixed anchor, and the heavy cone main body is arranged in a separated state in parallel with the substrate, with the beam member as an axis, The pair of detection electrodes are displaced in the vertical direction of the substrate, and the pair of detection electrodes are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. It is characterized by comprising a detection electrode .

また、請求項5に記載の発明は、請求項1に記載の発明において、前記複数の静電容量型加速度センサは第1及び第2の静電容量化速度センサから構成され、前記第1の静電容量化速度センサの前記重錐体は、矩形又は正方形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の4つの端面と前記固定アンカーとを接続する梁部材と、前記重錐体本体の4つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向及び幅方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、前記第2の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 According to a fifth aspect of the present invention, in the first aspect of the invention, the plurality of capacitive acceleration sensors include first and second capacitive velocity sensors, and the first The heavy cone of the capacitive velocity sensor includes a heavy cone main body formed in a rectangular or square plate shape, a fixed anchor for attaching the heavy cone to a substrate, and four end faces of the heavy cone main body. And a beam member connecting the fixed anchor, and a plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from four end faces of the heavy cone main body, The pair of detection electrodes sandwich the plurality of capacitance electrode portions, and are disposed in parallel with the substrate and spaced apart from each other, displaced in parallel with the substrate in the longitudinal direction and the width direction of the heavy cone main body. A set of the first detection electrode and the second detection electrode arranged. The heavy cone of the second capacitive speed sensor is formed by a heavy cone main body formed in a rectangular plate shape, and is displaced in the longitudinal direction from the center to the heavy cone main body. A fixed anchor that is disposed in the opening and attaches the heavy cone to the substrate; and extends from the inner wall surface of the heavy cone main body to the fixed anchor in the width direction of the heavy cone main body in parallel to the substrate. The heavy cone main body and a beam member connected to the fixed anchor, the heavy cone main body being arranged in a separated state in parallel with the substrate, the vertical direction of the substrate with the beam member as an axis The pair of detection electrodes are configured by the first detection electrode and the second detection electrode that are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. It is characterized by being.

また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、容量検出手段が、2つの容量を個別に検出するシングルエンド容量電圧変換回路と、該シングルエンド容量電圧変換回路からの出力電圧の差を出力する差動増幅回路と、前記シングルエンド容量電圧変換回路からの出力と前記差動増幅回路からの出力とから一つの出力を選択するセレクタとから構成されていることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the capacitance detecting means individually detects two capacitances, and the single-ended capacitance-voltage conversion circuit. A differential amplifier circuit that outputs a difference in output voltage from the voltage conversion circuit; and a selector that selects one output from the output from the single-ended capacitance voltage conversion circuit and the output from the differential amplifier circuit. It is characterized by.

また、請求項7に記載の発明は、重錘体の変位によって第1の検出電極及び第2の検出電極のうちの一方の検出電極と前記重錘体との容量は増加し、他方の検出電極と前記重錘体との容量は減少するように、前記重錐体に対向して配置された一対の検出電極から構成される静電容量型加速度センサを1又は複数備えた静電容量型加速度検出装置における感度及びオフセットの調整を行うキャリブレーション方法であって、1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続し、前記1つの静電容量型加速度センサの第2の検出電極を、グラウンドに接続して前記第1の検出電極と前記重錘体間の容量を検出する第1のステップと、前記第2の検出電極を、電圧印加手段に切り替えて接続し、前記電圧印加手段により前記第2の検出電極に電圧を印加して前記第1の検出電極と前記重錘体間のクーロン力印加による容量を検出する第2のステップと、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記グラウンドに接続し、前記第2の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続して、前記第1の検出電極と前記重錘体間の容量を検出する第3のステップと、前記第1の検出電極を、電圧印加手段に切り替えて接続し、前記電圧印加手段により前記第1の検出電極に電圧を印加して前記第2の検出電極と前記重錘体間のクーロン力印加による容量を検出する第4のステップと、所定の目標値と、前記第1乃至第4のステップにおいて検出された前記クーロン力印加による容量及び前記検出電極に印加される電圧から求められる感度に基づいて感度補正値を求め、前記感度補正値により感度調整を行う第5のステップと、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記容量検出手段の他方の端子に接続し、前記第1の検出電極と前記重錘体との間の検出された容量と、前記第2の検出電極と前記重錘体との間の検出された容量との容量差を検出する第6のステップと、前記第6のステップにより検出された容量の差からオフセット補正値を求めてオフセット補正を行う第7のステップとを有することを特徴とする。 Further, according to the seventh aspect of the present invention, the capacitance between one of the first detection electrode and the second detection electrode and the weight body is increased by the displacement of the weight body, and the other detection is performed. A capacitance type including one or a plurality of capacitance type acceleration sensors composed of a pair of detection electrodes arranged to face the weight cone so that the capacitance between the electrode and the weight body decreases. A calibration method for adjusting sensitivity and offset in an acceleration detection device, wherein the first detection electrode of one capacitive acceleration sensor is connected to one of the two terminals of the capacitance detection means. A first step of connecting and detecting a capacitance between the first detection electrode and the weight body by connecting a second detection electrode of the one capacitive acceleration sensor to a ground; and 2 detection electrodes are switched to voltage application means A second step of detecting a capacitance by applying a Coulomb force between the first detection electrode and the weight body by applying a voltage to the second detection electrode by the voltage application means; Connecting the first detection electrode of one capacitive acceleration sensor to the ground, connecting the second detection electrode to one of the two terminals of the capacitance detection means, and A third step of detecting a capacitance between the first detection electrode and the weight body, and the first detection electrode are switched and connected to voltage application means, and the first detection electrode is connected by the voltage application means. A voltage is applied to the second detection electrode and a capacitance is detected by applying a Coulomb force between the weight body, a predetermined target value, and detected in the first to fourth steps. In addition, the capacity and A fifth step of obtaining a sensitivity correction value based on the sensitivity obtained from the voltage applied to the detection electrode and adjusting the sensitivity by the sensitivity correction value; and the first step of the one capacitive acceleration sensor A detection electrode is connected to one terminal of the capacitance detection means, and the second detection electrode is connected to the other terminal of the capacitance detection means, and between the first detection electrode and the weight body. And a sixth step of detecting a capacitance difference between the detected capacitance of the second detection electrode and the detected capacitance between the weight body and the capacitance detected by the sixth step. And a seventh step of performing offset correction by obtaining an offset correction value from the difference .

また、請求項8に記載の発明は、請求項7に記載の発明において、前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、 前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成されることを特徴とする。 The invention according to claim 8 is the invention according to claim 7 , wherein the heavy cone has a heavy cone main body formed in a rectangular plate shape, and a fixed anchor for attaching the heavy cone to a substrate. A beam member connecting the two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor, and a plurality of comb members extending in parallel from the two end faces in the width direction of the heavy cone main body in parallel with the substrate The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body, and the pair of detections The electrode is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitive electrode portions, respectively .

また、請求項9に記載の発明は、請求項に記載の発明において、前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 The invention according to claim 9 is the invention according to claim 7 , wherein the heavy cone is formed in a rectangular plate shape, and a longitudinal direction from the center to the heavy cone main body. A fixed anchor for mounting the heavy cone to the substrate, and an inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor. The heavy cone main body and a beam member connected to the fixed anchor extend parallel to the substrate, and the heavy cone main body is arranged in a separated state parallel to the substrate, and the beam member is used as an axis. The pair of detection electrodes are displaced in the vertical direction of the substrate, and the pair of detection electrodes are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. It is characterized in that consists of two detection electrodes .

また、請求項10に記載の発明は、請求項7に記載の発明において、前記複数の静電容量型加速度センサは第1、第2及び第3の静電容量化速度センサから構成され、前記第1及び第2の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、前記第3の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 According to a tenth aspect of the present invention, in the seventh aspect of the invention, the plurality of capacitive acceleration sensors include first, second, and third capacitive velocity sensors, The heavy cones of the first and second capacitive velocity sensors include a heavy cone main body formed in a rectangular plate shape, a fixed anchor for attaching the heavy cone to a substrate, and the heavy cone main body. A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from the two end surfaces in the width direction of the heavy cone main body, and a beam member connecting the two end surfaces in the longitudinal direction and the fixed anchor The heavy cone main body is disposed in parallel with the substrate in a spaced state, is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body, and the pair of detection electrodes has the plurality of capacitors The first detection electrode and the second detection arranged so as to sandwich the electrode portions, respectively The heavy cone of the third capacitance speed sensor is composed of a pair of poles. The heavy cone is formed in a rectangular plate shape, and is displaced in the longitudinal direction from the center to the heavy cone. A fixed anchor for attaching the heavy cone to the substrate, and an opening inner wall surface of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor. A beam member that extends in parallel to the substrate and is connected to the heavy cone main body and the fixed anchor, the heavy cone main body is arranged in a separated state in parallel to the substrate, and the beam member as an axis, The pair of detection electrodes are displaced in the vertical direction of the substrate, and the pair of detection electrodes are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. wherein the the detection electrode composed

また、請求項11に記載の発明は、請求項に記載の発明において、前記複数の静電容量型加速度センサは第1及び第2の静電容量化速度センサから構成され、前記第1の静電容量化速度センサの前記重錐体は、矩形又は正方形の板状に形成された重錐体本体と、前記重錐体を基板に取り付ける固定アンカーと、前記重錐体本体の4つの端面と前記固定アンカーとを接続する梁部材と、前記重錐体本体の4つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部とを備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向及び幅方向に前記基板と平行に変位し、前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、前記第2の静電容量化速度センサの前記重錐体は、矩形の板状に形成された重錐体本体と、前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材とから構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする。 According to an eleventh aspect of the present invention, in the invention according to the seventh aspect , the plurality of capacitive acceleration sensors include first and second capacitive velocity sensors, The heavy cone of the capacitive velocity sensor includes a heavy cone main body formed in a rectangular or square plate shape, a fixed anchor for attaching the heavy cone to a substrate, and four end faces of the heavy cone main body. And a beam member connecting the fixed anchor, and a plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from four end faces of the heavy cone main body, The pair of detection electrodes sandwich the plurality of capacitance electrode portions, and are disposed in parallel with the substrate and spaced apart from each other, displaced in parallel with the substrate in the longitudinal direction and the width direction of the heavy cone main body. From the set of the first detection electrode and the second detection electrode arranged The heavy cone of the second capacitance speed sensor is formed in a rectangular pyramid body, and is displaced from the center in the longitudinal direction to the heavy cone body. A fixed anchor that is disposed in the opening and attaches the heavy cone to the substrate, and is parallel to the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body to the fixed anchor. The heavy cone main body and a beam member connected to the fixed anchor, the heavy cone main body being arranged in a separated state in parallel with the substrate, with the beam member serving as an axis, The pair of detection electrodes are displaced from the first detection electrode and the second detection electrode, which are attached to the surface side of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. It is characterized by being configured .

また、請求項12に記載の発明は、請求項7乃至11のいずれか1項に記載の発明において、容量検出手段が、2つの容量を個別に検出するシングルエンド容量電圧変換回路と、該シングルエンド容量電圧変換回路からの出力電圧の差を出力する差動増幅回路と、前記シングルエンド容量電圧変換回路からの出力と前記差動増幅回路からの出力とから一つの出力を選択するセレクタとから構成されていることを特徴とする。 According to a twelfth aspect of the present invention, in the invention according to any one of the seventh to eleventh aspects, a single-ended capacitance-voltage conversion circuit in which the capacitance detection unit individually detects two capacitances, and the single A differential amplifier circuit that outputs a difference in output voltage from an end capacitance voltage conversion circuit; and a selector that selects one output from the output from the single end capacitance voltage conversion circuit and the output from the differential amplification circuit. It is configured .

