JP5681101B2 - Coating composition and coating film forming method - Google Patents

Coating composition and coating film forming method Download PDF

Info

Publication number
JP5681101B2
JP5681101B2 JP2011510308A JP2011510308A JP5681101B2 JP 5681101 B2 JP5681101 B2 JP 5681101B2 JP 2011510308 A JP2011510308 A JP 2011510308A JP 2011510308 A JP2011510308 A JP 2011510308A JP 5681101 B2 JP5681101 B2 JP 5681101B2
Authority
JP
Japan
Prior art keywords
range
acrylic resin
coating composition
reaction product
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011510308A
Other languages
Japanese (ja)
Other versions
JPWO2010122965A1 (en
Inventor
正人 中水
正人 中水
敏行 花岡
敏行 花岡
飯島 英基
英基 飯島
雑賀 政昭
政昭 雑賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2011510308A priority Critical patent/JP5681101B2/en
Publication of JPWO2010122965A1 publication Critical patent/JPWO2010122965A1/en
Application granted granted Critical
Publication of JP5681101B2 publication Critical patent/JP5681101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/532Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes

Description

本発明は新規な塗料組成物およびそれを用いる塗膜形成方法に関する。   The present invention relates to a novel coating composition and a method for forming a coating film using the same.

自動車車体などの被塗物に塗装される塗料には、耐擦り傷性、耐酸性、耐汚染性、仕上り外観などの塗膜性能に優れることが要求されている。
従来、該被塗物用の塗料として、メラミン硬化系塗料が汎用されている。メラミン硬化系塗料は、基体樹脂として水酸基含有樹脂及び架橋剤としてメラミン樹脂を含有する塗料であり、加熱硬化時の架橋密度が高く仕上り外観などに優れている。しかし、この塗料には、水酸基含有樹脂の水酸基とメラミン樹脂との反応により生成するエーテル架橋結合が酸性雨により加水分解され易く、形成される塗膜が耐酸性に劣るという問題がある。
耐酸性及び耐擦り傷性の双方に優れた塗膜性能を有する塗料として、例えば、特許文献1には、特定のアクリル樹脂及び特定の水酸基含有オリゴエステル、ならびにこれら基体樹脂成分が含有する水酸基に対するイソシアネート基の比率が特定の範囲内にあるイソシアネートプレポリマーからなる2液型ウレタン塗料組成物が開示されている。
しかしながら、上記のようなイソシアネートプレポリマーを含んでなる2液型ウレタン塗料組成物を、一般に自動車の上塗り塗装に用いられているベースコート塗料及びクリヤコート塗料を塗装する2コート1ベーク仕様のクリヤコート塗料として用いた場合、イソシアネートプレポリマーが低分子量であるため、未硬化のベースコート塗膜上にクリヤコート塗膜を塗り重ねた際に、ベースコート塗膜層とクリヤコート塗膜層の混層が起こりやすく、特に、ベースコート塗膜がフレーク状のアルミ顔料を含有するメタリック塗膜である場合、フレーク状のアルミ顔料の配向が混層により乱されるため、硬化後の複層塗膜において、アルミの白さ感が低下すること(通常、これを「モドリ現象」という)があり、メタリック仕上り感などの仕上り外観が低下するという問題がある。
A paint to be applied to an object to be coated such as an automobile body is required to have excellent coating performance such as scratch resistance, acid resistance, stain resistance, and finished appearance.
Conventionally, a melamine curable coating is widely used as a coating for the object. The melamine curable paint is a paint containing a hydroxyl group-containing resin as a base resin and a melamine resin as a crosslinking agent, and has a high crosslinking density at the time of heat curing and is excellent in finished appearance. However, this paint has a problem that the ether cross-linking formed by the reaction between the hydroxyl group of the hydroxyl group-containing resin and the melamine resin is easily hydrolyzed by acid rain, and the formed coating film is inferior in acid resistance.
For example, Patent Document 1 discloses a specific acrylic resin and a specific hydroxyl group-containing oligoester as well as an isocyanate for a hydroxyl group contained in these base resin components, as a paint having a coating performance excellent in both acid resistance and scratch resistance. A two-component urethane coating composition comprising an isocyanate prepolymer having a group ratio within a specific range is disclosed.
However, a two-coat one-bake clear coat paint for applying a base coat paint and a clear coat paint generally used for top coating of automobiles to a two-component urethane paint composition comprising the isocyanate prepolymer as described above. When used as, since the isocyanate prepolymer has a low molecular weight, when the clearcoat film is applied over the uncured basecoat film, a mixture of the basecoat film layer and the clearcoat film layer is likely to occur. In particular, when the base coat film is a metallic film containing a flaky aluminum pigment, the orientation of the flaky aluminum pigment is disturbed by the mixed layer. (Usually referred to as "modulation phenomenon"), and finishes such as a metallic finish. Appearance is lowered.

特開平6−220397号公報Japanese Patent Laid-Open No. 6-220397

本発明の目的は、ベースコート塗膜及びクリヤコート塗膜からなる2コート1ベーク仕様の複層塗膜を形成せしめるにあたり、メタリック仕上り感などの仕上り外観に優れた複層塗膜を得ることができる、ウレタン架橋型のクリヤ塗膜を形成しうる塗料組成物及び該塗料組成物を用いる複層塗膜形成方法を提供することである。   An object of the present invention is to form a multilayer coating film excellent in finished appearance such as a metallic finish when forming a two-coat one-bake multilayer coating film comprising a base coat film and a clear coat film. Another object of the present invention is to provide a coating composition capable of forming a urethane cross-linked clear coating and a method for forming a multilayer coating using the coating composition.

本発明者らは、上記課題を解決すべく鋭意研究を行なった結果、今回、基体樹脂として特定範囲の水酸基価、重量平均分子量及び溶解性パラメータ値を有するアクリル樹脂を用い、且つポリイソシアネート化合物と、特定範囲の水酸基価、重量平均分子量及び溶解性パラメータ値を有するアクリル樹脂又は特定範囲の水酸基価、重量平均分子量及び溶解性パラメータ値を有する水酸基含有化合物とを特定範囲の反応比率で反応させることにより得られる反応生成物を架橋剤として用いることにより上記の目的を達成できることを見出し、本発明を完成するに至った。
かくして、本発明は、
(A) 80〜180mgKOH/gの範囲内の水酸基価、3000〜20000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂、ならびに
(B) ポリイソシアネート化合物(b−1)と、40〜180mgKOH/gの範囲内の水酸基価、700〜4000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂(b−2)とを、7〜15の範囲内のNCO/OH比で反応させることにより得られる反応生成物(B−1)、又は
ポリイソシアネート化合物(b−1)と、70〜450mgKOH/gの範囲内の水酸基価及び250〜3000の範囲内の重量平均分子量を有する水酸基含有化合物(b−3)とを、6〜12の範囲内のNCO/OH比で反応させることにより得られる1000〜15000の範囲内の重量平均分子量を有する反応生成物(B−2)
を含有することを特徴とする塗料組成物を提供するものである。
本発明は、また、被塗物に、着色ベースコート塗料及びクリヤコート塗料を順次塗装することにより複層塗膜を形成するにあたり、クリヤコート塗料として上記の塗料組成物を使用することを特徴とする上塗複層塗膜形成方法を提供するものである。
As a result of diligent research to solve the above problems, the present inventors have used an acrylic resin having a specific range of hydroxyl value, weight average molecular weight and solubility parameter value as a base resin, and a polyisocyanate compound. Reacting an acrylic resin having a hydroxyl value, weight average molecular weight and solubility parameter value in a specific range or a hydroxyl group-containing compound having a hydroxyl value, weight average molecular weight and solubility parameter value in a specific range at a reaction ratio in a specific range. The present inventors have found that the above-mentioned object can be achieved by using the reaction product obtained by the above as a crosslinking agent, and have completed the present invention.
Thus, the present invention
(A) an acrylic resin having a hydroxyl value in the range of 80 to 180 mg KOH / g, a weight average molecular weight in the range of 3000 to 20000, and a solubility parameter value in the range of 8.5 to 9.8, and (B) Polyisocyanate compound (b-1), having a hydroxyl value in the range of 40 to 180 mg KOH / g, a weight average molecular weight in the range of 700 to 4000, and a solubility parameter value in the range of 8.5 to 9.8. Reaction product (B-1) obtained by reacting acrylic resin (b-2) at an NCO / OH ratio within the range of 7 to 15, or polyisocyanate compound (b-1), and 70 to A hydroxyl group-containing compound (b-3) having a hydroxyl value in the range of 450 mg KOH / g and a weight average molecular weight in the range of 250 to 3000, NCO / in the range of 6 to 12 The reaction product having a weight average molecular weight in the range of 1,000 to 15,000 obtained by reacting with H ratio (B-2)
It is intended to provide a coating composition characterized by containing.
The present invention is also characterized in that the above-mentioned coating composition is used as a clear coat paint in forming a multilayer coating film by sequentially applying a colored base coat paint and a clear coat paint to an object to be coated. The present invention provides a method for forming an overcoat multilayer coating film.

本発明の塗料組成物を用いれば、ポリイソシアネート化合物を使用することによる基体樹脂と架橋剤との相溶性不良に起因する仕上り外観の低下が生じることがなく、また、2コート1ベーク仕様の塗装におけるクリヤ塗料として使用した場合のベースコート塗膜層とクリヤコート塗膜層との混層によるメタリック仕上り感などの仕上り外観の低下を生じることもなく、仕上り外観の良好な複層塗膜を形成せしめることができる。
また、本発明の塗料組成物は、アクリル樹脂(A)と反応生成物(B)との反応によるウレタン結合が物性及び耐加水分解性に優れているため、耐擦り傷性、耐酸性のいずれにも優れた硬化塗膜を形成せしめることができるという効果を奏する。
By using the coating composition of the present invention, there is no deterioration in the finished appearance due to poor compatibility between the base resin and the cross-linking agent due to the use of the polyisocyanate compound, and the coating with 2 coats and 1 bake specification is possible. Forming a multilayer coating film with a good finished appearance without causing deterioration of the finished appearance such as metallic finish due to the mixed layer of the base coat film layer and the clear coat film layer when used as a clear paint in Can do.
Moreover, since the urethane bond by reaction of an acrylic resin (A) and a reaction product (B) is excellent in a physical property and hydrolysis resistance, the coating composition of this invention is excellent in both abrasion resistance and acid resistance. Has an effect that an excellent cured coating film can be formed.

