図1はこの発明の実施例に係る船外機の制御装置を船体も含めて全体的に示す概略図、図2は図1に示す船外機の部分断面拡大側面図、図3は船外機の拡大側面図である。
図1から図3において、符号1は船外機10が船体(艇体)12に搭載されてなる船舶を示す。船外機10は、図2に良く示すように、スイベルケース14、チルティングシャフト16およびスターンブラケット18を介して船体12の後尾(船尾)12aに取り付け可能とされる。
スイベルケース14の付近には、スイベルケース14の内部に鉛直軸回りに回転自在に収容されるスイベルシャフト20を駆動する転舵用電動モータ(アクチュエータ)22が配置される。転舵用電動モータ22の回転出力は減速ギヤ機構26、マウントフレーム28を介してスイベルシャフト20に伝達され、よって船外機10はスイベルシャフト20を転舵軸として左右に(鉛直軸回りに)転舵される。
船外機10の上部には、内燃機関(以下「エンジン」という)30が搭載される。エンジン30は火花点火式の水冷ガソリンエンジンで、排気量2200ccを備える。エンジン30は水面上に位置し、エンジンカバー32によって覆われる。
エンジン30の吸気管34には、スロットルボディ36が接続される。スロットルボディ36はその内部にスロットルバルブ38を備えると共に、スロットルバルブ38を開閉駆動するスロットル用電動モータ(アクチュエータ)40が一体的に取り付けられる。
スロットル用電動モータ40の出力軸は減速ギヤ機構(図示せず)を介してスロットルバルブ38に接続され、スロットル用電動モータ40を動作させることでスロットルバルブ38が開閉され、エンジン30の吸気量が調量されてエンジン回転数(機関回転数)が調節される。
船外機10は、鉛直軸回りに回転自在に支持されると共に、上端がエンジン30のクランクシャフト(図2で見えず)に接続されるドライブシャフト(動力伝達軸)42と、水平軸回りに回転自在に支持されると共に、その一端にプロペラ44が取り付けられるプロペラシャフト(動力伝達軸)46と、ドライブシャフト42とプロペラシャフト46の間に介挿されると共に、1速、2速、3速からなる複数の変速段を有する変速機(自動変速機)48を備える。即ち、エンジン30からの動力は、ドライブシャフト42と変速機48とプロペラシャフト46を介してプロペラ44に伝達可能とされる。
変速機48は、複数の変速段を切換自在な変速機構50と、シフト位置を前進位置(フォワード位置)、後進位置(リバース位置)およびニュートラル位置に切換自在なシフト機構52からなる。
図4は変速機構50の油圧回路を模式的に示す油圧回路図である。
図2および図4に示す如く、変速機構50は、ドライブシャフト(インプットシャフト)42と、ドライブシャフト42に変速ギヤを介して接続されるカウンタシャフト54と、カウンタシャフト54に複数の変速ギヤを介して接続される第1の連結シャフト(アウトプットシャフト)56とが平行に配置された平行軸式の有段式の変速機構からなる。
カウンタシャフト54には、後述する変速用の油圧クラッチや潤滑部に作動油(潤滑油。オイル)を圧送する油圧ポンプ(ギヤポンプ。図2,4にのみ示す)60が接続される。シャフト42,54,56や油圧ポンプ60などは、ケース(図2にのみ示す)62に収容されると共に、ケース62の下部は作動油を受けるオイルパン62aを構成する。
上記の如く構成された変速機構50においては、シャフト上に相対回転自在に配置されたギヤを変速クラッチでシャフト上に固定することで複数の変速段、詳しくは1速、2速、3速のうちのいずれかの変速段が選択(確立)され、エンジン30の出力は選択された変速段で変速され、シフト機構52、プロペラシャフト46を介してプロペラ44に伝達される。尚、各変速段の変速比は1速が最も大きく、2速、3速となるにつれて小さくなるように設定される。具体的には、例えば1速変速比が2.3、2速変速比が1.9、3速変速比が1.7とされる。