本発明によれば、変位可能な重錘体と、この重錘体に対向して設けられ、重錘体の変位によって一方の検出電極と該重錘体との容量は増加し、他方の検出電極と重錘体との容量は減少する一対の検出電極を複数備える静電容量型加速度センサを有し、感度及びオフセットを調整する静電容量型加速度検出装置において、静電容量型加速度センサが備える複数の一対の検出電極から一対の検出電極を選択する電極選択手段と、この電極選択手段により選択された一対の検出電極の一方の検出電極及び他方の検出電極と重錘体間の容量を検出する容量検出手段と、電極選択手段により選択された一対の検出電極の一方の検出電極及び他方の検出電極に電圧を印加する電圧印加手段と、容量検出手段により検出された容量と検出電極に印加された電圧とから求められる感度補正値とオフセット補正値とを保持する記憶手段と、この記憶手段によって保持された補正値に応じて感度調整を行う感度調整手段と、記憶手段によって保持された補正値によりオフセット調整を行うオフセット調整手段とを備えているので、感度の調整とオフセットの調整とを行うキャリブレーション機能を備えた静電容量型加速度検出装置及びそのキャリブレーション方法を提供することができる。   According to the present invention, the displaceable weight body and the weight body are provided opposite to the weight body. The displacement of the weight body increases the capacitance between one detection electrode and the weight body, and the other detection body. A capacitive acceleration sensor having a capacitance type acceleration sensor having a plurality of pairs of detection electrodes whose capacitance between the electrode and the weight body decreases, and adjusting the sensitivity and offset. Electrode selecting means for selecting a pair of detection electrodes from a plurality of pairs of detection electrodes provided, one detection electrode of the pair of detection electrodes selected by the electrode selection means, and a capacitance between the other detection electrode and the weight body Capacitance detection means for detecting, voltage application means for applying a voltage to one detection electrode and the other detection electrode of a pair of detection electrodes selected by the electrode selection means, and capacitance and detection electrodes detected by the capacitance detection means Applied power Storage means for holding the sensitivity correction value and offset correction value obtained from the above, a sensitivity adjustment means for adjusting sensitivity according to the correction value held by the storage means, and an offset by the correction value held by the storage means Since the offset adjusting means for adjusting is provided, it is possible to provide a capacitance type acceleration detecting device having a calibration function for adjusting sensitivity and adjusting offset and a calibration method thereof.

本発明に係る静電容量型加速度センサを説明するための構成図で、(a)は上面図、(b)は(a)のA−A’線断面図、(c)は(a)のB−B’線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram for demonstrating the electrostatic capacitance type acceleration sensor which concerns on this invention, (a) is a top view, (b) is the sectional view on the AA 'line of (a), (c) is (a). It is a BB 'line sectional view. 本発明に係る他の静電容量型加速度センサを説明するための構成図で、(a)は斜視図、(b)は(a)のA−A’線断面図、(c)は電極の上面図である。It is a block diagram for demonstrating the other capacitive acceleration sensor which concerns on this invention, (a) is a perspective view, (b) is the sectional view on the AA 'line of (a), (c) is an electrode. It is a top view. 本発明に係る静電容量型加速度センサを説明するための構成図で、(a)は上面図、(b)は(a)のA−A’線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram for demonstrating the capacitive acceleration sensor which concerns on this invention, (a) is a top view, (b) is the sectional view on the A-A 'line of (a). 本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を説明するためのブロック図である。It is a block diagram for demonstrating the capacitance-type acceleration detection apparatus provided with the calibration function which concerns on this invention. 図4で説明した容量電圧変換回路の構成例を説明した回路図である。FIG. 5 is a circuit diagram illustrating a configuration example of the capacitance-voltage conversion circuit described in FIG. 4. 本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置に用いられるX,Y軸方向検出用の静電容量型加速度センサの感度調整方法を説明するための原理図である。It is a principle figure for demonstrating the sensitivity adjustment method of the electrostatic capacitance type acceleration sensor for a X, Y-axis direction detection used for the electrostatic capacitance type acceleration detection apparatus provided with the calibration function which concerns on this invention. 本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置に用いられるZ軸方向検出用の静電容量型加速度センサの感度調整方法を説明するための原理図である。It is a principle figure for demonstrating the sensitivity adjustment method of the capacitive acceleration sensor for a Z-axis direction detection used for the capacitive acceleration detection apparatus provided with the calibration function which concerns on this invention. 複数の静電容量型加速度センサに対する容量値の分布図である。FIG. 6 is a distribution diagram of capacitance values for a plurality of capacitive acceleration sensors. 重力に対する容量変化と電圧による容量変化の関係を表す分布図で、(a)は、重錘体の厚みtがばらつき、dはほぼ一定である場合の例、(b)は、重錘体の厚みtがほぼ一定で、ギャップdがばらつく場合の例を示している。FIG. 6A is a distribution diagram showing the relationship between the capacitance change due to gravity and the capacitance change due to voltage. FIG. 5A shows an example in which the thickness t of the weight body varies and d is almost constant, and FIG. In the example, the thickness t is substantially constant and the gap d varies. 本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置におけるキャリブレーション方法を説明するためのフローチャートを示す図である。It is a figure which shows the flowchart for demonstrating the calibration method in the electrostatic capacitance type acceleration detection apparatus provided with the calibration function which concerns on this invention. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その1)である。FIG. 6 is a specific process diagram (part 1) of the sensitivity and offset correction method using the capacitance type acceleration detection device having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その2)である。FIG. 5 is a specific process diagram (part 2) of the sensitivity and offset correction method using the capacitance type acceleration detection device having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その3)である。FIG. 5 is a specific process diagram (part 3) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その4)である。FIG. 6 is a specific process diagram (part 4) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4; 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その5)である。FIG. 6 is a specific process diagram (part 5) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その6)である。FIG. 6 is a specific process diagram (part 6) of the sensitivity and offset correction method using the capacitance type acceleration detection device having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その7)である。FIG. 7 is a specific process diagram (No. 7) of the sensitivity and offset correction method using the capacitance type acceleration detection device having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その8)である。FIG. 8 is a specific process diagram (No. 8) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その9)である。FIG. 9 is a specific process diagram (No. 9) of the sensitivity and offset correction method using the capacitance type acceleration detection device having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その10)である。FIG. 10 is a specific process chart (No. 10) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その11)である。FIG. 11 is a specific process diagram (No. 11) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その12)である。FIG. 10 is a specific process diagram (No. 12) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その13)である。FIG. 13 is a specific process diagram (No. 13) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その14)である。FIG. 15 is a specific process diagram (No. 14) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4. 図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図(その15)である。FIG. 15 is a specific process diagram (No. 15) of the sensitivity and offset correction method using the capacitance type acceleration detection apparatus having the calibration function according to the present invention shown in FIG. 4. 本発明に係る静電容量型加速度センサの他の実施例を説明するための構成図で、(a)は上面図、(b)は(a)のA−A’線断面図、(c)は(a)のB−B’線断面図である。It is a block diagram for demonstrating the other Example of the capacitive acceleration sensor which concerns on this invention, (a) is a top view, (b) is the sectional view on the AA 'line of (a), (c). FIG. 4 is a sectional view taken along line BB ′ in FIG.

以下、図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(a)及至(c)は、本発明に係る静電容量型加速度センサを説明するための構成図で、図1(a)は上面図、図1(b)は図1(a)のA−A’線断面図、図1(c)は図1(a)のB−B’線断面図である。   FIGS. 1A to 1C are configuration diagrams for explaining a capacitive acceleration sensor according to the present invention. FIG. 1A is a top view and FIG. 1B is FIG. FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. 1A.

この静電容量型加速度センサは、櫛歯型の静電容量型加速度センサ10であって、変位可能な重錘体16と、重錘体16に結合した櫛歯可動電極17a及至17fと、櫛歯可動電極17a及至17fを挟んで対向して配置された固定電極13a及至13fと固定電極14a及至14fと、重錘体16に結合した梁部材12a及至12dと、梁部材12a,12cと結合した固定アンカー11aと、梁部材12b,12dと結合した固定アンカー11bと、固定アンカー11a,11bを支持する基板15とを備え、櫛歯可動電極17a及至17fと一方の検出電極(固定電極13a及至13f)との間の静電容量変化と、可動電極17a及至17fと他方の検出電極(固定電極14a及至14f)との間の静電容量変化を検出するように構成されている。なお、符号Lは、固定電極に対向する櫛歯可動電極の領域を示し、dは固定電極と櫛歯可動電極との間隔を示している。   This capacitive acceleration sensor is a comb-shaped capacitive acceleration sensor 10, which is a displaceable weight body 16, comb-shaped movable electrodes 17a to 17f coupled to the weight body 16, and combs. The fixed electrodes 13a to 13f and the fixed electrodes 14a to 14f arranged opposite to each other with the tooth movable electrodes 17a to 17f interposed therebetween, the beam members 12a to 12d connected to the weight body 16, and the beam members 12a and 12c. A fixed anchor 11a, a fixed anchor 11b coupled to the beam members 12b and 12d, and a substrate 15 that supports the fixed anchors 11a and 11b are provided. ) And a change in capacitance between the movable electrode 17a and 17f and the other detection electrode (fixed electrode 14a and 14f). It has been. In addition, the code | symbol L shows the area | region of the comb-tooth movable electrode facing a fixed electrode, and d has shown the space | interval of a fixed electrode and a comb-tooth movable electrode.

このような櫛歯型の静電容量型加速度センサ10に対して、動作試験機能を有する静電容量型加速度検出装置が構成でき、クーロン力によって生じる重錘体16の櫛型可動電極17a及至17fと、固定電極13a及至13fまたは固定電極14a及至14fとの間に生じる容量変化により高精度の動作試験を行うことができる。   A capacitive acceleration detecting device having an operation test function can be configured for such a comb-teeth capacitive acceleration sensor 10, and comb movable electrodes 17a to 17f of the weight body 16 generated by Coulomb force. In addition, a highly accurate operation test can be performed by a change in capacitance generated between the fixed electrodes 13a and 13f or the fixed electrodes 14a and 14f.

図2(a)及至(c)は、本発明に係る他の静電容量型加速度センサを説明するための構成図で、図2(a)は斜視図、図2(b)は図2(a)のA−A’線断面図、図2(c)は電極の上面図である。   2A to 2C are configuration diagrams for explaining another capacitive acceleration sensor according to the present invention. FIG. 2A is a perspective view, and FIG. 2B is FIG. FIG. 2A is a cross-sectional view taken along line AA ′ in FIG. 2A, and FIG. 2C is a top view of the electrode.

この静電容量型加速度センサは、シーソー型の静電容量型加速度センサ20であって、変位可能な重錘体26と、この重錘体26に結合した梁部材22a及至22bと、この梁部材22a及至22bとに結合した固定アンカー21と、この固定アンカー21を支持する基板25と、この基板上に配置され重錘体26と対向する左側検出固定電極23と、固定アンカー21を挟んで重錘体26に対向する右側検出固定電極24とを備え、重錘体26と左側検出固定電極23との静電容量変化と、重錘体26と右側検出固定電極24との静電容量変化を検出するように構成されている。なお、符号L1は固定アンカー21の中心位置から固定電極の一端間の距離、L2は固定アンカー21の中心位置から固定電極の他端間の距離、WEは固定電極の幅を示している。 This capacitance type acceleration sensor is a seesaw type capacitance type acceleration sensor 20, which includes a displaceable weight body 26, beam members 22a to 22b coupled to the weight body 26, and the beam member. A fixed anchor 21 coupled to 22a to 22b, a substrate 25 supporting the fixed anchor 21, a left detection fixed electrode 23 disposed on the substrate and facing the weight body 26, and a fixed anchor 21 A right detection fixed electrode 24 facing the weight body 26, and a capacitance change between the weight body 26 and the left detection fixed electrode 23 and a capacitance change between the weight body 26 and the right detection fixed electrode 24. Configured to detect. Reference numeral L1 denotes a distance between the center position of the fixed anchor 21 and one end of the fixed electrode, L2 denotes a distance between the center position of the fixed anchor 21 and the other end of the fixed electrode, and W E denotes a width of the fixed electrode.

図3(a),(b)は、本発明に係る静電容量型加速度センサを説明するための構成図で、図3(a)は上面図、図3(b)は図3(a)のA−A’線断面図である。   FIGS. 3A and 3B are configuration diagrams for explaining the capacitive acceleration sensor according to the present invention. FIG. 3A is a top view and FIG. 3B is FIG. It is AA 'line sectional drawing of.

この静電容量型加速度センサは、図1に示した櫛歯型の静電容量型加速度センサ10をX軸用に配置した櫛歯型の静電容量型加速度センサ10Xと、図1に示した櫛歯型の静電容量型加速度センサ10をY軸用に配置した櫛歯型の静電容量型加速度センサ10Yと、図2に示したシーソー型の静電容量型加速度センサ20をZ軸用に配置したシーソー型の静電容量型加速度センサ20Zを一体的に構成した静電容量型3軸加速度センサ30である。   This capacitive acceleration sensor includes a comb-shaped capacitive acceleration sensor 10X in which the comb-shaped capacitive acceleration sensor 10 shown in FIG. 1 is arranged for the X-axis, and the configuration shown in FIG. A comb-teeth capacitive acceleration sensor 10Y having a comb-teeth capacitive acceleration sensor 10 arranged for the Y-axis and a seesaw-type capacitive acceleration sensor 20 shown in FIG. This is a capacitance type triaxial acceleration sensor 30 that is integrally configured with a seesaw type capacitance type acceleration sensor 20Z.