以下、本発明の塗料組成物(以下、「本塗料」ということがある)及び上塗複層塗膜形成方法についてさらに詳細に説明する。
アクリル樹脂(A)
本発明の塗料組成物において使用されるアクリル樹脂(A)は、80〜180mgKOH/gの範囲内の水酸基価、3000〜20000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂である。
アクリル樹脂(A)は、例えば、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)をそれ自体既知の方法により共重合せしめることによって製造することができる。
水酸基含有不飽和単量体(M−1)には、1分子中に水酸基と不飽和結合とをそれぞれ1個有する化合物が包含され、該水酸基は主として反応生成物(B)のイソシアネート基と反応する官能基として作用する。
水酸基含有不飽和単量体(M−1)としては、具体的には、(メタ)アクリル酸と炭素数2〜10の2価アルコールとのモノエステル化物が好適であり、例えば、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなどを挙げることができる。また、水酸基含有不飽和単量体(M−1)として、上記2価アルコールとアクリル酸又はメタクリル酸とのモノエステル化物にさらにε−カプロラクトンを開環縮合させることにより得られる化合物、例えば、「プラクセルFA−1」、「プラクセルFA−2」、「プラクセルFA−3」、「プラクセルFA−4」、「プラクセルFA−5」、「プラクセルFM−1」、「プラクセルFM−2」、「プラクセルFM−3」、「プラクセルFM−4」、「プラクセルFM−5」(以上、いずれもダイセル化学(株)製、商品名)などを使用することもできる。
なお、本明細書において、「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味する。「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味する。また、「(メタ)アクリルアミド」は、アクリルアミド又はメタクリルアミドを意味する。
その他の共重合可能な不飽和単量体(M−2)には、水酸基含有不飽和単量体(M−1)以外の1分子中に1個の不飽和結合を有する化合物が包含され、その具体例を以下の(1)〜(9)に列挙する。
(1) 酸基含有不飽和単量体: 1分子中に少なくとも1個の酸基と1個の不飽和結合とを有する化合物が包含され、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、無水マレイン酸などのカルボキシル基含有不飽和単量体;ビニルスルホン酸、スルホエチル(メタ)アクリレートなどのスルホン酸基含有不飽和単量体;2−(メタ)アクリロイルオキシエチルアシッドホスフェート、2−(メタ)アクリロイルオキシプロピルアシッドホスフェート、2−(メタ)アクリロイルオキシ−3−クロロプロピルアシッドホスフェート、2−メタクロイルオキシエチルフェニルリン酸などの酸性リン酸エステル系不飽和単量体などを挙げることができる。これらはそれぞれ単独で又は2種以上組み合せて使用することができる。
酸基含有不飽和単量体は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に0〜5質量%、特に0.1〜3質量%の範囲内で使用することが好ましい。
(2) (メタ)アクリル酸又はメタクリル酸と炭素数1〜20の1価アルコールとのモノエステル化物: 例えば、メチル(メタ)アクリレート、エチルアクリレート、エチル(メタ)クリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート,tert−ブチル(メタ)アクリレート,2−エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリルアクリレート(大阪有機化学工業社製、商品名)、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、3,5−ジメチルアダマンチル(メタ)アクリレート、3−テトラシクロドデシルメタアクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、4−メチルシクロヘキシルメチル(メタ)アクリレート、4−エチルシクロヘキシルメチル(メタ)アクリレート、4−メトキシシクロヘキシルメチル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、メトキシブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシブチル(メタ)アクリレートなど。
塗膜の耐侯性を向上させることができるという観点から、上記のうち、炭素原子数10〜20の有橋脂環式炭化水素基を有する不飽和単量体及び/又は炭素原子数3〜12の脂環式炭化水素基を有する不飽和単量体(2a)を好適に使用することができる。
有橋脂環式炭化水素基の代表例としては、イソボルニル基、トリシクロデカニル基及びアダマンチル基などを挙げることができる。したがって、上記炭素原子数10〜20の有橋脂環式炭化水素基を有する不飽和単量体の具体例としては、例えば、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、3,5−ジメチルアダマンチル(メタ)アクリレート、3−テトラシクロドデシルメタアクリレートなどを挙げることができる。
炭素原子数3〜12の脂環式炭化水素基を有する不飽和単量体の具体例としては、例えば、シクロヘキシル(メタ)アクリレート、4−メチルシクロヘキシルメチル(メタ)アクリレート、4−エチルシクロヘキシルメチル(メタ)アクリレート、4−メトキシシクロヘキシルメチル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、シクロドデシル(メタ)アクリレートなどを挙げることができる。
単量体(2a)を使用する場合、その使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に3〜50質量%、特に10〜40質量%の範囲内であることが好ましい。
また、塗膜の耐擦り傷性を向上させることができるという観点から、上記のうち、分岐構造を有する炭素原子数8以上の炭化水素基を有する不飽和単量体(2b)を好適に使用することができる。単量体(2b)を使用すると、得られる樹脂のTg及び極性が低下するため、柔軟性付与による塗膜の耐擦り傷性の向上及び表面の平滑化による仕上り性の向上効果を得ることができる。また、分岐構造を有していることから、直鎖状の炭素原子数8以上の炭化水素基を有する不飽和単量体を使用する場合にくらべて、塗膜のTgの低下を抑えることができるため、耐酸性の向上の観点からも有利である。
分岐構造を有する炭素原子数8以上の炭化水素基を有する不飽和単量体の具体例としては、例えば、2−エチルヘキシルアクリレート、イソオクチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリルアクリレート(大阪有機化学工業社製、商品名)などを挙げることができる。
単量体(2b)を使用する場合、その使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に3〜50質量%、特に10〜40質量%の範囲内であることが好ましい。
(3) アルコキシシラン基含有不飽和単量体: 例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、メタクリロキシエチルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、アクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シランなど。これらのうち、ビニルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシランなどを好ましいアルコキシシラン基含有不飽和単量体として挙げることができる。
アルコキシシラン基含有不飽和単量体を使用することにより、塗膜中に、水酸基とイソシアネート基との架橋結合に加え、アルコキシシラン基同士の縮合反応及びアルコキシシラン基と水酸基の反応による架橋結合を生成することができる。それにより、得られる塗膜の架橋密度が向上し、耐酸性、耐汚染性の向上効果を得ることができる。
アルコキシシラン基含有不飽和単量体を使用する場合、その使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に3〜50質量%、特に5〜35質量%の範囲内であることが好ましい。
(4) 芳香族系不飽和単量体: 例えば、スチレン、α−メチルスチレン、ビニルトルエンなど。
芳香族系不飽和単量体を使用することにより、得られる樹脂のTgが上昇し、また、高屈折率で疎水性の塗膜を得ることができるため、塗膜の光沢向上による仕上り性の向上、耐水性および耐酸性の向上という効果を得ることができる。
芳香族系不飽和単量体を使用する場合、その使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に3〜50質量%、特に5〜40質量%の範囲内であることが好ましい。
(5) グリシジル基含有不飽和単量体: 1分子中にグリシジル基と不飽和結合とをそれぞれ1個有する化合物が包含され、具体的には、例えば、グリシジルアクリレート、グリシジルメタクリレートなどが挙げられる。
(6) 窒素含有不飽和単量体: 例えば、(メタ)アクリルアミド、ジメチルアクリルアミド、N,N−ジメチルプロピルアクリルアミド、N−ブトキシメチルアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、ジアセトンアクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、ビニルピリジン、N−ビニルピロリドン、(メタ)アクリロイルモルホリン、ビニルイミダゾールなど。
(7)ビニルエーテル及びアリルエーテル:例えば、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、ブチルビニルエーテル、tert−ブチルビニルエーテル、ペンチルビニルエーテル、ヘキシルビニルエーテル、オクチルビニルエーテルなどの直鎖状又は分枝状アルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテルなどのシクロアルキルビニルエーテル類;フェニルビニルエーテル、トリビニルエーテルなどのアリルビニルエーテル類;ベンジルビニルエーテル、フェネチルビニルエーテルなどのアラルキルビニルエーテル類;アリルグリシジルエーテル、アリルエチルエーテルなどのアリルエーテル類など。
(8) その他のビニル化合物: 例えば、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、バーサティック酸ビニルエステル(例えば、ジャパンエポキシレジン社製の「ベオバ9」、「ベオバ10」(以上、商品名))など。
(9) 不飽和結合含有ニトリル系化合物: 例えば、アクリロニトリル、メタクリロニトリルなど。
これらのその他のビニルモノマー(M−2)はそれぞれ単独で又は2種以上組み合わせて用いることができる。
水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)を共重合することによりアクリル樹脂(A)を得ることができる。
水酸基含有不飽和単量体(M−1)の使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量に基準にして、一般に15〜50質量%、特に20〜45質量%の範囲内であることが好ましい。水酸基含有不飽和単量体(M−1)の使用割合が15質量%未満となると、形成される硬化塗膜の架橋が不十分となって、塗膜の耐擦り傷性が不十分となる場合がある。一方、50質量%を超えると、その他の共重合可能な不飽和単量体(M−2)との相溶性が低下し、さらに得られたアクリル樹脂(A)の反応生成物(B)との相溶性が低下することにより、塗膜の仕上り外観が低下する場合がある。
水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の共重合方法は、特に限定されるものではなく、それ自体既知の共重合方法を用いることができる。なかでも、有機溶剤中にて重合開始剤の存在下で共重合を行なう溶液重合法が好適である。
上記溶液重合法に際して使用される有機溶剤としては、例えば、トルエン、キシレン、「スワゾール1000」(コスモ石油社製、商品名、高沸点石油系溶剤)などの芳香族系溶剤;酢酸エチル、3−メトキシブチルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテートなどのエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトンなどのケトン系溶剤、プロピルプロピオネート、ブチルプロピオネート、エトキシエチルプロピオネートなどを挙げることができる。
これらの有機溶剤はそれぞれ単独で又は2種以上組み合せて使用することができるが、アクリル樹脂(A)は高い水酸基価を有するため、樹脂の溶解性の観点から、高沸点のエステル系溶剤、ケトン系溶剤を使用することが好ましい。また、さらに高沸点の芳香族系溶剤を組み合せて使用することもできる。
アクリル樹脂(A)の共重合に際して使用することができる重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t−アミルパーオキサイド、t−ブチルパーオクトエート、2,2’−アゾビス(2−メチルブチロニトリル)などのアゾ系又は過酸化物系のそれ自体既知のラジカル重合開始剤を挙げることができる。
また、分子量調整のため、それ自体既知の連鎖移動剤を併用することもできる。
アクリル樹脂(A)は、80〜180mgKOH/gの範囲内、好ましくは95〜175mgKOH/g、さらに好ましくは110〜170mgKOH/gの範囲内の水酸基価を有することができる。水酸基価が80mgKOH/g未満であると、形成塗膜の架橋が不十分となるために、塗膜の耐擦り傷性が不十分になることがある。反対に、180mgKOH/gを越えると、形成塗膜の耐水性が低下する場合がある。
アクリル樹脂(A)は、3000〜20000、好ましくは4000〜18000、さらに好ましくは5000〜16000の範囲内の重量平均分子量を有することができる。重量平均分子量が3000未満であると、形成塗膜の耐水性や耐擦り傷性が低下する場合があり、反対に、20000を越えると、形成塗膜の塗面平滑性が低下する場合がある。
なお、本明細書において、「重量平均分子量」は、ゲルパーミエーションクロマトグラフ(東ソー社製、「HLC8120GPC」)で測定した重量平均分子量をポリスチレンの重量平均分子量を基準にして換算した値である。試料の重量平均分子量は、カラムとして「TSKgel G−4000H×L」、「TSKgel G−3000H×L」、「TSKgel G−2500H×L」、「TSKgel G−2000H×L」(いずれも東ソー(株)社製、商品名)の4本を用い、移動相:テトラヒドロフラン、測定温度:40℃、流速:1cc/分、検出器:RIの条件下で測定したものである。数平均分子量も上記と同様の条件で測定した値である。
アクリル樹脂(A)は、8.5〜9.8、好ましくは8.6〜9.7、さらに好ましくは8.7〜9.6の範囲内の溶解性パラメータ値を有することができる。溶解性パラメータ値が8.5未満又は9.8を越えると、反応生成物(B)との相溶性が低下することにより、塗膜の硬化性や仕上り外観が低下する場合がある。
なお、本明細書において、アクリル樹脂の「溶解性パラメータ値」(SP値)は、液体分子の分子間相互作用の尺度を表すものであり、以下の方法により算出することができる。
少なくとも2種の重合性単量体の共重合により得られるアクリル樹脂の溶解性パラメータ値(SP値)は、下記式により計算して求めることができる。
SP値=SP×fW1+SP×fW2+・・・・+SP×fWn
上記式中、SP、SP、・・・・SPは各重合性単量体のホモポリマーのSP値を表し、fW1、fW2、・・・fWnは各単量体の単量体の総量に対する重量分率を表す。重合性単量体のホモポリマーのSP値はJ.Paint Technology,vol42,176(1970)に記載されている。
アクリル樹脂(A)は、また、一般に−30℃〜90℃、特に−20℃〜80℃、さらに特に−10℃〜70℃の範囲内のガラス転移温度を有することが好ましい。アクリル樹脂(A)のガラス転移温度が−30℃未満であると、塗膜硬度が不十分な場合があり、反対に、90℃を越えると、塗膜の塗面平滑性が低下する場合がある。
なお、本明細書において、アクリル樹脂の「ガラス転移温度」(Tg(℃))は、下記式によって算出することができる。
1/Tg(°K)=(W/T)+(W/T)+・・・・・
Tg(℃)=Tg(°K)−273
各式中、W、W、・・は共重合に使用されたそれぞれの重合性単量体の単量体総量に対する重量分率を表し、T、T、・・はそれぞれの重合性単量体のホモポリマーのTg(°K)を表わす。なお、T、T、・・はPolymer Handbook(4th Edition,J.Brandup・E.H.Immergut編)、また、Polymer Handbookに記載がないものについてはJournal of Applied Polymer Science.Applied Polymer Symposium,45,289−316(1990)に記載の値である。
反応生成物(B)
反応生成物(B)としては、ポリイソシアネート化合物(b−1)と、40〜180mgKOH/gの範囲内の水酸基価、700〜4000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂(b−2)とを、7〜15の範囲内のNCO/OH比で反応させることにより得られる反応生成物(B−1);及びポリイソシアネート化合物(b−1)と、70〜450mgKOH/gの範囲内の水酸基価及び250〜3000の範囲内の重量平均分子量を有する水酸基含有化合物(b−3)とを、6〜12の範囲内のNCO/OH比で反応させることにより得られる1000〜15000の範囲内の重量平均分子量を有する反応生成物(B−2)が包含され、本発明の塗料組成物において、アクリル樹脂(A)のため架橋剤として作用するものである。
ポリイソシアネート化合物(b−1)
ポリイソシアネート化合物(b−1)は、1分子中に少なくとも2個のイソシアネート基を有する化合物である。ポリイソシアネート化合物(b−1)としては、ポリウレタン製造用などとしてそれ自体既知のものを使用することができ、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネート及びこれらポリイソシアネートの誘導体などを挙げることができる。
脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2−プロピレンジイソシアネート、1,2−ブチレンジイソシアネート、2,3−ブチレンジイソシアネート、1,3−ブチレンジイソシアネート、2,4,4−もしくは2,2,4−トリメチルヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなどの脂肪族ジイソシアネート;リジンエステルトリイソシアネート、1,4,8−トリイソシアナトオクタン、1,6,11−トリイソシアナトウンデカン、1,8−ジイソシアナト−4−イソシアナトメチルオクタン、1,3,6−トリイソシアナトヘキサン、2,5,7−トリメチル−1,8−ジイソシアナト−5−イソシアナトメチルオクタンなどの脂肪族トリイソシアネートなどを挙げることができる。
脂環族ポリイソシアネートとしては、例えば、1,3−シクロペンテンジイソシアネート、1,4−シクロヘキサンジイソシアネート、1,3−シクロヘキサンジイソシアネート、3−イソシアナトメチル−3,5,5−トリメチルシクロヘキシルイソシアネート(慣用名:イソホロンジイソシアネート)、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチル−2,4−シクロヘキサンジイソシアネート、メチル−2,6−シクロヘキサンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、ノルボルナンジイソシアネートなどの脂環族ジイソシアネート;1,3,5−トリイソシアナトシクロヘキサン、1,3,5−トリメチルイソシアナトシクロヘキサン、2−(3−イソシアナトプロピル)−2,5−ジ(イソシアナトメチル)−ビシクロ(2.2.1)ヘプタン、2−(3−イソシアナトプロピル)−2,6−ジ(イソシアナトメチル)−ビシクロ(2.2.1)ヘプタン、3−(3−イソシアナトプロピル)−2,5−ジ(イソシアナトメチル)−ビシクロ(2.2.1)ヘプタン、5−(2−イソシアナトエチル)−2−イソシアナトメチル−3−(3−イソシアナトプロピル)−ビシクロ(2.2.1)ヘプタン、6−(2−イソシアナトエチル)−2−イソシアナトメチル−3−(3−イソシアナトプロピル)−ビシクロ(2.2.1)ヘプタン、5−(2−イソシアナトエチル)−2−イソシアナトメチル−2−(3−イソシアナトプロピル)−ビシクロ(2.2.1)−ヘプタン、6−(2−イソシアナトエチル)−2−イソシアナトメチル−2−(3−イソシアナトプロピル)−ビシクロ(2.2.1)ヘプタンなどの脂環族トリイソシアネートなどを挙げることができる。
芳香脂肪族ポリイソシアネートとしては、例えば、1,3−もしくは1,4−キシリレンジイソシアネートまたはその混合物、ω,ω’−ジイソシアナト−1,4−ジエチルベンゼン、1,3−もしくは1,4−ビス(1−イソシアナト−1−メチルエチル)ベンゼン(慣用名:テトラメチルキシリレンジイソシアネート)またはその混合物などの芳香脂肪族ジイソシアネート;1,3,5−トリイソシアナトメチルベンゼンなどの芳香脂肪族トリイソシアネートなどを挙げることができる。
芳香族ポリイソシアネートとしては、例えば、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート、2,4’−または4,4’−ジフェニルメタンジイソシアネートもしくはその混合物、2,4−もしくは2,6−トリレンジイソシアネートまたはその混合物、4,4’−トルイジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート;トリフェニルメタン−4,4’,4’’’−トリイソシアネート、1,3,5−トリイソシアナトベンゼン、2,4,6−トリイソシアナトトルエンなどの芳香族トリイソシアネート;4,4’−ジフェニルメタン−2,2’,5,5’−テトライソシアネートなどの芳香族テトライソシアネートなどを挙げることができる。
また、ポリイソシアネートの誘導体としては、例えば、上記したポリイソシアネート化合物のダイマー、トリマー、ビウレット、アロファネート、カルボジイミド、ウレトジオン、ウレトイミン、イソシアヌレート、イミノオキサジアジンジオンなどの各種誘導体を挙げることができる。
これらポリイソシアネートはそれぞれ単独で又は2種以上組み合せて使用することができる。
これらポリイソシアネートの中でも、硬化塗膜の耐擦り傷性などに優れるなどの観点から、脂肪族ジイソシアネート、脂環族ジイソシアネート及びこれらの誘導体が好ましく、ヘキサメチレンジイソシアネート(HMDI)、ヘキサメチレンジイソシアネートの誘導体、イソホロンジイソシアネート(IPDI)及びイソホロンジイソシアネートの誘導体がより好ましい。
アクリル樹脂(b−2)
アクリル樹脂(b−2)は、アクリル樹脂(A)について前述した水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)をそれ自体既知の方法により共重合せしめることによって製造することができる。
水酸基含有不飽和単量体(M−1)の使用割合は、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量を基準にして、一般に15〜50質量%、特に20〜45質量%の範囲内であることが好ましい。水酸基含有不飽和単量体(M−1)の使用割合が15質量%未満となると、形成塗膜の耐酸性、耐擦り傷性などの塗膜性能が低下する場合があり、反対に、50質量%を超えると、その他の共重合可能な不飽和単量体(M−2)との相溶性や共重合反応性が低下し、さらに、ポリイソシアネート化合物(b−1)とアクリル樹脂(b−2)との反応により得られた反応生成物(B−1)とアクリル樹脂(A)との相溶性が低下することにより、塗膜の仕上り外観が低下する場合がある。
水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)を共重合することによりアクリル樹脂(b−2)を得ることができる。
水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の共重合は、特に限定されるものではなく、アクリル樹脂(A)の共重合について前述したと同様にして行うことができる。なお、アクリル樹脂(b−2)の溶液重合においては、溶解性の観点から、エステル系又はエーテル系溶剤を使用することが好ましい。また、さらに高沸点の芳香族系溶剤を好適に組み合せて使用することもできる。
アクリル樹脂(b−2)の共重合に際して使用できる重合開始剤としては、アクリル樹脂(A)について前記で例示したものを使用することができる。
また、アクリル樹脂(b−2)の共重合に際しては、連鎖移動剤を使用することができる。上記連鎖移動剤としては、例えば、n−ブチルメルカプタン、n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、セチルメルカプタン、ステアリルメルカプタンなどのアルキルメルカプタン類;チオグルコール酸、チオグリセロール、エチレンチオグリコール、チオグリコール酸2−エチルヘキシル、2−メルカプトエタノール、メルカプトグリセリン、メルカプトコハク酸、メルカプトプロピオン酸などのその他のメルカプタン類;四塩化炭素、クロロホルム、トリクロロブロモエタン、ブロモホルムなどのハロゲン化合物;ジスルフィド、Dimethylxanthogen disulfide、第2級アルコール、イソプロピルアルコール、ジオキサン、テトラヒドロフラン、イソプロピルベンゾール、α−メチルスチレンダイマー、2,4−ジフェニル−4−メチル−1−ペンテン、γ−メルカプトプロピルトリメトキシシランなどを挙げることができる。
上記のうち、2−メルカプトエタノールなどの水酸基を有する連鎖移動剤を好適に使用することができる。水酸基を有する連鎖移動剤を使用することにより、アクリル樹脂(b−2)の末端に水酸基が導入された構造のアクリル樹脂を得ることができる。これにより、反応生成物(B−1)を合成するにあたり、ポリイソシアネート化合物(b−1)のイソシアネート基とアクリル樹脂(b−2)の水酸基が反応しやすくなって、アクリル樹脂(b−2)の水酸基価を低く設定することができ、反応生成物(B−1)の高分子量化を抑制することができ、本発明の塗料組成物から形成される塗膜の平滑性を向上させることができる。
連鎖移動剤の使用量は、特に限定されず、例えば、水酸基含有不飽和単量体(M−1)及びその他の共重合可能な不飽和単量体(M−2)の合計量を基準にして、通常0.1〜10質量%の範囲内であることが好ましい。
アクリル樹脂(b−2)は、40〜180mgKOH/g、好ましくは50〜170mgKOH/g、さらに好ましくは80〜170mgKOH/g、より一層好ましくは100〜170mgKOH/gの範囲内の水酸基価を有することができる。アクリル樹脂(b−2)の水酸基価が40mgKOH/g未満であると、形成塗膜の耐酸性、耐擦り傷性などの塗膜性能が不十分となる場合があり、反対に、180mgKOH/gを越えると塗面平滑性などの仕上り外観が低下する場合がある。
また、アクリル樹脂(b−2)が連鎖移動剤を使用して製造されたものである場合、アクリル樹脂(b−2)の水酸基価は、一般に40〜140mgKOH/g、特に50〜130mgKOH/gの範囲内にあることが好ましい。
アクリル樹脂(b−2)は、700〜4000、好ましくは800〜3000、さらに好ましくは1000〜2000の範囲内の重量平均分子量を有することができる。アクリル樹脂(b−2)の重量平均分子量が700未満であると、形成塗膜の耐酸性、耐擦り傷性などの塗膜性能が不十分となる場合があり、反対に、4000を越えると、形成塗膜の塗面平滑性などの仕上り外観が低下する場合がある。
アクリル樹脂(b−2)は、8.5〜9.8、好ましくは8.6〜9.6、さらに好ましくは8.7〜9.5の範囲内の溶解性パラメータ値を有することができる。アクリル樹脂(b−2)溶解性パラメータ値が8.5未満又は、9.8を越えると、アクリル樹脂(A)との相溶性が低下する場合がある。
アクリル樹脂(b−2)は、また、一般に−30℃〜80℃、特に−25℃〜70℃、さらに特に−20℃〜60℃の範囲内のガラス転移温度を有することが好ましい。アクリル樹脂(b−2)のガラス転移温度が−30℃未満であると、形成塗膜の硬度が不十分となる場合があり、反対に、80℃を越えると、形成塗膜の塗面平滑性が低下する場合がある。
反応生成物(B−1)
反応生成物(B−1)は、以上に述べたポリイソシアネート化合物(b−1)とアクリル樹脂(b−2)とを付加反応させることにより得ることできる。この反応は、ポリイソシアネート化合物(b−1)のイソシアネート基とアクリル樹脂(b−2)の水酸基の間での付加反応により進行する。
上記付加反応は、ポリイソシアネート化合物(b−1)とアクリル樹脂(b−2)とを、通常約60〜約140℃、好ましくは約70〜約130℃の温度で、通常1〜10時間程度、好ましくは2〜8時間程度反応させることにより行なうことができる。反応は、通常、アクリル樹脂(b−2)の水酸基価が2mgKOH/g以下となるまで行なうことができる。
反応温度が60℃未満であると、未反応の水酸基が多量に残存する場合があり、反対に、140℃を越えると反応物が分解する場合がある。
上記反応は、必要に応じて、さらに有機溶剤を添加して行なうこともできる。有機溶剤としては、上記アクリル樹脂(A)の製造について例示したものを同様に使用することができる。溶剤としては、イソシアネート基に対して反応性でないものが好ましく、例えば、アセトン、メチルエチルケトンのようなケトン類;酢酸エチルのようなエステル類;N−メチルピロリドン(NMP)のような溶剤を挙げることができる。
また、上記付加反応においては、必要に応じて、触媒を使用することができる。具体的には、水酸基とイソシアネート基との反応に有効な触媒として、例えば、錫系触媒、リン酸系触媒などを挙げることができる。これらのうち、ジブチル錫ジラウリレートなどを好適に使用することができる。
ポリイソシアネート化合物(b−1)とアクリル樹脂(b−2)との反応において、ポリイソシアネート化合物(b−1)対アクリル樹脂(b−2)の比率は、塗膜の仕上り外観、耐モドリ性などの観点から、NCO/OH比で、7〜15、好ましくは8〜14、さらに好ましくは9〜12の範囲内とすることができる。該NCO/OH比が7未満であると、反応生成物(B−1)が高分子量化することにより、形成塗膜の塗面平滑性などの仕上り外観の低下などの不具合が生じる場合があり、反対に、該NCO/OH比が15より大きくなると、未反応のポリイソシアネート化合物(b−1)の割合が多くなることにより、形成塗膜の耐モドリ性が低下する場合がある。
反応生成物(B−1)は、未反応物を含んでいても構わず、通常、未反応物を分離することなく、そのまま使用することができる。
反応生成物(B−1)は、最終的に得られる塗料組成物の硬化性などの観点から、一般に200〜370、好ましくは210〜350、さらに好ましくは220〜330の範囲内のNCO当量を有することができる。
反応生成物(B−1)は、貯蔵安定性の観点から、一般に0〜10mgKOH/g、好ましくは0〜7.5mgKOH/g、さらに好ましくは0〜5mgKOH/gの範囲内の水酸基価を有することができる。
反応生成物(B−1)は、イソシアネートと水酸基との反応性の観点から、一般に0〜15mgKOH/g、好ましくは0〜12.5mgKOH/g、さらに好ましくは0〜10mgKOH/gの範囲内の酸価を有することができる。
反応生成物(B)は、また、最終的に得られる塗料組成物の硬化性、得られる塗膜の塗面平滑性などの仕上り外観の観点から、一般に1000〜40000、好ましくは1500〜30000、さらに好ましくは2000〜20000の範囲内の重量平均分子量を有することができる。
なお、本明細書において、反応生成物(B−1)のNCO当量、水酸基価、酸価及び重量平均分子量は、未反応で残存するポリイソシアネート化合物(b−1)及びアクリル樹脂(b−2)も含んだ反応生成物全体としての値を意味する。
本発明の塗料組成物において、アクリル樹脂(A)中の水酸基対反応生成物(B−1)中のイソシアネート基の当量比(NCO/OH)は、塗料組成物の硬化性及び塗料安定性の観点から、一般に約0.5〜約2.0、特に約0.75〜約1.75、さらに特に約0.8〜約1.5の範囲内であることが好ましい。
また、本発明の塗料組成物中のアクリル樹脂(A)及び反応生成物(B−1)の含有量は、アクリル樹脂(A)及び反応生成物(B−1)の固形分合計総量を基準として、不揮発分として、アクリル樹脂(A)は一般に30〜75質量%、好ましくは35〜70質量%、さらに好ましくは40〜65質量%の範囲内、そして反応生成物(B−1)は一般に25〜70質量%、好ましくは30〜65質量%、さらに好ましくは35〜60質量%の範囲内であることができる。
水酸基含有化合物(b−3)
水酸基含有化合物(b−3)は、1分子中に少なくとも2個、好ましくは2〜4個の水酸基を有する化合物であり、具体的には、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、シリコーンポリオール、ポリウレタンポリオールなどを挙げることができる。これらのポリオールはジオール化合物又は3官能以上のポリオール化合物のいずれであってもよい。上記のうち、特に、ポリエーテルポリオール、ポリカーボネートポリオール及びポリカプロラクトンポリオールを好適に使用することができる。
ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリストールなどを開始剤として用いて得られる、エチレンオキシド、プロピレンオキシド、エチレンオキシドとプロピレンオキシドの混合物、テトラヒドロフランなどの開環重合体などを挙げることができる。
ポリエステルポリオールとしては、多価アルコールと該多価アルコールの化学量論的量より少ない量の多価カルボン酸又はそのエステル、無水物、ハライドなどのエステル形成性誘導体との直接エステル化反応及び/又はエステル交換反応により得られるものを挙げることができる。
上記多価アルコールとしては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−2,4−ペンタンジオール、2,4−ペンタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、3,5−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、ジエチレングリコール、トリエチレングリコールなどの脂肪族ジオール類;シクロヘキサンジメタノール、シクロヘキサンジオールなどの脂環式ジオール類;トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ペンタエリスリトール、テトラメチロールプロパンなどの3価以上のアルコール類を挙げることができる。
上記多価カルボン酸又はそのエステル形成性誘導体としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、2−メチルコハク酸、2−メチルアジピン酸、3−メチルアジピン酸、3−メチルペンタン二酸、2−メチルオクタン二酸、3,8−ジメチルデカン二酸、3,7−ジメチルデカン二酸、水添ダイマー酸、ダイマー酸などの脂肪族ジカルボン酸類;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸類;1,2−シクロペンタンジカルボン酸、1,3−シクロペンタンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,4−ジカルボキシルメチレンシクロヘキサン、ナジック酸、メチルナジック酸などの脂環式ジカルボン酸類;トリメリット酸、トリメシン酸、ひまし油脂肪酸の三量体などのトリカルボン酸類などの多価カルボン酸;これらの多価カルボン酸の酸無水物、該多価カルボン酸のクロライド、ブロマイドなどのハライド、該多価カルボン酸のメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、アミルエステルなどの低級エステル;γ−カプロラクトン、δ−カプロラクトン、ε−カプロラクトン、ジメチル−ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、γ−ブチロラクトンなどのラクトン類などを挙げることができる。
ポリエーテルエステルポリオールとしては、例えば、上記ポリエーテルポリオールと多塩基酸を反応させてポリエステル化したもの;分子内にポリエーテル及びポリエステルの両セグメントを有するものなどを挙げることができる。
ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、ポリイソプレンポリオールなどを挙げることができる。
ポリカーボネートポリオールとしては、通常のポリオール成分とカルボニル化剤とを重縮合反応させることにより得られる化合物を挙げることができる。
上記ポリオール成分としては、ジオール、3価以上のアルコールなどの多価アルコールを挙げることができる。該ジオールとしては、例えば、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオールなどの直鎖状ジオール;2−メチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、2−エチル−1,6−ヘキサンジオール、2,2−ジエチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2−メチル−1,8−オクタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオールなどの分岐ジオール;1,3−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノールなどの脂環式系ジオール;p−キシレンジオール、p−テトラクロロキシレンジオールなどの芳香族系ジオール;ジエチレングリコール、ジプロピレングリコールなどのエーテル系ジオールなどを挙げることができ、これらのジオールはそれぞれ単独で又は2種以上組み合せて使用することができる。また、該3価以上のアルコールとしては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールプロパンの2量体、ペンタエリスリトールなどを挙げることができる。
上記カルボニル化剤としては、それ自体既知のものを使用することができ、具体的には、例えば、アルキレンカーボネート、ジアルキルカーボネート、ジアリルカーボネート、ホスゲンなどを挙げることができ、これらはそれぞれ単独で又は2種以上組み合せて使用することができる。これらのうち、好ましいものとしてはエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネートなどを挙げることができる。
ポリカプロラクトンポリオールとしては、例えば、ポリカプロラクトンジオールなどのカプロラクトンの開環重合物を挙げることができる。
シリコーンポリオールとしては、分子中にシロキサン結合を有する末端がヒドロキシル基のシリコーンオイル類などを挙げることができる。
ポリウレタンポリオールとしては、ポリオールと該ポリオールの化学量論的量より少ない量のポリイソシアネートとのウレタン化反応により得られるものを挙げることができ、また、例えば、ジアミンとエチレンカーボネートとの反応物なども使用することができる。
以上に述べた水酸基含有化合物(b−3)はそれぞれ単独で又は2種以上組み合わせて使用することができる。
水酸基含有化合物(b−3)は、70〜450mgKOH/g、好ましくは80〜425mgKOH/g、さらに好ましくは90〜400mgKOH/gの範囲内の水酸基価を有することができる。水酸基含有化合物(b−3)の水酸基価が70mgKOH/g未満であると、得られる塗膜の耐酸性、耐擦り傷性などの塗膜性能が不十分となる場合があり、反対に、450mgKOH/gを越えると、アクリル樹脂(A)との相溶性が低下する場合がある。
水酸基含有化合物(b−3)は、250〜3000、好ましくは300〜2500、さらに好ましくは350〜2000の範囲内の重量平均分子量を有することができる。水酸基含有化合物(b−3)の重量平均分子量が250未満であると、アクリル樹脂(A)との相溶性が低下する場合があり、反対に、3000を越えると、得られる塗膜の耐酸性、耐擦り傷性などの塗膜性能が不十分となる場合がある。
反応生成物(B−2)
反応生成物(B−2)は、ポリイソシアネート化合物(b−1)と水酸基含有化合物(b−3)とを付加反応させることにより得ることができる。この反応は、ポリイソシアネート化合物(b−1)のイソシアネート基と水酸基含有化合物(b−3)の水酸基の間での付加反応により進行する。
上記付加反応は、ポリイソシアネート化合物(b−1)と水酸基含有化合物(b−3)とを、通常約60〜約140℃、好ましくは約70〜約130℃の温度で、通常1〜10時間程度、好ましくは2〜8時間程度反応させることにより行なうことができる。反応は、通常、水酸基含有化合物(b−3)の水酸基価が2mgKOH/g以下となるまで反応を行なうことができる。反応温度が60℃未満であると、未反応の水酸基が多量に残存する場合があり、反対に、140℃を越えると反応物が分解する場合がある。
上記反応は、必要に応じて、さらに有機溶剤を添加して行なうこともできる。有機溶剤としては、アクリル樹脂(A)の製造に際して例示したものを同様に使用することができる。溶剤としてはイソシアネート基に対して反応性でないものが好ましく、例えば、アセトン、メチルエチルケトンのようなケトン類;酢酸エチルのようなエステル類;N−メチルピロリドン(NMP)のような溶剤を挙げることができる。
また、上記付加反応においては、必要に応じて、触媒を使用することができる。具体的には、水酸基とイソシアネート基との反応に有効な触媒として、錫系触媒、リン酸系触媒などを挙げることができる。これらのうち、ジブチル錫ジラウリレートなどを好適に使用することができる。
ポリイソシアネート化合物(b−1)と水酸基含有化合物(b−3)との反応において、ポリイソシアネート化合物(b−1)対水酸基含有化合物(b−3)の比率は、塗膜の仕上り外観及び耐モドリ性の観点から、NCO/OH比で、6〜12、好ましくは6.5〜11、さらに好ましくは7〜10の範囲内とすることができる。該NCO/OH比が6未満であると、生成する反応生成物(B−2)が高分子量化することにより、形成塗膜の塗面平滑性などの仕上り外観の低下などの不具合が生じる場合がある。また、該NCO/OH比が12より大きいと、未反応のポリイソシアネート化合物(b−1)の割合が多くなるため、形成塗膜の耐モドリ性が低下する場合がある。
反応生成物(B−2)は、未反応物を含んでいても構わず、通常、未反応物を分離することなく、そのまま使用することができる。
反応生成物(B−2)は、最終的に得られる塗料組成物の硬化性などの観点から、一般に200〜370、好ましくは210〜350、さらに好ましくは220〜330の範囲内のNCO当量を有することができる。
反応生成物(B−2)は、貯蔵安定性の観点から、一般に0〜10mgKOH/g、好ましくは0〜7.5mgKOH/g、さらに好ましくは0〜5mgKOH/gの範囲内の水酸基価を有することができる。