変速機構50について具体的に説明すると、図4に良く示すように、ドライブシャフト42には、インプットプライマリギヤ64が支持される。カウンタシャフト54には、インプットプライマリギヤ64に噛合するカウンタプライマリギヤ66、カウンタ1速ギヤ68、カウンタ2速ギヤ70、カウンタ3速ギヤ72が支持される。
また、第1の連結シャフト56には、カウンタ1速ギヤ68に噛合するアウトプット1速ギヤ74、カウンタ2速ギヤ70と噛合するアウトプット2速ギヤ76、カウンタ3速ギヤ72に噛合するアウトプット3速ギヤ78が支持される。
上記において、第1の連結シャフト56に相対回転自在に支持されたアウトプット1速ギヤ74を1速用クラッチC1で第1の連結シャフト56に結合すると、1速(ギヤ。変速段)が確立する。尚、1速用クラッチC1は、ワンウェイクラッチからなり、後述する2速または3速用油圧クラッチC2,C3に油圧が供給されて2速または3速が確立し、第1の連結シャフト56の回転数がアウトプット1速ギヤ74のそれより大きくなるとき、アウトプット1速ギヤ74を空転させるように構成される。
カウンタシャフト54に相対回転自在に支持されたカウンタ2速ギヤ70を2速用油圧クラッチC2でカウンタシャフト54に結合すると、2速(ギヤ。変速段)が確立する。また、カウンタシャフト54に相対回転自在に支持されたカウンタ3速ギヤ72を3速用油圧クラッチC3でカウンタシャフト54に結合すると、3速(ギヤ。変速段)が確立する。尚、油圧クラッチC2,C3は、油圧が供給されるとき各ギヤ70,72をカウンタシャフト54に結合する一方、油圧が供給されないとき各ギヤ70,72を空転させる。
このように、クラッチC1,C2,C3によるギヤとシャフトの結合は、油圧ポンプ60から油圧クラッチC2,C3に供給される油圧を制御することで行われる。
詳説すると、油圧ポンプ60がエンジン30により駆動されるとき、オイルパン62aの作動油は油路80a、ストレーナ82を介して汲み上げられて吐出口60aから油路80bを介して第1切換バルブ84aに、油路80c,80dを介して第1、第2電磁ソレノイドバルブ(リニアソレノイドバルブ)86a,86bに送られる。
第1切換バルブ84aには、油路80eを介して第2切換バルブ84bが接続される。第1、第2切換バルブ84a,84bの内部には移動自在なスプールがそれぞれ収容され、スプールは一端側(図で左端)でスプリングによって他端側に付勢される。その他端側には、前記した第1、第2電磁ソレノイドバルブ86a,86bが油路80f,80gを介して接続される。
従って、第1電磁ソレノイドバルブ86aが通電(オン)されると、その内部に収容されたスプールが変位させられ、油圧ポンプ60から油路80cを介して供給される油圧は第1切換バルブ84aのスプールの他端側に出力される。これにより、第1切換バルブ84aのスプールは一端側に変位させられ、よって油路80bの作動油が油路80eに送出される。
第2電磁ソレノイドバルブ86bも、第1電磁ソレノイドバルブ86aと同様、通電(オン)されるときにスプールが変位させられ、油圧ポンプ60から油路80dを介して供給される油圧は第2切換バルブ84bの他端側に出力される。これにより、第2切換バルブ84bはスプールが一端側に変位させられ、よって油路80eの作動油は油路80hを介して2速用油圧クラッチC2に供給される。一方、第2電磁ソレノイドバルブ86bが通電されず(オフされ)、第2切換バルブ84bの他端側に油圧が出力されないときは油路80eの作動油は油路80iを介して3速用油圧クラッチC3に供給される。
即ち、第1、第2電磁ソレノイドバルブ86a,86bが共にオフされるときは油圧クラッチC2,C3のいずれにも油圧が供給されないため、アウトプット1速ギヤ74と第1の連結シャフト56が1速用クラッチC1で結合されて1速が確立する。