つまり、X軸方向の加速度を検出するための静電容量型加速度センサ10Xと、Y軸方向の加速度を検出するための静電容量型加速度センサ10Yと、Z軸方向の加速度を検出するための静電容量型加速度センサ20Zとが、同一平面上に構成されており、静電容量型3軸加速度センサを構成する3つの重錘体16X,16Y,26Zの厚み全てが等しく構成されている。なお、符号31は枠、32は基板、tは重錘体26Zの厚さを示している。   That is, a capacitive acceleration sensor 10X for detecting the acceleration in the X-axis direction, a capacitive acceleration sensor 10Y for detecting the acceleration in the Y-axis direction, and an acceleration for detecting the acceleration in the Z-axis direction. The capacitive acceleration sensor 20Z is configured on the same plane, and the thicknesses of the three weight bodies 16X, 16Y, and 26Z constituting the capacitive three-axis acceleration sensor are all equal. Reference numeral 31 denotes a frame, 32 denotes a substrate, and t denotes the thickness of the weight body 26Z.

このような構成により、X軸方向の加速度は、X軸用の静電容量型加速度センサ10Xにおける重錘体16Xに結合した櫛歯可動電極と固定電極間の容量変化により検出し、Y軸方向の加速度は、Y軸用の静電容量型加速度センサ10Yにおける重錘体16Yに結合した櫛歯可動電極と固定電極間の容量変化により検出し、Z軸方向の加速度は、Z軸用の静電容量型加速度センサ20Zにおける重錘体26Zと左右の固定電極との静電容量変化を検出する。   With such a configuration, the acceleration in the X-axis direction is detected by a change in capacitance between the comb-shaped movable electrode coupled to the weight body 16X in the X-axis capacitive acceleration sensor 10X and the fixed electrode, and the Y-axis direction. Is detected by a change in capacitance between the comb-shaped movable electrode coupled to the weight body 16Y in the Y-axis capacitive acceleration sensor 10Y and the fixed electrode, and the acceleration in the Z-axis direction is the static acceleration for the Z-axis. The capacitance change between the weight body 26Z and the left and right fixed electrodes in the capacitive acceleration sensor 20Z is detected.

図4は、本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を説明するためのブロック図である。静電容量型3軸加速度センサ30は、X,Y軸方向加速度検出用の櫛歯型の静電容量加速度センサ10X,10Yと、Z軸方向加速度検出用のシーソー型の静電容量型加速度センサ20Zを備えている。静電容量型加速度センサ10X,10Yは、それぞれ、一方の櫛歯可動電極と固定電極とからなる一方の検出電極と、他方の櫛歯可動電極と固定電極とからなる他方の検出電極とを備えている。同様に、静電容量型加速度センサ20Zは、一方の検出電極と他方の検出電極とを備えている。なお、キャリブレーション機能とは、感度の調整とオフセットの調整とを行うものである。より具体的には、感度の調整とは、一定加速度に対する静電容量変化の大きさのばらつきが個々の静電容量型加速度センサに生じている場合でも、個々の静電容量型加速度検出装置の出力が一定となるよう調整を行うことである。また、オフセットの調整とは、静電容量型加速度センサに加速度が加わっていない場合に、静電容量型加速度検出装置の出力が0となるよう調整を行うことである。   FIG. 4 is a block diagram for explaining a capacitance type acceleration detection apparatus having a calibration function according to the present invention. The capacitance type triaxial acceleration sensor 30 includes comb-tooth type capacitance acceleration sensors 10X and 10Y for detecting X and Y axis direction accelerations and a seesaw type capacitance acceleration sensor for detecting Z axis direction accelerations. 20Z is provided. The capacitive acceleration sensors 10X and 10Y each include one detection electrode composed of one comb-shaped movable electrode and a fixed electrode, and the other detection electrode composed of the other comb-shaped movable electrode and the fixed electrode. ing. Similarly, the capacitive acceleration sensor 20Z includes one detection electrode and the other detection electrode. The calibration function performs sensitivity adjustment and offset adjustment. More specifically, sensitivity adjustment refers to the variation of the capacitance change for each constant acceleration even if the capacitance acceleration sensor has a variation in the capacitance change. Adjustment is made so that the output becomes constant. Further, the offset adjustment is to make an adjustment so that the output of the capacitive acceleration detecting device becomes zero when no acceleration is applied to the capacitive acceleration sensor.

マルチプレクサ(電極選択手段)401は、X,Y,Z軸方向加速度検出用の3つの静電容量型加速度センサのうちの一つに属する検出電極一対を選択する。容量電圧変換回路(容量検出手段)403は、マルチプレクサ401で選ばれた一対の検出電極のうち、一方の検出電極と重錘体間の容量を電圧に変換する機能と、他方の検出電極と重錘体間の容量を電圧に変換する機能と、一方の検出電極と重錘体間の容量と他方の検出電極と重錘体間の容量との差を電圧に変換する機能とを備えている。   The multiplexer (electrode selection means) 401 selects a pair of detection electrodes belonging to one of the three capacitive acceleration sensors for X, Y, and Z-axis direction acceleration detection. The capacitance-voltage conversion circuit (capacitance detection means) 403 has a function of converting the capacitance between one detection electrode and the weight body of the pair of detection electrodes selected by the multiplexer 401 into a voltage, and the other detection electrode. It has the function of converting the capacitance between the weights into a voltage, and the function of converting the difference between the capacitance between one detection electrode and the weight body and the capacitance between the other detection electrode and the weight body into a voltage. .

なお、具体的な回路図は、後述する図5に記載されている。また、X,Y,Z軸それぞれに個別の容量電圧変換回路を持つ場合と比べて、このようにマルチプレクサ401と単一の容量電圧変換回路403を用いて、時分割でX,Y,Z軸方向加速度を測定する場合、同一の容量電圧変換回路を用いるため、X,Y,Z軸間の相対的な測定誤差を低減できる。   A specific circuit diagram is shown in FIG. 5 described later. Further, as compared with the case where each of the X, Y, and Z axes has a separate capacitance / voltage conversion circuit, the multiplexer 401 and the single capacitance / voltage conversion circuit 403 are used in this way, and the X, Y, and Z axes are time-shared. When measuring the direction acceleration, since the same capacitance-voltage conversion circuit is used, a relative measurement error between the X, Y, and Z axes can be reduced.

電圧源402は、マルチプレクサ401で選ばれた検出電極に加えるための電圧を発生するためのものである。EEPROM410は、感度補正値とオフセット補正値とを書き込み保存するためのメモリである。可変ゲインアンプ(感度調整手段)404は、容量電圧変換回路403からの出力を感度補正値に基づいて調節するためのものである。なお、感度調整するに際しては、検出電極と重錘体の対向部の容量以外に、検出電極と重錘体の上下面等、検出電極と重錘体の対向部以外とに生じる寄生容量、及び、静電容量型加速度センサと回路を接続する配線に生じる寄生容量があり、これらの寄生容量の影響を除去することが望ましい。そのためには、シミュレーションにより前もって寄生容量の影響を見積もり、これを加味して感度補正値を求める必要がある。加えて、後述する重力とクーロン力との差異から生じる影響を除去することが望ましい。そのためには、寄生容量の影響と同様にして、シミュレーションにより前もって影響を見積もり、これを加味して感度補正値を求める必要がある。このように求めた感度補正値にもとづいて可変ゲインアンプ404を調整することにより、寄生容量の影響及び重力とクーロン力との差異から生じる影響を除去することができる。つまり、可変ゲインアンプ404を寄生容量除去手段及び重力とクーロン力との差異から生じる影響除去手段として用いることができる。   The voltage source 402 is for generating a voltage to be applied to the detection electrode selected by the multiplexer 401. The EEPROM 410 is a memory for writing and storing sensitivity correction values and offset correction values. The variable gain amplifier (sensitivity adjusting means) 404 is for adjusting the output from the capacitance / voltage conversion circuit 403 based on the sensitivity correction value. In addition, when adjusting the sensitivity, in addition to the capacitance of the opposing portion of the detection electrode and the weight body, the parasitic capacitance generated in the portion other than the opposing portion of the detection electrode and the weight body, such as the upper and lower surfaces of the detection electrode and the weight body, and There is a parasitic capacitance generated in the wiring connecting the capacitive acceleration sensor and the circuit, and it is desirable to eliminate the influence of these parasitic capacitances. For this purpose, it is necessary to estimate the influence of the parasitic capacitance in advance by simulation and to take this into consideration to obtain the sensitivity correction value. In addition, it is desirable to remove the influence resulting from the difference between gravity and Coulomb force, which will be described later. For this purpose, it is necessary to estimate the effect in advance by simulation in the same manner as the effect of the parasitic capacitance, and to calculate the sensitivity correction value in consideration of this. By adjusting the variable gain amplifier 404 based on the sensitivity correction value thus obtained, it is possible to remove the influence of the parasitic capacitance and the influence caused by the difference between the gravity and the Coulomb force. That is, the variable gain amplifier 404 can be used as a parasitic capacitance removing unit and an effect removing unit that is caused by the difference between gravity and Coulomb force.

発振回路409は、静電容量型3軸加速度センサ30が備える3つの重錘体に対して高周波電圧を加えるためのものである。復調回路405は、高周波に変調されている可変ゲインアンプ404からの出力を直流に復調するためのものである。オフセット補正回路(オフセット調整手段)406は、復調回路405からの出力をオフセット補正値に基づいて調節するためのものである。アナログデジタル変換器407は、復調回路405からの出力電圧をデジタル値に変換するためのものである。   The oscillation circuit 409 is for applying a high-frequency voltage to the three weight bodies included in the capacitive triaxial acceleration sensor 30. The demodulation circuit 405 is for demodulating the output from the variable gain amplifier 404 that has been modulated to a high frequency into a direct current. The offset correction circuit (offset adjustment means) 406 is for adjusting the output from the demodulation circuit 405 based on the offset correction value. The analog / digital converter 407 is for converting the output voltage from the demodulation circuit 405 into a digital value.

デジタルインターフェイス408は、アナログデジタル変換回路出力を、演算処理機能を有する外部装置に送信すると共に、外部装置からの命令を受信し、EEPROM410へ感度補正値とオフセット補正値との書き込みを行うためのものである。加えて、可変ゲインアンプ404とオフセット補正回路406に対して感度補正値とオフセット補正値とに基づいて設定を行うためのものである。   The digital interface 408 transmits analog / digital conversion circuit output to an external device having an arithmetic processing function, receives a command from the external device, and writes a sensitivity correction value and an offset correction value to the EEPROM 410. It is. In addition, the variable gain amplifier 404 and the offset correction circuit 406 are set based on the sensitivity correction value and the offset correction value.

なお、演算処理機能を有する外部装置としては、静電容量型加速度検出装置の検査を行うための半導体テスタや、携帯電話等の電子機器に搭載され静電容量型加速度検出装置を制御するマイクロコントローラが考えられる。   As an external device having an arithmetic processing function, a semiconductor tester for inspecting a capacitance type acceleration detection device, or a microcontroller that controls the capacitance type acceleration detection device mounted on an electronic device such as a mobile phone. Can be considered.

このような構成により、どのようにしてキャリブレーション機能を実現するかについては、後述する図11に基づいて詳細に説明する。つまり、このようなキャリブレーションを行った後、本発明の静電容量型加速度検出装置は、マルチプレクサ401のある状態のもとで一方及び他方の検出電極間の容量差を測定し、X,Y,Z軸方向の加速度検出を行うことができ、その出力は、デジタルインターフェイス408から容量値として取り出すことができる。   How the calibration function is realized by such a configuration will be described in detail with reference to FIG. 11 described later. That is, after performing such calibration, the capacitive acceleration detection device of the present invention measures the capacitance difference between one and the other detection electrodes under a certain state of the multiplexer 401, and X, Y , Z-axis direction acceleration can be detected, and the output can be taken out from the digital interface 408 as a capacitance value.

図5は、図4で説明した容量電圧変換回路の構成例を説明した回路図である。この容量電圧変換回路403は、2つの容量を個別に検出するシングルエンド容量電圧変換回路51a,51bと、シングルエンド容量電圧変換回路51a,51bからの出力電圧の差を出力する差動増幅回路52と、シングルエンド容量電圧変換回路51a,51bからの出力と差動増幅回路52からの出力とから一つの出力を選択するセレクタ53とから構成されている。   FIG. 5 is a circuit diagram illustrating a configuration example of the capacitance-voltage conversion circuit described in FIG. The capacitance-voltage conversion circuit 403 includes single-end capacitance-voltage conversion circuits 51a and 51b that individually detect two capacitors, and a differential amplifier circuit 52 that outputs a difference between output voltages from the single-end capacitance-voltage conversion circuits 51a and 51b. And a selector 53 that selects one output from the outputs from the single-end capacitance voltage conversion circuits 51a and 51b and the output from the differential amplifier circuit 52.