反応生成物(B−2)は、また、最終的に得られる塗料組成物の硬化性、形成塗膜の塗面平滑性などの仕上り外観の観点から、1000〜15000、好ましくは1250〜14000、さらに好ましくは1500〜13000の範囲内の重量平均分子量を有することができる。
なお、本明細書において、反応生成物(B−2)のNCO当量、水酸基価及び重量平均分子量は、未反応で残存するポリイソシアネート化合物(b−1)及び水酸基含有化合物(b−3)も含んだ反応生成物全体としての値を意味する。
本発明の塗料組成物において、アクリル樹脂(A)中の水酸基対反応生成物(B−2)中のイソシアネート基の当量比(NCO/OH)は、塗料組成物の硬化性及び塗料安定性の観点から、一般に0.5〜2.0、特に0.65〜1.75、さらに特に0.8〜1.5の範囲内にあることがより好ましい。
また、本発明の塗料組成物中のアクリル樹脂(A)及び反応生成物(B−2)の含有量は、アクリル樹脂(A)及び反応生成物(B−2)の固形分合計総量を基準として、不揮発分として、アクリル樹脂(A)は一般に30〜75質量%、好ましくは35〜70質量%、さらに好ましくは40〜65質量%の範囲内、そして反応生成物(B−2)は一般に25〜70質量%、好ましくは30〜65質量%、さらに好ましくは35〜60質量%の範囲内であることができる。
その他の成分
本発明の塗料組成物には、必要に応じて、形成塗膜の透明性を阻害しない程度に、着色顔料、体質顔料、光輝性顔料、防錆顔料などのそれ自体既知の顔料を配合することができる。
着色顔料としては、例えば、酸化チタン、亜鉛華、カーボンブラック、カドミウムレッド、モリブデンレッド、クロムエロー、酸化クロム、プルシアンブルー、コバルトブルー、アゾ顔料、フタロシアニン顔料、キナクリドン顔料、イソインドリン顔料、スレン系顔料、ペリレン顔料などを挙げることができる。体質顔料としては、例えば、タルク、クレー、カオリン、バリタ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、シリカ、アルミナホワイトなどを挙げることができる。光輝性顔料としては、例えば、アルミニウム粉末、雲母粉末、酸化チタンで被覆した雲母粉末などをあげることができる。
本発明の塗料組成物には、必要に応じて、ポリエステル樹脂、アルキド樹脂、シリコン樹脂、フッ素樹脂などの各種樹脂を添加することも可能である。また、メラミン樹脂、一部又は全部のイソシアネート基がブロックされていてもよいポリイソシアネート化合物などの架橋剤を少量併用することも可能である。さらに、必要に応じて、硬化触媒、紫外線吸収剤、光安定剤、酸化防止剤、表面調整剤、消泡剤などの一般的な塗料用添加剤を配合することも可能である。
硬化触媒としては、例えば、オクチル酸錫、ジブチル錫ジ(2−エチルヘキサノエート)、ジオクチル錫ジ(2−エチルヘキサノエート)、ジオクチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫オキサイド、ジオクチル錫オキサイド、2−エチルヘキサン酸鉛などの有機金属触媒、第三級アミンなどを挙げることができる。これらの硬化触媒として上記した化合物はそれぞれ単独で又は2種以上組み合わせて使用することができる。硬化触媒の配合量は、その種類により異なるが、アクリル樹脂(A)及び反応生成物(B)の固形分合計100質量部を基準にして、通常0〜5質量部、好ましくは0.1〜4質量部の範囲内とすることができる。
紫外線吸収剤としては、それ自体既知のものを使用することができ、例えば、ベンゾトリアゾール系吸収剤、トリアジン系吸収剤、サリチル酸誘導体系吸収剤、ベンゾフェノン系吸収剤などの紫外線吸収剤を挙げることができる。紫外線吸収剤を配合することによって、塗膜の耐候性、耐黄変性などを向上させることができる。紫外線吸収剤の塗料組成物中の含有量は、アクリル樹脂(A)及び反応生成物(B)の固形分総合計量100質量部を基準にして、通常0〜10質量部、特に0.2〜5質量部、さらに特に0.3〜2質量部の範囲内であることが好ましい。
光安定剤としては、それ自体既知のものが使用することができ、例えば、ヒンダードアミン系光安定剤を挙げることができる。光安定剤を配合することによって、塗膜の耐候性、耐黄変性などを向上させることができる。光安定剤の塗料組成物中の含有量は、アクリル樹脂(A)及び反応生成物(B)の固形分総合計量100質量部を基準にして、通常0〜10質量部、特に0.2〜5質量部、さらに特に0.3〜2質量部の範囲内であることが好ましい。
本発明の塗料組成物の形態は、特に制限されるものではないが、通常、有機溶剤型が好適である。この場合に使用する有機溶剤としては、各種の塗料用有機溶剤、例えば、芳香族又は脂肪族炭化水素系溶剤;エステル系溶剤;ケトン系溶剤;エーテル系溶剤などを使用することができる。使用する有機溶剤は、アクリル樹脂(A)及び反応生成物(B)などの調製時に用いたものをそのまま用いてもよく、更に適宜加えてもよい。
塗料組成物の調製
本発明の塗料組成物は、アクリル樹脂(A)、反応生成物(B)及び必要に応じて使用される硬化触媒、顔料、各種樹脂、紫外線吸収剤、光安定剤、有機溶剤などを、それ自体既知の方法により混合することによって調製することができる。
本発明の塗料組成物は、水酸基とイソシアネート基が常温でも反応する可能性があるため、アクリル樹脂(A)と反応生成物(B)とが分離した2液型塗料として調製し、使用直前に両者を混合して使用することが好適である。
本発明の塗料組成物の固形分濃度は、一般に30〜70質量%、特に40〜60質量%の範囲内であることが好ましい。
塗装方法
本発明の塗料組成物は、以下に示す種々の塗装方法で被塗物に塗装することができる。
被塗物
本発明の塗料組成物を適用することができる被塗物としては、例えば、自動車、二輪車などの車体又はその部品などが挙げられる。また、被塗物としては、これら車体などを形成する冷延鋼板、亜鉛メッキ鋼板、亜鉛合金メッキ鋼板、ステンレス鋼板、錫メッキ鋼板などの鋼板、アルミニウム板、アルミニウム合金板などの金属基材;各種プラスチック基材などを用いることもできる。
また、被塗物は、上記車体、部品、金属基材の金属表面に、リン酸塩処理、クロメート処理、複合酸化物処理などの化成処理が施されたものであってもよい。さらに、被塗物は、上記車体、金属基材などに、各種電着塗料などの下塗り塗膜及び/又は中塗り塗膜が形成されたものであってもよい。
さらに、被塗物としては、産業機械、家電製品、厨房器具、屋根、壁、シャッターなどを挙げることができる。
塗装及び硬化方法
本発明の塗料組成物の塗装方法は、特に限定されず、例えば、エアスプレー塗装、エアレススプレー塗装、回転霧化塗装、カーテンコート塗装、ロールコート塗装などの塗装方法でウエット塗膜を形成することができる。エアスプレー塗装、エアレススプレー塗装及び回転霧化塗装においては、必要に応じて、静電印加してもよい。これらのうち、エアスプレー塗装及び回転霧化塗装が特に好ましい。
塗装膜厚は、通常、硬化膜厚として、10〜50μmの範囲内が好ましい。
本発明の塗料組成物をエアスプレー塗装、エアレススプレー塗装又は回転霧化塗装する場合、本発明の塗料組成物の粘度を、該塗装に適した粘度範囲、通常、フォードカップ#No.4粘度計において、20℃で15〜60秒程度の粘度範囲内となるように、有機溶剤などの溶剤を用いて適宜調整しておくことが好ましい。
ウエット塗膜の硬化は加熱することによって行うことができ、加熱はそれ自体既知の加熱手段を用いて行うことができる。例えば、熱風炉、電気炉、赤外線誘導加熱炉などの乾燥炉を使用することができる。
加熱は、通常約100〜約180℃、好ましくは約120〜約160℃の範囲内の温度で、通常5〜60分間程度行うのが適当である。
複層塗膜形成方法
本発明の塗料組成物は、耐擦り傷性、耐酸性、仕上り外観などの塗膜性能に優れた塗膜を形成せしめることができるので、被塗物に上塗複層塗膜を形成するための塗膜形成方法において、トップクリヤコートを形成するためのクリヤ塗料組成物として好適に使用することができる。
したがって、本発明によれば、被塗物に、着色ベースコート塗料及びクリヤコート塗料を順次塗装することにより複層塗膜を形成するにあたり、クリヤコート塗料として本発明の塗料組成物を使用することを特徴とする上塗複層塗膜形成方法が提供される。
本発明の複層塗膜形成方法を適用するための被塗物としては、前述した自動車車体及びその部品が特に好ましい。
着色ベースコート塗料及びクリヤコート塗料の塗装方法としては、例えば、エアレススプレー、エアスプレー、回転霧化塗装などの塗装方法を採用することができ、これらの塗装方法は、必要に応じて、静電印加していてもよい。
着色ベースコート塗料としては、それ自体既知の着色塗料組成物を使用することができ、特に、自動車車体などを塗装する場合に通常用いられる塗料組成物を使用することが好適である。
上記着色ベースコート塗料には、基体樹脂、架橋剤及び着色剤(例えば、着色顔料、メタリック顔料、光干渉性顔料、体質顔料など)ならびに場合によりさらに、その他の塗料用添加剤を含有する有機溶剤型又は水性の塗料組成物が包含される。
上記基体樹脂としては、例えば、水酸基、エポキシ基、カルボキシル基、アルコキシシリル基などの架橋性官能基を有する、アクリル樹脂、ビニル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂などから選ばれる少なくとも1種の樹脂を用いることができる。また、上記架橋剤としては、例えば、アルキルエーテル化メラミン樹脂、尿素樹脂、グアナミン樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート化合物、エポキシ化合物、カルボキシル基含有化合物などから選ばれる少なくとも1種を用いることができる。基体樹脂及び架橋剤は、両成分の合計量を基準にして、通常、基体樹脂な50〜90重量%の範囲内、そして架橋剤は50〜10重量%の範囲内で使用することが好ましい。
本発明の複層塗膜形成方法においては、まず、被塗物に、上記着色ベースコート塗料を、硬化膜厚で約10〜約50μmとなるように塗装する。塗装されたベースコート塗料は、約100〜約180℃、好ましくは約120〜約160℃の温度で約10〜約40分間加熱して硬化させるか、又は塗装後硬化することなく室温で数分間放置もしくは約40〜約100℃で約1〜約20分間プレヒートする。
次いで、クリヤコート塗料として、本発明の塗料組成物を、膜厚が硬化膜厚で約10〜約70μmになるように塗装し、加熱することによって硬化された複層塗膜を形成することができる。加熱は約100〜約180℃、好ましくは約120〜約160℃の温度で、約10〜約40分間が行うことが好ましい。
上記2コート方式において、ベースコート塗料を塗装し加熱硬化することなく、クリヤコート塗料を塗装し、これらの二層塗膜を同時に硬化する2コート1ベーク方式を用いることができ、或いはベースコート塗料を塗装しベースコート塗膜を加熱硬化後、クリヤコート塗料を塗装し、クリヤコート塗膜を硬化する2コート2ベーク方式を採用してもよい。
  Hereinafter, the coating composition of the present invention (hereinafter sometimes referred to as “the present coating material”) and the method for forming a top coating film are further described in detail.
Acrylic resin (A)
  The acrylic resin (A) used in the coating composition of the present invention has a hydroxyl value in the range of 80 to 180 mgKOH / g, a weight average molecular weight in the range of 3000 to 20000, and a range of 8.5 to 9.8. An acrylic resin having a solubility parameter value of
  The acrylic resin (A) is obtained by, for example, copolymerizing a hydroxyl group-containing unsaturated monomer (M-1) and other copolymerizable unsaturated monomer (M-2) by a method known per se. Can be manufactured.
  The hydroxyl group-containing unsaturated monomer (M-1) includes a compound having one hydroxyl group and one unsaturated bond in one molecule, and the hydroxyl group mainly reacts with the isocyanate group of the reaction product (B). It acts as a functional group.
  As the hydroxyl group-containing unsaturated monomer (M-1), specifically, a monoesterified product of (meth) acrylic acid and a dihydric alcohol having 2 to 10 carbon atoms is suitable. For example, 2-hydroxy Examples include ethyl (meth) acrylate, hydroxypropyl acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate. Further, as the hydroxyl group-containing unsaturated monomer (M-1), a compound obtained by ring-opening condensation of ε-caprolactone to a monoesterified product of the above dihydric alcohol and acrylic acid or methacrylic acid, for example, “ “Plaxel FA-1,” “Plaxel FA-2,” “Plaxel FA-3,” “Plaxel FA-4,” “Plaxel FA-5,” “Plaxel FM-1,” “Plaxel FM-2,” “Plaxel” "FM-3", "Placcel FM-4", "Placcel FM-5" (all of which are trade names, manufactured by Daicel Chemical Industries, Ltd.) can also be used.
  In the present specification, “(meth) acrylate” means acrylate or methacrylate. “(Meth) acrylic acid” means acrylic acid or methacrylic acid. “(Meth) acrylamide” means acrylamide or methacrylamide.
  The other copolymerizable unsaturated monomer (M-2) includes a compound having one unsaturated bond in one molecule other than the hydroxyl group-containing unsaturated monomer (M-1). Specific examples thereof are listed in the following (1) to (9).
(1) Acid group-containing unsaturated monomer: Compounds having at least one acid group and one unsaturated bond in one molecule are included, for example, (meth) acrylic acid, crotonic acid, itaconic acid Carboxyl group-containing unsaturated monomers such as maleic acid and maleic anhydride; sulfonic acid group-containing unsaturated monomers such as vinyl sulfonic acid and sulfoethyl (meth) acrylate; 2- (meth) acryloyloxyethyl acid phosphate; Examples include acidic phosphate ester unsaturated monomers such as 2- (meth) acryloyloxypropyl acid phosphate, 2- (meth) acryloyloxy-3-chloropropyl acid phosphate, and 2-methacryloyloxyethylphenyl phosphate. be able to. These can be used alone or in combination of two or more.
  The acid group-containing unsaturated monomer is generally 0 to 0, based on the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). It is preferable to use within a range of 5% by mass, particularly 0.1 to 3% by mass.
(2) Monoesterified product of (meth) acrylic acid or methacrylic acid and a monohydric alcohol having 1 to 20 carbon atoms: For example, methyl (meth) acrylate, ethyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl acrylate (Osaka) Made by Organic Chemical Industry Co., Ltd., trade name), cyclohexyl (meth) acrylate, lauryl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, adamantyl (meth) acrylate, 3,5- Dimethyladamantyl (meth) acrylate, 3-tetracyclododecyl methacrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, 4-methylcyclohexylmethyl (meth) acrylate, 4-ethylcyclohexylmethyl (meth) acrylate, 4-methoxy Cyclohexylmethyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, cyclododecyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, methoxybutyl (meth) acrylate, methoxyethyl (meth) Acrylate, ethoxybutyl (meth) acrylate, etc.
  From the viewpoint that the weather resistance of the coating can be improved, among the above, unsaturated monomers having a bridged alicyclic hydrocarbon group having 10 to 20 carbon atoms and / or 3 to 12 carbon atoms. The unsaturated monomer (2a) having an alicyclic hydrocarbon group can be preferably used.
  Representative examples of the bridged alicyclic hydrocarbon group include an isobornyl group, a tricyclodecanyl group, and an adamantyl group. Accordingly, specific examples of the unsaturated monomer having a bridged alicyclic hydrocarbon group having 10 to 20 carbon atoms include, for example, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, adamantyl ( Examples thereof include (meth) acrylate, 3,5-dimethyladamantyl (meth) acrylate, and 3-tetracyclododecyl methacrylate.
  Specific examples of the unsaturated monomer having an alicyclic hydrocarbon group having 3 to 12 carbon atoms include, for example, cyclohexyl (meth) acrylate, 4-methylcyclohexylmethyl (meth) acrylate, 4-ethylcyclohexylmethyl ( Examples include meth) acrylate, 4-methoxycyclohexylmethyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, cyclooctyl (meth) acrylate, and cyclododecyl (meth) acrylate.
  When the monomer (2a) is used, the proportion of use is based on the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 3 to 50% by mass, particularly 10 to 40% by mass.
  Moreover, from the viewpoint that the scratch resistance of the coating film can be improved, among the above, the unsaturated monomer (2b) having a branched hydrocarbon structure having 8 or more carbon atoms is preferably used. be able to. When the monomer (2b) is used, since the Tg and polarity of the resulting resin are lowered, the effect of improving the scratch resistance of the coating film by imparting flexibility and the effect of improving the finish by smoothing the surface can be obtained. . In addition, since it has a branched structure, it is possible to suppress a decrease in the Tg of the coating film as compared with the case of using an unsaturated monomer having a linear hydrocarbon group having 8 or more carbon atoms. Therefore, it is advantageous from the viewpoint of improving acid resistance.
  Specific examples of the unsaturated monomer having a hydrocarbon group having 8 or more carbon atoms having a branched structure include, for example, 2-ethylhexyl acrylate, isooctyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl acrylate ( And a product name of Osaka Organic Chemical Industry Co., Ltd.
  When the monomer (2b) is used, the use ratio is based on the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 3 to 50% by mass, particularly 10 to 40% by mass.
(3) Alkoxysilane group-containing unsaturated monomer: For example, vinyltrimethoxysilane, vinyltriethoxysilane, acryloxyethyltrimethoxysilane, methacryloxyethyltrimethoxysilane, acryloxypropyltrimethoxysilane, methacryloxypropyltri Methoxysilane, acryloxypropyltriethoxysilane, methacryloxypropyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, and the like. Among these, vinyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane and the like can be cited as preferred alkoxysilane group-containing unsaturated monomers.
  By using an alkoxysilane group-containing unsaturated monomer, in the coating film, in addition to the crosslinking bond between the hydroxyl group and the isocyanate group, the condensation reaction between the alkoxysilane groups and the crosslinking bond between the alkoxysilane group and the hydroxyl group are performed. Can be generated. Thereby, the crosslinking density of the obtained coating film is improved, and the effect of improving acid resistance and stain resistance can be obtained.
  When using an alkoxysilane group-containing unsaturated monomer, the use ratio is the sum of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 3 to 50% by weight, in particular 5 to 35% by weight, based on the amount.
(4) Aromatic unsaturated monomer: For example, styrene, α-methylstyrene, vinyltoluene and the like.
  By using an aromatic unsaturated monomer, the Tg of the resulting resin increases, and a hydrophobic film with a high refractive index can be obtained. The effect of improvement, improvement in water resistance and acid resistance can be obtained.
  When an aromatic unsaturated monomer is used, the use ratio is the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, the content is preferably in the range of 3 to 50% by mass, particularly 5 to 40% by mass.
(5) Glycidyl group-containing unsaturated monomer: Compounds having one glycidyl group and one unsaturated bond in each molecule are included, and specific examples include glycidyl acrylate and glycidyl methacrylate.
(6) Nitrogen-containing unsaturated monomer: For example, (meth) acrylamide, dimethylacrylamide, N, N-dimethylpropylacrylamide, N-butoxymethylacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, diacetoneacrylamide, N, N-dimethylaminoethyl (meth) acrylate, vinylpyridine, N-vinylpyrrolidone, (meth) acryloylmorpholine, vinylimidazole and the like.
(7) Vinyl ethers and allyl ethers: For example, linear or branched alkyl vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether, tert-butyl vinyl ether, pentyl vinyl ether, hexyl vinyl ether, octyl vinyl ether; Cycloalkyl vinyl ethers such as cyclopentyl vinyl ether and cyclohexyl vinyl ether; Allyl vinyl ethers such as phenyl vinyl ether and trivinyl ether; Aralkyl vinyl ethers such as benzyl vinyl ether and phenethyl vinyl ether; Allyl ethers such as allyl glycidyl ether and allyl ethyl ether.
(8) Other vinyl compounds: For example, vinyl acetate, vinyl propionate, vinyl chloride, versatic acid vinyl ester (for example, “Veoba 9”, “Veoba 10” (trade name) manufactured by Japan Epoxy Resin Co., Ltd.) Such.
(9) Unsaturated bond-containing nitrile compound: For example, acrylonitrile, methacrylonitrile and the like.
  These other vinyl monomers (M-2) can be used alone or in combination of two or more.
  An acrylic resin (A) can be obtained by copolymerizing the hydroxyl group-containing unsaturated monomer (M-1) and other copolymerizable unsaturated monomer (M-2).
  The proportion of the hydroxyl group-containing unsaturated monomer (M-1) used is the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 15 to 50% by mass, particularly 20 to 45% by mass. When the use ratio of the hydroxyl group-containing unsaturated monomer (M-1) is less than 15% by mass, the formed cured coating film is insufficiently crosslinked, and the scratch resistance of the coating film is insufficient. There is. On the other hand, when it exceeds 50% by mass, the compatibility with other copolymerizable unsaturated monomer (M-2) is lowered, and the reaction product (B) of the obtained acrylic resin (A) and The finished appearance of the coating film may be reduced due to a decrease in the compatibility.
  The copolymerization method of the hydroxyl group-containing unsaturated monomer (M-1) and other copolymerizable unsaturated monomer (M-2) is not particularly limited, and is a copolymerization method known per se. Can be used. Among these, a solution polymerization method in which copolymerization is performed in an organic solvent in the presence of a polymerization initiator is preferable.
  Examples of the organic solvent used in the solution polymerization method include aromatic solvents such as toluene, xylene, “Swazole 1000” (trade name, high-boiling petroleum solvent) manufactured by Cosmo Oil, ethyl acetate, 3- Ester solvents such as methoxybutyl acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, propyl propionate, butyl propionate, ethoxy ethyl propio Nate etc. can be mentioned.
  These organic solvents can be used alone or in combination of two or more. However, since the acrylic resin (A) has a high hydroxyl value, from the viewpoint of the solubility of the resin, a high-boiling ester solvent, ketone It is preferable to use a system solvent. In addition, aromatic solvents having higher boiling points can be used in combination.
  Examples of the polymerization initiator that can be used in the copolymerization of the acrylic resin (A) include 2,2′-azobisisobutyronitrile, benzoyl peroxide, di-t-butyl peroxide, and di-t-. Examples thereof include radical polymerization initiators known per se of azo type or peroxide type such as amyl peroxide, t-butyl peroctoate, and 2,2′-azobis (2-methylbutyronitrile).
  In addition, a chain transfer agent known per se can be used in combination for adjusting the molecular weight.
  The acrylic resin (A) can have a hydroxyl value within the range of 80 to 180 mgKOH / g, preferably 95 to 175 mgKOH / g, more preferably 110 to 170 mgKOH / g. When the hydroxyl value is less than 80 mgKOH / g, the formed coating film is not sufficiently crosslinked, and the scratch resistance of the coating film may be insufficient. On the other hand, if it exceeds 180 mgKOH / g, the water resistance of the formed coating film may decrease.
  The acrylic resin (A) can have a weight average molecular weight in the range of 3000 to 20000, preferably 4000 to 18000, and more preferably 5000 to 16000. When the weight average molecular weight is less than 3,000, the water resistance and scratch resistance of the formed coating film may be lowered. On the other hand, when it exceeds 20,000, the coated surface smoothness of the formed coating film may be lowered.
  In the present specification, the “weight average molecular weight” is a value obtained by converting the weight average molecular weight measured with a gel permeation chromatograph (“HLC8120GPC” manufactured by Tosoh Corporation) based on the weight average molecular weight of polystyrene. The weight average molecular weights of the samples are “TSKgel G-4000H × L”, “TSKgel G-3000H × L”, “TSKgel G-2500H × L”, “TSKgel G-2000H × L” (all of which are Tosoh Corporation) ), Manufactured under the trade name), and measured under the conditions of mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 cc / min, detector: RI. The number average molecular weight is also a value measured under the same conditions as described above.
  The acrylic resin (A) can have a solubility parameter value in the range of 8.5 to 9.8, preferably 8.6 to 9.7, more preferably 8.7 to 9.6. When the solubility parameter value is less than 8.5 or exceeds 9.8, the compatibility with the reaction product (B) is lowered, and the curability and the finished appearance of the coating film may be lowered.
  In the present specification, the “solubility parameter value” (SP value) of an acrylic resin represents a measure of the intermolecular interaction of liquid molecules, and can be calculated by the following method.