また、第1、第2電磁ソレノイドバルブ86a,86bが共にオンされるときは2速用油圧クラッチC2に油圧が供給されるため、カウンタ2速ギヤ70とカウンタシャフト54が結合されて2速が確立する。さらに、第1電磁ソレノイドバルブ86aがオン、第2電磁ソレノイドバルブ86bがオフされるときは3速用油圧クラッチC3に油圧が供給されるため、カウンタ3速ギヤ72とカウンタシャフト54が結合されて3速が確立する。このように、第1、第2切換バルブ84a,84bのオン・オフを制御することで、変速機48の変速段が選択される(変速制御が行われる)。
尚、油圧ポンプ60からの作動油(潤滑油)は、油路80b,80j、レギュレータバルブ88やリリーフバルブ90を介して潤滑部(例えばシャフト42,54,56など)にも供給される。また、第1、第2切換バルブ84a,84bと第1、第2電磁ソレノイドバルブ86a,86bにはそれぞれ、圧抜き用の油路80kが適宜に接続される。
図2の説明に戻ると、シフト機構52は、変速機構50の第1の連結シャフト56に連結されると共に、鉛直軸と平行に配置されて回転自在に支持される第2の連結シャフト52aと、シャフト52aに接続されて回転させられる前進ベベルギヤ52bと後進ベベルギヤ52cと、プロペラシャフト46を前進ベベルギヤ52bと後進ベベルギヤ52cのいずれかに係合自在とするクラッチ52dなどからなる。
エンジンカバー32の内部にはシフト機構52を駆動するシフト用電動モータ(アクチュエータ)92が配置され、その出力軸は、減速ギヤ機構94を介してシフト機構52のシフトロッド52eの上端に接続自在とされる。従って、シフト用電動モータ92を駆動することにより、シフトロッド52eとシフトスライダ52fが適宜に変位させられ、それによってクラッチ52dを動作させてシフト位置が前進位置、後進位置およびニュートラル位置の間で切り換えられる。
シフト位置が前進位置あるいは後進位置のとき、変速機構50のシャフト56の回転はシフト機構52を介してプロペラシャフト46に伝達され、よってプロペラ44は回転させられ、船体12を前進あるいは後進させる方向の推力(推進力)を生じる。尚、船外機10はエンジン30に取り付けられたバッテリなどの電源(図示せず)を備え、それから各電動モータ22,40,92などに動作電源が供給される。
図3に示す如く、スロットルバルブ38の付近にはスロットル開度センサ(スロットル開度変化量検出手段)96が配置され、スロットルバルブ38の開度(スロットル開度)THを示す出力を生じる。また、エンジン30のクランクシャフトの付近にはクランク角センサ(機関回転数検出手段)100が取り付けられ、所定のクランク角度ごとにパルス信号を出力する。
上記した各センサの出力は、船外機10に搭載された電子制御ユニット(Electronic Control Unit。以下「ECU」という)102に入力される。ECU102はCPUやROM,RAMなどを備えたマイクロ・コンピュータからなり、船外機10のエンジンカバー32の内部に配置される。
図1に示す如く、船体12の操縦席110の付近には、操船者(図示せず)によって回転操作自在なステアリングホイール112が配置される。ステアリングホイール112のシャフト(図示せず)には操舵角センサ114が取り付けられ、操船者によって入力されたステアリングホイール112の操舵角に応じた信号を出力する。
操縦席110付近にはリモートコントロールボックス116が配置され、そこには操船者によって操作自在なスロットルレバー(シフト・スロットルレバー)120が設けられる。レバー120は、リモートコントロールボックス116の内部に回転自在に支持された回転軸(図示せず)に取り付けられることにより、初期位置から前後方向に揺動操作自在とされ、操船者からのシフトチェンジ指示(前進/後進/ニュートラル切り替え指示)と、エンジン30に対する加速/減速指示を含むエンジン回転数の調節指示とを入力する。