このような構成により、上述したように、容量電圧変換回路403は、マルチプレクサ401で選ばれた一対の検出電極のうち、一方の検出電極と重錘体間の容量を電圧に変換する機能と、他方の検出電極と重錘体間の容量を電圧に変換する機能と、一方の検出電極と重錘体間の容量と他方の検出電極と重錘体間の容量との差を電圧に変換する機能とを備えている。   With this configuration, as described above, the capacitance-voltage conversion circuit 403 has a function of converting a capacitance between one detection electrode and the weight body among the pair of detection electrodes selected by the multiplexer 401 into a voltage, The function of converting the capacitance between the other detection electrode and the weight body into a voltage and the difference between the capacitance between one detection electrode and the weight body and the capacitance between the other detection electrode and the weight body is converted into a voltage. With functionality.

図6(a)乃至(e)は、本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置に用いられるX,Y軸方向検出用の静電容量型加速度センサの感度調整方法を説明するための原理図である。なお、ここでは、X軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Xについての感度調整方法について説明する。符号60Lは一方の検出電極で、図1における13a乃至13fに対応し、60Rは他方の検出電極で、図1における14a乃至14fに対応している。   FIGS. 6A to 6E show a sensitivity adjustment method for a capacitive acceleration sensor for detecting the X- and Y-axis directions used in the capacitive acceleration detecting device having a calibration function according to the present invention. It is a principle diagram for explaining. Here, a sensitivity adjustment method for the X-axis direction acceleration detection comb-shaped capacitive acceleration sensor 10X will be described. Reference numeral 60L denotes one detection electrode, which corresponds to 13a to 13f in FIG. 1, and 60R denotes the other detection electrode, which corresponds to 14a to 14f in FIG.

まず、図6(a)は、重力加速度による容量変化を検出する通常の加速度検出状態を示している。質量Mを有する重錘体16Xに加わる重力M・gと、重力M・gによる容量変化とから、力あたりの容量変化kg[F/N]を次のように表すことができる。 First, FIG. 6A shows a normal acceleration detection state in which a capacitance change due to gravitational acceleration is detected. From the gravity M · g applied to the weight body 16X having the mass M and the capacitance change due to the gravity M · g, the capacitance change per force k g [F / N] can be expressed as follows.

Figure 0005681408
Figure 0005681408

ここで、CLXは一方の検出電極60Lと重錘体16X間の容量、CRXは他方の検出電極60Rと重錘体16X間の容量を表す。 Here, C LX represents a capacitance between one detection electrode 60L and the weight body 16X, and C RX represents a capacitance between the other detection electrode 60R and the weight body 16X.

一方、重力の代わりにクーロン力を用いても力あたりの容量変化kc[F/N]を求めることができる。図6(b)及至(e)を用いてこれを説明する。まず、図6(b)で示すように、一方の検出電極60Lに基準電圧VCOMを加えた状態で、他方の検出電極60Rと重錘体16X間の容量CRX0を検出する。次に、図6(c)で示すように、一方の検出電極60Lに電圧VDDを加えた状態で、他方の検出電極60Rと重錘体16X間の容量CRXdを検出する。VDDを加えた他方の検出電極60Rと重錘体16X間に働くクーロン力FCLは、次のように表すことができる。 On the other hand, the capacity change k c [F / N] per force can also be obtained by using Coulomb force instead of gravity. This will be described with reference to FIGS. 6B to 6E. First, as shown in FIG. 6B, the capacitance C RX0 between the other detection electrode 60R and the weight body 16X is detected with the reference voltage VCOM applied to the one detection electrode 60L. Next, as shown in FIG. 6C , the capacitance C RXd between the other detection electrode 60R and the weight body 16X is detected in a state where the voltage VDD is applied to the one detection electrode 60L. The Coulomb force F CL acting between the other detection electrode 60R to which VDD is added and the weight body 16X can be expressed as follows.

Figure 0005681408
Figure 0005681408

Sは検出電極と重錘体が重なり合う面積を表し、dは、検出電極と重錘体間のギャップを表し、Nは、静電容量型加速度センサ10Xの固定電極と可動電極の組数を表し、Lは固定電極と可動電極とが重なり合う長さを表す。   S represents an area where the detection electrode and the weight body overlap, d represents a gap between the detection electrode and the weight body, and N represents the number of sets of the fixed electrode and the movable electrode of the capacitive acceleration sensor 10X. , L represents the length at which the fixed electrode and the movable electrode overlap.

次に、図6(d)で示すように、他方の検出電極60Rに基準電圧VCOMを加えた状態で、一方の検出電極60Lと重錘体16X間の容量CLX0を検出する。次に、図6(e)で示すように、他方の検出電極60Rに電圧VDDを加えた状態で、一方の検出電極60Lと重錘体16X間の容量CLXdを検出する。VDDを加えた他方の検出電極60Rと重錘体16X間に働くクーロン力FCRは、次のように表すことができる。 Next, as shown in FIG. 6D , the capacitance C LX0 between the one detection electrode 60L and the weight body 16X is detected with the reference voltage VCOM applied to the other detection electrode 60R. Next, as shown in FIG. 6E , the capacitance C LXd between the one detection electrode 60L and the weight body 16X is detected with the voltage VDD applied to the other detection electrode 60R. Coulomb force F CR acting between the other detection electrodes 60R and the weight body 16X plus VDD can be expressed as follows.

Figure 0005681408
Figure 0005681408

ここで、加えた力FCLとFCLによる容量変化(CRXd−CRX0)と、加えた力FCRとFCRによる容量変化(CLXd−CLX0)とからクーロン力による力あたりの容量変化kc[F/N]を次のように表すことができる。 Here, the capacity per force due to the Coulomb force is determined from the capacity change due to the applied force F CL and F CL (C RXd −C RX0 ) and the capacity change due to the applied force F CR and F CR (C LXd −C LX0 ). The change k c [F / N] can be expressed as:

Figure 0005681408
Figure 0005681408

cとkgが等しい場合、錘の質量Mがわかっていれば、重力Mgによる容量変化、つまり、静電容量型加速度センサ10Xの感度を、kcを使って次のように予測することができる。 When k c and k g are equal, if the mass M of the weight is known, the capacitance change due to gravity Mg, that is, the sensitivity of the capacitive acceleration sensor 10X is predicted using k c as follows. Can do.

Figure 0005681408
Figure 0005681408

また、ここで、数式5に数式2、3を代入することにより、次の式を得ることができる。   Here, the following formula can be obtained by substituting Formulas 2 and 3 into Formula 5.

Figure 0005681408
Figure 0005681408

Aは錘の面積、ρSiは錘の密度を表す。 A represents the area of the weight, and ρ Si represents the density of the weight.

また、検出容量と、検出電極と重錘体間のギャップdとの間には、次の関係がある。   The following relationship exists between the detection capacitor and the gap d between the detection electrode and the weight body.

Figure 0005681408
Figure 0005681408

数式7を数式6に代入することにより、次の式を得ることができる。   By substituting Equation 7 into Equation 6, the following equation can be obtained.

Figure 0005681408
Figure 0005681408

数式6の場合、感度は、検出電極と重錘体間のギャップdの二乗に比例しており、dのばらつきが予測感度の誤差となる。一方、数式8の場合、感度は、重錘体の厚みtの二乗に比例しており、tのばらつきが、予測感度の誤差となる。ばらつきの要因に応じて数式6又は数式8を用いて感度を予測し、感度補正値を求める。   In the case of Equation 6, the sensitivity is proportional to the square of the gap d between the detection electrode and the weight body, and variation in d becomes an error in prediction sensitivity. On the other hand, in Expression 8, the sensitivity is proportional to the square of the thickness t of the weight body, and the variation in t becomes an error in the predicted sensitivity. Sensitivity is predicted using Equation 6 or Equation 8 according to the cause of variation, and a sensitivity correction value is obtained.

なお、数式8を用いて感度を予測する場合、容量CLX0とCRX0には、クーロン力と無関係な寄生容量Cpが含まれており、これが誤差要因のひとつなっている。そこで、シミュレーションにより、Cpを求め、測定したCLX0とCRX0とからCpを除いた値を、クーロン力を求める際に用いることにより誤差を低減できる。または、CLX0とCRX0の値に対応するクーロン力をシミュレーションから直接求めても良い。 Note that when the sensitivity is predicted using Equation 8, the capacitances C LX0 and C RX0 include a parasitic capacitance C p irrelevant to the Coulomb force, which is one of the error factors. Therefore, the error can be reduced by obtaining C p by simulation and using the value obtained by removing C p from the measured C LX0 and C RX0 when obtaining the Coulomb force. Alternatively , the Coulomb forces corresponding to the values of C LX0 and C RX0 may be obtained directly from the simulation.

また、静電容量型加速度センサ10Xの形状が、typcal値で形成されており、重錘体の厚みtやギャップdにばらつきがない場合でも、重力から求まる感度とクーロン力から求まる感度には、誤差が存在する。一つの原因として、重力は、重錘体と重錘体に結合してバネとして働く梁部材にも加わるが、クーロン力は、検出電極と重錘体との間にしか加わらないためである。この誤差については、クーロン力から求めた感度と重力から求まる感度との差をシミュレーションにより求めることにより、補正係数を算出し、予測感度の誤差を低減する。   Further, even if the shape of the capacitive acceleration sensor 10X is formed with a typcal value, and there is no variation in the thickness t and the gap d of the weight body, the sensitivity obtained from the gravity and the sensitivity obtained from the Coulomb force are: There is an error. One reason is that gravity is also applied to the weight body and the beam member that acts as a spring coupled to the weight body, but the Coulomb force is applied only between the detection electrode and the weight body. As for this error, a correction coefficient is calculated by calculating a difference between the sensitivity obtained from the Coulomb force and the sensitivity obtained from gravity, thereby reducing the error in the prediction sensitivity.

なお、Y軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Yについての感度調整方法も同様である。   The sensitivity adjustment method for the comb-teeth capacitive acceleration sensor 10Y for detecting the acceleration in the Y-axis direction is the same.

図7(a)至及(e)は、本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置に用いられるZ軸方向検出用の静電容量型加速度センサの感度調整方法を説明するための原理図である。ここでは、シーソー型の静電容量型加速度センサ20Zの感度調整方法について説明する。   7 (a) to 7 (e) illustrate a sensitivity adjustment method of a capacitive acceleration sensor for detecting the Z-axis direction used in a capacitive acceleration detecting device having a calibration function according to the present invention. It is a principle figure for doing. Here, a sensitivity adjustment method of the seesaw type capacitive acceleration sensor 20Z will be described.

まず、図7(a)は、重力加速度による容量変化を検出する通常の加速度検出状態を示している。質量Mを有し、重心が固定アンカー21からRの距離にある重錘体26Zに加わる重力によるトルクMgRにより、固定アンカー21の回りに重錘体26Zが回転する。これにより、検出電極と重錘体26Z間の容量が変化する。このトルクMgRと、トルクMgRから生じる容量変化とから、トルクあたりの容量変化kTg[F/(N・m)]を次のように表すことができる。 First, FIG. 7A shows a normal acceleration detection state in which a capacitance change due to gravitational acceleration is detected. The weight body 26Z rotates around the fixed anchor 21 by the torque MgR due to gravity applied to the weight body 26Z having the mass M and the center of gravity at a distance R from the fixed anchor 21. As a result, the capacitance between the detection electrode and the weight body 26Z changes. From the torque MgR and the capacity change resulting from the torque MgR, the capacity change k Tg [F / (N · m)] per torque can be expressed as follows.

Figure 0005681408
Figure 0005681408

ここで、CLZは、左側検出電極23L(図2における検出電極23に対応)と重錘体26Z間の容量、CRZは、右側検出電極24R(図2における検出電極24に対応)と重錘体26Z間の容量を表す。 Here, C LZ is the capacitance between the left detection electrode 23L (corresponding to the detection electrode 23 in FIG. 2) and the weight body 26Z, and C RZ is the weight of the right detection electrode 24R (corresponding to the detection electrode 24 in FIG. 2). This represents the capacity between the weights 26Z.