  The solubility parameter value (SP value) of the acrylic resin obtained by copolymerization of at least two kinds of polymerizable monomers can be calculated by the following formula.
  SP value = SP1× fW1+ SP2× fW2+ ...... SPn× fWn
In the above formula, SP1, SP2... SPnRepresents the SP value of the homopolymer of each polymerizable monomer, fW1, FW2... fWnRepresents the weight fraction of each monomer with respect to the total amount of monomers. The SP value of the homopolymer of the polymerizable monomer is J.P. Paint Technology, vol 42, 176 (1970).
  The acrylic resin (A) also preferably has a glass transition temperature in the range of generally −30 ° C. to 90 ° C., particularly −20 ° C. to 80 ° C., more particularly −10 ° C. to 70 ° C. If the glass transition temperature of the acrylic resin (A) is less than −30 ° C., the coating film hardness may be insufficient. On the contrary, if it exceeds 90 ° C., the coated surface smoothness of the coating film may be reduced. is there.
  In the present specification, the “glass transition temperature” (Tg (° C.)) of the acrylic resin can be calculated by the following formula.
  1 / Tg (° K) = (W1/ T1) + (W2/ T2+ + ...
  Tg (° C.) = Tg (° K) -273
In each formula, W1, W2,... Represent the weight fraction of each polymerizable monomer used in the copolymerization with respect to the total amount of monomers, and T1, T2,... Represent the Tg (° K) of the homopolymer of each polymerizable monomer. T1, T2, .. is a Polymer Handbook (4th Edition, edited by J. Brandup, E. H. Immergut), and those not described in the Polymer Handbook are Journal of Applied Polymer Science. It is a value as described in Applied Polymer Symposium, 45, 289-316 (1990).
Reaction product (B)
  As the reaction product (B), a polyisocyanate compound (b-1), a hydroxyl value in the range of 40 to 180 mgKOH / g, a weight average molecular weight in the range of 700 to 4000, and 8.5 to 9.8 A reaction product (B-1) obtained by reacting an acrylic resin (b-2) having a solubility parameter value within a range with an NCO / OH ratio within a range of 7 to 15; and a polyisocyanate compound (B-1) and a hydroxyl group-containing compound (b-3) having a hydroxyl value in the range of 70 to 450 mgKOH / g and a weight average molecular weight in the range of 250 to 3000, NCO in the range of 6 to 12 The reaction product (B-2) having a weight average molecular weight within the range of 1000 to 15000 obtained by reacting at a / OH ratio is included. It serves as a crosslinking agent for the resin (A).
Polyisocyanate compound (b-1)
  The polyisocyanate compound (b-1) is a compound having at least two isocyanate groups in one molecule. As the polyisocyanate compound (b-1), those known per se for polyurethane production and the like can be used. For example, aliphatic polyisocyanate, alicyclic polyisocyanate, araliphatic polyisocyanate, aromatic polyisocyanate, and the like. Examples thereof include isocyanates and derivatives of these polyisocyanates.
  Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3- Aliphatic diisocyanates such as butylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanatomethylcaproate; lysine ester triisocyanate, 1,4,8-triisocyanate Natooctane, 1,6,11-triisocyanatoundecane, 1,8-diisocyanato-4-isocyanatomethyloctane, 1,3,6-triisocyanatohexane, 2,5,5 - and aliphatic triisocyanates such as trimethyl-1,8-diisocyanato-5-isocyanatomethyl octane and the like.
  Examples of the alicyclic polyisocyanate include 1,3-cyclopentene diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (common name: Isophorone diisocyanate), 4,4'-methylenebis (cyclohexyl isocyanate), methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (Isocyanatomethyl) cycloaliphatic diisocyanates such as cyclohexane and norbornane diisocyanate; 1,3,5-triisocyanatocyclohexane, 1,3,5-trimethylisocyanato Rhohexane, 2- (3-isocyanatopropyl) -2,5-di (isocyanatomethyl) -bicyclo (2.2.1) heptane, 2- (3-isocyanatopropyl) -2,6-di (isocyanate) Natomethyl) -bicyclo (2.2.1) heptane, 3- (3-isocyanatopropyl) -2,5-di (isocyanatomethyl) -bicyclo (2.2.1) heptane, 5- (2- Isocyanatoethyl) -2-isocyanatomethyl-3- (3-isocyanatopropyl) -bicyclo (2.2.1) heptane, 6- (2-isocyanatoethyl) -2-isocyanatomethyl-3- ( 3-isocyanatopropyl) -bicyclo (2.2.1) heptane, 5- (2-isocyanatoethyl) -2-isocyanatomethyl-2- (3-isocyanatopropyl) -bicyclo (2.2. ) -Heptane, 6- (2-isocyanatoethyl) -2-isocyanatomethyl-2- (3-isocyanatopropyl) -bicyclo (2.2.1) heptane, and the like. Can do.
  Examples of the araliphatic polyisocyanate include 1,3- or 1,4-xylylene diisocyanate or a mixture thereof, ω, ω′-diisocyanato-1,4-diethylbenzene, 1,3- or 1,4-bis ( Araliphatic diisocyanates such as 1-isocyanato-1-methylethyl) benzene (common name: tetramethylxylylene diisocyanate) or mixtures thereof; araliphatic triisocyanates such as 1,3,5-triisocyanatomethylbenzene Can be mentioned.
  Examples of the aromatic polyisocyanate include m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 2,4′- or 4,4′-diphenylmethane diisocyanate or a mixture thereof. , 2,4- or 2,6-tolylene diisocyanate or mixtures thereof, aromatic diisocyanates such as 4,4′-toluidine diisocyanate, 4,4′-diphenyl ether diisocyanate; triphenylmethane-4,4 ′, 4 ″ Aromatic triisocyanates such as '-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4,6-triisocyanatotoluene; 4,4'-diphenylmethane-2,2', 5,5'- Tetraisocyanate And aromatic tetraisocyanates such bets can be mentioned.
  Examples of the polyisocyanate derivative include various derivatives such as dimer, trimer, biuret, allophanate, carbodiimide, uretdione, uretoimine, isocyanurate, and iminooxadiazinedione of the polyisocyanate compound described above.
  These polyisocyanates can be used alone or in combination of two or more.
  Among these polyisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and derivatives thereof are preferable from the viewpoint of excellent scratch resistance of the cured coating film, and hexamethylene diisocyanate (HMDI), hexamethylene diisocyanate derivatives, isophorone. More preferred are diisocyanate (IPDI) and isophorone diisocyanate derivatives.
Acrylic resin (b-2)
  As the acrylic resin (b-2), the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2) described above for the acrylic resin (A) are known per se. It can manufacture by making it copolymerize by the method of.
  The use ratio of the hydroxyl group-containing unsaturated monomer (M-1) is the total amount of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 15 to 50% by mass, particularly 20 to 45% by mass. When the proportion of the hydroxyl group-containing unsaturated monomer (M-1) used is less than 15% by mass, the coating film performance such as acid resistance and scratch resistance of the formed coating film may be deteriorated. %, The compatibility with the other copolymerizable unsaturated monomer (M-2) and the copolymerization reactivity are lowered, and the polyisocyanate compound (b-1) and the acrylic resin (b- When the compatibility between the reaction product (B-1) obtained by the reaction with 2) and the acrylic resin (A) is lowered, the finished appearance of the coating film may be lowered.
  An acrylic resin (b-2) can be obtained by copolymerizing the hydroxyl group-containing unsaturated monomer (M-1) and other copolymerizable unsaturated monomer (M-2).
  The copolymerization of the hydroxyl group-containing unsaturated monomer (M-1) and the other copolymerizable unsaturated monomer (M-2) is not particularly limited, and the acrylic resin (A) is copolymerized. Can be performed in the same manner as described above. In the solution polymerization of the acrylic resin (b-2), it is preferable to use an ester solvent or an ether solvent from the viewpoint of solubility. Further, aromatic solvents having higher boiling points can be suitably combined and used.
  As a polymerization initiator that can be used in the copolymerization of the acrylic resin (b-2), those exemplified above for the acrylic resin (A) can be used.
  In the copolymerization of the acrylic resin (b-2), a chain transfer agent can be used. Examples of the chain transfer agent include alkyl mercaptans such as n-butyl mercaptan, n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, cetyl mercaptan, stearyl mercaptan; thioglycolic acid, thioglycerol , Other mercaptans such as ethylenethioglycol, 2-ethylhexyl thioglycolate, 2-mercaptoethanol, mercaptoglycerin, mercaptosuccinic acid, mercaptopropionic acid; halogen compounds such as carbon tetrachloride, chloroform, trichlorobromoethane, bromoform; Disulfide, Dimethylxanthogen disulphide, Secondary alcohol, Isopropyl alcohol, Dioxane, Tet Hydrofuran, isopropyl benzol, alpha-methylstyrene dimer, 2,4-diphenyl-4-methyl-1-pentene, .gamma. such mercaptopropyltrimethoxysilane may be mentioned.
  Among the above, a chain transfer agent having a hydroxyl group such as 2-mercaptoethanol can be preferably used. By using a chain transfer agent having a hydroxyl group, an acrylic resin having a structure in which a hydroxyl group is introduced at the end of the acrylic resin (b-2) can be obtained. Thereby, in synthesizing the reaction product (B-1), the isocyanate group of the polyisocyanate compound (b-1) easily reacts with the hydroxyl group of the acrylic resin (b-2), and the acrylic resin (b-2). ) Can be set low, the high molecular weight of the reaction product (B-1) can be suppressed, and the smoothness of the coating film formed from the coating composition of the present invention can be improved. Can do.
  The amount of chain transfer agent used is not particularly limited, and for example, based on the total amount of hydroxyl group-containing unsaturated monomer (M-1) and other copolymerizable unsaturated monomer (M-2). In general, it is preferably in the range of 0.1 to 10% by mass.
  The acrylic resin (b-2) has a hydroxyl value in the range of 40 to 180 mgKOH / g, preferably 50 to 170 mgKOH / g, more preferably 80 to 170 mgKOH / g, and even more preferably 100 to 170 mgKOH / g. Can do. When the hydroxyl value of the acrylic resin (b-2) is less than 40 mgKOH / g, the coating film performance such as acid resistance and scratch resistance of the formed coating film may be insufficient. On the contrary, 180 mgKOH / g If it exceeds, the finished appearance such as the smoothness of the coating surface may be deteriorated.
  When the acrylic resin (b-2) is produced using a chain transfer agent, the hydroxyl value of the acrylic resin (b-2) is generally 40 to 140 mgKOH / g, particularly 50 to 130 mgKOH / g. It is preferable to be within the range.
  The acrylic resin (b-2) can have a weight average molecular weight in the range of 700 to 4000, preferably 800 to 3000, and more preferably 1000 to 2000. When the weight average molecular weight of the acrylic resin (b-2) is less than 700, the coating film performance such as acid resistance and scratch resistance of the formed coating film may be insufficient. Conversely, when it exceeds 4000, The finished appearance such as the smoothness of the coating surface of the formed coating film may deteriorate.
  The acrylic resin (b-2) can have a solubility parameter value in the range of 8.5 to 9.8, preferably 8.6 to 9.6, more preferably 8.7 to 9.5. . When the solubility parameter value of the acrylic resin (b-2) is less than 8.5 or exceeds 9.8, the compatibility with the acrylic resin (A) may be lowered.
  The acrylic resin (b-2) also preferably has a glass transition temperature generally in the range of -30 ° C to 80 ° C, particularly -25 ° C to 70 ° C, more particularly -20 ° C to 60 ° C. If the glass transition temperature of the acrylic resin (b-2) is less than −30 ° C., the hardness of the formed coating film may be insufficient. Conversely, if the glass transition temperature exceeds 80 ° C., the coating surface of the formed coating film is smooth. May decrease.
Reaction product (B-1)
  The reaction product (B-1) can be obtained by addition reaction of the polyisocyanate compound (b-1) described above and the acrylic resin (b-2). This reaction proceeds by an addition reaction between the isocyanate group of the polyisocyanate compound (b-1) and the hydroxyl group of the acrylic resin (b-2).
  In the addition reaction, the polyisocyanate compound (b-1) and the acrylic resin (b-2) are usually about 60 to about 140 ° C., preferably about 70 to about 130 ° C., usually about 1 to 10 hours. The reaction can be carried out preferably for about 2 to 8 hours. The reaction can usually be performed until the hydroxyl value of the acrylic resin (b-2) becomes 2 mgKOH / g or less.
  If the reaction temperature is less than 60 ° C., a large amount of unreacted hydroxyl groups may remain. Conversely, if the reaction temperature exceeds 140 ° C., the reaction product may be decomposed.
  The above reaction can be carried out by further adding an organic solvent, if necessary. As an organic solvent, what was illustrated about manufacture of the said acrylic resin (A) can be used similarly. As the solvent, those which are not reactive with an isocyanate group are preferable. Examples thereof include ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; and solvents such as N-methylpyrrolidone (NMP). it can.
  Moreover, in the said addition reaction, a catalyst can be used as needed. Specifically, examples of the catalyst effective for the reaction between a hydroxyl group and an isocyanate group include a tin-based catalyst and a phosphoric acid-based catalyst. Of these, dibutyltin dilaurate and the like can be preferably used.
  In the reaction of the polyisocyanate compound (b-1) and the acrylic resin (b-2), the ratio of the polyisocyanate compound (b-1) to the acrylic resin (b-2) is the finished appearance of the coating film and the anti-moisture resistance. From such viewpoints, the NCO / OH ratio can be within the range of 7 to 15, preferably 8 to 14, and more preferably 9 to 12. If the NCO / OH ratio is less than 7, the reaction product (B-1) may have a high molecular weight, which may cause problems such as deterioration of the finished appearance such as the smoothness of the coating film formed. On the contrary, when the NCO / OH ratio is greater than 15, the ratio of the unreacted polyisocyanate compound (b-1) increases, and the anti-moisture resistance of the formed coating film may decrease.
  The reaction product (B-1) may contain an unreacted product and can be used as it is without separating the unreacted product.
  The reaction product (B-1) generally has an NCO equivalent weight in the range of 200 to 370, preferably 210 to 350, more preferably 220 to 330, from the viewpoint of the curability of the finally obtained coating composition. Can have.
  The reaction product (B-1) generally has a hydroxyl value in the range of 0 to 10 mgKOH / g, preferably 0 to 7.5 mgKOH / g, more preferably 0 to 5 mgKOH / g, from the viewpoint of storage stability. be able to.
  The reaction product (B-1) is generally within the range of 0 to 15 mgKOH / g, preferably 0 to 12.5 mgKOH / g, more preferably 0 to 10 mgKOH / g, from the viewpoint of the reactivity between isocyanate and hydroxyl group. It can have an acid value.
  The reaction product (B) is generally 1000 to 40000, preferably 1500 to 30000, from the viewpoint of finished appearance such as curability of the finally obtained coating composition and smoothness of the coating film obtained. More preferably, it can have a weight average molecular weight in the range of 2000-20000.
  In this specification, the NCO equivalent, hydroxyl value, acid value, and weight average molecular weight of the reaction product (B-1) are the unreacted remaining polyisocyanate compound (b-1) and acrylic resin (b-2). ) Also means the value of the reaction product as a whole.
  In the coating composition of the present invention, the equivalent ratio (NCO / OH) of the hydroxyl group in the acrylic resin (A) to the isocyanate group in the reaction product (B-1) depends on the curability of the coating composition and the coating stability. From a point of view, it is generally preferred to be in the range of about 0.5 to about 2.0, especially about 0.75 to about 1.75, more particularly about 0.8 to about 1.5.
  Moreover, the content of the acrylic resin (A) and the reaction product (B-1) in the coating composition of the present invention is based on the total solid content of the acrylic resin (A) and the reaction product (B-1). As the nonvolatile content, the acrylic resin (A) is generally in the range of 30 to 75% by mass, preferably 35 to 70% by mass, more preferably 40 to 65% by mass, and the reaction product (B-1) is generally It can be in the range of 25-70% by mass, preferably 30-65% by mass, more preferably 35-60% by mass.
Hydroxyl-containing compound (b-3)
  The hydroxyl group-containing compound (b-3) is a compound having at least 2, preferably 2 to 4 hydroxyl groups in one molecule. Specifically, for example, polyether polyol, polyester polyol, polyether ester polyol , Polyalkylene polyol, polycarbonate polyol, polycaprolactone polyol, silicone polyol, polyurethane polyol and the like. These polyols may be either diol compounds or trifunctional or higher functional polyol compounds. Among the above, polyether polyol, polycarbonate polyol, and polycaprolactone polyol can be particularly preferably used.
  Examples of polyether polyols include ethylene oxide, propylene glycol, glycerin, and pentaerythritol as initiators, ethylene oxide, propylene oxide, mixtures of ethylene oxide and propylene oxide, ring-opening polymers such as tetrahydrofuran, and the like. Can be mentioned.
  As the polyester polyol, a direct esterification reaction between a polyhydric alcohol and an ester-forming derivative such as an ester, an anhydride, or a halide of a polyvalent carboxylic acid or an ester, anhydride, or halide in an amount less than the stoichiometric amount of the polyhydric alcohol; The thing obtained by transesterification can be mentioned.
  Examples of the polyhydric alcohol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2-butyl-2-ethyl-1,3-propane. Diol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2 -Methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol Aliphatic diols such as triethylene glycol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol; 3 such as trimethylolethane, trimethylolpropane, hexitols, pentitols, glycerin, pentaerythritol, and tetramethylolpropane Mention may be made of alcohols having a higher value.
  Examples of the polyvalent carboxylic acid or its ester-forming derivative include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid. Acid, 2-methyladipic acid, 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, hydrogenated dimer acid Aliphatic dicarboxylic acids such as dimer acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid; 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2 -Cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarbo Cycloaliphatic dicarboxylic acids such as acid, 1,4-dicarboxylic methylenecyclohexane, nadic acid, and methyl nadic acid; polycarboxylic acids such as trimellitic acid, trimesic acid, and trimer of castor oil fatty acid; Polyhydric carboxylic acid anhydrides, halides such as chlorides and bromides of the polycarboxylic acids, methyl esters, ethyl esters, propyl esters, isopropyl esters, butyl esters, isobutyl esters, amyl esters, etc. of the polyvalent carboxylic acids Lactones such as γ-caprolactone, δ-caprolactone, ε-caprolactone, dimethyl-ε-caprolactone, δ-valerolactone, γ-valerolactone, and γ-butyrolactone.