リモートコントロールボックス116の内部にはレバー位置センサ122が配置され、操船者によるスロットルレバー120の操作位置(操作角。以下「操作量」ともいう)LVR、正確にはレバー120の回転軸の回転角に応じた信号を出力する。尚、レバー位置センサ122は例えばポテンショメータなどの回転角センサからなる。
さらに、船体12の適宜位置には、GPS(Global Positioning System)信号を受信するGPS受信装置(受信装置)124が配置される。GPS受信装置124は、GPS信号から得られる船舶1の位置情報を示す信号を出力する。これら各センサ114,122およびGPS受信装置124の出力もECU102に入力される。
尚、ECU102と各センサやGPS受信装置124とは、例えばNMEA(National Marine Electronics Association。米国船舶用電子機器協会)で規格された通信方式(例えばNMEA2000。具体的にはCAN(Controller Area Network))で通信自在に接続される。
ECU102は、入力されたセンサ出力などに基づいて各電動モータ22,92の動作を制御して船外機10の転舵またはシフトチェンジを行うと共に、変速機48の変速制御を行う。また、ECU102は、レバー位置センサ122の出力に基づいてスロットル用電動モータ40の動作を制御し、スロットルバルブ38を開閉させてスロットル開度THを調整するスロットル開度制御も行う。
さらに、ECU102は、入力されたセンサ出力に基づいてエンジン30の燃料噴射量と点火時期を決定し、インジェクタ130(図3に示す)を介して決定された噴射量の燃料を供給すると共に、点火装置132(図3に示す)を介して決定された点火時期に従って噴射された燃料と吸気の混合気を点火する。
このように、この実施例に係る船外機の制御装置は、操作系(ステアリングホイール112やスロットルレバー120)と船外機10の機械的な接続が断たれたDBW(Drive By Wire)方式の装置である。
図5は、ECU102の変速制御動作、スロットル開度制御動作および点火時期制御動作を示すフロー・チャートである。図示のプログラムは、ECU102によって所定の周期(例えば100msec)ごとに実行される。
以下説明すると、先ずS(ステップ)10において、スロットル開度THをスロットル開度センサ96の出力から検出(算出)し、S12に進んで検出されたスロットル開度THの規定時間(例えば500msec)当たりの変化量(変動量)DTHを検出(算出)する。
次いでS14に進み、エンジン30に対して操船者から減速が指示されたか否か、換言すれば、エンジン30が船舶1を減速させる運転状態にあるか否か判定する。具体的には、スロットル開度THの変化量DTHが負値に設定された第1の既定値DTH1(例えば−0.5deg)未満の場合、スロットルバルブ38が閉弁方向に駆動されている、即ち、エンジン30に対して減速が指示されたと判定する。
S14で否定されるときはS16に進み、クランク角センサ100の出力パルスをカウントしてエンジン回転数NEを検出(算出)し、S18に進んで加速後2速変速済みフラグ(以下「2速変速フラグ」という)のビットが0か否か判断する。このフラグのビットは、後述する如く、加速終了後に1速から2速に変速されるとき1にセットされる一方、それ以外のとき0にリセットされる。
2速変速フラグは初期値が0とされるため、最初のプログラムループにおいてS18の判断は通例肯定されてS20に進み、エンジン回転数NEが所定回転数NE1以上か否か判断する。この所定回転数NE1については後に説明する。
エンジン始動直後のプログラムループにおいては通例、エンジン回転数NEは所定回転数NE1未満であるため、S20の判断は否定されてS22に進む。S22では、加速中判定フラグ(後述。図で「加速中フラグ」と示す)のビットが0か否か判断する。加速中判定フラグも初期値が0とされるため、最初のプログラムループにおいてここでの判断は肯定されてS24に進む。