一方、重力の代わりにクーロン力を用いてもトルクあたりの容量変化kTg[F/(N・m)]を求めることができる。図7(b)及至(e)を用いてこれを説明する。まず、図7(b)で示すように、右側検出電極24Rに基準電圧VCOMを加えた状態で、左側検出電極23Lと重錘体26Z間の容量CLZ0を検出する。次に、図7(c)で示すように、右側検出電極24Rに電圧VDDを加えた状態で、左側検出電極23Lと重錘体26Z間の容量CLZdを検出する。VDDを加えた右側検出電極24Rと重錘体26Z間に働くクーロン力によるトルクTCLは、次のように表すことができる。 On the other hand, the capacity change k Tg [F / (N · m)] per torque can be obtained by using Coulomb force instead of gravity. This will be described with reference to FIGS. 7B to 7E. First, as shown in FIG. 7B, the capacitance C LZ0 between the left detection electrode 23L and the weight body 26Z is detected with the reference voltage VCOM applied to the right detection electrode 24R. Next, as shown in FIG. 7C, the capacitance C LZd between the left detection electrode 23L and the weight body 26Z is detected with the voltage VDD applied to the right detection electrode 24R. The torque T CL due to the Coulomb force acting between the right detection electrode 24R to which VDD is added and the weight body 26Z can be expressed as follows.

Figure 0005681408
Figure 0005681408

1は、固定アンカー21の中心から電極の固定アンカー側の端までの距離を表し、L2は、固定アンカー21の中心から固定電極のもう一方の端までの距離を表し、WEは電極の幅を表す。 L 1 represents the distance from the center of the fixed anchor 21 to the end of the electrode on the side of the fixed anchor, L 2 represents the distance from the center of the fixed anchor 21 to the other end of the fixed electrode, and W E represents the electrode. Represents the width of.

次に、図7(d)で示すように、左側検出電極23Lに基準電圧VCOMを加えた状態で、右側検出電極24Rと重錘体26Z間の容量CRZ0を検出する。さらに、図7(e)で示すように、左側検出電極23Lに電圧VDDを加えた状態で、右側検出電極24Rと重錘体26Z間の容量CRZdを検出する。VDDを加えた左側検出電極23Lと重錘体26Z間に働くクーロン力によるトルクTCRは、次のように表すことができる。 Next, as shown in FIG. 7D, the capacitance C RZ0 between the right detection electrode 24R and the weight body 26Z is detected in a state where the reference voltage VCOM is applied to the left detection electrode 23L. Further, as shown in FIG. 7E, the capacitance C RZd between the right detection electrode 24R and the weight body 26Z is detected with the voltage VDD applied to the left detection electrode 23L. The torque T CR due to the Coulomb force acting between the left detection electrode 23L to which VDD is added and the weight body 26Z can be expressed as follows.

Figure 0005681408
Figure 0005681408

ここで、加えたトルクTCLとTCLによる容量変化(CRXd−CRX0)と、加えたトルクTCRとTCRによる容量変化(CLXd−CLX0)とからトルクあたりの容量変化kTc[F/(N・m)]を次の式から求めることができる。 Here, the capacity change per torque k Tc from the capacity change due to the applied torque T CL and T CL (C RXd −C RX0 ) and the capacity change due to the applied torque T CR and T CR (C LXd −C LX0 ). [F / (N · m)] can be obtained from the following equation.

Figure 0005681408
Figure 0005681408

TcとkTgが等しい場合、錘の質量Mがわかっていれば、重力によるトルクMgRによる容量変化、つまり静電容量型加速度センサの感度を、kTcを使って次のように予測することができる。 If k Tc is equal to k Tg , and the mass M of the weight is known, the capacitance change due to the torque MgR due to gravity, that is, the sensitivity of the capacitive acceleration sensor should be predicted using k Tc as follows: Can do.

Figure 0005681408
Figure 0005681408

数式13に数式10、11を代入することにより次の式を得ることができる。   By substituting Equations 10 and 11 into Equation 13, the following equation can be obtained.

Figure 0005681408
Figure 0005681408

Aは重錘体の面積、ρSiは重錘体の密度を表す。 A represents the area of the weight body, and ρ Si represents the density of the weight body.

また、静電容量型加速度センサ10X,10Yと静電容量型加速度センサ20Zの重錘体の厚みが等しい場合、数式7の関係からtを求め、数式14に代入することにより、次の式を得ることができる。   Further, when the weights of the weights of the capacitive acceleration sensors 10X and 10Y and the capacitive acceleration sensor 20Z are equal, t is obtained from the relationship of Equation 7 and is substituted into Equation 14 to obtain the following equation: Can be obtained.

Figure 0005681408
Figure 0005681408

数式14の場合、感度の式は、重錘体の厚みtに比例しており、tのばらつきが感度の誤差となる。一方、数式15の場合、感度は静電容量型加速度センサ10X,10Yの検出電極と重錘体間のギャップdに比例しており、dのばらつきが、予測感度の誤差となる。ばらつき要因に応じて数式14又は15を用いて感度を予測し、感度補正値を求める。   In the case of Formula 14, the sensitivity formula is proportional to the thickness t of the weight body, and variation in t becomes a sensitivity error. On the other hand, in the case of Expression 15, the sensitivity is proportional to the gap d between the detection electrodes of the capacitive acceleration sensors 10X and 10Y and the weight body, and the variation in d becomes an error in the predicted sensitivity. Sensitivity is predicted using Formula 14 or 15 according to the variation factor, and a sensitivity correction value is obtained.

なお、数式14又は15を用いて感度を予測する場合、容量CLZ0とCRZ0には、クーロン力と無関係な寄生容量Cpが含まれており、これが誤差要因のひとつなっている。そこで、シミュレーションにより、Cpを求め、測定したCLZ0とCRZ0とからCpを除いた値を、クーロン力を求める際に用いることにより誤差を低減できる。または、CLZ0とCRZ0の値に対応するクーロン力をシミュレーションから直接求めても良い。 Note that when the sensitivity is predicted using Equation 14 or 15, the capacitances C LZ0 and C RZ0 include a parasitic capacitance C p irrelevant to the Coulomb force, which is one of the error factors. Therefore, the error can be reduced by obtaining C p by simulation and using the value obtained by removing C p from the measured C LZ0 and C RZ0 when obtaining the Coulomb force. Alternatively , the Coulomb force corresponding to the values of C LZ0 and C RZ0 may be obtained directly from the simulation.

また、静電容量型加速度センサ10X,10Yの形状が、typcal値で形成されており、重錘体の厚みtやギャップdにばらつきがない場合でも、重力から求まる感度とクーロン力から求まる感度には、誤差が存在する。一つの原因として、重力は、重錘体と重錘体に結合してバネとして働く梁部材にも加わるが、クーロン力は、検出電極と重錘体との間にしか加わらないためである。この誤差については、クーロン力から求めた感度と重力から求まる感度との差をシミュレーションにより求めることにより、補正係数を算出し、予測感度の誤差を低減する。   Further, the shape of the capacitive acceleration sensors 10X and 10Y is formed by a typcal value, and even when there is no variation in the thickness t and the gap d of the weight body, the sensitivity obtained from gravity and the sensitivity obtained from Coulomb force are obtained. There is an error. One reason is that gravity is also applied to the weight body and the beam member that acts as a spring coupled to the weight body, but the Coulomb force is applied only between the detection electrode and the weight body. As for this error, a correction coefficient is calculated by calculating a difference between the sensitivity obtained from the Coulomb force and the sensitivity obtained from gravity, thereby reducing the error in the prediction sensitivity.

なお、図3で示すように、静電容量型加速度センサ10X,10Yで数式6を用いて感度予測を行う場合、静電容量型加速度センサ20Zでは数式15を使用する。または、静電容量型加速度センサ10X,10Yで数式8を用いて感度予測を行う場合、静電容量型加速度センサ20Zでは数式14を使用する。これにより、静電容量型加速度センサ10X,10Yと20Zとの間で誤差要因が同じとなり、予測感度の相対誤差を低減することができる。   As shown in FIG. 3, when the sensitivity prediction is performed using the mathematical expression 6 in the capacitive acceleration sensors 10X and 10Y, the mathematical expression 15 is used in the capacitive acceleration sensor 20Z. Alternatively, when the sensitivity prediction is performed using the mathematical expression 8 in the capacitive acceleration sensors 10X and 10Y, the mathematical expression 14 is used in the capacitive acceleration sensor 20Z. Thereby, the error factor becomes the same between the capacitive acceleration sensors 10X, 10Y and 20Z, and the relative error of the prediction sensitivity can be reduced.

次に、複数個の静電容量型加速度センサに対する容量測定により重錘体の厚みtを予測し、感度補正の予測精度を向上させる方法について説明する。   Next, a method for predicting the thickness t of the weight body by measuring the capacitance of a plurality of capacitive acceleration sensors and improving the prediction accuracy of sensitivity correction will be described.

ロット間とウエハー間を含めた場合に重錘体の厚みtのばらつきが大きいとしても、単一のウエハーを考えた場合、tのばらつきは小さいと考えられる。ウエハー上の複数の静電容量型加速度センサ10X,10Yに対して容量測定を行い、図8で示すような容量値の分布を得た。出現する容量の分布は、検出電極と重錘体間のギャップdのばらつきが主要因として生じると考えられ、容量の最頻値はギャップdのtypical値dtypにおける容量C(dtyp)と考えられる。
一方、C(dtyp)とdtypとの間には、次の関係がある。
Even if lot-to-lot and wafer-to-wafer variations are included, the variation in weight thickness t is considered to be small when a single wafer is considered. Capacitance measurement was performed on the plurality of capacitive acceleration sensors 10X and 10Y on the wafer to obtain a distribution of capacitance values as shown in FIG. The distribution of the appearing capacitance is considered to be caused mainly by the variation in the gap d between the detection electrode and the weight body, and the mode value of the capacitance is considered as the capacitance C (d typ ) at the typical value d typ of the gap d. It is done.
On the other hand, there is the following relationship between C (d typ ) and d typ .

Figure 0005681408
Figure 0005681408

この数式16からウエハー上に形成されている重錘体の厚みtを求めることができる。また、このような単純な式ではなく、シミュレーションからCとtとの関係を求め、tの精度を高めることもできる。このように求めたtを数式8及び数式14に適用し、感度の予測精度を高めることができる。つまり、感度調整を行うことは、複数個の静電容量型加速度センサから得られる容量値の分布から感度補正値を求めることを意味している。   From Equation 16, the thickness t of the weight body formed on the wafer can be obtained. Further, instead of such a simple expression, the relationship between C and t can be obtained from simulation, and the accuracy of t can be increased. Thus, t calculated | required can be applied to Numerical formula 8 and Numerical formula 14, and the prediction precision of a sensitivity can be improved. That is, performing sensitivity adjustment means obtaining a sensitivity correction value from a distribution of capacitance values obtained from a plurality of capacitive acceleration sensors.

実際にプロセスが固定された条件の下では、重力に対する容量変化dCgと電圧による容量変化dC(3.3V)の関係を表す分布は、狭く直線に近くなっている。分布の要因のうちの一つとして、図9(a)は、重錘体の厚みtがばらつき、dはほぼ一定である場合の例である。図9(b)は、重錘体の厚みtがほぼ一定で、ギャップdがばらつく場合の例である。図9(a)及び(b)で示されるような分布においては、電圧による容量変化の測定値から重力に対する容量変化を一対一で求めることができるため、高い精度で感度を予測し、感度補正を行うことができる。つまり、感度調整を行うことは、複数個の静電容量型加速度センサから得られる重力に対する容量変化と、電圧による容量変化との関係から感度補正値を求めることを意味している。 Under the condition where the process is actually fixed, the distribution representing the relationship between the capacitance change dC g with respect to gravity and the capacitance change dC (3.3 V) due to the voltage is narrow and close to a straight line. As one of the distribution factors, FIG. 9A shows an example in which the thickness t of the weight body varies and d is substantially constant. FIG. 9B shows an example in which the weight t has a substantially constant thickness t and the gap d varies. In the distributions shown in FIGS. 9A and 9B, since the capacitance change with respect to gravity can be obtained on a one-to-one basis from the measurement value of the capacitance change due to voltage, sensitivity is predicted with high accuracy and sensitivity correction is performed. It can be performed. That is, performing sensitivity adjustment means obtaining a sensitivity correction value from the relationship between the capacitance change with respect to gravity obtained from a plurality of capacitive acceleration sensors and the capacitance change due to voltage.

図10は、本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置におけるキャリブレーション方法を説明するためのフローチャートを示す図で、図11A乃至図11Oは、図4に示した本発明に係るキャリブレーション機能を備えた静電容量型加速度検出装置を用いた感度及びオフセットの補正方法の具体的な工程図である。   FIG. 10 is a flow chart for explaining a calibration method in the capacitance type acceleration detection apparatus having a calibration function according to the present invention. FIGS. 11A to 11O are diagrams illustrating the present invention shown in FIG. It is a specific process figure of the correction method of the sensitivity and offset using the capacitance-type acceleration detection apparatus provided with the calibration function which concerns on this.