  Examples of the polyether ester polyol include those obtained by reacting the above polyether polyol and a polybasic acid into a polyester; those having both polyether and polyester segments in the molecule.
  Examples of the polyalkylene polyol include polybutadiene polyol and polyisoprene polyol.
  Examples of the polycarbonate polyol include compounds obtained by polycondensation reaction between a normal polyol component and a carbonylating agent.
  Examples of the polyol component include diols and polyhydric alcohols such as trivalent or higher alcohols. Examples of the diol include 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, , 9-nonanediol, 1,10-decanediol and the like linear diols; 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-ethyl-1 , 6-hexanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 2-methyl-1,8-octanediol, 2,2,4 -Branched diols such as trimethyl-1,3-pentanediol and 2-ethyl-1,3-hexanediol; 1,3-cyclohexanediol, 1,4 Examples include alicyclic diols such as cyclohexanediol and 1,4-cyclohexanedimethanol; aromatic diols such as p-xylenediol and p-tetrachloroxylenediol; ether diols such as diethylene glycol and dipropylene glycol. These diols can be used alone or in combination of two or more. Examples of the trihydric or higher alcohols include glycerin, trimethylolethane, trimethylolpropane, trimethylolpropane dimer, pentaerythritol, and the like.
  As the carbonylating agent, those known per se can be used, and specific examples thereof include alkylene carbonate, dialkyl carbonate, diallyl carbonate, phosgene and the like. It can be used in combination of more than one species. Of these, preferred are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like.
  Examples of the polycaprolactone polyol include ring-opening polymerization products of caprolactone such as polycaprolactone diol.
  Examples of the silicone polyol include silicone oils having a hydroxyl group at the terminal having a siloxane bond in the molecule.
  Examples of the polyurethane polyol include those obtained by a urethanization reaction between a polyol and a polyisocyanate in an amount less than the stoichiometric amount of the polyol. For example, a reaction product of diamine and ethylene carbonate can also be used. Can be used.
  The hydroxyl group-containing compound (b-3) described above can be used alone or in combination of two or more.
  The hydroxyl group-containing compound (b-3) can have a hydroxyl value in the range of 70 to 450 mgKOH / g, preferably 80 to 425 mgKOH / g, more preferably 90 to 400 mgKOH / g. If the hydroxyl value of the hydroxyl group-containing compound (b-3) is less than 70 mgKOH / g, the resulting coating film may have insufficient coating performance such as acid resistance and scratch resistance, and conversely, 450 mgKOH / When g is exceeded, compatibility with an acrylic resin (A) may fall.
  The hydroxyl group-containing compound (b-3) can have a weight average molecular weight in the range of 250 to 3000, preferably 300 to 2500, and more preferably 350 to 2000. If the weight average molecular weight of the hydroxyl group-containing compound (b-3) is less than 250, the compatibility with the acrylic resin (A) may be reduced. Conversely, if it exceeds 3000, the acid resistance of the resulting coating film will be reduced. In some cases, the film performance such as scratch resistance may be insufficient.
Reaction product (B-2)
  The reaction product (B-2) can be obtained by addition reaction of the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3). This reaction proceeds by an addition reaction between the isocyanate group of the polyisocyanate compound (b-1) and the hydroxyl group of the hydroxyl group-containing compound (b-3).
  In the addition reaction, the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3) are usually at a temperature of about 60 to about 140 ° C., preferably about 70 to about 130 ° C., usually for 1 to 10 hours. The reaction can be carried out for about 2 hours, preferably about 2 to 8 hours. The reaction can usually be carried out until the hydroxyl value of the hydroxyl group-containing compound (b-3) is 2 mgKOH / g or less. If the reaction temperature is less than 60 ° C., a large amount of unreacted hydroxyl groups may remain. Conversely, if the reaction temperature exceeds 140 ° C., the reaction product may be decomposed.
  The above reaction can be carried out by further adding an organic solvent, if necessary. As an organic solvent, what was illustrated in the case of manufacture of an acrylic resin (A) can be used similarly. Solvents that are not reactive with isocyanate groups are preferred, and examples include ketones such as acetone and methyl ethyl ketone; esters such as ethyl acetate; and solvents such as N-methylpyrrolidone (NMP). .
  Moreover, in the said addition reaction, a catalyst can be used as needed. Specifically, examples of the catalyst effective for the reaction between the hydroxyl group and the isocyanate group include a tin-based catalyst and a phosphoric acid-based catalyst. Of these, dibutyltin dilaurate and the like can be preferably used.
  In the reaction of the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3), the ratio of the polyisocyanate compound (b-1) to the hydroxyl group-containing compound (b-3) depends on the finished appearance and resistance of the coating film. From the viewpoint of motility, the NCO / OH ratio can be in the range of 6 to 12, preferably 6.5 to 11, and more preferably 7 to 10. When the NCO / OH ratio is less than 6, the reaction product (B-2) to be produced has a high molecular weight, which causes problems such as a decrease in the finished appearance such as the smoothness of the coating film. There is. On the other hand, when the NCO / OH ratio is larger than 12, the ratio of the unreacted polyisocyanate compound (b-1) is increased, and thus the anti-moisture resistance of the formed coating film may be lowered.
  The reaction product (B-2) may contain an unreacted product and can be used as it is without separating the unreacted product.
  The reaction product (B-2) generally has an NCO equivalent weight in the range of 200 to 370, preferably 210 to 350, more preferably 220 to 330, from the viewpoint of the curability of the finally obtained coating composition. Can have.
  The reaction product (B-2) generally has a hydroxyl value in the range of 0 to 10 mgKOH / g, preferably 0 to 7.5 mgKOH / g, more preferably 0 to 5 mgKOH / g, from the viewpoint of storage stability. be able to.
  The reaction product (B-2) is also 1000 to 15000, preferably 1250 to 14000, from the viewpoint of finished appearance such as curability of the coating composition finally obtained and smoothness of the coating film. More preferably, it can have a weight average molecular weight in the range of 1500-13000.
  In the present specification, the NCO equivalent, hydroxyl value and weight average molecular weight of the reaction product (B-2) are the same as those of the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3) remaining unreacted. It means the value of the entire reaction product.
  In the coating composition of the present invention, the equivalent ratio (NCO / OH) of the hydroxyl group in the acrylic resin (A) to the isocyanate group in the reaction product (B-2) depends on the curability of the coating composition and the coating stability. From the viewpoint, it is generally more preferable to be in the range of 0.5 to 2.0, particularly 0.65 to 1.75, more particularly 0.8 to 1.5.
  The contents of the acrylic resin (A) and the reaction product (B-2) in the coating composition of the present invention are based on the total solid content of the acrylic resin (A) and the reaction product (B-2). As the nonvolatile content, the acrylic resin (A) is generally in the range of 30 to 75% by mass, preferably 35 to 70% by mass, more preferably 40 to 65% by mass, and the reaction product (B-2) is generally It can be in the range of 25-70% by mass, preferably 30-65% by mass, more preferably 35-60% by mass.
Other ingredients
  If necessary, the coating composition of the present invention may be blended with pigments known per se, such as colored pigments, extender pigments, glitter pigments and rust preventive pigments, to the extent that the transparency of the formed coating film is not impaired. Can do.
  Examples of the coloring pigment include titanium oxide, zinc white, carbon black, cadmium red, molybdenum red, chromium yellow, chromium oxide, Prussian blue, cobalt blue, azo pigment, phthalocyanine pigment, quinacridone pigment, isoindoline pigment, selenium pigment, Examples include perylene pigments. Examples of extender pigments include talc, clay, kaolin, barita, barium sulfate, barium carbonate, calcium carbonate, silica, and alumina white. Examples of the bright pigment include aluminum powder, mica powder, and mica powder coated with titanium oxide.
  Various resins such as a polyester resin, an alkyd resin, a silicon resin, and a fluororesin can be added to the coating composition of the present invention as necessary. It is also possible to use a small amount of a crosslinking agent such as a melamine resin and a polyisocyanate compound in which some or all of the isocyanate groups may be blocked. Furthermore, if necessary, general paint additives such as a curing catalyst, an ultraviolet absorber, a light stabilizer, an antioxidant, a surface conditioner, and an antifoaming agent can be blended.
  Examples of the curing catalyst include tin octylate, dibutyltin di (2-ethylhexanoate), dioctyltin di (2-ethylhexanoate), dioctyltin diacetate, dibutyltin dilaurate, dibutyltin oxide, and dioctyltin. Examples thereof include oxides, organometallic catalysts such as lead 2-ethylhexanoate, and tertiary amines. These compounds as the curing catalyst can be used alone or in combination of two or more. Although the compounding quantity of a curing catalyst changes with the kinds, it is 0-5 mass parts normally on the basis of 100 mass parts total of solid content of an acrylic resin (A) and a reaction product (B), Preferably it is 0.1-0.1 mass part. It can be in the range of 4 parts by mass.
  As the ultraviolet absorber, those known per se can be used, and examples thereof include ultraviolet absorbers such as benzotriazole absorbers, triazine absorbers, salicylic acid derivative absorbers, and benzophenone absorbers. it can. By blending the ultraviolet absorber, the weather resistance, yellowing resistance and the like of the coating film can be improved. The content of the ultraviolet absorber in the coating composition is usually 0 to 10 parts by mass, particularly 0.2 to 10 parts by mass, based on 100 parts by mass of the total solid content of the acrylic resin (A) and the reaction product (B). It is preferably 5 parts by mass, more preferably in the range of 0.3 to 2 parts by mass.
  As the light stabilizer, those known per se can be used, and examples thereof include hindered amine light stabilizers. By blending the light stabilizer, the weather resistance, yellowing resistance and the like of the coating film can be improved. The content of the light stabilizer in the coating composition is usually 0 to 10 parts by mass, particularly 0.2 to 10 parts by mass, based on 100 parts by mass of the total solid content of the acrylic resin (A) and the reaction product (B). It is preferably 5 parts by mass, more preferably in the range of 0.3 to 2 parts by mass.
  The form of the coating composition of the present invention is not particularly limited, but usually an organic solvent type is preferred. As the organic solvent used in this case, various organic solvents for paints such as aromatic or aliphatic hydrocarbon solvents; ester solvents; ketone solvents; ether solvents and the like can be used. As the organic solvent to be used, those used at the time of preparation of the acrylic resin (A) and the reaction product (B) may be used as they are, or may be added as appropriate.
Preparation of coating composition
  The coating composition of the present invention comprises an acrylic resin (A), a reaction product (B), and a curing catalyst, a pigment, various resins, an ultraviolet absorber, a light stabilizer, an organic solvent, etc. It can be prepared by mixing by a method known per se.
  The coating composition of the present invention is prepared as a two-component coating material in which the acrylic resin (A) and the reaction product (B) are separated because the hydroxyl group and the isocyanate group may react even at room temperature. It is preferable to use a mixture of both.
  The solid content concentration of the coating composition of the present invention is generally in the range of 30 to 70% by mass, particularly 40 to 60% by mass.
Painting method
  The coating composition of the present invention can be applied to an article to be coated by various coating methods described below.
Article
  Examples of articles to which the coating composition of the present invention can be applied include bodies such as automobiles and motorcycles, or parts thereof. In addition, examples of the objects to be coated include cold rolled steel sheets, galvanized steel sheets, zinc alloy plated steel sheets, stainless steel sheets, tin plated steel sheets, etc., metal base materials such as aluminum plates and aluminum alloy plates; A plastic substrate or the like can also be used.
  Further, the object to be coated may be one in which a chemical treatment such as phosphate treatment, chromate treatment, or complex oxide treatment is performed on the metal surface of the vehicle body, component, or metal substrate. Further, the object to be coated may be one in which an undercoat film and / or an intermediate coat film such as various electrodeposition paints are formed on the vehicle body, metal base material, or the like.
  Furthermore, examples of the objects to be coated include industrial machines, home appliances, kitchen appliances, roofs, walls, and shutters.
Painting and curing method
  The coating method of the coating composition of the present invention is not particularly limited. For example, a wet coating film is formed by a coating method such as air spray coating, airless spray coating, rotary atomization coating, curtain coat coating, roll coat coating, or the like. Can do. In air spray coating, airless spray coating, and rotary atomization coating, electrostatic application may be performed as necessary. Of these, air spray coating and rotary atomization coating are particularly preferred.
  The coating film thickness is usually preferably in the range of 10 to 50 μm as the cured film thickness.
  When the coating composition of the present invention is applied by air spray coating, airless spray coating or rotary atomization coating, the viscosity of the coating composition of the present invention is adjusted to a viscosity range suitable for the coating, usually Ford Cup #No. In a 4-viscosity meter, it is preferable to adjust appropriately using a solvent such as an organic solvent so as to be within a viscosity range of about 15 to 60 seconds at 20 ° C.
  The wet coating film can be cured by heating, and the heating can be performed using a known heating means. For example, a drying furnace such as a hot air furnace, an electric furnace, or an infrared induction heating furnace can be used.
  The heating is usually performed at a temperature in the range of about 100 to about 180 ° C, preferably about 120 to about 160 ° C, usually for about 5 to 60 minutes.
Multi-layer coating formation method
  The coating composition of the present invention can form a coating film having excellent coating performance such as scratch resistance, acid resistance, and finished appearance, so that a coating for forming an overcoat multilayer coating film on an object to be coated can be formed. In the film forming method, it can be suitably used as a clear coating composition for forming a top clear coat.
  Therefore, according to the present invention, when a multi-layer coating film is formed by sequentially applying a colored base coat paint and a clear coat paint to an object, the coating composition of the present invention is used as the clear coat paint. A featured topcoat multilayer coating formation method is provided.
  As the coating object for applying the method for forming a multilayer coating film of the present invention, the above-described automobile body and its parts are particularly preferable.
  As a method for applying the colored base coat paint and the clear coat paint, for example, a coating method such as airless spray, air spray, and rotary atomization coating can be adopted. You may do it.
  As the colored base coat paint, a known colored paint composition can be used, and it is particularly preferable to use a paint composition that is usually used when painting an automobile body or the like.
  The colored base coat paint includes an organic solvent type containing a base resin, a crosslinking agent and a colorant (for example, a color pigment, a metallic pigment, a light interference pigment, an extender pigment, etc.) and, optionally, other paint additives. Or an aqueous coating composition is included.
  Examples of the base resin include at least one selected from an acrylic resin, a vinyl resin, a polyester resin, an alkyd resin, a urethane resin, and the like having a crosslinkable functional group such as a hydroxyl group, an epoxy group, a carboxyl group, and an alkoxysilyl group. Resin can be used. In addition, as the crosslinking agent, for example, at least one selected from alkyl etherified melamine resin, urea resin, guanamine resin, polyisocyanate compound, blocked polyisocyanate compound, epoxy compound, carboxyl group-containing compound, and the like is used. it can. The base resin and the cross-linking agent are usually preferably used in the range of 50 to 90% by weight of the base resin and the cross-linking agent in the range of 50 to 10% by weight based on the total amount of both components.
  In the multilayer coating film forming method of the present invention, first, the colored base coat paint is applied to an object to be coated so as to have a cured film thickness of about 10 to about 50 μm. The coated base coat paint is cured by heating at a temperature of about 100 to about 180 ° C., preferably about 120 to about 160 ° C. for about 10 to about 40 minutes, or left at room temperature for several minutes without curing after coating. Alternatively, preheat at about 40 to about 100 ° C. for about 1 to about 20 minutes.
  Next, as a clear coat paint, the coating composition of the present invention is applied so that the film thickness is about 10 to about 70 μm as a cured film thickness, and a cured multilayer coating film can be formed by heating. it can. Heating is preferably performed at a temperature of about 100 to about 180 ° C, preferably about 120 to about 160 ° C for about 10 to about 40 minutes.
  In the above-mentioned 2-coat method, a 2-coat 1-bake method can be used in which a clear coat paint is applied without applying a base coat paint and cured by heating, and these two-layer coating films are cured simultaneously, or a base coat paint is applied. Then, after the base coat film is heat-cured, a 2-coat 2-bake method in which a clear coat paint is applied and the clear coat film is cured may be employed.