S24では、エンジン30に対して操船者から加速(正確には急加速)が指示されたか否か、換言すれば、エンジン30が船舶1を加速(正確には急加速)させる運転状態にあるか否か判定する。この判定は、具体的にはスロットルバルブ38が開弁方向に急速に駆動されているか否か判断することで行う。
詳しくは、S12で検出されたスロットル開度の変化量DTHと第2の既定値(既定値)DTH2とを比較し、変化量DTHが第2の既定値DTH2以上のとき、スロットルバルブ38が開弁方向に急速に駆動されている、即ち、加速が指示されたと判定する。従って、第2の既定値DTH2は、第1の既定値DTH1に比して大きい値(正値)で、加速の指示がなされたと判定できるような値、例えば0.5degに設定される。
S24で否定、即ち、エンジン30に対して加速または減速の指示がないときはS26に進み、第1、第2電磁ソレノイドバルブ86a,86b(図で「第1SOL」「第2SOL」と示す)を共にオンして変速機48において2速の変速段を選択し、次いでS28に進み、加速中判定フラグのビットを0にリセットする。
他方、S24で肯定されるときはS30に進み、プロペラ44の回転状態を示すスリップ率(滑り率)εを検出(算出)し、S32に進んでスリップ率εの規定時間(例えば500msec)当たりの変化量(変動量)Dεを検出(算出)する。このスリップ率εは、船舶1の理論速度Vaと航行速度(実速度)Vに基づいて検出、具体的には下記の式(1)を用いて算出する。
スリップ率ε=(理論速度Va(Km/h)−航行速度V(Km/h))/理論速度Va(Km/h) ・・・式(1)
式(1)で航行速度VはGPS受信装置124の出力(位置情報)から算出する。また、理論速度Vaは下記の式(2)に示すように、エンジン30や変速機48の運転状態、プロペラ44の仕様に基づいて算出する。
理論速度Va(Km/h)=(エンジン回転数NE(rpm)×プロペラピッチ(インチ)×60×2.54×10−5)/(変速段の変速比) ・・・式(2)
式(2)でプロペラピッチはプロペラ44が1回転するときに進むことのできる理論上の距離を示す値であり、変速段の変速比は変速機48において現在選択されている変速段の変速比であって、例えば2速のときの変速比は前述の如く1.9となる。また、60なる数値は1分間当たりのエンジン回転数NEを1時間当たりの値に換算するためのものであり、2.54×10−5なる数値はプロペラピッチをインチからキロメートルに換算するためのものである。
次いでS34に進み、プロペラ44のスリップ率εの上昇を抑制するようにエンジン30のスロットル開度THを制御する。即ち、エンジン30に対して加速が指示されるとき、プロペラ44は回転数の上昇によって付近に発生する気泡を巻き込んで空回りし易く、スリップ率εが上昇してグリップ力が比較的弱い状態になることがある。そこで、S34ではスロットル開度THを適宜に補正してスリップ率εが上昇するのを抑えるようにした。
図6は、スロットルレバー120の操作量(操作位置)LVRに対するスロットル開度THの特性を示す説明グラフである。図6にあっては、スロットル開度THを補正する前の特性を破線で、補正した後のそれを実線で示す。
図示の如く、S34の処理においては、レバー120の操作量LVRに対するスロットル開度THの変化速度を減少させる(スロットル開度THの増加を鈍化させる)ように、スロットル用電動モータ40の動作を制御するようにした。これにより、エンジン30に対して加速指示が入力されるとき、具体的には、レバー120の操作量LVRが増加するとき、スロットルバルブ38は補正前に比して緩やかに開弁させられることとなり、エンジン回転数NEが急激に増加し難くなる、別言すれば、プロペラ44の回転数が急速に上昇し難くなる。その結果、プロペラ44の付近の気泡の発生を抑え、スリップ率εが上昇するのを抑制することが可能となり、よってプロペラ44のグリップ力を維持しつつプロペラ回転数を上昇させることができる。