まず、静電容量型加速度検出装置30に備えられたX、Y軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10X,10Y及びZ軸方向加速度検出用のシーソー型の静電容量型加速度センサ20Zを水平状態にする(ステップS1)。次に、Y軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Xをマルチプレクサ401で選択する(ステップS2)。   First, the comb-teeth capacitive acceleration sensors 10X and 10Y for detecting X and Y-axis direction accelerations and the seesaw-type electrostatic capacitance for detecting Z-axis direction accelerations included in the capacitive acceleration detecting device 30. The type acceleration sensor 20Z is set in a horizontal state (step S1). Next, the comb-teeth capacitive acceleration sensor 10X for detecting the acceleration in the Y-axis direction is selected by the multiplexer 401 (step S2).

次に、選択された静電容量型加速度センサ10Xの一方の検出電極をマルチプレクサ401を介して容量電圧変換器403に接続し、他方の検出電極をマルチプレクサ401を介して基準電圧VCOMに接続し、一方の検出電極と重錘体間の容量CLXOを測定する(ステップS3;図11A)。 Next, one detection electrode of the selected capacitive acceleration sensor 10X is connected to the capacitive voltage converter 403 via the multiplexer 401, and the other detection electrode is connected to the reference voltage VCOM via the multiplexer 401. The capacitance C LXO between one detection electrode and the weight body is measured (step S3; FIG. 11A).

次に、基準電圧VCOMに接続されていた他方の検出電極をマルチプレクサ401を介して電圧VDDに接続し、一方の検出電極をマルチプレクサ401を介して電極容量電圧変換器403に接続し、検出電極と重錘体間の容量CLXdを測定する(ステップS4;図11B)。 Next, the other detection electrode connected to the reference voltage VCOM is connected to the voltage VDD via the multiplexer 401, and one detection electrode is connected to the electrode capacitance voltage converter 403 via the multiplexer 401. The capacitance C LXd between the weight bodies is measured (step S4; FIG. 11B).

次に、電極容量電圧変換器403に接続されていた一方の検出電極をマルチプレクサ401を介して基準電圧VCOMに接続し、他方の検出電極をマルチプレクサ401を介して電極容量電圧変換器403に接続し、他方の検出電極と重錘体間の容量CRXOを測定する(ステップS5;図11C)。 Next, one detection electrode connected to the electrode capacitance voltage converter 403 is connected to the reference voltage VCOM via the multiplexer 401, and the other detection electrode is connected to the electrode capacitance voltage converter 403 via the multiplexer 401. Then, the capacitance C RXO between the other detection electrode and the weight body is measured (step S5; FIG. 11C).

次に、基準電圧VCOMに接続されていた一方の検出電極をマルチプレクサ401を介して電圧VDDに接続し、他方の検出電極をマルチプレクサ401を介して電極容量電圧変換器403に接続し、他方の検出電極と重錘体間の容量CRXdを測定する(ステップS6;図11D)。 Next, one detection electrode connected to the reference voltage VCOM is connected to the voltage VDD via the multiplexer 401, the other detection electrode is connected to the electrode capacitance voltage converter 403 via the multiplexer 401, and the other detection electrode is connected. The capacitance C RXd between the electrode and the weight body is measured (step S6; FIG. 11D).

次に、測定した容量が、ある閾値以内であるかどうかを判断し(ステップS7)、閾値以内でなければ不良品として処分する。つまり、求めた容量CLX0、CLXd、CLY0、CLYd、CLZ0、CLZdが、ある閾値以内であるかどうかで良品・不良品判定を行う。 Next, it is determined whether or not the measured capacity is within a certain threshold (step S7), and if it is not within the threshold, it is disposed as a defective product. That is, a non-defective product / defective product is determined based on whether or not the obtained capacitances C LX0 , C LXd , C LY0 , C LYd , C LZ0 , C LZd are within a certain threshold.

次に、閾値以内であれば、X,Y,Z軸の全てのセンサに関して容量測定が終了したかどうかを判断し(ステップS8)、終了していなければステップS2に戻り、ステップ3以降の処理を繰り返す。つまり、Y軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Y及びZ軸方向加速度検出用のシーソー型の静電容量型加速度センサ20Zについても上記ステップS3乃至ステップS7を繰り返す(図11E乃至図11L)。   Next, if it is within the threshold value, it is determined whether or not the capacitance measurement has been completed for all the sensors of the X, Y, and Z axes (step S8), and if not completed, the process returns to step S2, and the processing after step 3 is performed. repeat. That is, steps S3 to S7 are repeated for the comb-tooth capacitive acceleration sensor 10Y for detecting the Y-axis direction acceleration and the seesaw-type capacitive acceleration sensor 20Z for detecting the Z-axis direction acceleration (FIG. 11E to 11L).

次に、容量測定が全て終了したならば、測定した容量から寄生容量を取り除く(ステップS9)。つまり、求めた容量、CLX0、CLXd、CLY0、CLYd、CLZ0、CLZdから寄生容量を取り除く。 Next, when all the capacitance measurements are completed, the parasitic capacitance is removed from the measured capacitance (step S9). That is, the parasitic capacitance is removed from the obtained capacitances C LX0 , C LXd , C LY0 , C LYd , C LZ0 , and C LZd .

次に、寄生容量を除去した容量から数式8と数式14を用いてX,Y,Z軸センサの感度を求める(ステップS10)。次に、感度を重力とクーロン力との違いから生じた補正値で誤差を補正する(ステップS11)。次に、求めた感度を元に感度補正値を求め、可変ゲインアンプ404を調節する(ステップS12)。   Next, the sensitivity of the X, Y, and Z-axis sensors is obtained from the capacitance from which the parasitic capacitance has been removed using Equation 8 and Equation 14 (step S10). Next, the error is corrected with a correction value resulting from the difference between gravity and Coulomb force (step S11). Next, a sensitivity correction value is obtained based on the obtained sensitivity, and the variable gain amplifier 404 is adjusted (step S12).

次に、再び、X軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Xをマルチプレクサ401で選択する(ステップS13)。次に、一対の検出電極を容量電圧変換器403に接続し、一方の検出電極と重錘体間の容量と、他方の検出電極と重錘体間の容量差(CLXO−CRXO)を測定する(ステップS14;図11M)。 Next, again, the comb-teeth capacitive acceleration sensor 10X for X-axis direction acceleration detection is selected by the multiplexer 401 (step S13). Next, a pair of detection electrodes are connected to the capacitance-voltage converter 403, and the capacitance between one detection electrode and the weight body and the capacitance difference (C LXO −C RXO ) between the other detection electrode and the weight body are calculated . Measurement is performed (step S14; FIG. 11M).

次に、測定した容量差からオフセットを求める(ステップS15)。次に、X,Y,Z軸の全てのセンサに関して容量測定が終了したかどうかを判断し(ステップS16)、終了していなければステップS13に戻ってステップ14及び15の処理を繰り返す。つまり、Y軸方向加速度検出用の櫛歯型の静電容量型加速度センサ10Y及びZ軸方向加速度検出用のシーソー型の静電容量型加速度センサ20Zについても上記ステップS14及び15を繰り返す(図11N及び図11O)。   Next, an offset is obtained from the measured capacity difference (step S15). Next, it is determined whether or not the capacitance measurement has been completed for all the sensors of the X, Y, and Z axes (step S16). If not completed, the process returns to step S13 and the processes of steps 14 and 15 are repeated. That is, steps S14 and 15 are repeated for the comb-tooth capacitive acceleration sensor 10Y for Y-axis direction acceleration detection and the seesaw-type capacitive acceleration sensor 20Z for Z-axis direction acceleration detection (FIG. 11N). And FIG.

次に、求めた容量差を元にオフセット補正回路406を調整する(ステップS17)。次に、求めた感度補正値と、オフセット補正値とをEEPROM410に保存する(ステップS18)。   Next, the offset correction circuit 406 is adjusted based on the obtained capacitance difference (step S17). Next, the obtained sensitivity correction value and offset correction value are stored in the EEPROM 410 (step S18).

このようなキャリブレーションを行った後、本発明の静電容量型加速度検出装置は、図11M及至図11Oで示したにマルチプレクサ401の状態で両検出電極間の容量差を測定し、X,Y,Z軸方向の加速度検出を行うことができる。   After performing such calibration, the capacitive acceleration detection device of the present invention measures the capacitance difference between the two detection electrodes in the state of the multiplexer 401 as shown in FIGS. , Acceleration detection in the Z-axis direction can be performed.

図12(a)及至(c)は、本発明に係る静電容量型加速度センサの他の実施例を説明するための構成図で、図12(a)は上面図、図12(b)は図12(a)のA−A’線断面図、図12(c)は図12(a)のB−B’線断面図である。   FIGS. 12A to 12C are configuration diagrams for explaining another embodiment of the capacitive acceleration sensor according to the present invention. FIG. 12A is a top view, and FIG. 12A is a cross-sectional view taken along the line AA ′ in FIG. 12A, and FIG. 12C is a cross-sectional view taken along the line BB ′ in FIG.

この静電容量型加速度センサは、図3に示したX軸用に配置した櫛歯型の静電容量型加速度センサ10Xと、Y軸用に配置した櫛歯型の静電容量型加速度センサ10Yとを一体化したことによりXY軸兼用の櫛歯型の静電容量型加速度センサ120を実現したものである。つまり、櫛歯型のX軸用静電容量型加速度センサの重錘体と櫛歯型のY軸用静電容量加速度センサの重錘体とが同一であることを意味している。   This capacitive acceleration sensor includes a comb-shaped capacitive acceleration sensor 10X arranged for the X-axis shown in FIG. 3 and a comb-shaped capacitive acceleration sensor 10Y arranged for the Y-axis. Are combined to realize a comb-teeth capacitive acceleration sensor 120 that also serves as an XY axis. That is, this means that the weight body of the comb-shaped X-axis capacitive acceleration sensor and the weight body of the comb-shaped Y-axis capacitive acceleration sensor are the same.

したがって、この場合の本発明の静電容量型加速度検出装置は、XY軸兼用の櫛歯型の静電容量型加速度センサ120と、Z軸用に配置したシーソー型の静電容量型加速度センサ20Zを一体的に構成した静電容量型3軸加速度センサとなる。   Accordingly, the capacitance type acceleration detection device of the present invention in this case includes a comb-type capacitance type acceleration sensor 120 that also serves as an XY axis, and a seesaw type capacitance type acceleration sensor 20Z arranged for the Z axis. Is an electrostatic capacitance type three-axis acceleration sensor integrally configured.

上述したようにこの静電容量型加速度センサは、櫛歯型の静電容量型加速度センサ120であって、変位可能な重錘体129と、重錘体129に結合した櫛歯可動電極127a及至127dと櫛歯可動電極128a及至128dと、櫛歯可動電極127a及至127dを挟んで対向して配置された固定電極123a及至123dと固定電極124a及至124dと、櫛歯可動電極128a及至128dを挟んで対向して配置された固定電極125a及至125dと固定電極126a及至126dと、重錘体129に結合した梁部材122a及至122dと、梁部材122aと結合した固定アンカー121aと、梁部材122bと結合した固定アンカー121bと、梁部材122cと結合した固定アンカー121cと、梁部材122dと結合した固定アンカー121dと、固定アンカー121a及至121dを支持する基板130を備え、X軸方向の加速度を検出するに際しては、櫛歯可動電極128a及至128dと一方の検出電極(固定電極125a及至125d)との間の静電容量変化と、可動電極128a及至128dと他方の検出電極(固定電極126a及至126d)との間の静電容量変化を検出し、Y軸方向の加速度を検出するに際しては、櫛歯可動電極127a及至127dと一方の検出電極(固定電極123a及至123d)との間の静電容量変化と、可動電極127a及至127dと他方の検出電極(固定電極124a及至124d)との間の静電容量変化を検出するように構成されている。   As described above, this capacitive acceleration sensor is a comb-shaped capacitive acceleration sensor 120, which is a displaceable weight body 129 and a comb-tooth movable electrode 127 a coupled to the weight body 129. 127d, comb-tooth movable electrodes 128a to 128d, fixed electrodes 123a to 123d, fixed electrodes 124a to 124d arranged opposite to each other with the comb-tooth movable electrodes 127a to 127d interposed therebetween, and comb-tooth movable electrodes 128a to 128d sandwiched therebetween. The fixed electrodes 125a to 125d, the fixed electrodes 126a to 126d, the beam members 122a to 122d coupled to the weight body 129, the fixed anchor 121a coupled to the beam member 122a, and the beam member 122b are disposed to face each other. Fixed anchor 121b, fixed anchor 121c coupled to beam member 122c, and coupled to beam member 122d A fixed anchor 121d and a substrate 130 that supports the fixed anchors 121a to 121d are provided. When detecting acceleration in the X-axis direction, the comb-tooth movable electrodes 128a to 128d and one of the detection electrodes (fixed electrodes 125a to 125d) When detecting the change in capacitance between the movable electrode 128a to 128d and the other detection electrode (fixed electrode 126a to 126d) and detecting the acceleration in the Y-axis direction, Change in capacitance between the movable electrodes 127a and 127d and one of the detection electrodes (fixed electrodes 123a and 123d), and electrostatic between the movable electrodes 127a and 127d and the other detection electrodes (fixed electrodes 124a and 124d) It is configured to detect a change in capacitance.