以下、実施例及び比較例を挙げて、本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。なお、以下、「部」及び「%」はいずれも質量基準によるものであり、また、塗膜の膜厚はいずれも硬化塗膜に基づくものである。
アクリル樹脂(A)の製造
製造例1〜8
撹拌装置、温度計、冷却管及び窒素ガス導入口を備えた四ツ口フラスコに、「スワゾール1000」(商品名、コスモ石油社製、炭化水素系溶剤)を340部仕込み、窒素雰囲気下で125℃に昇温し、下記表1に示す量(質量部)のモノマー及び重合開始剤からなる混合物を4時間かけて滴下した。次いで、125℃で窒素ガスを通気しながら30分間熟成させた後、さらに「スワゾール1000」320部及び2,2’−アゾビスイソブチロニトリル5部の混合物を1時間かけて滴下した。その後、さらに1時間熟成させることにより、アクリル樹脂(A)No.1〜No.8の溶液を得た。得られた各アクリル樹脂(A)の特数値を併せて下記表1に示す。なお、アクリル樹脂(A)No.5〜No.8は比較例用の樹脂である。

Figure 0005681101
アクリル樹脂(b−2)の製造
製造例9〜15
撹拌装置、温度計、冷却管及び窒素ガス導入口を備えた四ツ口フラスコに、「スワゾール1000」(商品名、コスモ石油社製、炭化水素系溶剤)を340部仕込み、窒素雰囲気下で125℃に昇温し、下記表2に示す量(質量部)のモノマー、連鎖移動剤及び重合開始剤からなる混合物を4時間かけて滴下した。次いで、125℃で窒素ガスを通気しながら30分間熟成させた後、さらに「スワゾール1000」320部及び2,2’−アゾビスイソブチロニトリル5部の混合物を1時間かけて滴下した。その後、さらに1時間熟成させることにより、アクリル樹脂(b−2)No.1〜No.7の溶液を得た。得られた各アクリル樹脂(b−2)の特数値を併せて下記表2に示す。なお、アクリル樹脂(b−2)No.5〜No.7は比較例用の樹脂である。
Figure 0005681101
反応生成物(B−1)の製造
製造例16〜25
撹拌装置、温度計、冷却管及び窒素ガス導入口を備えた四ツ口フラスコに、下記表3に示す量(質量部)のポリイソシアネート化合物(b−1)及びアクリル樹脂(b−2)の溶液を仕込み、窒素雰囲気下で130℃に昇温した後、4時間反応させた。その後、酢酸イソブチルを加えて、質量固形分濃度70%まで希釈することにより、反応生成物(B−1)No.1〜No.10の溶液を得た。得られた各反応生成物(B−1)の溶液の特数値を下記表3に示す。なお、反応生成物(B−1)No.6〜No.10は比較例用の樹脂である。また、表3中における配合量は固形分量(質量部)である。
Figure 0005681101
(*1)N3300: 商品名、バイエル社製、ヘキサメチレンジイソシアネートのイソシアヌレート(固形分100%)。
塗料組成物の調製
実施例1〜8及び比較例1〜10
上記製造例で得られたアクリル樹脂(A)、反応生成物(B−1)及び後記表4に記載の原材料を、後記表4に示す配合割合(質量部)で、回転翼式攪拌機を用いて攪拌・混合することにより塗料組成物No.1〜18を得た。なお、表4中における配合量は固形分量(質量部)である。
上記各塗料組成物No.1〜18は、「スワゾール1000」を添加してフォードカップ#No.4を用いて20℃で25秒の粘度に調整した後塗装に用いた。塗装は粘度調整して10分後に行なった。
試験板の作製
上記粘度調整した各塗料組成物No.1〜18を使用し、以下のようにして試験板を作製した。
(被塗物の作製)
リン酸亜鉛化成処理を施した厚さ0.8mmのダル鋼板上に、「エレクロンGT−10」(商品名、関西ペイント社製、熱硬化性エポキシ樹脂系カチオン電着塗料)を膜厚が20μmとなるように電着塗装し、170℃で30分間加熱し硬化させ、次いで該電着塗面上に「アミラックTP−65−2」(商品名、関西ペイント社製、ポリエステル・メラミン樹脂系自動車用中塗塗料、グレー塗色)を膜厚が35μmとなるようにエアスプレー塗装し、140℃で30分間加熱して硬化させることにより得られた中塗塗板を被塗物とした。
(シルバー塗色試験板の作製)
上記被塗物上に、水性メタリックベースコート「WBC713T#1F7」(商品名、関西ペイント社製、アクリル・メラミン樹脂系自動車用上塗ベースコート塗料、シルバー塗色)を膜厚が15μmとなるように塗装し、室温で5分間放置してから、80℃で10分間プレヒートを行なった後、未硬化の塗膜上に、各塗料組成物No.1〜18を膜厚が35μmとなるように塗装し、その後、室温で5分間放置してから、140℃で20分間加熱して両塗膜を一緒に硬化させることにより、各シルバー塗色試験板を得た。
(黒塗色試験板の作製)
上記シルバー塗色試験板の作製において、「WBC713T#1F7」(商品名、関西ペイント社製、アクリル・メラミン樹脂系自動車用上塗ベースコート塗料、シルバー塗色)を「WBC713T#202」(関西ペイント社製、アクリル・メラミン樹脂系自動車用上塗ベースコート塗料、黒塗色)に変更する以外は同様に処理して、黒塗色試験板を得た。
(白塗色試験板の作製)
上記被塗物の作製において、「アミラックTP−65−2」(商品名、関西ペイント社製、ポリエステル・メラミン樹脂系自動車用中塗塗料、グレー塗色)の代わりに「アミラックTP−65−2」(商品名、関西ペイント社製、ポリエステル・メラミン樹脂系自動車用中塗塗料、白塗色)を使用する以外は同様に処理して、白色の被塗物を作製し、得られる白色の被塗物上に、ベースコート塗料を塗装することなく、各塗料組成物No.1〜18を塗装する以外は上記シルバー塗色試験板の作製と同様に処理して、白色試験板を作製した。
得られた上記各試験板を常温で7日間放置してから、下記の塗膜性能試験を行なった。
塗膜性能試験
メタリック外観: シルバー塗色試験板のメタリック外観をIV値により評価した。なお、IV値の測定は、レーザー式メタリック感測定装置(「アルコープLMR−200」(商品名、関西ペイント社製))を使用し、入射角45度で照射されたレーザー光の反射のうち、正反射領域で最小光強度となる受光角での信号出力を測定した。IV値はメタリック塗膜の白さを数値化したものであり、メタリック顔料が塗面に対して平行に均一に配向するほど白くなり、メタリック感がよく、IV値が大きくなるほど白いことを示す。
耐擦り傷性: 自動車のルーフに各黒塗色試験板をニチバン社製耐水テープを用いて貼りつけた自動車を、20℃の条件下に洗車機で15回洗車を行なった後、試験板の20度鏡面反射率(20°光沢値)を測定し、試験前の20°光沢値に対する光沢保持率(%)により評価した。該光沢保持率が高いほど耐擦り傷性が良好であることを表わす。洗車機としては「PO20 FWRC」(商品名、ヤスイ産業社製)を用いた。
耐酸性: 40%硫酸を黒塗色試験板の塗面上に0.4cc滴下し、60℃に加熱したホットプレート上で15分間加熱した後、試験板を水洗した。硫酸滴下箇所のエッチング深さ(μm)を表面粗度計(「サーフコム570A」、商品名、東京精密社製、表面粗さ形状測定機)を用いて、カットオフ0.8mm(走査速度0.3mm/sec、倍率5000倍)の条件で測定することにより耐酸性の評価を行なった。エッチング深さの値が小さいほど耐酸性が良好であることを表わす。
耐汚染性: 白塗色試験板を、促進耐侯性試験機(「サンシャインウエザオメーター」、商品名、スガ試験機(株)製)中で、JIS K5400の条件で600時間試験した後、泥土、カーボンブラック、鉱油及びクレーの混合物からなる汚染物質をネルに付着させて、試験板の塗面に軽くこすりつけた。これを20℃で75%RHの恒温恒湿室中に24時間放置後、塗面を流水で洗浄し、塗膜の汚染度を試験板の明度差(ΔL)により評価した。
ΔLは下記式で求めた。
ΔL=(耐汚染性試験前のL値)−(耐汚染性試験後のL値)
L値の測定は、三刺激値直読式色彩計(「CR400」、商品名、コニカミノルタ(株)製)を用いて、光源D65、視野2°、拡散照明垂直受光(d/0)の条件下で行なった。このL値はCIE 1976 L表色系に基く値である。
塗膜の汚染度の評価基準は次のとおりである。ΔL値が小さいほど耐汚染性が良好であることを示す。
◎:ΔL<0.2、
○:0.2≦ΔL<0.5、
○△:0.5≦ΔL<1、
△:1≦ΔL<2、
×:2≦ΔL。
仕上り性(20°光沢): 各黒塗色試験板の20度鏡面反射率(20°光沢値)を「HG−268」(商品名、スガ試験機(株)製、ハンディ光沢計)を用いて測定した。
上記塗膜性能試験の結果を併せて下記表4に示す。
Figure 0005681101
(*1)N3300: 商品名、バイエル社製、ヘキサメチレンジイソシアネートのイソシアヌレート(固形分100%)。
(*2)NACURE4054: キングインダストリー社製、リン酸系硬化触媒。
(*3)UV1164: 商品名、チバガイギー社製、紫外線吸収剤。
(*4)HALS292: 商品名、チバガイギー社製、光安定剤。
(*5)BYK−300: 商品名、ビックケミー社製、表面調整剤。
反応生成物(B−2)の製造
製造例26〜36
撹拌装置、温度計、冷却管及び窒素ガス導入口を備えた四ツ口フラスコに、下記表5に示す量(質量部)のポリイソシアネート化合物(b−1)及び水酸基含有化合物(b−3)を仕込み、さらに、ポリイソシアネート化合物(b−1)及び水酸基含有化合物(b−3)の合計の質量固形分濃度が70%となる量の酢酸イソブチルを加えた。その後、窒素雰囲気下で120℃に昇温した後、4時間反応させることにより、各反応生成物(B−2)No.1〜No.11の溶液を得た。得られた各反応生成物(B−2)の特数値を下記表5に示す。なお、反応生成物(B−2)No.8〜No.11は比較例用の樹脂である。また、表5中における配合量は、固形分量(質量部)である。なお、表5中の原料詳細は以下のとおりである。
N3300(*1): ヘキサメチレンジイソシアネートのイソシアヌレート(バイエル社製、商品名、固形分100%)。
水酸基含有化合物No.1: 「ユニオールD−700」(ポリプロピレングリコール、水酸基価160.3mgKOH/g、重量平均分子量700、日本油脂社製、商品名、固形分100%)。
水酸基含有化合物No.2: 「ユニオールD−250」(ポリプロピレングリコール、水酸基価448.8mgKOH/g、重量平均分子量250、日本油脂社製、商品名、固形分100%)。
水酸基含有化合物No.3: 「ユニオールTG−2000」(ポリプロピレントリオール、水酸基価84.1mgKOH/g、重量平均分子量2000、日本油脂社製、商品名、固形分100%)。
水酸基含有化合物No.4: 「ETERNACOLL UM−90」(1,4−シクロヘキサンジメタノールと1,6−ヘキサンジオールの混合(1/1)ポリカーボネートジオール、水酸基価122.8mgKOH/g、重量平均分子量900、宇部興産社製、商品名、固形分100%)。
水酸基含有化合物No.5: 「PLACCEL 205」(ポリカプロラクトンジオール、水酸基価211.7mgKOH/g、重量平均分子量530、ダイセル化学工業社製、商品名、固形分100%)。
水酸基含有化合物No.6: ジプロピレングリコール(水酸基価837.3mgKOH/g、分子量134.18)。
水酸基含有化合物No.7: 「ユニオールD−4000」(ポリプロピレングリコール、水酸基価28.1mgKOH/g、重量平均分子量4000、日本油脂社製、商品名、固形分100%)。
Figure 0005681101
塗料組成物の調製
実施例9〜18及び比較例11〜19
上記製造例で得られたアクリル樹脂(A)、反応生成物(B−2)及び後記表6に記載の原材料を、後記表6に示す配合割合(質量部)で、回転翼式攪拌機を用いて攪拌・混合することにより塗料組成物No.19〜35を得た。なお、表6中における配合量は固形分量(質量部)である。
上記各塗料組成物No.19〜35は、「スワゾール1000」を添加してフォードカップ#No.4を用いて20℃で25秒の粘度に調整した後塗装に用いた。塗装は粘度調整して10分後に行なった。
試験板の作製および塗膜性能試験
上記粘度調整した各塗料組成物No.19〜35を使用し、それぞれについて前記と同様にして試験板を作製し、前記と同様にして塗膜性能試験(メタリック外観、耐擦り傷性、耐酸性、耐汚染性、仕上り性(20°光沢))を行った。
上記塗膜性能試験の結果を併せて表6に示す。
Figure 0005681101
(*1)N3300: 商品名、バイエル社製、ヘキサメチレンジイソシアネートのイソシアヌレート(固形分100%)。
(*2)NACURE4054: 商品名、キングインダストリー社製、リン酸系硬化触媒。
(*3)UV1164: 商品名、チバガイギー社製、紫外線吸収剤。
(*4)HALS292: 商品名、チバガイギー社製、光安定剤。
(*5)BYK−300: 商品名、ビックケミー社製、表面調整剤。Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples. In the following, “part” and “%” are both based on mass, and the film thickness of the coating film is based on the cured coating film.
Production of acrylic resin (A) Production Examples 1-8
A four-necked flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas inlet is charged with 340 parts of “Swazol 1000” (trade name, manufactured by Cosmo Oil Co., Ltd., hydrocarbon solvent), and 125 under a nitrogen atmosphere. The temperature was raised to 0 ° C., and a mixture composed of monomers and a polymerization initiator in an amount (parts by mass) shown in Table 1 below was added dropwise over 4 hours. Next, after aging for 30 minutes while flowing nitrogen gas at 125 ° C., a mixture of 320 parts of “Swazole 1000” and 5 parts of 2,2′-azobisisobutyronitrile was added dropwise over 1 hour. Thereafter, by further aging for 1 hour, the acrylic resin (A) No. 1-No. A solution of 8 was obtained. The special values of the obtained acrylic resins (A) are shown together in Table 1 below. In addition, acrylic resin (A) No. 5-No. 8 is a resin for a comparative example.
Figure 0005681101
Production of acrylic resin (b-2) Production Examples 9 to 15
A four-necked flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas inlet is charged with 340 parts of “Swazol 1000” (trade name, manufactured by Cosmo Oil Co., Ltd., hydrocarbon solvent), and 125 under a nitrogen atmosphere. The temperature was raised to 0 ° C., and a mixture composed of an amount (parts by mass) of a monomer, a chain transfer agent and a polymerization initiator shown in Table 2 below was added dropwise over 4 hours. Next, after aging for 30 minutes while flowing nitrogen gas at 125 ° C., a mixture of 320 parts of “Swazole 1000” and 5 parts of 2,2′-azobisisobutyronitrile was added dropwise over 1 hour. Then, by further aging for 1 hour, acrylic resin (b-2) No. 1-No. A solution of 7 was obtained. The special values of the obtained acrylic resins (b-2) are shown together in Table 2 below. In addition, acrylic resin (b-2) No. 5-No. 7 is a resin for a comparative example.
Figure 0005681101
Production of reaction product (B-1) Production Examples 16 to 25
In a four-necked flask equipped with a stirrer, a thermometer, a condenser tube and a nitrogen gas inlet, the amounts (parts by mass) of the polyisocyanate compound (b-1) and the acrylic resin (b-2) shown in Table 3 below were used. The solution was charged and heated to 130 ° C. under a nitrogen atmosphere, and then reacted for 4 hours. Thereafter, by adding isobutyl acetate and diluting to a mass solids concentration of 70%, the reaction product (B-1) No. 1-No. Ten solutions were obtained. The characteristic values of the solution of each reaction product (B-1) obtained are shown in Table 3 below. The reaction product (B-1) No. 6-No. 10 is a resin for a comparative example. Moreover, the compounding quantity in Table 3 is solid content (mass part).
Figure 0005681101
(* 1) N3300: trade name, manufactured by Bayer, isocyanurate of hexamethylene diisocyanate (solid content 100%).
Preparation of coating composition Examples 1-8 and Comparative Examples 1-10
Acrylic resin (A) obtained in the above production example, reaction product (B-1), and raw materials described in Table 4 below were used in a mixing ratio (parts by mass) shown in Table 4 below using a rotary blade type agitator. By stirring and mixing, the coating composition No. 1-18 were obtained. In addition, the compounding quantity in Table 4 is solid content (mass part).
Each coating composition No. Nos. 1 to 18 were prepared by adding “Swazole 1000” to Ford Cup #No. 4 was used for coating after adjusting the viscosity to 25 seconds at 20 ° C. The coating was performed 10 minutes after adjusting the viscosity.
Preparation of test plate Each coating composition No. 1-18 were used and the test plate was produced as follows.
(Preparation of coated objects)
On the 0.8 mm-thick dull steel sheet that has been subjected to zinc phosphate conversion treatment, “ELECRON GT-10” (trade name, manufactured by Kansai Paint Co., Ltd., thermosetting epoxy resin-based cationic electrodeposition paint) has a thickness of 20 μm. Electrodeposition coating was performed, and the coating was heated and cured at 170 ° C. for 30 minutes, and then “Amirac TP-65-2” (trade name, manufactured by Kansai Paint Co., Ltd., polyester / melamine resin-based automobile) The intermediate coating plate obtained by applying air spray coating to a film thickness of 35 μm and curing it by heating at 140 ° C. for 30 minutes was used as an object to be coated.
(Preparation of silver paint test plate)
A water-based metallic base coat “WBC713T # 1F7” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin-based automotive top coat base paint, silver coating color) is applied on the above-mentioned object so that the film thickness is 15 μm. After standing at room temperature for 5 minutes and preheating at 80 ° C. for 10 minutes, each coating composition No. Each silver coating color test was carried out by coating 1-18 with a film thickness of 35 μm, and then letting it stand at room temperature for 5 minutes and then heating it at 140 ° C. for 20 minutes to cure both coatings together. I got a plate.
(Preparation of black paint test plate)
In the production of the above-mentioned silver coating color test plate, “WBC713T # 1F7” (trade name, manufactured by Kansai Paint Co., Ltd., acrylic / melamine resin-based topcoat paint for automobiles, silver coating color) was used as “WBC713T # 202” (manufactured by Kansai Paint Co., Ltd.). A black-coated color test plate was obtained in the same manner except that it was changed to an acrylic / melamine resin-based automotive topcoat base paint, black color).
(Preparation of white paint test plate)
In the preparation of the above-mentioned coating object, “Amilak TP-65-2” (trade name, manufactured by Kansai Paint Co., Ltd., polyester / melamine resin-based automotive intermediate coating, gray coating color) is used instead of “Amilack TP-65-2”. (Product name, manufactured by Kansai Paint Co., Ltd., polyester / melamine resin-based automotive intermediate coating, white coating color) is processed in the same manner to produce a white coating, and the resulting white coating On top of each other, each coating composition No. A white test plate was prepared in the same manner as the silver-coated test plate except that 1 to 18 were applied.
The obtained test plates were allowed to stand at room temperature for 7 days and then subjected to the following coating film performance test.
Coating Film Performance Test Metallic Appearance: The metallic appearance of the silver paint color test plate was evaluated by IV value. In addition, the measurement of IV value uses a laser type metallic feeling measuring apparatus ("ALCOLM LMR-200" (trade name, manufactured by Kansai Paint Co., Ltd.)), and among the reflection of laser light irradiated at an incident angle of 45 degrees, The signal output was measured at the receiving angle at which the minimum light intensity was obtained in the regular reflection region. The IV value is a numerical value of the whiteness of the metallic coating film, and the whiter the metallic pigment is, the more uniform the metal pigment is oriented in parallel to the coating surface, the better the metallic feeling, and the higher the IV value, the whiter the value is.
Scratch resistance: An automobile in which each black-colored test plate was attached to the roof of an automobile using a water resistant tape manufactured by Nichiban Co., Ltd. was washed 15 times with a car wash machine at 20 ° C. The specular reflectance (20 ° gloss value) was measured and evaluated by the gloss retention (%) relative to the 20 ° gloss value before the test. The higher the gloss retention, the better the scratch resistance. “PO20 FWRC” (trade name, manufactured by Yasui Industry Co., Ltd.) was used as the car wash machine.
Acid resistance: 0.4 cc of 40% sulfuric acid was dripped onto the coated surface of the black-colored test plate, heated on a hot plate heated to 60 ° C. for 15 minutes, and then washed with water. The etching depth (μm) of the sulfuric acid dropping portion was cut off with a surface roughness meter (“Surfcom 570A”, trade name, manufactured by Tokyo Seimitsu Co., Ltd., surface roughness shape measuring machine) with a cutoff of 0.8 mm (scanning speed: 0.8 mm). The acid resistance was evaluated by measurement under the conditions of 3 mm / sec and a magnification of 5000 times. The smaller the etching depth value, the better the acid resistance.
Contamination resistance: A white paint color test plate was tested in an accelerated weather resistance tester (“Sunshine Weather Omometer”, trade name, manufactured by Suga Test Instruments Co., Ltd.) for 600 hours under the conditions of JIS K5400, and then mud A pollutant consisting of a mixture of carbon black, mineral oil and clay was deposited on the nell and rubbed lightly on the test plate. This was left for 24 hours in a constant temperature and humidity room of 75% RH at 20 ° C., then the coated surface was washed with running water, and the degree of contamination of the coating film was evaluated by the difference in lightness (ΔL) of the test plate.
ΔL was determined by the following formula.
ΔL = (L value before stain resistance test) − (L value after stain resistance test)
The L value is measured using a tristimulus value direct-reading color meter (“CR400”, trade name, manufactured by Konica Minolta Co., Ltd.) under the conditions of light source D65, visual field 2 °, diffuse illumination vertical light reception (d / 0). Performed below. This L value is a value based on the CIE 1976 L * a * b * color system.
The evaluation criteria for the degree of contamination of the coating film are as follows. A smaller ΔL value indicates better contamination resistance.
A: ΔL <0.2,
○: 0.2 ≦ ΔL <0.5,
○ △: 0.5 ≦ ΔL <1,
Δ: 1 ≦ ΔL <2,
X: 2 ≦ ΔL.
Finishing property (20 ° gloss): “HG-268” (trade name, manufactured by Suga Test Instruments Co., Ltd., handy gloss meter) is used as the 20-degree specular reflectance (20 ° gloss value) of each black paint test plate. Measured.
The results of the coating performance test are shown in Table 4 below.
Figure 0005681101
(* 1) N3300: trade name, manufactured by Bayer, isocyanurate of hexamethylene diisocyanate (solid content 100%).
(* 2) NACURE4054: Phosphoric acid curing catalyst manufactured by King Industry.
(* 3) UV1164: trade name, manufactured by Ciba-Geigy Corporation, UV absorber.
(* 4) HALS292: trade name, manufactured by Ciba Geigy Corp., light stabilizer.
(* 5) BYK-300: trade name, manufactured by Big Chemie, surface conditioner.
Production of reaction product (B-2) Production examples 26 to 36
In a four-necked flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen gas inlet, the amount (parts by mass) of the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3) shown in Table 5 below In addition, isobutyl acetate was added in an amount such that the total mass concentration of the polyisocyanate compound (b-1) and the hydroxyl group-containing compound (b-3) was 70%. Then, after heating up to 120 degreeC in nitrogen atmosphere, by making it react for 4 hours, each reaction product (B-2) No. 1-No. 11 solutions were obtained. The characteristic values of the obtained reaction products (B-2) are shown in Table 5 below. The reaction product (B-2) No. 8-No. 11 is a resin for a comparative example. Moreover, the compounding quantity in Table 5 is a solid content (mass part). In addition, the raw material details in Table 5 are as follows.
N3300 (* 1): Isocyanurate of hexamethylene diisocyanate (manufactured by Bayer, trade name, solid content 100%).
Hydroxyl-containing compound no. 1: “Uniol D-700” (polypropylene glycol, hydroxyl value 160.3 mg KOH / g, weight average molecular weight 700, manufactured by NOF Corporation, trade name, solid content 100%).
Hydroxyl-containing compound no. 2: “Uniol D-250” (polypropylene glycol, hydroxyl value 448.8 mgKOH / g, weight average molecular weight 250, manufactured by NOF Corporation, trade name, solid content 100%).
Hydroxyl-containing compound no. 3: “Uniol TG-2000” (polypropylene triol, hydroxyl value 84.1 mg KOH / g, weight average molecular weight 2000, manufactured by NOF Corporation, trade name, solid content 100%).
Hydroxyl-containing compound no. 4: “ETERRNACOLL UM-90” (mixture of 1 / 1,4-cyclohexanedimethanol and 1,6-hexanediol (1/1) polycarbonate diol, hydroxyl value 122.8 mgKOH / g, weight average molecular weight 900, manufactured by Ube Industries, Ltd. , Trade name, solid content 100%).
Hydroxyl-containing compound no. 5: “PLACCEL 205” (polycaprolactone diol, hydroxyl value 211.7 mg KOH / g, weight average molecular weight 530, manufactured by Daicel Chemical Industries, trade name, solid content 100%).
Hydroxyl-containing compound no. 6: Dipropylene glycol (hydroxyl value 837.3 mg KOH / g, molecular weight 134.18).
Hydroxyl-containing compound no. 7: “Uniol D-4000” (polypropylene glycol, hydroxyl value 28.1 mgKOH / g, weight average molecular weight 4000, manufactured by NOF Corporation, trade name, solid content 100%).
Figure 0005681101
Preparation of coating compositions Examples 9-18 and Comparative Examples 11-19
Acrylic resin (A) obtained in the above production example, reaction product (B-2), and raw materials described in Table 6 below were used in a mixing ratio (parts by mass) shown in Table 6 below using a rotary blade type agitator. By stirring and mixing, the coating composition No. 19-35 were obtained. In addition, the compounding quantity in Table 6 is a solid content (mass part).
Each coating composition No. Nos. 19 to 35 are ford cup #No. 4 was used for coating after adjusting the viscosity to 25 seconds at 20 ° C. The coating was performed 10 minutes after adjusting the viscosity.
Preparation of test plate and coating film performance test Each coating composition No. 19 to 35 were used, and test plates were prepared in the same manner as described above, and coating film performance tests (metallic appearance, scratch resistance, acid resistance, stain resistance, finish (20 ° gloss) )).
The results of the coating performance test are also shown in Table 6.
Figure 0005681101
(* 1) N3300: trade name, manufactured by Bayer, isocyanurate of hexamethylene diisocyanate (solid content 100%).
(* 2) NACURE 4054: trade name, manufactured by King Industry, phosphoric acid curing catalyst.
(* 3) UV1164: trade name, manufactured by Ciba-Geigy Corporation, UV absorber.
(* 4) HALS292: trade name, manufactured by Ciba Geigy Corp., light stabilizer.
(* 5) BYK-300: trade name, manufactured by Big Chemie, surface conditioner.