次いでS36に進み、スリップ率εが第1の所定スリップ率ε1以下で、かつスリップ率の変化量Dεが所定スリップ率変化量Dε1以下か否か判断する。所定スリップ率ε1は、スリップ率εがそれ以下のときにグリップ力が比較的強いと判定できるような比較的低い値、例えば0.3に設定される。また、所定スリップ率変化量Dε1は具体的には0とされ、よって後段は変化量Dεが0または負値か否か判断している。即ち、S36は、プロペラ44においてスリップ率εが減少する方向に変化すると共に、グリップ力が比較的強い状態になったか否か判定する処理である。
S36で肯定されるときはS38に進み、第1、第2電磁ソレノイドバルブ86a,86bを共にオフして変速機48の変速段を2速から1速に変速(シフトダウン)する。これにより、エンジン30の出力トルクは1速にシフトダウンさせられた変速機48(正確には、変速機構50)によって増幅させられてプロペラ44に伝達され、よって加速性が上昇する。尚、S38で1速に変速するとき、前記したエンジン30のスロットル開度THを補正する制御を終了し、通常の制御、具体的には、図6に破線で示す特性に基づいてスロットル開度THの制御を行う。
次いでS40に進み、加速中判定フラグのビットを1にセットする。即ち、このフラグは、エンジン30に対して加速が指示されたと判定された後に変速段が2速から1速に変速されるとき1にセットされる一方、それ以外のときは0にリセットされる。尚、このフラグのビットが1にセットされると、次回以降のプログラム実行時はS22で否定されてS24からS36までの処理をスキップする。
このように、エンジン30が始動させられてから加速が指示されると共に、スリップ率εが上記した条件を満たすまでの通常運転時は、変速機48を2速にするように構成したため、急加速以外での船外機10の使い勝手を、変速機を備えない船外機と同等とすることができる。
他方、S36で否定されるときはS42に進み、スリップ率εが第1の所定スリップ率ε1より高く設定された第2の所定スリップ率ε2以上か否か判断する。この第2の所定スリップ率ε2は、スリップ率εがそれ以上のときにプロペラ44のグリップ力が比較的弱いと判定できるような値に設定され、例えば0.5とされる。即ち、S42は、S34でスロットル開度THを補正したにも関わらず、スリップ率εが上昇してプロペラ44のグリップ力が弱くなったか否か判定する処理である。
S42で肯定されるときはS44に進み、点火時期遅角フラグ(初期値0。図で「遅角フラグ」と示す)のビットを1にセットする。このフラグのビットが1にセットされるときは、図示しないプログラムにおいてエンジン30の点火時期を遅角する制御を行う、具体的には、エンジン回転数NEなどに基づいて算出された点火時期を所定の遅角量(例えば5度)だけ遅角し、エンジン30の出力を低下させる。
エンジン30の出力を低下させると、その後プロペラ44のグリップ力は瞬時的に増加し、スリップ率εが減少して第2の所定スリップ率ε2未満となる。そのときはS42で否定されてS46に進み、点火時期遅角フラグのビットを0にリセットし、前述した遅角制御を中止し、通常の点火時期制御を実行する。
尚、S44においては、エンジン30の出力の低下を、点火時期に代え、エンジン30の燃料噴射量を介して行うようにしても良い。即ち、エンジン30に供給される燃料噴射量を減少させる制御を行う、具体的にはエンジン回転数NEなどに基づいて算出された燃料噴射量を所定量だけ減少(減量)させることで、エンジン30の出力を低下させるように構成しても良い。また、そのように構成した場合、S46は、前述した燃料噴射量の減量制御を中止、あるいは減量制御を行わず、通常の燃料噴射制御を実行する処理となる。
S38で変速機48を1速に変速した後、エンジン回転数NEが徐々に上昇し、そして1速でのトルク増幅を利用した加速が終了に近づくと(加速領域が飽和に近づくと)、エンジン回転数NEは所定回転数NE1に到達し、よってS20の判断で肯定されてS48以降の処理に進む。従って、所定回転数NE1は、比較的高い値に設定され、詳しくは1速での加速が終了に近づいたと判断できる値(例えば5000rpm)とされる。
S48では、GPS受信装置124の出力に基づき、航行速度Vの所定時間(単位時間)当たりの変化量(換言すれば、時間に対する航行速度Vの変化の割合)を示す航行加速度a(m/s2)を検出する。具体的には、GPS受信装置124の出力に基づいて航行速度Vを検出し、検出された航行速度Vを微分(dV/dt)することで、航行加速度aを検出する。
次いでS50に進み、1速でのトルク増幅を利用した加速が終了したか否か判定する。具体的には、S48で検出された航行加速度aと所定値a1とを比較し、航行加速度aが所定値a1以下のとき、加速が終了したと判定する。従って、所定値a1は、加速が終了したと判定できるような値、例えば5m/s2に設定される。
S50で否定されるときは1速のままプログラムを終了する一方、肯定されるときはS52に進み、第1、第2電磁ソレノイドバルブ86a,86bを共にオンして変速機48の変速段を1速から2速に変速(シフトアップ)すると共に、S54に進んで2速変速フラグのビットを1にセットする。これにより、第1、第2の連結シャフト56,52aおよびプロペラシャフト46の回転数が上昇して加速性が向上すると共に、その後航行速度Vが(エンジン性能上の)最高速度に到達して速度性も向上する。
S54において2速変速フラグのビットが1にセットされると、次回以降のプログラム実行時はS18で否定されて前述したS52,S54に進む。また、S14で肯定されるときはS56に進み、第1、第2電磁ソレノイドバルブ86a,86bを共にオンして変速機48の変速段を2速に変速する。その後、S58,S60に進んで2速変速フラグと加速中判定フラグのビットを共に0にリセットする。
図7は上記した処理の一部を説明するタイム・チャートである。
図7に示すように、先ず時刻t0からt1の通常運転時においては変速機48を2速に設定し(S26)、その後操船者のスロットルレバー120の操作によってスロットルバルブ38が開弁させられ、時刻t1においてスロットル開度の変化量DTHが第2の既定値DTH2以上のとき、エンジン30に対して加速が指示されたと判定する(S24)。加速直後のプロペラ44は付近に発生する気泡を巻き込んでスリップ率εが上昇するため、時刻t1では、その上昇を抑制するようにエンジン30のスロットル開度THを補正する制御を開始する(S34)。
その後、スリップ率εが徐々に減少して時刻t2において第1の所定スリップ率ε1以下になると共に、スリップ率の変化量Dεが所定スリップ率変化量Dε1以下になったとき、変速機48を2速から1速に変速させる(S36,S38)。このとき、スロットル開度THの補正制御を終了する。
次いでエンジン回転数NEは徐々に上昇し、時刻t3において所定回転数NE1以上で、かつ航行加速度aが所定値a1以下になったと判断されるとき、1速から2速に変速させる(S20,S50,S52)。
尚、時刻t1と時刻t2の間において、想像線で示す如く、スリップ率εの上昇を抑えるようにスロットル開度THを制御しているにも関わらず、時刻taでスリップ率εが第2の所定スリップ率ε2以上と判断されるときは、点火時期遅角フラグのビットを1にセットしてエンジン30の出力を低下させる(S42,S44)。
エンジン30の出力を低下させることによってグリップ力は増加、別言すれば、スリップ率εは減少し、時刻tbで第2の所定スリップ率ε2未満と判断されるとき、点火時期遅角フラグのビットを0にリセットしてエンジン30の出力の低下を中止する(S42,S46)。
以上の如く、この発明の実施例にあっては、内燃機関(エンジン)30からの動力をプロペラ44に伝達する動力伝達軸(ドライブシャフト42、プロペラシャフト46)に介挿されると共に、少なくとも1速、2速からなる変速段を有し、前記内燃機関の出力を前記変速段のうちの選択された変速段で変速して前記プロペラに伝達する変速機48を備え、船体12に取り付け可能な船外機の制御装置において、前記2速が選択されているとき、前記内燃機関30に対して操船者から加速が指示されたか否か判定する加速指示判定手段(ECU102。S24)と、前記内燃機関30の機関回転数(エンジン回転数)NEを検出する機関回転数検出手段(クランク角センサ100,ECU102。S16)と、航行速度Vの所定時間当たりの変化量を示す航行加速度aを検出する航行加速度検出手段(ECU102。S48)と、前記加速が指示されたと判定されるとき、前記プロペラ44のスリップ率εの上昇を抑制するように前記内燃機関30のスロットル開度THを補正すると共に、前記変速機48を動作させて前記2速から前記1速に変速させる1速変速手段(ECU102。S24,S38)と、前記1速変速手段によって前記1速に変速された後、前記検出された機関回転数NEが所定回転数NE1以上で、かつ前記検出された航行加速度aが所定値a1以下になったとき、前記1速から前記2速に変速させる2速変速手段(ECU102。S20,S50,S52)とを備える如く構成した。
これにより、加速性能を向上できると共に、船舶1の航行状態に応じた最適な変速機48の変速制御を船体12の仕様に関わらず行うことができる。即ち、エンジン30に対して操船者から加速が指示されたと判定されるとき、2速から1速に変速させるように構成したので、エンジン30の出力トルクは変速機48で増幅されてプロペラ44に伝達されることとなり、よって船外機10の加速直後における加速性能を向上させることができる。
また、1速に変速された後、エンジン回転数NEが所定回転数NE1以上で、かつ航行加速度aが所定値a1以下になったとき、1速から2速に変速させるように構成したので、船体12の仕様に関わらず、換言すれば水面から船体12に作用する抵抗の多寡に関わらず、加速が終了したことを正確に検出できると共に、そのときに2速に変速させることで、船舶1の航行状態(加速状態)に応じた最適な変速機48の変速制御を行うことができる。さらに、船舶1の航行状態に応じた最適な変速制御により、エンジン30の燃料消費量も低減できる、別言すれば燃費を向上させることもできる。
また、GPS信号を受信する受信装置(GPS受信装置)124を備えると共に、前記航行加速度検出手段は、前記受信装置124の出力に基づいて前記航行加速度aを検出する如く構成したので(S48)、簡易な構成でありながら、航行加速度aを正確に検出することができる。
また、前記航行加速度検出手段は、前記受信装置124の出力に基づいて前記航行速度Vを検出し、前記検出された航行速度Vを微分することで、前記航行加速度aを検出する如く構成したので(S48)、航行加速度aをより一層正確に検出することができる。
また、前記内燃機関のスロットル開度THの変化量DTHを検出するスロットル開度変化量検出手段(スロットル開度センサ96,ECU102。S12)を備えると共に、前記加速指示判定手段は、前記検出されたスロットル開度の変化量DTHが既定値(第2の既定値)DTH2以上のとき、前記加速が指示されたと判定する如く構成したので(S24)、前記加速の指示がなされたことを正確に判定することができる。
尚、上記において、船外機を例にとって説明したが、変速機を備えた船内外機についても本発明を適用することができる。また、S44においてエンジン30の出力を低下させるため、点火時期を遅角させる、あるいは燃料噴射量を減少させるようにしたが、それら両方を行うように構成しても良く、さらに例えば点火カットや燃料カットなどを行ってエンジン30の出力を低下させるように構成しても良い。
また、所定値a1、所定回転数NE1、第1、第2の既定値DTH1,DTH2、第1、第2の所定スリップ率ε1,ε2、所定スリップ率変化量Dε1やエンジン30の排気量などを具体的な値で示したが、それらは例示であって限定されるものではない。