図3に示したX軸用に配置された静電容量型加速度センサ10XとY軸用に配置された静電容量型加速度センサ10Yとを図12に示したXY軸用加速度センサに置き換えても、図4に示したような感度の調整とオフセットの調整とを行うキャリブレーション機能を備えた静電容量型加速度検出装置を実現することができることは明らかである。   The capacitive acceleration sensor 10X arranged for the X axis and the capacitive acceleration sensor 10Y arranged for the Y axis shown in FIG. 3 may be replaced with the XY axis acceleration sensor shown in FIG. Obviously, it is possible to realize a capacitance-type acceleration detecting apparatus having a calibration function for adjusting sensitivity and adjusting offset as shown in FIG.

10 櫛歯型の静電容量型加速度センサ
10X X軸用櫛歯型の静電容量型加速度センサ
10Y Y軸用櫛歯型の静電容量型加速度センサ
11a,11b 固定アンカー
12a及至12d 梁部材
13a及至13f,14a及至14f 固定電極
15 基板
16,26 重錘体
16X,16Y,26X 重錘体
17a及至17f 櫛歯可動電極
20 シーソー型の静電容量型加速度センサ
20Z Z軸用シーソー型の静電容量型加速度センサ
21 固定アンカー
22a及至22b 梁部材
23 左側検出固定電極
24 右側検出固定電極
25 基板
30 静電容量型3軸加速度センサ
51a,51b シングルエンド容量電圧変換回路
52 差動増幅回路
53 セレクタ
60L 一方の検出電極
60R 他方の検出電極
120 櫛歯型の静電容量型加速度センサ
121a,121b,121c,121d 固定アンカー
122a及至122d 梁部材
123a及至123d,124a及至124d,125a及至125d,126a及至126d 固定電極
127a及至127d,128a及至128d 櫛歯可動電極
129 重錘体
130 基板
401 マルチプレクサ
402 電圧源
403 容量電圧変換回路
404 可変ゲインアンプ
405 復調回路
406 オフセット補正回路
407 アナログデジタル変換器
408 デジタルインターフェイス
409 発振回路
410 EEPROM
10 Comb-type capacitive acceleration sensor 10X X-axis comb-type capacitive acceleration sensor 10Y Y-axis comb-type capacitive acceleration sensor 11a, 11b Fixed anchor 12a and 12d Beam member 13a From 13f, 14a to 14f Fixed electrode 15 Substrate 16, 26 Weight body 16X, 16Y, 26X Weight body 17a to 17f Comb movable electrode 20 Seesaw type capacitive acceleration sensor 20Z Z-axis seesaw type electrostatic Capacitive acceleration sensor 21 Fixed anchor 22a to 22b Beam member 23 Left detection fixed electrode 24 Right detection fixed electrode 25 Substrate 30 Capacitance type three-axis acceleration sensors 51a, 51b Single-end capacitance voltage conversion circuit 52 Differential amplification circuit 53 Selector 60L One detection electrode 60R The other detection electrode 120 Comb-type capacitive acceleration sensors 121a, 12 b, 121c, 121d Fixed anchor 122a and 122d Beam members 123a and 123d, 124a and 124d, 125a and 125d, 126a and 126d Fixed electrode 127a and 127d, 128a and 128d Comb-tooth movable electrode 129 Weight body 130 Substrate 401 Multiplexer 402 Voltage Source 403 Capacitance voltage conversion circuit 404 Variable gain amplifier 405 Demodulation circuit 406 Offset correction circuit 407 Analog to digital converter 408 Digital interface 409 Oscillation circuit 410 EEPROM

Claims (12)

錘体の変位によって第1の検出電極と第2の検出電極のうち一方の検出電極と前記重錘体との間の容量増加し、他方の検出電極と前記重錘体との間の容量減少する一対の検出電極から構成される静電容量型加速度センサを複数備えた静電容量型加速度検出装置であって、
前記第1の検出電極と前記重錐体との間の容量、前記第2の検出電極と前記重錘体との間の容量、及び前記第1の検出電極と前記重錐体との間の容量と、前記第2の検出電極と前記重錘体との間の容量との差を検出する容量検出手段と、
第1の検出電極又は前記第2の検出電極に電圧を印加する電圧印加手段と、
前記一対の検出電極、前記容量検出手段の端子、前記電圧印加手段及びグラウンドに接続され、
前記第1の検出電極と前記重錘体との間のクーロン力印加による容量を検出するために、1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続し、前記1つの静電容量型加速度センサの第2の検出電極を、前記グラウンドに接続する第1の接続方法と、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記電圧印加手段に接続する第2の接続方法とを切り替え、
前記第2の検出電極と前記重錘体との間のクーロン力印加による容量を検出するために、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記前記グラウンドに接続し、前記第2の検出電極を、前記容量検出手段の一方の端子接続する第3の接続方法と、前記1つの静電容量型加速度センサの前記第1の検出電極を、前記前記電圧印加手段に接続し、前記第2の検出電極を、前記容量検出手段の一方の端子接続する第4の接続方法とを切り替え、
前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記容量検出手段の他方の端子に接続する第5の接続方法とを切替可能な電極選択手段と、
所定の目標値と、前記第1乃至第4の接続方法により検出されたクーロン力印加による容量及び前記検出電極に印加された電圧から求められる感度とに基づいて求めた感度補正値と、前記第5の接続方法によって検出された容量の差に基づいて求めたオフセット補正値とを保持する記憶手段と、
該記憶手段によって保持された前記感度補正値に従って感度調整を行う感度調整手段と、
前記記憶手段によって保持された前記オフセット補正値によりオフセット調整を行うオフセット調整手段と
を備えていることを特徴とする静電容量型加速度検出装置。
Capacity increases during the displacement of the weight body and the first detection electrode and one of the detection electrodes of the second sensing electrode and the weight body, between the other detection electrodes the weight body capacity met capacitive acceleration detecting device comprising a plurality of capacitive acceleration sensor that consists of a pair of detection electrodes decreases,
A capacitance between the first detection electrode and the heavy cone, a capacitance between the second detection electrode and the weight, and between the first detection electrode and the heavy cone. Capacity detecting means for detecting a difference between a capacity and a capacity between the second detection electrode and the weight body ;
Voltage applying means for applying a voltage before Symbol first detection electrode and the second detection electrode,
Connected to the pair of detection electrodes, terminals of the capacitance detection means, the voltage application means and ground;
In order to detect the capacitance due to the application of Coulomb force between the first detection electrode and the weight body, the first detection electrode of one capacitive acceleration sensor is connected to two capacitance detection means. A first connection method in which the second detection electrode of the one capacitive acceleration sensor is connected to the ground, and the second detection electrode of the one capacitive acceleration sensor is connected to the ground; The first detection electrode is connected to one terminal of the capacitance detection means, and the second connection method is switched to a second connection method in which the second detection electrode is connected to the voltage application means,
In order to detect the capacitance due to the application of Coulomb force between the second detection electrode and the weight body, the first detection electrode of the one capacitive acceleration sensor is connected to the ground. A third connection method in which the second detection electrode is connected to one terminal of the capacitance detection means; and the first detection electrode of the one capacitive acceleration sensor is connected to the voltage application means. Connecting and switching the second detection electrode to a fourth connection method for connecting one terminal of the capacitance detection means,
The first detection electrode of the one capacitive acceleration sensor is connected to one terminal of the capacitance detection means, and the second detection electrode is connected to the other terminal of the capacitance detection means. An electrode selection means capable of switching between the five connection methods;
Predetermined target value, and the sensitivity correction value calculated based on the sensitivity obtained from the first to fourth capacitance due to the Coulomb force applied detected by the connection method and the voltage applied to the detection electrode, the first Storage means for holding an offset correction value obtained based on a difference in capacity detected by the connection method of 5 ;
And sensitivity adjusting means for performing sensitivity adjustment in accordance with the sensitivity correction value held by the storage means,
An electrostatic capacity type acceleration detection apparatus comprising: an offset adjustment unit that performs an offset adjustment based on the offset correction value held by the storage unit.
前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成されることを特徴とする請求項1に記載の静電容量型加速度検出装置。
The heavy cone is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from two end faces in the width direction of the heavy cone main body;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body.
2. The static electricity according to claim 1, wherein the pair of detection electrodes is configured by a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitive electrode portions, respectively. Capacitance type acceleration detection device.
前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする請求項1に記載の静電容量型加速度検出装置。
The heavy cone is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to a substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. The capacitive acceleration detecting device according to claim 1, wherein
前記複数の静電容量型加速度センサは第1、第2及び第3の静電容量化速度センサから構成され、
前記第1及び第2の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、
前記第3の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする請求項1に記載の静電容量型加速度検出装置。
The plurality of capacitive acceleration sensors include first, second and third capacitive speed sensors,
The heavy cones of the first and second capacitive velocity sensors are:
A heavy cone body formed in a rectangular plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from two end faces in the width direction of the heavy cone main body;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body.
The pair of detection electrodes is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitance electrode portions, respectively.
The heavy cone of the third capacitive speed sensor is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to the substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. The capacitive acceleration detecting device according to claim 1, wherein
前記複数の静電容量型加速度センサは第1及び第2の静電容量化速度センサから構成され、
前記第1の静電容量化速度センサの前記重錐体は、
矩形又は正方形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の4つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の4つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向及び幅方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、
前記第2の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成される
ことを特徴とする請求項1に記載の静電容量型加速度検出装置。
The plurality of capacitive acceleration sensors are composed of first and second capacitive speed sensors,
The heavy cone of the first capacitive velocity sensor is
A heavy cone body formed in a rectangular or square plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting the four end faces of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb-tooth shape from the four end faces of the heavy cone main body in parallel with the substrate;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced parallel to the substrate in the longitudinal direction and the width direction of the heavy cone main body,
The pair of detection electrodes is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitance electrode portions, respectively.
The heavy cone of the second capacitive speed sensor is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to the substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. The capacitance-type acceleration detection device according to claim 1, wherein
容量検出手段が、2つの容量を個別に検出するシングルエンド容量電圧変換回路と、該シングルエンド容量電圧変換回路からの出力電圧の差を出力する差動増幅回路と、前記シングルエンド容量電圧変換回路からの出力と前記差動増幅回路からの出力とから一つの出力を選択するセレクタとから構成されていることを特徴とする請求項1乃至5のいずれかに記載の静電容量型加速度検出装置。   Capacitance detecting means for detecting two capacities individually, a single-end capacitance-voltage conversion circuit, a differential amplifier circuit for outputting a difference between output voltages from the single-end capacitance-voltage conversion circuit, and the single-end capacitance-voltage conversion circuit 6. A capacitive acceleration detecting device according to claim 1, wherein the selector selects one output from an output from the differential amplifier and an output from the differential amplifier circuit. . 錘体の変位によって第1の検出電極及び第2の検出電極のうちの一方の検出電極前記重錘体との容量は増加し、他方の検出電極と前記重錘体との容量は減少するように、前記重錐体に対向して配置された一対の検出電極から構成される静電容量型加速度センサを1又は複数備えた静電容量型加速度検出装置における感度及びオフセットの調整を行うキャリブレーション方法であって、
1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続し、前記1つの静電容量型加速度センサの第2の検出電極を、グラウンドに接続して前記第1の検出電極と前記重錘体間の容量を検出する第1のステップと、
前記第2の検出電極を、電圧印加手段に切り替えて接続し、前記電圧印加手段により前記第2の検出電極に電圧を印加して前記第1の検出電極と前記重錘体間のクーロン力印加による容量を検出する第2のステップと、
前記1つの静電容量型加速度センサの前記第1の検出電極を、前記グラウンドに接続し、前記第2の検出電極を、前記容量検出手段の2つの端子のうちの一方の端子に接続して、前記第1の検出電極と前記重錘体間の容量を検出する第3のステップと、
前記第1の検出電極を、電圧印加手段に切り替えて接続し、前記電圧印加手段により前記第1の検出電極に電圧を印加して前記第2の検出電極と前記重錘体間のクーロン力印加による容量を検出する第4のステップと、
所定の目標値と、前記第1乃至第4のステップにおいて検出された前記クーロン力印加による容量及び前記検出電極に印加される電圧から求められる感度に基づいて感度補正値を求め、前記感度補正値により感度調整を行う第5のステップと、
前記1つの静電容量型加速度センサの前記第1の検出電極を、前記容量検出手段の一方の端子に接続し、前記第2の検出電極を、前記容量検出手段の他方の端子に接続し、前記第1の検出電極と前記重錘体との間の検出された容量と、前記第2の検出電極と前記重錘体との間の検出された容量との容量差を検出する第6のステップと、
前記第6のステップにより検出された容量差からオフセット補正値を求めてオフセット補正を行う第7のステップと
を有することを特徴とするキャリブレーション方法。
Capacitance between one of the detection electrode and the weight body of the first detection electrode and the second detection electrode by the displacement of the weight body increases, the capacity of the other detection electrode and the weight body decreases as to adjusts the sensitivity and the offset in the electrostatic capacitance type acceleration detection device of the capacitive acceleration sensor consists of a pair of sensing electrodes disposed opposite to the proof masses with one or more I met a calibration method,
The first detection electrode of one capacitance type acceleration sensor is connected to one of the two terminals of the capacitance detection means, and the second detection electrode of the one capacitance type acceleration sensor. and a first step of detecting a capacitance between the said connecting to ground a first detection electrode weight body,
The second detection electrode is switched and connected to a voltage application means, and a voltage is applied to the second detection electrode by the voltage application means to apply a Coulomb force between the first detection electrode and the weight body. A second step of detecting the capacity according to
The first detection electrode of the one capacitive acceleration sensor is connected to the ground, and the second detection electrode is connected to one of the two terminals of the capacitance detection means. A third step of detecting a capacitance between the first detection electrode and the weight body;
The first detection electrode is switched to and connected to a voltage application means, and a voltage is applied to the first detection electrode by the voltage application means to apply a Coulomb force between the second detection electrode and the weight body. A fourth step of detecting the capacity according to
A sensitivity correction value is obtained on the basis of a predetermined target value, a sensitivity obtained from the voltage applied to the detection electrode and the capacitance by the application of the Coulomb force detected in the first to fourth steps, and the sensitivity correction value The fifth step of adjusting the sensitivity by
The first detection electrode of the one capacitive acceleration sensor is connected to one terminal of the capacitance detection means, the second detection electrode is connected to the other terminal of the capacitance detection means, and the detected capacitance between the first detection electrode and the weight body, the sixth detecting the capacitance difference between the detected capacitance between the second detection electrode and the weight body Steps,
Features and to Ruki catcher calibration method further comprising a seventh step of performing an offset correction determined offset correction value from a difference between the capacitance detected by the sixth step.
前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成されることを特徴とする請求項に記載のキャリブレーション方法。
The heavy cone is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from two end faces in the width direction of the heavy cone main body;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body.
8. The key according to claim 7 , wherein the pair of detection electrodes includes a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitive electrode portions, respectively. Calibration method.
前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成されることを特徴とする請求項に記載のキャリブレーション方法。
The heavy cone is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to a substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. calibration method according to claim 7, characterized.
前記複数の静電容量型加速度センサは第1、第2及び第3の静電容量化速度センサから構成され、
前記第1及び第2の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の長手方向の2つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の幅方向の2つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、
前記第3の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成される
ことを特徴とする請求項に記載のキャリブレーション方法。
The plurality of capacitive acceleration sensors include first, second and third capacitive speed sensors,
The heavy cones of the first and second capacitive velocity sensors are:
A heavy cone body formed in a rectangular plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting two end faces in the longitudinal direction of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb shape parallel to the substrate from two end faces in the width direction of the heavy cone main body;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced in parallel with the substrate in the longitudinal direction of the heavy cone main body.
The pair of detection electrodes is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitance electrode portions, respectively.
The heavy cone of the third capacitive speed sensor is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to the substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween.
Calibration method according to claim 7, characterized in that.
前記複数の静電容量型加速度センサは第1及び第2の静電容量化速度センサから構成され、
前記第1の静電容量化速度センサの前記重錐体は、
矩形又は正方形の板状に形成された重錐体本体と、
前記重錐体を基板に取り付ける固定アンカーと、
前記重錐体本体の4つの端面と前記固定アンカーとを接続する梁部材と、
前記重錐体本体の4つの端面から前記基板と平行に櫛歯状に延びる複数の板状の容量電極部と
を備え、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記重錐体本体の長手方向及び幅方向に前記基板と平行に変位し、
前記一対の検出電極は、前記複数の容量電極部をそれぞれはさむように配置された第1の検出電極及び第2の検出電極の組から構成され、
前記第2の静電容量化速度センサの前記重錐体は、
矩形の板状に形成された重錐体本体と、
前記重錐体本体に中央から長手方向に変位して形成された開口部内に配置され、前記前記重錐体を前記基板に取り付ける固定アンカーと、
前記重錐体本体の開口部内壁面から前記固定アンカーに対し前記重錐体本体の幅方向に前記基板に平行に延び、前記重錐体本体と前記固定アンカーと接続する梁部材と
から構成され、前記重錐体本体は、前記基板と平行に離間状態で配置され、前記梁部材を軸として、前記基板の上下方向に変位し、
前記一対の検出電極は、前記基板の前記重錐体が配置される面側に、前記固定アンカーを挟んで取り付けられた前記第1の検出電極及び前記第2の検出電極から構成される
ことを特徴とする請求項に記載のキャリブレーション方法。
The plurality of capacitive acceleration sensors are composed of first and second capacitive speed sensors,
The heavy cone of the first capacitive velocity sensor is
A heavy cone body formed in a rectangular or square plate shape;
A fixed anchor for attaching the heavy cone to the substrate;
A beam member connecting the four end faces of the heavy cone main body and the fixed anchor;
A plurality of plate-like capacitive electrode portions extending in a comb-tooth shape from the four end faces of the heavy cone main body in parallel with the substrate;
The heavy cone main body is arranged in a separated state in parallel with the substrate, and is displaced parallel to the substrate in the longitudinal direction and the width direction of the heavy cone main body,
The pair of detection electrodes is composed of a set of a first detection electrode and a second detection electrode arranged so as to sandwich the plurality of capacitance electrode portions, respectively.
The heavy cone of the second capacitive speed sensor is
A heavy cone body formed in a rectangular plate shape;
A fixed anchor that is disposed in an opening formed in the heavy cone body by being displaced in the longitudinal direction from the center, and that attaches the heavy cone to the substrate;
A beam member extending in parallel with the substrate in the width direction of the heavy cone main body from the inner wall surface of the opening of the heavy cone main body in the width direction of the heavy cone main body with respect to the fixed anchor; and a beam member connected to the heavy cone main body and the fixed anchor;
The heavy cone main body is arranged in a separated state parallel to the substrate, and is displaced in the vertical direction of the substrate with the beam member as an axis,
The pair of detection electrodes includes the first detection electrode and the second detection electrode that are attached to the surface of the substrate on which the heavy cone is disposed with the fixed anchor interposed therebetween. /> calibration method according to claim 7, characterized in that.
容量検出手段が、2つの容量を個別に検出するシングルエンド容量電圧変換回路と、該シングルエンド容量電圧変換回路からの出力電圧の差を出力する差動増幅回路と、前記シングルエンド容量電圧変換回路からの出力と前記差動増幅回路からの出力とから一つの出力を選択するセレクタとから構成されていることを特徴とする請求項7乃至11のいずれかに記載のキャリブレーション方法。  Capacitance detecting means for detecting two capacities individually, a single-end capacitance-voltage conversion circuit, a differential amplifier circuit for outputting a difference between output voltages from the single-end capacitance-voltage conversion circuit, and the single-end capacitance-voltage conversion circuit The calibration method according to claim 7, further comprising: a selector that selects one output from an output from the differential amplifier and an output from the differential amplifier circuit.
JP2010176623A 2010-08-05 2010-08-05 Capacitance type acceleration detection apparatus and calibration method thereof Active JP5681408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176623A JP5681408B2 (en) 2010-08-05 2010-08-05 Capacitance type acceleration detection apparatus and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176623A JP5681408B2 (en) 2010-08-05 2010-08-05 Capacitance type acceleration detection apparatus and calibration method thereof

Publications (2)

Publication Number Publication Date
JP2012037341A JP2012037341A (en) 2012-02-23
JP5681408B2 true JP5681408B2 (en) 2015-03-11

Family

ID=45849495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176623A Active JP5681408B2 (en) 2010-08-05 2010-08-05 Capacitance type acceleration detection apparatus and calibration method thereof

Country Status (1)

Country Link
JP (1) JP5681408B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077786A (en) * 2012-10-08 2014-05-01 Northrop Grumman Systems Corp Dynamic self-calibration of accelerometer system
JP2015135245A (en) * 2014-01-16 2015-07-27 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and moving body
JP2015184181A (en) * 2014-03-25 2015-10-22 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and mobile entity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018489B (en) * 2012-11-26 2014-09-24 微动科技(杭州)有限公司 Zero offset correction method and correction device
JP6036609B2 (en) * 2013-08-29 2016-11-30 株式会社デンソー Semiconductor device and manufacturing method thereof
JP6464608B2 (en) * 2014-08-19 2019-02-06 セイコーエプソン株式会社 Physical quantity sensor, electronic device and mobile object
KR101609757B1 (en) * 2014-09-19 2016-04-21 에이디반도체(주) Capacitive Sensor Apparatus, Fabrication Method and Operating Method Thereof
KR101982205B1 (en) * 2017-03-16 2019-05-24 성균관대학교 산학협력단 Force/torque sensor that miniaturization is available
KR102229563B1 (en) * 2019-05-16 2021-03-18 성균관대학교 산학협력단 Force/torque sensor that miniaturization is available

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280009B2 (en) * 1991-03-30 2002-04-30 和廣 岡田 Apparatus for detecting physical quantity using change in distance between electrodes and operation test method thereof
JPH102914A (en) * 1996-06-13 1998-01-06 Fujikura Ltd Acceleration generating device and acceleration-sensor measuring device using the device
JP3347316B2 (en) * 2001-12-26 2002-11-20 和廣 岡田 Apparatus for detecting physical quantity using change in distance between electrodes and operation test method thereof
JP4675831B2 (en) * 2006-06-02 2011-04-27 Okiセミコンダクタ株式会社 Triaxial acceleration sensor and method for inspecting triaxial acceleration sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077786A (en) * 2012-10-08 2014-05-01 Northrop Grumman Systems Corp Dynamic self-calibration of accelerometer system
JP2015135245A (en) * 2014-01-16 2015-07-27 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and moving body
JP2015184181A (en) * 2014-03-25 2015-10-22 セイコーエプソン株式会社 Physical quantity detection circuit, physical quantity detection device, electronic apparatus, and mobile entity

Also Published As

Publication number Publication date
JP2012037341A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP5681408B2 (en) Capacitance type acceleration detection apparatus and calibration method thereof
TWI531793B (en) Process to determine the sensitivity of a sensor and a sensor, in particular magnetic field sensor
EP2893362B1 (en) Dual and triple axis inertial sensors and methods of inertial sensing
TWI475232B (en) Verfahren zum abgleich eines beschleunigungssensors und beschleunigungssensor
CN103776464B (en) Method for adjusting speed probe
CN104781678B (en) Electrostatic capacitance sensor and method for correcting non-linear output
EP2336788A1 (en) Inertia sensor
CN110221098A (en) Silicon micro-resonance type accelerometer and its self-test method
US20190277877A1 (en) Continuous calibration of accelerometer sensitivity by proof-mass dithering
CN110455656B (en) Precision actuation/sensing dual-mode integrated micro-mechanical comb tooth structure and detection method
US20110113880A1 (en) Micromechanical acceleration sensor
CN105277297A (en) Force sensor with compensation
Edalatfar et al. Design, fabrication and characterization of a high performance MEMS accelerometer
JP2007147575A (en) System, circuit and method for measuring resistance of wheatstone bridge, and computer program
CN210665355U (en) Precision actuation/perception dual-mode integrated micro-mechanical comb tooth structure
CN116087557A (en) Electrostatic accelerometer capable of automatically optimizing and adjusting performance state
CN117214552B (en) Conductor surface potential measuring method based on periodic variation of torsion balance
JP5441027B2 (en) Inspection method and inspection apparatus for capacitive acceleration sensor
US7332849B2 (en) Method and transducers for dynamic testing of structures and materials
Dar et al. No physical stimulus testing and calibration for MEMS accelerometer
US7598746B2 (en) Surface voltmeter and surface voltage measurement method
US8833135B2 (en) Sensor system and method for calibrating a sensor system
US20050066704A1 (en) Method and device for the electrical zero balancing for a micromechanical component
RU2296301C1 (en) Method and device for measuring movement of movable mass of micro-mechanical gyroscope along axis of secondary oscillations
Li et al. A virtual accelerometer array using one device based on time domain measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350