Claims (15)

(A)80〜180mgKOH/gの範囲内の水酸基価、3000〜20000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂、ならびに
(B)ポリイソシアネート化合物(b−1)と、40〜180mgKOH/gの範囲内の水酸基価、700〜4000の範囲内の重量平均分子量及び8.5〜9.8の範囲内の溶解性パラメータ値を有するアクリル樹脂(b−2)とを、7〜15の範囲内のNCO/OH比で反応させることにより得られ反応生成物(B−1)、又は
ポリイソシアネート化合物(b−1)と、70〜450mgKOH/gの範囲内の水酸基価及び250〜3000の範囲内の重量平均分子量を有する水酸基含有化合物(b−3)であって、ポリエーテルポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、シリコーンポリオール及びポリウレタンポリオールからなる群より選ばれる水酸基含有化合物(b−3)とを、6〜12の範囲内のNCO/OH比で反応させることにより得られた1500〜13000の範囲内の重量平均分子量を有する反応生成物(B−2)
を含有し、かつ、
アクリル樹脂(A)及び反応生成物(B)の固形分合計総量を基準として、不揮発分として、アクリル樹脂(A)を30〜75質量%及び反応生成物(B)を25〜70質量%含有する
ことを特徴とする塗料組成物。
(A) an acrylic resin having a hydroxyl value in the range of 80 to 180 mg KOH / g, a weight average molecular weight in the range of 3000 to 20000, and a solubility parameter value in the range of 8.5 to 9.8, and (B) Polyisocyanate compound (b-1), having a hydroxyl value in the range of 40 to 180 mg KOH / g, a weight average molecular weight in the range of 700 to 4000, and a solubility parameter value in the range of 8.5 to 9.8. A reaction product (B-1) obtained by reacting an acrylic resin (b-2) with an NCO / OH ratio in the range of 7 to 15, or a polyisocyanate compound (b-1); a ~450mgKOH / g hydroxyl group-containing compound having a weight average molecular weight within the range of the hydroxyl value and 250 to 3000 in the range of (b-3), polyether polyols, poly Ester polyols, polyetherester polyols, polyalkylene polyols, polycarbonate polyols, polycaprolactone polyols, hydroxyl group-containing compound selected from the group consisting of silicone polyols and polyurethane polyols and (b-3), in the range of 6 to 12 NCO / Reaction product (B-2) having a weight average molecular weight within the range of 1500-13000 obtained by reacting at an OH ratio
Containing , and
Containing 30 to 75% by mass of acrylic resin (A) and 25 to 70% by mass of reaction product (B) as non-volatile content based on the total solid content of acrylic resin (A) and reaction product (B) A coating composition characterized by comprising:
アクリル樹脂(A)が、110〜170mgKOH/gの範囲内の水酸基価及び/又は5000〜16000の範囲内の重量平均分子量及び/又は8.7〜9.6の範囲内の溶解性パラメータ値を有する請求項1に記載の塗料組成物。   The acrylic resin (A) has a hydroxyl value in the range of 110 to 170 mgKOH / g and / or a weight average molecular weight in the range of 5000 to 16000 and / or a solubility parameter value in the range of 8.7 to 9.6. The coating composition according to claim 1. アクリル樹脂(A)が、−30℃〜90℃の範囲内のガラス転移温度を有する請求項1又は2に記載の塗料組成物。 The coating composition according to claim 1 or 2 , wherein the acrylic resin (A) has a glass transition temperature in the range of -30 ° C to 90 ° C. ポリイソシアネート化合物(b−1)が、脂肪族ジイソシアネート、脂環族ジイソシアネート又はこれらの誘導体である請求項1〜3のいずれかに記載の塗料組成物。 The coating composition according to any one of claims 1 to 3, wherein the polyisocyanate compound (b-1) is an aliphatic diisocyanate, an alicyclic diisocyanate, or a derivative thereof. ポリイソシアネート化合物(b−1)が、ヘキサメチレンジイソシアネート(HMDI)、ヘキサメチレンジイソシアネートの誘導体、イソホロンジイソシアネート(IPDI)又はイソホロンジイソシアネートの誘導体である請求項1〜3のいずれかに記載の塗料組成物。 The coating composition according to any one of claims 1 to 3, wherein the polyisocyanate compound (b-1) is hexamethylene diisocyanate (HMDI), a derivative of hexamethylene diisocyanate, isophorone diisocyanate (IPDI) or a derivative of isophorone diisocyanate. アクリル樹脂(b−2)が、50〜170mgKOH/gの範囲内の水酸基価及び/又は800〜3000の範囲内の重量平均分子量及び/又は8.6〜9.6の範囲内の溶解性パラメータ値を有する請求項1〜5のいずれかに記載の塗料組成物。 The acrylic resin (b-2) has a hydroxyl value in the range of 50 to 170 mg KOH / g and / or a weight average molecular weight in the range of 800 to 3000 and / or a solubility parameter in the range of 8.6 to 9.6. The coating composition according to any one of claims 1 to 5, which has a value. アクリル樹脂(b−2)が、−30℃〜80℃の範囲内のガラス転移温度を有する請求項1〜6のいずれかに記載の塗料組成物。 The coating composition according to any one of claims 1 to 6, wherein the acrylic resin (b-2) has a glass transition temperature in the range of -30 ° C to 80 ° C. 反応生成物(B−1)が、200〜370の範囲内のNCO当量及び/又は0〜10mgKOH/gの範囲内の水酸基価及び/又は0〜15mgKOH/gの範囲内の酸価及び/又は1000〜40000の範囲内の重量平均分子量を有する請求項1〜7のいずれかに記載の塗料組成物。 The reaction product (B-1) has an NCO equivalent weight in the range of 200 to 370 and / or a hydroxyl value in the range of 0 to 10 mg KOH / g and / or an acid value in the range of 0 to 15 mg KOH / g and / or The coating composition according to any one of claims 1 to 7, which has a weight average molecular weight in the range of 1000 to 40000. アクリル樹脂(A)及び反応生成物(B−1)の固形分合計総量を基準として、不揮発分として、アクリル樹脂(A)を3570質量%及び反応生成物(B−1)を3065質量%含有する請求項1〜8のいずれかに記載の塗料組成物。 Based on the total solid content of the acrylic resin (A) and the reaction product (B-1) as a non-volatile content, the acrylic resin (A) is 35 to 70 % by mass and the reaction product (B-1) is 30 to 30 %. The coating composition according to any one of claims 1 to 8, comprising 65 % by mass. 水酸基含有化合物(b−3)が、ポリエーテルポリオール、ポリカーボネートポリオール又はポリカプロラクトンポリオールである請求項1〜5のいずれかに記載の塗料組成物。 The coating composition according to any one of claims 1 to 5, wherein the hydroxyl group-containing compound (b-3) is a polyether polyol, a polycarbonate polyol or a polycaprolactone polyol. 水酸基含有化合物(b−3)が、90〜400mgKOH/gの範囲内の水酸基価及び/又は350〜2000の範囲内の重量平均分子量を有する請求項1〜5及び10のいずれかに記載の塗料組成物。 The paint according to any one of claims 1 to 5 and 10, wherein the hydroxyl group-containing compound (b-3) has a hydroxyl value in the range of 90 to 400 mgKOH / g and / or a weight average molecular weight in the range of 350 to 2000. Composition. 反応物(B−2)が、200〜370の範囲内のNCO当量及び/又は0〜10mgKOH/gの範囲内の水酸基価を有する請求項1〜5、10及び11のいずれかに記載の塗料組成物。 The coating material according to any one of claims 1 to 5, 10 and 11 , wherein the reactant (B-2) has an NCO equivalent weight in the range of 200 to 370 and / or a hydroxyl value in the range of 0 to 10 mgKOH / g. Composition. アクリル樹脂(A)及び反応生成物(B−2)の固形分合計総量を基準として、不揮発分として、アクリル樹脂(A)を3570質量%及び反応生成物(B−2)を3065質量%含有する請求項1〜5及び10〜12のいずれかに記載の塗料組成物。 Based on the total solid content of the acrylic resin (A) and the reaction product (B-2) as a non-volatile content, the acrylic resin (A) is 35 to 70 % by mass and the reaction product (B-2) is 30 to 30 %. Coating composition in any one of Claims 1-5 and 10-12 which contain 65 mass%. 被塗物に、着色ベースコート塗料及びクリヤコート塗料を順次塗装することにより複層塗膜を形成するにあたり、クリヤコート塗料として請求項1〜13のいずれか1項に記載の塗料組成物を使用することを特徴とする上塗複層塗膜形成方法。   In forming a multilayer coating film by sequentially applying a colored base coat paint and a clear coat paint on an object to be coated, the paint composition according to any one of claims 1 to 13 is used as the clear coat paint. A method for forming an overcoat multilayer coating film, comprising: 請求項14に記載の方法により塗装された物品。   15. An article coated by the method of claim 14.
JP2011510308A 2009-04-21 2010-04-13 Coating composition and coating film forming method Expired - Fee Related JP5681101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510308A JP5681101B2 (en) 2009-04-21 2010-04-13 Coating composition and coating film forming method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009102768 2009-04-21
JP2009102768 2009-04-21
JP2009147501 2009-06-22
JP2009147501 2009-06-22
JP2009181454 2009-08-04
JP2009181454 2009-08-04
JP2011510308A JP5681101B2 (en) 2009-04-21 2010-04-13 Coating composition and coating film forming method
PCT/JP2010/056889 WO2010122965A1 (en) 2009-04-21 2010-04-13 Coating material composition and method for forming coating film

Publications (2)

Publication Number Publication Date
JPWO2010122965A1 JPWO2010122965A1 (en) 2012-10-25
JP5681101B2 true JP5681101B2 (en) 2015-03-04

Family

ID=43011082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510308A Expired - Fee Related JP5681101B2 (en) 2009-04-21 2010-04-13 Coating composition and coating film forming method

Country Status (2)

Country Link
JP (1) JP5681101B2 (en)
WO (1) WO2010122965A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5748209B2 (en) * 2011-05-25 2015-07-15 関西ペイント株式会社 Coating composition and coated article
JP5112570B1 (en) * 2012-07-09 2013-01-09 住化バイエルウレタン株式会社 Coating method and curing agent for polyurethane paint
JP6275447B2 (en) * 2013-02-06 2018-02-07 関西ペイント株式会社 Coating composition and multilayer coating film forming method
JP2014205745A (en) * 2013-04-11 2014-10-30 三菱化学株式会社 Coating composition
JP6859014B2 (en) * 2016-11-23 2021-04-14 関西ペイント株式会社 Multi-layer coating film forming method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412311B2 (en) * 1981-10-14 1989-02-28 Nippon Paint Co Ltd
JPH0224375A (en) * 1988-07-14 1990-01-26 Toyota Motor Corp Color base and primer composition for rim urethane molding
JPH0559326A (en) * 1991-08-30 1993-03-09 Dainippon Toryo Co Ltd Top clear paint
JPH05320562A (en) * 1992-05-26 1993-12-03 Kansai Paint Co Ltd Paint composition
WO1996034063A1 (en) * 1995-04-28 1996-10-31 Nof Corporation Coating composition, process for preparing the composition, and process for preparing dispersion of inorganic oxide sol
WO1997014731A1 (en) * 1995-10-19 1997-04-24 Basf Lacke + Farben Ag Coating agent comprising at least three components, process for its preparation and its use
JP2001271027A (en) * 2000-03-27 2001-10-02 Bridgestone Sports Co Ltd Water-based coating composition for golf ball and golf ball using the same
JP2005298591A (en) * 2004-04-08 2005-10-27 Kansai Paint Co Ltd Aqueous coating material composition and method of forming coating film
WO2006028130A1 (en) * 2004-09-08 2006-03-16 Kansai Paint Co., Ltd. Hydroxyl group-containing resin for coating material and coating composition
JP2009503122A (en) * 2005-07-29 2009-01-29 関西ペイント株式会社 Water-based clear coating composition and method for forming topcoat multilayer coating film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220397A (en) * 1993-01-25 1994-08-09 Mazda Motor Corp Two-pack type urethane coating composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412311B2 (en) * 1981-10-14 1989-02-28 Nippon Paint Co Ltd
JPH0224375A (en) * 1988-07-14 1990-01-26 Toyota Motor Corp Color base and primer composition for rim urethane molding
JPH0559326A (en) * 1991-08-30 1993-03-09 Dainippon Toryo Co Ltd Top clear paint
JPH05320562A (en) * 1992-05-26 1993-12-03 Kansai Paint Co Ltd Paint composition
WO1996034063A1 (en) * 1995-04-28 1996-10-31 Nof Corporation Coating composition, process for preparing the composition, and process for preparing dispersion of inorganic oxide sol
WO1997014731A1 (en) * 1995-10-19 1997-04-24 Basf Lacke + Farben Ag Coating agent comprising at least three components, process for its preparation and its use
JP2001271027A (en) * 2000-03-27 2001-10-02 Bridgestone Sports Co Ltd Water-based coating composition for golf ball and golf ball using the same
JP2005298591A (en) * 2004-04-08 2005-10-27 Kansai Paint Co Ltd Aqueous coating material composition and method of forming coating film
WO2006028130A1 (en) * 2004-09-08 2006-03-16 Kansai Paint Co., Ltd. Hydroxyl group-containing resin for coating material and coating composition
JP2009503122A (en) * 2005-07-29 2009-01-29 関西ペイント株式会社 Water-based clear coating composition and method for forming topcoat multilayer coating film

Also Published As

Publication number Publication date
JPWO2010122965A1 (en) 2012-10-25
WO2010122965A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5946356B2 (en) Coating composition and coating film forming method
JP2009530425A (en) Coating composition and coating film forming method
JP5156212B2 (en) Two-component clear coating composition and multilayer coating film forming method
JP5080322B2 (en) Multi-layer coating formation method
JP4879735B2 (en) Polyester resin and thermosetting aqueous coating composition
WO2010047195A1 (en) Coating composition and method for forming coating film
JP5630833B2 (en) Coating composition and coating film forming method using the coating composition
JP5850526B2 (en) Coating composition and coating film forming method
JP6029589B2 (en) Coating composition and coated article
JPWO2010095693A1 (en) Coating composition and coating film forming method
JP5681101B2 (en) Coating composition and coating film forming method
JP2010285458A (en) Coating composition and method for forming coating film
CN104540911A (en) Coating composition
JP2015108049A (en) Coating composition capable of forming crepe pattern coating film
JP2010285459A (en) Coating composition and method for forming coating film
JP5843384B2 (en) Multi-layer coating formation method
JP2009067957A (en) Coating material composition and coating film forming method
WO2009075392A1 (en) Coating composition and method for forming multilayer coating film
JP5416385B2 (en) Coating composition and coating film forming method
JP4539688B2 (en) Reactive diluent for modifying thermosetting coating composition and coating composition using the same
JP6270143B2 (en) Paint composition
JP2008013647A (en) Coating composition and method for forming coating film
JP2009149825A (en) Coating composition and method for forming coated film
WO2020166197A1 (en) Viscosity modifier and paint composition
JP7389538B2 (en) Method for producing a dispersion of a hydrolyzed condensate of an organosilicon compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150108

R150 Certificate of patent or registration of utility model

Ref document number: 5681101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees