JP5668259B2 - Hydraulic drive circuit - Google Patents

Hydraulic drive circuit Download PDF

Info

Publication number
JP5668259B2
JP5668259B2 JP2013548698A JP2013548698A JP5668259B2 JP 5668259 B2 JP5668259 B2 JP 5668259B2 JP 2013548698 A JP2013548698 A JP 2013548698A JP 2013548698 A JP2013548698 A JP 2013548698A JP 5668259 B2 JP5668259 B2 JP 5668259B2
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
main
valve
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013548698A
Other languages
Japanese (ja)
Other versions
JPWO2014017475A1 (en
Inventor
相昊 玄
相昊 玄
晴次 水井
晴次 水井
悦宏 森
悦宏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORI KOGYO CO., LTD.
Ritsumeikan Trust
Original Assignee
MORI KOGYO CO., LTD.
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORI KOGYO CO., LTD., Ritsumeikan Trust filed Critical MORI KOGYO CO., LTD.
Priority to JP2013548698A priority Critical patent/JP5668259B2/en
Application granted granted Critical
Publication of JP5668259B2 publication Critical patent/JP5668259B2/en
Publication of JPWO2014017475A1 publication Critical patent/JPWO2014017475A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/30575Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31552Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
    • F15B2211/31558Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input

Description

本発明は、液圧(油圧や水圧等)駆動機械に用いられる液圧駆動回路に関し、特に高精度、高応答性が要求されるサーボアプリケーションへの適用に好適な液圧駆動回路に関する。   The present invention relates to a hydraulic drive circuit used in a hydraulic (hydraulic pressure, hydraulic pressure, etc.) drive machine, and more particularly to a hydraulic drive circuit suitable for application to a servo application that requires high accuracy and high response.

従来から、「油圧ハイブリッド」や「油圧サーボ」等の技術が知られている。油圧ハイブリッド技術については、非特許文献1に記載されているように、大まかに2種類ある。一つは、従来の効率の低い油圧サーボシステムに取って代わって、従来の油圧ポンプをインバータ駆動モータやサーボモータで駆動することで、余分なエネルギーを発生することなく弁制御を可能としたハイブリッド油圧システムであり、産業界に広く普及している。   Conventionally, techniques such as “hydraulic hybrid” and “hydraulic servo” are known. As described in Non-Patent Document 1, there are roughly two types of hydraulic hybrid technologies. One is a hybrid that enables valve control without generating extra energy by replacing the conventional low-efficiency hydraulic servo system with a conventional hydraulic pump driven by an inverter drive motor or servo motor. It is a hydraulic system and is widely used in industry.

もう一つは、主に自動車や建設機械のうち、余剰な機械エネルギーを電動機経由でバッテリーに回生するタイプのものであり、このようなタイプのものもハイブリッド型と呼ばれている。特に自動車業界ではハイブリッド車が爆発的に普及しているため、一般的にはハイブリッド=ガソリンと電気モータの複合利用という認識が高いが、海外では非特許文献2に記載されているような、油圧式ハイブリッド自動車の研究開発もなされている。これは電気モータの代わりに油圧モータを利用し、バッテリーの代わりにアキュムレータを利用することで、制動時等に得られる機械(流体)エネルギーを蓄える技術を指しており、あくまでも目的はエネルギー回生であり、後述する本発明とは技術的に異なるものである。   The other type is mainly a type of automobile or construction machine that regenerates excess mechanical energy to a battery via an electric motor. Such a type is also called a hybrid type. In particular, since hybrid vehicles are explosively spreading in the automobile industry, in general, there is a high recognition that hybrid = combined use of gasoline and electric motors. Research and development of hybrid vehicles is also underway. This refers to a technology that stores mechanical (fluid) energy obtained during braking by using a hydraulic motor instead of an electric motor and using an accumulator instead of a battery. The purpose is merely energy regeneration. This is technically different from the present invention described later.

次に、本発明に関連する技術として油圧サーボシステムがある(ここでサーボシステムとは位置・速度・力等の目標値に自動追尾するためのシステムを意味する)。この油圧サーボシステムとしては、非特許文献3に記載されているように、圧力・吐出量が一定である従来の弁制御型と、比較的最近のポンプ制御型に分類できる。一般に広く用いられている安価な油圧駆動回路は、メインポンプで圧油を発生し、それをバルブで絞ることにより、アクチュエータを駆動し、タンクに戻す開回路で構成されている。弁制御型のサーボシステムの代表として、アクチュエータの応答性や精度を高めるために、高性能な比例弁やサーボ弁を用いるものが挙げられる。ポンプ制御型のサーボシステムの代表例としては、可変容量ポンプをロードセンシング駆動したり、定容量ポンプの回転数をインバータモータやサーボモータで制御することで効率化を図ったものが挙げられる。また、非特許文献4に記載されているように、2つ以上のポンプをシリアルに結合することで増圧効果を得る油圧駆動回路もある。   Next, as a technique related to the present invention, there is a hydraulic servo system (here, the servo system means a system for automatically tracking target values such as position, speed, force, etc.). As described in Non-Patent Document 3, this hydraulic servo system can be classified into a conventional valve control type in which pressure and discharge amount are constant and a relatively recent pump control type. In general, an inexpensive hydraulic drive circuit that is widely used includes an open circuit that generates pressure oil by a main pump and throttles it with a valve to drive an actuator and return it to a tank. A representative valve control type servo system is one that uses a high-performance proportional valve or servo valve in order to increase the response and accuracy of the actuator. A typical example of a pump control type servo system is one in which a variable displacement pump is driven by load sensing, or the rotation speed of a constant displacement pump is controlled by an inverter motor or a servo motor. Further, as described in Non-Patent Document 4, there is a hydraulic drive circuit that obtains a pressure increasing effect by serially connecting two or more pumps.

西海孝夫、田中豊他、特集「油圧ハイブリッドの技術動向」、日本フルードパワーシステム学会誌、Vol.41、no.4、pp.182-253、2010.Takao Saikai, Yutaka Tanaka et al., Special Feature “Technological Trend of Hydraulic Hybrid”, Journal of Japan Fluid Power System Society, Vol.41, no.4, pp.182-253, 2010. Karl-Erik Rydberg, Hydraulic hybrids-the new generation of energyefficient drives, Proc. of ISFP, pp.899-905, 2009.Karl-Erik Rydberg, Hydraulic hybrids-the new generation of energyefficient drives, Proc. Of ISFP, pp.899-905, 2009. 芦金石、留滄海、斉藤理人他、「N圧ハイブリッド油圧源とそれを用いた高応答高効率油圧サーボシステムに関する研究(第1報)N圧ハイブリッド油圧源の提案と効率向上の検証実験」、日本フルードパワーシステム学会論文集、Vol.42, no.3, pp.46-52, 2011.Tsujikinishi, Ryukai, Masato Saito, et al. “Research on N-pressure hybrid hydraulic power source and high-response high-efficiency hydraulic servo system using it (1st report) Proposal of N-pressure hybrid hydraulic power source and verification experiment on efficiency improvement” , Proceedings of Japan Fluid Power System Society, Vol.42, no.3, pp.46-52, 2011. パラレル回路とシリーズ回路、油空圧便覧、新版 日本油空圧学会編、pp.109-110Parallel circuit and series circuit, hydraulic / pneumatic manual, new edition, Japan Society of Hydraulic and Pneumatics, pp.109-110

しかしながら、上記の弁制御型の油圧サーボシステムは、高性能なサーボ弁を用いるため、導入コストとランニングコスト(絞り捨てによる熱損、目詰まりによる故障)が極めて高い。ポンプ制御型は、大元の油圧源だけを変更するだけで済むので、少しの工事の手間で省エネ効果を得ることができるが、サーボ弁なしで弁制御型と同等の応答性を達成することはできない。また、大容量インバータ・サーボモータに高いコストが掛かる。また、この考え方をよりサーボアプリケーションに特化したものとして、非特許文献1に示すように、ポンプとアクチュエータとを1対1とした電気油圧アクチュエータ(EHA)があるが、これは開回路ではなく、建設機械で広く用いられているハイドロ・スタティック・トランスミッション(HST)と同様の閉回路構成となるため、導入することはシステム総入れ替えとほぼ同義であり、導入コストが高く、また、負荷変動が激しいアプリケーションにおいて、サーボ弁による弁制御型に匹敵する応答性と精度を両立させることは困難である。また、非特許文献4のように単に複数のポンプをシリアルに結合した油圧駆動回路では増圧効果しか得ることができないとともに、コストが高くなる。   However, since the above-described valve-controlled hydraulic servo system uses a high-performance servo valve, the introduction cost and running cost (heat loss due to throttling, failure due to clogging) are extremely high. The pump control type only needs to change the main hydraulic power source, so it can save energy with a little work, but it must achieve the same responsiveness as the valve control type without a servo valve. I can't. Moreover, high cost is required for a large capacity inverter / servo motor. Moreover, as shown in Non-Patent Document 1, there is an electro-hydraulic actuator (EHA) in which the pump and the actuator are in a one-to-one relationship, as shown in Non-Patent Document 1, but this is not an open circuit. Because it has a closed circuit configuration similar to that of the hydro-static transmission (HST) widely used in construction machinery, introducing it is almost synonymous with system replacement, introducing costs are high, and load fluctuations In severe applications, it is difficult to achieve both responsiveness and accuracy comparable to the valve control type with servo valves. In addition, a hydraulic drive circuit in which a plurality of pumps are simply connected serially as in Non-Patent Document 4 can obtain only a pressure-increasing effect, and the cost increases.

本発明は、上記のような種々の課題に鑑みてなされたものであって、プレス等の産業機器や建設機械等のモバイル用途で広く用いられている液圧駆動システムにおいて、高応答性、高精度、及び、高効率性を低コストで実現することができる液圧駆動回路を提供することを目的とする。   The present invention has been made in view of the various problems as described above. In a hydraulic drive system widely used in mobile applications such as industrial equipment such as presses and construction machines, the present invention has high responsiveness and high response. It is an object of the present invention to provide a hydraulic drive circuit that can realize accuracy and high efficiency at a low cost.

上記目的を達成するために、請求項1に記載の液圧駆動回路は、メイン液圧ポンプから吐出された圧液を供給することによって液圧アクチュエータを駆動する液圧駆動回路であって、前記メイン液圧ポンプから吐出された前記圧液を二方向に分岐させて前記液圧アクチュエータのそれぞれの液室へと流通させるメイン配管経路に配置され、前記液圧アクチュエータの駆動状態を切り替えるための第1バルブと、前記メイン配管経路から前記液圧アクチュエータの一方の液室に流入され、他方の液室から排出された圧液をタンクに戻すための第2バルブと、前記メイン液圧ポンプと前記切替弁の間で、前記メイン配管経路から分岐された分岐配管経路に配置され、該分岐配管経路に流れる圧液を用いて、前記メイン配管経路から前記液圧アクチュエータへ供給される圧液を所定分だけ増圧・増量させるサブ液圧ポンプとを備えることを特徴としている。   In order to achieve the above object, the hydraulic drive circuit according to claim 1 is a hydraulic drive circuit that drives a hydraulic actuator by supplying pressurized liquid discharged from a main hydraulic pump, The pressure fluid discharged from the main hydraulic pump is arranged in a main piping path that branches in two directions and flows to the respective fluid chambers of the hydraulic actuator, and is used for switching the driving state of the hydraulic actuator. 1 valve, a second valve for returning the pressurized fluid that has flowed into the one hydraulic chamber of the hydraulic actuator from the main piping path and discharged from the other hydraulic chamber to the tank, the main hydraulic pump, Between the switching valves, the hydraulic pressure actuated from the main piping path is arranged in the branch piping path branched from the main piping path and using the pressure liquid flowing in the branch piping path. Is characterized in that it comprises a sub-hydraulic pump to the hydraulic fluid supplied to the eta only pressure increase, increase the predetermined amount.

請求項2に記載の液圧駆動回路は、前記サブ液圧ポンプ、前記第1バルブ、及び前記第2バルブが、マニホールドブロックによって一体化構成されていることを特徴としている。   The hydraulic drive circuit according to claim 2 is characterized in that the sub hydraulic pump, the first valve, and the second valve are integrally configured by a manifold block.

請求項3に記載の液圧駆動回路は、請求項1又は2に記載の液圧駆動回路を複数備え、前記メイン配管経路は、前記メイン液圧ポンプから吐出された圧液を前記それぞれの液圧駆動回路へ流通させるよう分岐されていることを特徴としている。   A hydraulic driving circuit according to a third aspect includes a plurality of hydraulic driving circuits according to the first or second aspect, and the main piping path supplies the hydraulic fluid discharged from the main hydraulic pressure pump to each of the hydraulic pressure driving circuits. It is characterized in that it is branched to flow to the pressure drive circuit.

請求項1に記載の液圧駆動回路によれば、サブ液圧ポンプによって、メイン配管経路から液圧アクチュエータへ供給される圧液を所定分だけ増圧・増量させることができるので、液圧アクチュエータの力や速度の制御の応答性及び精度を向上させることができる。また、既存のメイン液圧ポンプと液圧アクチュエータの間に、サブ液圧ポンプと第1バルブを設けた構成であるので、低コスト且つ簡易に高性能化することができる。   According to the hydraulic pressure drive circuit of the first aspect, the hydraulic fluid supplied from the main piping path to the hydraulic actuator can be increased or increased by a predetermined amount by the sub hydraulic pump. It is possible to improve the responsiveness and accuracy of control of the power and speed. Further, since the sub-hydraulic pump and the first valve are provided between the existing main hydraulic pump and the hydraulic actuator, high performance can be easily achieved at low cost.

請求項2に記載の液圧駆動回路によれば、マニホールドブロックによって前記サブ液圧ポンプ、前記第1バルブ、及び前記第2バルブを一体化構成しているので、小型軽量化することができる。   According to the hydraulic pressure drive circuit of the second aspect, since the sub hydraulic pressure pump, the first valve, and the second valve are integrally configured by the manifold block, the size and weight can be reduced.

請求項3に記載の液圧駆動回路によれば、1つのメイン配管経路で全体の負荷をカバーし、液圧アクチュエータ毎の変動分をサブ液圧ポンプでカバーするため、液圧アクチュエータ側の機械重量を大幅に小型軽量化することができるので、建設機械等の駆動システムに有効に利用することができる。また、メイン液圧ポンプが配置されているメイン側の回路と、サブ液圧ポンプ、第1バルブ、第2バルブ等が配置される液圧アクチュエータ側の回路とで保守管理を分散化することができるため、設置コスト及びメンテナンスコストを大幅に軽減することができる。   According to the hydraulic pressure drive circuit of the third aspect, the entire load is covered by one main piping path, and the fluctuation amount for each hydraulic actuator is covered by the sub hydraulic pressure pump. Since the weight can be greatly reduced in size and weight, it can be effectively used for a drive system such as a construction machine. In addition, maintenance management can be decentralized by a circuit on the main side where the main hydraulic pump is arranged and a circuit on the hydraulic actuator side where the sub hydraulic pump, the first valve, the second valve, and the like are arranged. Therefore, installation cost and maintenance cost can be greatly reduced.

本発明の第1の実施形態に係る構成を概略的に示す液圧回路図である。1 is a hydraulic circuit diagram schematically showing a configuration according to a first embodiment of the present invention. 本発明の第2の実施形態に係る構成を概略的に示す液圧回路図である。FIG. 6 is a hydraulic circuit diagram schematically showing a configuration according to a second embodiment of the present invention. 本発明の第3の実施形態に係る構成を概略的に示す液圧回路図である。FIG. 6 is a hydraulic circuit diagram schematically showing a configuration according to a third embodiment of the present invention. 本発明の第4の実施形態に係る構成を概略的に示す液圧回路図である。FIG. 6 is a hydraulic circuit diagram schematically showing a configuration according to a fourth embodiment of the present invention. 本発明の第5の実施形態に係る構成を概略的に示す液圧回路図である。FIG. 9 is a hydraulic circuit diagram schematically showing a configuration according to a fifth embodiment of the present invention.

以下、本発明の第1の実施形態に係る液圧駆動回路1について、図面を参照しつつ説明する。液圧駆動回路1は、メイン液圧ポンプPから吐出された圧液を供給することによって両ロッドシリンダ(液圧アクチュエータ)2を駆動制御するためのものである。   Hereinafter, a hydraulic drive circuit 1 according to a first embodiment of the present invention will be described with reference to the drawings. The hydraulic pressure drive circuit 1 is for driving and controlling both rod cylinders (hydraulic pressure actuators) 2 by supplying the pressurized fluid discharged from the main hydraulic pressure pump P.

液圧駆動回路1は、図1に示すようにメイン液圧ポンプPから吐出された圧液を二方向に分岐させて両ロッドシリンダ2のそれぞれの液室21、22へと流通させるメイン配管経路3にそれぞれ配置される左右の第1バルブ4(4a、4b)と、両ロッドシリンダ2から排出された圧液をタンクTへと戻すための左右の第2バルブ5(5a、5b)と、メイン液圧ポンプPと第1バルブ4a、4bの間で、メイン配管経路3から分岐された分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7とを備えている。また、液圧駆動回路1には、詳しくは図示しないが、サブ液圧ポンプ7を回転駆動させるためのサーボモータ8や各種バルブ等の動作を制御するためのコンピュータ制御回路、手動操作回路、及び圧力センサ等の各種センサ等が適宜設けられている。   As shown in FIG. 1, the hydraulic drive circuit 1 divides the hydraulic fluid discharged from the main hydraulic pump P in two directions and distributes the hydraulic fluid to the respective fluid chambers 21 and 22 of both rod cylinders 2. Left and right first valves 4 (4a, 4b) respectively disposed on 3 and left and right second valves 5 (5a, 5b) for returning the pressure fluid discharged from both rod cylinders 2 to the tank T, Between the main hydraulic pressure pump P and the first valves 4a and 4b, there is provided a sub hydraulic pressure pump 7 which can be rotated in both directions and is arranged in a branch piping path 6 branched from the main piping path 3. Further, although not shown in detail in the hydraulic pressure driving circuit 1, a computer control circuit for controlling the operation of a servo motor 8 for rotating the sub hydraulic pressure pump 7 and various valves, a manual operation circuit, Various sensors such as a pressure sensor are appropriately provided.

メイン液圧ポンプPは、不図示の電動モータやエンジン等によって駆動され、メイン配管経路3へ高圧の圧液を吐出するためのものである。メイン配管経路3は、図1に示すように、二方向に分岐されており、それぞれ両ロッドシリンダ2の液室21、22に接続されている。   The main hydraulic pressure pump P is driven by an unillustrated electric motor, engine, or the like, and discharges high pressure hydraulic fluid to the main piping path 3. As shown in FIG. 1, the main piping path 3 is branched in two directions and connected to the liquid chambers 21 and 22 of both rod cylinders 2, respectively.

左右の第1バルブ4a、4bは、メイン配管経路3のうちの左右の経路31、32にそれぞれ配置されている。この第1バルブ4a、4bとしては、切替弁、流量制御弁、圧力制御弁等を用いることができる。例えば、第1バルブ4a、4bとして切替弁を用いた場合には、左右の第1バルブ4a、4bの開閉を行うことによって、メイン配管経路3から両ロッドシリンダ2の左の液室21又は右の液室22に供給される圧液の流量を調整して、両ロッドシリンダの駆動状態(左右への駆動)を切り替える。また、メイン配管経路3から両ロッドシリンダ2の一方の液室に流入され、他方の液室から排出された圧液をタンクに戻すように第2バルブ5a、5bが設けられている。この第2バルブ5a、5bとしては、切替弁、流量制御弁、圧力制御弁等を用いることができる。   The left and right first valves 4 a and 4 b are respectively disposed on the left and right paths 31 and 32 of the main piping path 3. As the first valves 4a and 4b, a switching valve, a flow control valve, a pressure control valve and the like can be used. For example, when a switching valve is used as the first valves 4a, 4b, the left and right first chambers 4a, 4b are opened and closed to open the left liquid chamber 21 or the right of the rod cylinders 2 from the main piping path 3. The flow rate of the pressurized liquid supplied to the liquid chamber 22 is adjusted to switch the driving state (right and left driving) of both rod cylinders. Further, second valves 5a and 5b are provided so as to return the pressurized liquid flowing into the one liquid chamber of both rod cylinders 2 from the main piping path 3 and discharged from the other liquid chamber to the tank. As the second valves 5a and 5b, a switching valve, a flow control valve, a pressure control valve, or the like can be used.

サブ液圧ポンプ7は、サーボモータ8等の電動モータによって双方向の回転が可能なものである。このサブ液圧ポンプ7は、図1に示すように、メイン配管経路3(経路31、32)から分岐され、左の経路31と右の経路32に両端が接続されている分岐配管経路6に配置されている。サブ液圧ポンプ7は、サーボモータ8によって回転駆動されることによって分岐配管経路7に流れる圧液を用いて、メイン配管経路3から両ロッドシリンダ2の液室21、22のいずれか一方へ供給する圧液を所定分だけ増圧・増量させるものである。   The sub hydraulic pump 7 can be rotated in both directions by an electric motor such as a servo motor 8. As shown in FIG. 1, the sub hydraulic pump 7 is branched from a main piping path 3 (paths 31 and 32) and is connected to a branch piping path 6 in which both ends are connected to a left path 31 and a right path 32. Has been placed. The sub hydraulic pressure pump 7 is supplied to either one of the liquid chambers 21 and 22 of both rod cylinders 2 from the main piping path 3 by using the pressurized liquid flowing in the branch piping path 7 by being driven to rotate by the servo motor 8. The pressure fluid to be increased is increased or increased by a predetermined amount.

尚、本実施形態では、サブ液圧ポンプ7として双方向回転可能なものを用いる例を示しているが、これに限定されるものではなく、片方向回転可能なものを用いても良く、両ロッドシリンダ(液圧アクチュエータ)2へ供給される圧液を所定分だけ増圧・増量させることができるものであれば良い。また、本実施形態では、サブ液圧ポンプ7を駆動させるためにサーボモータ8を用いる例を示しているが、これに限定されるものではなく、他の電動モータや従来公知の駆動手段等を用いても良い。このようにサーボモータ8の代わりに、比較的低価格の電動モータを用いる場合であっても、アプリケーションに応じて容量を最適に選定することにより、容易に高性能化することができる。例えば、高速域ではメイン配管経路3の弁制御で両ロッドシリンダ2等の液圧アクチュエータを駆動し、低速域では左右の第2バルブ5a、5bを閉じることで閉回路を構成し、サブ液圧ポンプ7を駆動すれば、微速駆動できる。このように、サブ液圧ポンプ7を双方向回転型又は片方向回転型とし、複数のバルブを設けて閉回路の機能も持たせた液圧駆動回路は従来ない。従来は単に複数のポンプをシリアルに結合させただけであるので、増圧効果しか得ることができないが、液圧駆動回路1のような構成を採ることにより、低コスト且つ簡易な構成で液圧アクチュエータの力や速度の制御の応答性及び精度を向上させることができる。また、サブ液圧ポンプ7及び電動モータ8の選定にあたり、負荷変動分をカバーする最低限の性能と容量を選定すれば、大容量ポンプより小型ポンプの方が高応答であるので、1アクチュエータ−1ポンプ式で負荷を全てカバーしようとするEHA(Electro Hydrostatic Actuator)よりも大幅に低コストで、EHA以上のサーボ性能を実現することができる。   In the present embodiment, an example is shown in which a sub-hydraulic pump 7 that can rotate in both directions is used, but the present invention is not limited to this. What is necessary is just to be able to increase / increase the pressure fluid supplied to the rod cylinder (hydraulic actuator) 2 by a predetermined amount. In this embodiment, the servo motor 8 is used to drive the sub hydraulic pump 7. However, the present invention is not limited to this, and other electric motors, conventionally known drive means, and the like are used. It may be used. Thus, even when a relatively low-priced electric motor is used instead of the servo motor 8, it is possible to easily achieve high performance by optimally selecting the capacity according to the application. For example, a hydraulic circuit actuator such as the double rod cylinder 2 is driven by valve control of the main piping path 3 in the high speed region, and a closed circuit is formed by closing the left and right second valves 5a and 5b in the low speed region. If the pump 7 is driven, it can be driven at a very low speed. As described above, there is no conventional hydraulic drive circuit in which the sub hydraulic pump 7 is a bidirectional rotary type or a one-way rotary type, and a plurality of valves are provided to provide a closed circuit function. Conventionally, only a plurality of pumps are serially coupled, so that only a pressure increasing effect can be obtained. However, by adopting a configuration like the hydraulic pressure driving circuit 1, the hydraulic pressure can be reduced at a low cost and with a simple configuration. Responsiveness and accuracy of control of actuator force and speed can be improved. In selecting the sub hydraulic pump 7 and the electric motor 8, if the minimum performance and capacity covering the load fluctuation are selected, the small pump is more responsive than the large capacity pump. Servo performance superior to EHA can be realized at a significantly lower cost than EHA (Electro Hydrostatic Actuator) which attempts to cover all loads with a single pump type.

また、サブ液圧ポンプ7、第1バルブ4a、4b、第2バルブ5a、5bをマニホールドブロック(不図示)に納めて1つのユニットとして構成することで省スペース化を図ることができる。また、本実施形態では、メイン液圧ポンプPからメイン配管経路3へ圧液を吐出しているが、全体の負荷率とサブ液圧ポンプ7の容量を考慮して最適なアキュムレータ(不図示)を設けて、メイン液圧ポンプPから吐出された圧液を蓄圧するようにしても良い。これにより、小容量のポンプをメイン液圧ポンプPとして利用することができるので、装置全体の小型化を図ることができる。また、メイン液圧ポンプPを駆動する電動モータをインバータやサーボ式にすることにより、更に性能を向上させることができる。また、本実施形態では、液圧アクチュエータとして両ロッドシリンダ2を駆動する場合を示しているが、これに限定されるものではなく、液圧駆動回路1は、片ロッドシリンダ等の他の液圧アクチュエータにも適用することができる。   Further, the sub hydraulic pressure pump 7, the first valves 4a and 4b, and the second valves 5a and 5b are housed in a manifold block (not shown) and configured as one unit, thereby saving space. In the present embodiment, the hydraulic fluid is discharged from the main hydraulic pump P to the main piping path 3, but an optimum accumulator (not shown) is considered in consideration of the overall load factor and the capacity of the sub hydraulic pump 7. The pressure fluid discharged from the main fluid pressure pump P may be accumulated. Thereby, since a small capacity pump can be used as the main hydraulic pump P, it is possible to reduce the size of the entire apparatus. Further, the performance can be further improved by using an inverter or a servo type electric motor for driving the main hydraulic pump P. In the present embodiment, the case where both rod cylinders 2 are driven as a hydraulic actuator is shown. However, the present invention is not limited to this, and the hydraulic pressure driving circuit 1 may include other hydraulic pressures such as a single rod cylinder. It can also be applied to actuators.

以下、本実施形態に係る液圧駆動回路1を用いた場合の動作について図1を参照しつつ説明する。通常、この液圧駆動回路1では、例えば、両ロッドシリンダ2を右方向に駆動する場合には、左側の第2バルブ5aを閉じ、右側の第2バルブ5bを開いた状態で、左側の第1バルブ4aを開き、右側の第1バルブ4bを閉じることにより、圧液は、第1バルブ4aが配置されるメイン配管経路3の左の経路31から両ロッドシリンダ2の左の液室21へと流入し、右の液室22から第2バルブ5bを通ってタンクTへと戻る。   Hereinafter, the operation when the hydraulic drive circuit 1 according to the present embodiment is used will be described with reference to FIG. Normally, in this hydraulic pressure drive circuit 1, for example, when both rod cylinders 2 are driven in the right direction, the left second valve 5a is closed and the right second valve 5b is opened, and the left second valve 5b is opened. By opening the first valve 4a and closing the first valve 4b on the right side, the pressurized liquid flows from the left path 31 of the main piping path 3 where the first valve 4a is disposed to the left liquid chamber 21 of both rod cylinders 2. And then returns from the right liquid chamber 22 to the tank T through the second valve 5b.

この液圧駆動回路1において、瞬間的に両ロッドシリンダ2の力や速度を上げたい場合には、メイン液圧ポンプPから吐出された圧液の圧力や流量を制御する代わりに、分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ左回転させることにより、右の経路32を流れる圧液を吸い上げて増圧し、それを左の第1バルブ4aの手前の分岐点において左の経路31を流れる圧液と合流させる。このような動作により、左の経路31を流れる圧液を増圧・増量させて両ロッドシリンダ2の左の液室21へと供給することができる。尚、両ロッドシリンダ2を左方向に駆動する場合には、開回路構成で、左側の第1バルブ4aを閉じ、右側の第1バルブ4bを開いた状態で、サブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ右回転させることにより、左の経路31を流れる圧液を吸い上げて増圧し、それを右の第1バルブ4bの手前の分岐点において右の経路32を流れる圧液と合流させれば良い。いずれの場合もサーボモータ8によってサブ液圧ポンプ7を必要なだけ回転させることにより、圧液の増圧・増量を得ることができる。尚、サブ液圧ポンプ7として、例えば、片方向(左)回転可能なものを用いて、右の経路32を流れる圧液を吸い上げて増圧し、それを左の経路31を流れる圧液と合流させるようにし、右の経路32については、メイン液圧ポンプPから吐出された圧液の圧力や流量を制御するように構成しても良い。   In this hydraulic pressure drive circuit 1, when it is desired to instantaneously increase the force or speed of both rod cylinders 2, instead of controlling the pressure or flow rate of the hydraulic fluid discharged from the main hydraulic pressure pump P, the branch piping path By rotating the sub-hydraulic pump 7, which is bi-directionally rotatable, to the left by the servo motor 8 by a necessary torque and number of rotations, the hydraulic fluid flowing through the right path 32 is sucked up and increased. The pressure fluid flowing in the left path 31 is merged at the branch point before the first valve 4a. By such an operation, the pressure fluid flowing through the left passage 31 can be increased in pressure and increased and supplied to the left fluid chamber 21 of both rod cylinders 2. When both rod cylinders 2 are driven to the left, the sub hydraulic pump 7 is operated as a servomotor with an open circuit configuration with the left first valve 4a closed and the right first valve 4b open. 8, the pressure fluid flowing through the left passage 31 is sucked up and increased by rotating it to the right by the required torque and number of rotations, and the pressure flowing through the right passage 32 at the branch point before the right first valve 4b is increased. What is necessary is just to make it merge with a liquid. In either case, the servomotor 8 can rotate the sub hydraulic pump 7 as many times as necessary to increase the pressure of the hydraulic fluid. The sub hydraulic pressure pump 7 is, for example, one that can rotate in one direction (left), and sucks up the pressure fluid flowing through the right passage 32 to increase the pressure, and joins it with the pressure fluid flowing through the left passage 31. The right path 32 may be configured to control the pressure and flow rate of the hydraulic fluid discharged from the main hydraulic pump P.

次に、本発明の第2の実施形態に係る液圧駆動回路1aについて図2を参照しつつ説明する。尚、第1の実施形態に係る液圧駆動回路1と同様の構成等については、同一の符号を付し、その詳細な説明については省略する。   Next, a hydraulic drive circuit 1a according to a second embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the hydraulic drive circuit 1 which concerns on 1st Embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

液圧駆動回路1aは、図2に示すように、メイン液圧ポンプPから吐出された圧液を二方向に分岐させて両ロッドシリンダ2のそれぞれの液室21、22へと流通させるメイン配管経路3にそれぞれ配置される左右の電磁切替弁(第1バルブ)4a、4bと、メイン配管経路3内の圧力を調整し、両ロッドシリンダ2から排出される圧液をタンクTへと戻すための左右の電磁リリーフ弁(第2バルブ)5a、5bと、メイン液圧ポンプPと電磁切替弁4a、4bの間で、メイン配管経路3から分岐された分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7とを備えている。また、液圧駆動回路1aには、詳しくは図示しないが、サブ液圧ポンプ7を回転駆動させるためのサーボモータ8や各種バルブ等の動作を制御するためのコンピュータ制御回路、手動操作回路、及び圧力センサ等の各種センサ等が適宜設けられている。   As shown in FIG. 2, the hydraulic pressure drive circuit 1 a is a main pipe that divides the pressurized liquid discharged from the main hydraulic pressure pump P in two directions and distributes it to the respective fluid chambers 21 and 22 of both rod cylinders 2. To adjust the pressure in the left and right electromagnetic switching valves (first valves) 4a and 4b and the main piping path 3 respectively arranged in the path 3, and return the pressure fluid discharged from the rod cylinders 2 to the tank T. The left and right electromagnetic relief valves (second valves) 5a and 5b, and the bi-directional pipe 6 which is branched from the main pipe path 3 between the main hydraulic pump P and the electromagnetic switching valves 4a and 4b. And a sub-hydraulic pump 7 that can rotate. Further, although not shown in detail in the hydraulic drive circuit 1a, a computer control circuit for controlling the operation of the servo motor 8 and various valves for driving the sub hydraulic pump 7 to rotate, a manual operation circuit, Various sensors such as a pressure sensor are appropriately provided.

この液圧駆動回路1aでは、両ロッドシリンダ2の駆動状態を切り替えるための第1バルブとして左右の電磁切替弁4(4a、4b)を用いており、両ロッドシリンダ2から排出される圧液をタンクに戻すための第2バルブとして左右の電磁リリーフ弁5(5a、5b)を用いている。尚、本実施形態においても、サブ液圧ポンプ7を駆動させるためにサーボモータ8を用いる代わりに、他の電動モータや従来公知の駆動手段等を用いても良い。このようにサーボモータ8の代わりに、比較的低価格の電動モータを用いる場合であっても、アプリケーションに応じて容量を最適に選定することにより、容易に高性能化することができる。例えば、高速域ではメイン配管経路3の弁制御で両ロッドシリンダ2等の液圧アクチュエータを駆動し、低速域では左右の電磁リリーフ弁5a、5bを閉じることで閉回路を構成し、サブ液圧ポンプ7を駆動すれば、微速駆動できる。また、サブ液圧ポンプ7、電磁切替弁4a、4b、電磁リリーフ弁5a、5bをマニホールドブロック(不図示)に納めて1つのユニットとして構成することで省スペース化を図ることができる。また、液圧駆動回路1aでは、液圧アクチュエータとして両ロッドシリンダ2を駆動する場合を示しているが、これに限定されるものではなく、液圧駆動回路1と同様に、片ロッドシリンダ等の他の液圧アクチュエータにも適用することができる。   In this hydraulic pressure drive circuit 1a, left and right electromagnetic switching valves 4 (4a, 4b) are used as a first valve for switching the driving state of both rod cylinders 2, and the hydraulic fluid discharged from both rod cylinders 2 is used. Left and right electromagnetic relief valves 5 (5a, 5b) are used as the second valves for returning to the tank. In this embodiment, instead of using the servo motor 8 to drive the sub hydraulic pump 7, another electric motor, a conventionally known driving means, or the like may be used. Thus, even when a relatively low-priced electric motor is used instead of the servo motor 8, it is possible to easily achieve high performance by optimally selecting the capacity according to the application. For example, in the high speed range, the hydraulic control actuator such as the double rod cylinder 2 is driven by the valve control of the main piping path 3, and in the low speed range, the left and right electromagnetic relief valves 5a and 5b are closed to form a closed circuit. If the pump 7 is driven, it can be driven at a very low speed. Further, the sub hydraulic pressure pump 7, the electromagnetic switching valves 4a and 4b, and the electromagnetic relief valves 5a and 5b are housed in a manifold block (not shown) and configured as one unit, thereby saving space. In the hydraulic drive circuit 1a, the case where both rod cylinders 2 are driven as a hydraulic actuator is shown. However, the present invention is not limited to this, and as with the hydraulic drive circuit 1, a single rod cylinder or the like is used. It can also be applied to other hydraulic actuators.

以下、本実施形態に係る液圧駆動回路1aを用いた場合の動作について図2を参照しつつ説明する。通常、両ロッドシリンダ2は、電磁リリーフ弁5a、5bによってメイン配管経路3の圧力が調整された上で、メイン液圧ポンプPから吐出された圧液で弁制御される。例えば、両ロッドシリンダ2を右方向に駆動する場合には、電磁リリーフ弁5a、5bによってメイン配管経路3の圧力を調整した状態で、左側の電磁切替弁4aを開き、右側の電磁切替弁4bを閉じることにより、圧液は、左のメイン配管経路31から両ロッドシリンダ2の左の液室21へと流入し、右の液室22から電磁リリーフ弁5bを通ってタンクTへと戻る。   Hereinafter, an operation when the hydraulic drive circuit 1a according to the present embodiment is used will be described with reference to FIG. Usually, both rod cylinders 2 are valve-controlled with the pressure liquid discharged from the main hydraulic pressure pump P after the pressure of the main piping path 3 is adjusted by the electromagnetic relief valves 5a and 5b. For example, when both rod cylinders 2 are driven in the right direction, the electromagnetic switching valve 4a on the left side is opened and the electromagnetic switching valve 4b on the right side is opened with the pressure of the main piping path 3 adjusted by the electromagnetic relief valves 5a and 5b. , The pressure fluid flows from the left main piping path 31 into the left fluid chamber 21 of both rod cylinders 2 and returns from the right fluid chamber 22 to the tank T through the electromagnetic relief valve 5b.

この液圧駆動回路1aにおいて、瞬間的に両ロッドシリンダ2の力や速度を上げたい場合には、メイン液圧ポンプPから吐出された圧液の圧力や流量を制御する代わりに、分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ左回転させることにより、右の経路32を流れる圧液を吸い上げて増圧し、それを左の電磁切替弁4aの手前の分岐点において左の経路31を流れる圧液と合流させる。このような動作により、左の経路31を流れる圧液を増圧・増量させて両ロッドシリンダ2の左の液室21へと供給することができる。尚、両ロッドシリンダ2を左方向に駆動する場合には、開回路構成で、左側の電磁切替弁4aを閉じ、右側の電磁切替弁4bを開いた状態で、サブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ右回転させることにより、左の経路31を流れる圧液を吸い上げて増圧し、それを右の電磁切替弁4bの手前の分岐点において右の経路32を流れる圧液と合流させれば良い。いずれの場合もサーボモータ8によってサブ液圧ポンプ7を必要なだけ回転させることにより、圧液の増圧・増量を得ることができる。   In this hydraulic pressure drive circuit 1a, when it is desired to instantaneously increase the force or speed of both rod cylinders 2, instead of controlling the pressure and flow rate of the hydraulic fluid discharged from the main hydraulic pressure pump P, the branch piping path By rotating the sub-hydraulic pump 7, which is bi-directionally rotatable, to the left by the servo motor 8 by a necessary torque and number of rotations, the hydraulic fluid flowing through the right path 32 is sucked up and increased. The pressure fluid flowing in the left path 31 is merged at a branch point before the electromagnetic switching valve 4a. By such an operation, the pressure fluid flowing through the left passage 31 can be increased in pressure and increased and supplied to the left fluid chamber 21 of both rod cylinders 2. When driving both rod cylinders 2 in the left direction, the sub-hydraulic pump 7 is operated as a servomotor in an open circuit configuration with the left electromagnetic switching valve 4a closed and the right electromagnetic switching valve 4b opened. 8, the pressure fluid flowing through the left path 31 is sucked up and increased by rotating it to the right by the required torque / rotation number, and the pressure flowing through the right path 32 at the branch point before the right electromagnetic switching valve 4b is increased. What is necessary is just to make it merge with a liquid. In either case, the servomotor 8 can rotate the sub hydraulic pump 7 as many times as necessary to increase the pressure of the hydraulic fluid.

次に、本発明の第3の実施形態に係る液圧駆動回路1bについて図3を参照しつつ説明する。尚、第1及び第2の実施形態に係る液圧駆動回路1、1aと同様の構成等については、同一の符号を付し、その詳細な説明については省略する。   Next, a hydraulic drive circuit 1b according to a third embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the hydraulic drive circuits 1 and 1a which concern on 1st and 2nd embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

液圧駆動回路1bは、図3に示すように、メイン液圧ポンプPから吐出された圧液を二方向に分岐させて両ロッドシリンダ2のそれぞれの液室21、22へと流通させるメイン配管経路3に配置されるパイロット切替弁(第1バルブ)4cと、両ロッドシリンダ2の一方の液室に圧液を流入させ、他方の液室から排出された圧液がタンクTへと流れるようにパイロット切替弁4cと両ロッドシリンダ2の間に配置されるパイロット切替弁9と、メイン配管経路3の圧力を調整し、パイロット切替弁9を通って流れてくる圧液をタンクTへと戻すための電磁リリーフ弁(第2バルブ)5と、メイン液圧ポンプPとパイロット切替弁4cの間で、メイン配管経路3から分岐された分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7とを備えている。この液圧駆動回路1bでは、図2に示す第1バルブとして機能する2つの電磁切替弁4a、4bを1つのパイロット切替弁4cに置き換え、このパイロット切替弁4cと両ロッドシリンダ2の間にパイロット切替弁9を配置し、1つの電磁リリーフ弁5をタンクTへの出口に備えた構成になっている。また、液圧駆動回路1bには、詳しくは図示しないが、サブ液圧ポンプ7を回転駆動させるためのサーボモータ8や各種バルブ等の動作を制御するためのコンピュータ制御回路、手動操作回路、及び圧力センサ等の各種センサ等が適宜設けられている。   As shown in FIG. 3, the hydraulic drive circuit 1 b is a main pipe that branches the pressure liquid discharged from the main hydraulic pressure pump P in two directions and distributes it to the respective liquid chambers 21 and 22 of both rod cylinders 2. The pressure switching liquid (first valve) 4c arranged in the path 3 and the pressure liquid flow into one liquid chamber of both rod cylinders 2 so that the pressure liquid discharged from the other liquid chamber flows into the tank T. The pressure of the pilot switching valve 9 disposed between the pilot switching valve 4c and the rod cylinders 2 and the main piping path 3 is adjusted, and the pressure fluid flowing through the pilot switching valve 9 is returned to the tank T. Sub-fluid capable of bi-directional rotation disposed in a branch piping path 6 branched from the main piping path 3 between the electromagnetic relief valve (second valve) 5 and the main hydraulic pump P and the pilot switching valve 4c With pressure pump 7 It is provided. In this hydraulic pressure drive circuit 1 b, the two electromagnetic switching valves 4 a and 4 b functioning as the first valve shown in FIG. 2 are replaced with one pilot switching valve 4 c, and a pilot is interposed between the pilot switching valve 4 c and both rod cylinders 2. The switching valve 9 is arranged, and one electromagnetic relief valve 5 is provided at the outlet to the tank T. Further, although not shown in detail in the hydraulic pressure driving circuit 1b, a computer control circuit for controlling the operation of the servo motor 8 for rotating the sub hydraulic pressure pump 7 and various valves, a manual operation circuit, Various sensors such as a pressure sensor are appropriately provided.

パイロット切替弁4cは、左右のパイロット圧に差が生じることにより、メイン配管経路3から両ロッドシリンダ2へ流れる圧液の流れ方向を左右切り替えて、両ロッドシリンダ2の駆動状態(左右の駆動)を切り替えるものである。尚、本実施形態においても、サブ液圧ポンプ7を駆動させるためにサーボモータ8を用いる代わりに、他の電動モータや従来公知の駆動手段等を用いても良い。このようにサーボモータ8の代わりに、比較的低価格の電動モータを用いる場合であっても、アプリケーションに応じて容量を最適に選定することにより、容易に高性能化することができる。例えば、高速域ではメイン配管経路3の弁制御で両ロッドシリンダ2等の液圧アクチュエータを駆動し、低速域では電磁リリーフ弁5を閉じることで閉回路を構成し、サブ液圧ポンプ7を駆動すれば、微速駆動できる。また、サブ液圧ポンプ7、パイロット切替弁4c、パイロット切替弁9、電磁リリーフ弁5をマニホールドブロック(不図示)に納めて1つのユニットとして構成しても良い。また、液圧駆動回路1bでは、液圧アクチュエータとして両ロッドシリンダ2を駆動する場合を示しているが、これに限定されるものではなく、液圧駆動回路1と同様に、片ロッドシリンダ等の他の液圧アクチュエータにも適用することができる。   The pilot switching valve 4c switches the flow direction of the pressure fluid flowing from the main piping path 3 to the both rod cylinders 2 due to a difference between the left and right pilot pressures, and the drive state of both the rod cylinders 2 (left and right drive). Is to switch. In this embodiment, instead of using the servo motor 8 to drive the sub hydraulic pump 7, another electric motor, a conventionally known driving means, or the like may be used. Thus, even when a relatively low-priced electric motor is used instead of the servo motor 8, it is possible to easily achieve high performance by optimally selecting the capacity according to the application. For example, a hydraulic actuator such as the double rod cylinder 2 is driven by valve control of the main piping path 3 in the high speed region, and a closed circuit is configured by closing the electromagnetic relief valve 5 in the low speed region, and the sub hydraulic pump 7 is driven. If so, it can be driven at a very low speed. Further, the sub hydraulic pump 7, the pilot switching valve 4c, the pilot switching valve 9, and the electromagnetic relief valve 5 may be housed in a manifold block (not shown) and configured as one unit. Moreover, in the hydraulic drive circuit 1b, the case where both rod cylinders 2 are driven as a hydraulic actuator is shown. However, the present invention is not limited to this, and like the hydraulic drive circuit 1, a single rod cylinder or the like is used. It can also be applied to other hydraulic actuators.

以下、本実施形態に係る液圧駆動回路1bを用いた場合の動作について図3を参照しつつ説明する。通常、両ロッドシリンダ2は、メイン液圧ポンプPから発生した圧液で弁制御される。中立状態においては、メイン配管経路3内の圧力は、電磁リリーフ弁5で設定した値に保たれ、両ロッドシリンダ2はパイロット切替弁9の中央の絞りだけの抵抗が掛かっている状態である。   Hereinafter, the operation when the hydraulic drive circuit 1b according to the present embodiment is used will be described with reference to FIG. Usually, both rod cylinders 2 are valve-controlled with the pressure fluid generated from the main fluid pressure pump P. In the neutral state, the pressure in the main piping path 3 is maintained at a value set by the electromagnetic relief valve 5, and both rod cylinders 2 are in a state where only the resistance of the throttle at the center of the pilot switching valve 9 is applied.

この状態から両ロッドシリンダ2を右方向に動かしたい場合、電磁リリーフ弁5で必要なだけ背圧を加えた上で、サーボモータ8によってサブ液圧ポンプ7を左回転させる。すると、パイロット切替弁4cの左右パイロット圧に差圧が生じ、スプールが右に移動する。これにより、メイン液圧ポンプPから吐出された圧液は、メイン配管経路3の左の経路31を通って、両ロッドシリンダ2の左の液室21に流入する。それと同時に、パイロット切替弁9の左右のパイロット圧に差が生じ、該パイロット切替弁9のスプールが右に移動する。これにより、両ロッドシリンダ2の右の液室22から押し出された圧液はパイロット切替弁9を通ってタンクTへと流れる。同様に両ロッドシリンダ2を左方向に駆動したい場合は、サーボモータ8を逆回転させれば良い。いずれの場合もサーボモータ8によってサブ液圧ポンプ7を必要なだけ回転させることにより、圧液の増圧・増量を得ることができる。   In order to move both rod cylinders 2 to the right from this state, the sub hydraulic pressure pump 7 is rotated counterclockwise by the servo motor 8 after applying the back pressure as much as necessary by the electromagnetic relief valve 5. Then, a differential pressure is generated in the left and right pilot pressure of the pilot switching valve 4c, and the spool moves to the right. As a result, the hydraulic fluid discharged from the main hydraulic pump P flows into the left fluid chamber 21 of both rod cylinders 2 through the left passage 31 of the main piping passage 3. At the same time, a difference occurs between the pilot pressures on the left and right of the pilot switching valve 9, and the spool of the pilot switching valve 9 moves to the right. As a result, the pressurized liquid pushed out from the right liquid chamber 22 of both rod cylinders 2 flows to the tank T through the pilot switching valve 9. Similarly, when it is desired to drive both rod cylinders 2 in the left direction, the servo motor 8 may be rotated in the reverse direction. In either case, the servomotor 8 can rotate the sub hydraulic pump 7 as many times as necessary to increase the pressure of the hydraulic fluid.

次に、本発明の第4の実施形態に係る液圧駆動回路1cについて図4を参照しつつ説明する。尚、第1〜3の実施形態に係る液圧駆動回路1〜1bと同様の構成等については、同一の符号を付し、その詳細な説明については省略する。   Next, a hydraulic drive circuit 1c according to a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the hydraulic drive circuits 1-1b which concern on 1st-3rd embodiment, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

液圧駆動回路1cは、図4に示すように、メイン液圧ポンプPから吐出された圧液を二方向に分岐させて両ロッドシリンダ2のそれぞれの液室21、22へと流通させるメイン配管経路3にそれぞれ配置される左右の電磁切替弁4a、4bと、両ロッドシリンダ2の一方の液室に圧液を流入させ、他方の液室から排出された圧液をタンクTに戻すように電磁切替弁(第1バルブ)4a、4bと両ロッドシリンダ2の間に配置されるパイロット切替弁9と、メイン配管経路3の圧力を調整するためのリリーフ弁(第2バルブ)5cと、タンクTへの出口に配置される電磁切替弁10と、メイン液圧ポンプPと電磁切替弁4a、4bの間で、メイン配管経路3から分岐された分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7とを備えている。液圧駆動回路1cでは、図2の液圧駆動回路1と同様にメイン配管経路3の左の経路31と右の経路32にそれぞれ第1バルブとして機能する電磁切替弁4a、4bを設けており、この電磁切替弁4a、4bの開閉を行うことによって、メイン配管経路3から両ロッドシリンダ2に供給される圧液の流量を調整している。また、液圧駆動回路1cでは、液圧アクチュエータとして両ロッドシリンダ2を駆動する場合を示しているが、これに限定されるものではなく、液圧駆動回路1と同様に、片ロッドシリンダ等の他の液圧アクチュエータにも適用することができる。   As shown in FIG. 4, the hydraulic pressure drive circuit 1 c is a main pipe that divides the pressurized liquid discharged from the main hydraulic pressure pump P in two directions and distributes it to the respective liquid chambers 21 and 22 of both rod cylinders 2. The pressure liquid is introduced into one of the left and right electromagnetic switching valves 4a and 4b and the rod cylinders 2 disposed in the path 3, and the pressure liquid discharged from the other liquid chamber is returned to the tank T. Pilot switching valve 9 disposed between electromagnetic switching valves (first valves) 4a, 4b and both rod cylinders 2, a relief valve (second valve) 5c for adjusting the pressure in main piping path 3, a tank Bidirectional rotation is possible between the electromagnetic switching valve 10 arranged at the outlet to T and the branch piping path 6 branched from the main piping path 3 between the main hydraulic pump P and the electromagnetic switching valves 4a and 4b. With a sub hydraulic pressure pump 7 To have. In the hydraulic pressure drive circuit 1c, electromagnetic switching valves 4a and 4b functioning as first valves are provided in the left path 31 and the right path 32 of the main piping path 3 in the same manner as the hydraulic pressure drive circuit 1 in FIG. The flow rate of the pressure fluid supplied from the main piping path 3 to the both rod cylinders 2 is adjusted by opening and closing the electromagnetic switching valves 4a and 4b. Moreover, in the hydraulic drive circuit 1c, the case where both rod cylinders 2 are driven as a hydraulic actuator is shown, but the present invention is not limited to this, and like the hydraulic drive circuit 1, a single rod cylinder or the like is used. It can also be applied to other hydraulic actuators.

以下、本実施形態に係る液圧駆動回路1cを用いた場合の動作について図4を参照しつつ説明する。通常、両ロッドシリンダ2は、リリーフ弁5cによってメイン配管経路3の圧力が調整された上で、メイン液圧ポンプPから発生した圧液で弁制御される。例えば、両ロッドシリンダ2を右方向に駆動したい場合、電磁切替弁10を開いた開回路構成の状態で、左側の電磁切替弁4aを開き、右側の電磁切替弁4bを閉じる。すると、圧力差によって、パイロット切替弁9は、スプールが右に移動する。これにより、圧液は、両ロッドシリンダ2の左の液室21へと流入し、右の液室22からパイロット切替弁9と電磁切替弁10とを通ってタンクTへと戻る。   Hereinafter, the operation when the hydraulic drive circuit 1c according to the present embodiment is used will be described with reference to FIG. Usually, both rod cylinders 2 are valve-controlled with the pressure generated from the main hydraulic pump P after the pressure in the main piping path 3 is adjusted by the relief valve 5c. For example, when it is desired to drive both rod cylinders 2 in the right direction, the left electromagnetic switching valve 4a is opened and the right electromagnetic switching valve 4b is closed with the open circuit configuration in which the electromagnetic switching valve 10 is opened. Then, the spool of the pilot switching valve 9 moves to the right due to the pressure difference. As a result, the pressure fluid flows into the left fluid chamber 21 of both rod cylinders 2 and returns from the right fluid chamber 22 through the pilot switching valve 9 and the electromagnetic switching valve 10 to the tank T.

この液圧駆動回路1cにおいて、瞬間的に両ロッドシリンダ2の力や速度を上げたい場合には、メイン液圧ポンプPから吐出された圧液の圧力や流量を制御する代わりに、分岐配管経路6に配置される双方向回転可能なサブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ左回転させることにより、メイン配管経路3の右の経路32を流れる圧液を吸い上げて増圧し、それを左の電磁切替弁4aの手前の分岐点においてメイン配管経路3の左の経路31を流れる圧液と合流させる。このような動作により、左の経路31を流れる圧液を増圧・増量させて両ロッドシリンダ2の左の液室21へと供給することができる。尚、両ロッドシリンダ2を左方向に駆動する場合には、開回路構成で、左側の電磁切替弁4aを閉じ、右側の電磁切替弁4bを開いた状態で、サブ液圧ポンプ7をサーボモータ8によって必要なトルク・回転数だけ右回転させることにより、メイン配管経路3の左の経路31を流れる圧液を吸い上げて増圧し、それを右の電磁切替弁4bの手前の分岐点においてメイン配管経路3の右の経路32を流れる圧液と合流させれば良い。   In this hydraulic pressure drive circuit 1c, when it is desired to instantaneously increase the force or speed of the both rod cylinders 2, instead of controlling the pressure and flow rate of the hydraulic fluid discharged from the main hydraulic pressure pump P, the branch piping path The sub-hydraulic pump 7 that can be rotated in both directions is rotated left by the servo motor 8 by a necessary torque and number of rotations to suck up and increase the pressure fluid flowing through the right path 32 of the main piping path 3. And is joined with the pressure fluid flowing through the left path 31 of the main piping path 3 at a branch point before the left electromagnetic switching valve 4a. By such an operation, the pressure fluid flowing through the left passage 31 can be increased in pressure and increased and supplied to the left fluid chamber 21 of both rod cylinders 2. When driving both rod cylinders 2 in the left direction, the sub-hydraulic pump 7 is operated as a servomotor in an open circuit configuration with the left electromagnetic switching valve 4a closed and the right electromagnetic switching valve 4b opened. 8 is rotated to the right by the necessary torque and number of rotations to suck up and increase the pressure fluid flowing in the left passage 31 of the main piping passage 3, and at the branch point before the right electromagnetic switching valve 4b, the main piping What is necessary is just to make it merge with the pressure liquid which flows through the path | route 32 on the right of the path | route 3.

また、電磁切替弁4a、4bを開いたまま、電磁切替弁10を閉じることにより、任意の時点でサブ液圧ポンプ7を用いた閉回路構成で両ロッドシリンダ2を駆動させることができる。この場合、メイン液圧ポンプPから吐出された圧液のエネルギーが遮断される代わりに、外乱を受けないため、微小な力制御や微速制御に特に有効である。   Further, by closing the electromagnetic switching valve 10 while the electromagnetic switching valves 4a and 4b are opened, the double rod cylinder 2 can be driven in a closed circuit configuration using the sub hydraulic pressure pump 7 at an arbitrary time. In this case, since the energy of the hydraulic fluid discharged from the main hydraulic pressure pump P is cut off, it is not affected by disturbance, and thus is particularly effective for minute force control and minute speed control.

次に、本発明の第5の実施形態に係る液圧駆動回路1dについて図5を参照しつつ説明する。尚、第1〜4の実施形態に係る液圧駆動回路1〜1cと同様の構成等については、同一の符号を付し、その詳細な説明については省略する。   Next, a hydraulic drive circuit 1d according to a fifth embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected about the structure similar to the hydraulic drive circuits 1-1c which concern on 1st-4th embodiment, and the detailed description is abbreviate | omitted.

液圧駆動回路1dは、1つのメイン配管経路3aに両ロッドシリンダ(液圧アクチュエータ)2とサブ液圧ポンプ7を複数接続することで、システム全体の平均的な負荷をメイン液圧ポンプPからメイン配管経路3aへと吐出される圧液のエネルギーでカバーし、それぞれの両ロッドシリンダ2の負荷のうち全体平均からの差分を双方向回転可能なサブ液圧ポンプ7による生成エネルギーでカバーするよう多軸分散制御回路として構成したものである。   The hydraulic drive circuit 1d connects an average load of the entire system from the main hydraulic pump P by connecting a plurality of rod cylinders (hydraulic actuators) 2 and sub hydraulic pumps 7 to one main piping path 3a. Cover with the energy of the pressure fluid discharged to the main piping path 3a, and cover the difference from the overall average among the loads of the two rod cylinders 2 with the energy generated by the sub-hydraulic pump 7 capable of bidirectional rotation. This is configured as a multi-axis distributed control circuit.

この液圧駆動回路1dは、図5に示すように、図4に示す液圧駆動回路1cを複数備えており、メイン液圧ポンプPから吐出された圧液をそれぞれの液圧駆動回路1cへ流通させるようメイン配管経路3aは分岐されている。このような液圧駆動回路1dは、建設機械等の駆動システムに有効に用いることができる。尚、図5では、液圧駆動回路1dを構成する複数の液圧駆動回路1cの一部については、その構成を省略して図示している。また、液圧駆動回路1dでは、液圧駆動回路1cを複数用いて多軸分散制御回路を構成している例を示しているが、他の液圧駆動回路1〜1bを用いて多軸分散制御回路を構成するようにしても良い。また、液圧駆動回路1dでも、液圧アクチュエータとして両ロッドシリンダ2を駆動する場合を示しているが、これに限定されるものではなく、片ロッドシリンダ等の他の液圧アクチュエータにも適用することができる。   As shown in FIG. 5, the hydraulic pressure drive circuit 1d includes a plurality of hydraulic pressure drive circuits 1c shown in FIG. 4, and the hydraulic fluid discharged from the main hydraulic pressure pump P is supplied to the respective hydraulic pressure drive circuits 1c. The main piping path 3a is branched so as to circulate. Such a hydraulic drive circuit 1d can be effectively used in a drive system such as a construction machine. In FIG. 5, a part of the plurality of hydraulic drive circuits 1c constituting the hydraulic drive circuit 1d is omitted from the illustration. Further, in the hydraulic pressure drive circuit 1d, an example is shown in which a multi-axis dispersion control circuit is configured using a plurality of hydraulic pressure drive circuits 1c, but multi-axis dispersion is performed using other hydraulic pressure drive circuits 1 to 1b. A control circuit may be configured. The hydraulic pressure drive circuit 1d also shows the case where both rod cylinders 2 are driven as a hydraulic actuator, but the present invention is not limited to this, and the present invention is also applicable to other hydraulic actuators such as a single rod cylinder. be able to.

また、本発明の実施の形態は上述の形態に限るものではなく、本発明の思想の範囲を逸脱しない範囲で適宜変更することができる。   The embodiment of the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the idea of the present invention.

1、1a〜1d 液圧駆動回路
2 両ロッドシリンダ(液圧アクチュエータ)
21、22 液室
3、3a メイン配管経路
4、4a〜4c 第1バルブ
5、5a〜5c 第2バルブ
6 分岐配管経路
7 サブ液圧ポンプ
8 サーボモータ(電動モータ)
9 パイロット切替弁
10 電磁切替弁
P メイン液圧ポンプ
T タンク
1, 1a-1d Hydraulic drive circuit 2 Double rod cylinder (hydraulic actuator)
21, 22 Fluid chamber 3, 3a Main piping path 4, 4a-4c 1st valve 5, 5a-5c 2nd valve 6 Branch piping path 7 Sub hydraulic pump 8 Servo motor (electric motor)
9 Pilot switching valve 10 Electromagnetic switching valve P Main hydraulic pump T Tank

Claims (3)

メイン液圧ポンプから吐出された圧液を供給することによって液圧アクチュエータを駆動する液圧駆動回路であって、
前記メイン液圧ポンプから吐出された前記圧液を二方向に分岐させて前記液圧アクチュエータのそれぞれの液室へと流通させるメイン配管経路に配置され、前記液圧アクチュエータの駆動状態を切り替えるための第1バルブと、
前記メイン配管経路から前記液圧アクチュエータの一方の液室に流入され、他方の液室から排出された圧液をタンクに戻すための第2バルブと、
前記メイン液圧ポンプと前記切替弁の間で、前記メイン配管経路から分岐された分岐配管経路に配置され、該分岐配管経路に流れる圧液を用いて、前記メイン配管経路から前記液圧アクチュエータへ供給される圧液を所定分だけ増圧・増量させるサブ液圧ポンプとを備えることを特徴とする液圧駆動回路。
A hydraulic drive circuit that drives a hydraulic actuator by supplying pressurized fluid discharged from a main hydraulic pump,
The hydraulic fluid discharged from the main hydraulic pump is arranged in a main piping path that branches in two directions and flows to the respective fluid chambers of the hydraulic actuator, and for switching the driving state of the hydraulic actuator A first valve;
A second valve for returning the pressure fluid that has flowed from the main piping path into one fluid chamber of the fluid pressure actuator and discharged from the other fluid chamber to the tank;
Between the main hydraulic pressure pump and the switching valve, it is arranged in a branch piping route branched from the main piping route, and using the pressurized fluid flowing in the branch piping route, the main piping route to the hydraulic actuator A hydraulic pressure drive circuit comprising: a sub hydraulic pressure pump for increasing and increasing the pressure of the supplied hydraulic fluid by a predetermined amount.
前記サブ液圧ポンプ、前記第1バルブ、及び前記第2バルブは、マニホールドブロックによって一体化構成されていることを特徴とする請求項1に記載の液圧駆動回路。   2. The hydraulic drive circuit according to claim 1, wherein the sub hydraulic pump, the first valve, and the second valve are integrally configured by a manifold block. 3. 請求項1又は2に記載の液圧駆動回路を複数備え、前記メイン配管経路は、前記メイン液圧ポンプから吐出された圧液を前記それぞれの液圧駆動回路へ流通させるよう分岐されていることを特徴とする液圧駆動回路。   A plurality of hydraulic drive circuits according to claim 1 or 2 are provided, and the main piping path is branched so that the pressure liquid discharged from the main hydraulic pump is circulated to the respective hydraulic drive circuits. A hydraulic drive circuit characterized by the above.
JP2013548698A 2012-07-25 2013-07-23 Hydraulic drive circuit Active JP5668259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013548698A JP5668259B2 (en) 2012-07-25 2013-07-23 Hydraulic drive circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012164773 2012-07-25
JP2012164773 2012-07-25
PCT/JP2013/069900 WO2014017475A1 (en) 2012-07-25 2013-07-23 Hydraulic drive circuit
JP2013548698A JP5668259B2 (en) 2012-07-25 2013-07-23 Hydraulic drive circuit

Publications (2)

Publication Number Publication Date
JP5668259B2 true JP5668259B2 (en) 2015-02-12
JPWO2014017475A1 JPWO2014017475A1 (en) 2016-07-11

Family

ID=49997285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013548698A Active JP5668259B2 (en) 2012-07-25 2013-07-23 Hydraulic drive circuit

Country Status (4)

Country Link
US (1) US9458864B2 (en)
EP (1) EP2749774A4 (en)
JP (1) JP5668259B2 (en)
WO (1) WO2014017475A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145585B2 (en) 2014-02-28 2022-10-03 プロジェクト・フェニックス・エルエルシー Pump and method of moving fluid from first port to second port of pump
JP6247573B2 (en) * 2014-03-19 2017-12-13 株式会社ショーワ Hydraulic actuator
WO2015148662A1 (en) 2014-03-25 2015-10-01 Afshari Thomas System to pump fluid and control thereof
US10294936B2 (en) 2014-04-22 2019-05-21 Project Phoenix, Llc. Fluid delivery system with a shaft having a through-passage
EP3149343B1 (en) 2014-06-02 2020-06-17 Project Phoenix LLC Linear actuator assembly and system
EP3149362B1 (en) 2014-06-02 2019-04-10 Project Phoenix LLC Hydrostatic transmission assembly and system
US10598176B2 (en) 2014-07-22 2020-03-24 Project Phoenix, LLC External gear pump integrated with two independently driven prime movers
US10072676B2 (en) 2014-09-23 2018-09-11 Project Phoenix, LLC System to pump fluid and control thereof
EP3896314B1 (en) 2014-10-06 2024-03-27 Project Phoenix, LLC Linear actuator assembly and system
US10677352B2 (en) 2014-10-20 2020-06-09 Project Phoenix, LLC Hydrostatic transmission assembly and system
JP6853812B2 (en) * 2015-08-10 2021-03-31 バット ホールディング アーゲー Pneumatic valve actuator
TWI768455B (en) 2015-09-02 2022-06-21 美商鳳凰計劃股份有限公司 System to pump fluid and control thereof
WO2017040825A1 (en) 2015-09-02 2017-03-09 Project Phoenix, LLC System to pump fluid and control thereof
EP3181763A1 (en) * 2015-12-15 2017-06-21 Caterpillar Global Mining LLC Hydraulic clam actuator valve block
US20190011046A1 (en) * 2017-07-05 2019-01-10 GM Global Technology Operations LLC Hydraulic circuit to enable unidirectional flow under forward and reverse positive displacement pump rotation
CN107288941B (en) * 2017-07-25 2018-09-11 北京航空航天大学 A kind of micro hydraulic drive system for ankle-joint artificial limb
US11118610B2 (en) * 2017-08-29 2021-09-14 The Boeing Company Low profile electro-hydrostatic actuator
US11628942B2 (en) 2019-03-01 2023-04-18 Pratt & Whitney Canada Corp. Torque ripple control for an aircraft power train
US11697505B2 (en) 2019-03-01 2023-07-11 Pratt & Whitney Canada Corp. Distributed propulsion configurations for aircraft having mixed drive systems
US11732639B2 (en) 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems
WO2020190344A2 (en) 2019-03-18 2020-09-24 United Technologies Advanced Projects Inc. Architectures for hybrid-electric propulsion
EP3976974B1 (en) * 2019-05-28 2024-02-28 Danfoss A/S Optimizing mode transitions between dual power electro-hydrostatic control systems
US11788256B2 (en) 2019-10-01 2023-10-17 Parker-Hannifin Corporation Dual architecture for an electro-hydraulic drive system
US11486472B2 (en) 2020-04-16 2022-11-01 United Technologies Advanced Projects Inc. Gear sytems with variable speed drive
CN112196853B (en) * 2020-11-05 2022-08-16 上海航天控制技术研究所 Hydraulic energy control valve block
CN112762032B (en) * 2021-01-15 2023-03-24 三一汽车起重机械有限公司 Telescopic hydraulic system and operating machine
CN112959324B (en) * 2021-03-16 2022-03-15 合肥工业大学 Energy-saving working unit of hydraulic industrial robot
CN113669312A (en) * 2021-09-08 2021-11-19 三一石油智能装备有限公司 Closed hydraulic control system and engineering machinery
DE202022102319U1 (en) 2022-04-29 2023-08-01 Dana Motion Systems Italia S.R.L. hydraulic system
CN115898990B (en) * 2023-01-05 2023-05-23 中国人民解放军国防科技大学 Bionic joint driving hydraulic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163505U (en) * 1979-05-14 1980-11-25
JPS5846256A (en) * 1981-09-11 1983-03-17 Nippei Toyama Corp Hydraulic driving device
JP2006292067A (en) * 2005-04-11 2006-10-26 Taihei Dengyo Kaisha Ltd Hydraulic circuit for high-pressure hydraulic system
JP2007298073A (en) * 2006-04-28 2007-11-15 Hokuto Kenki Service Kk Hydraulic driving unit, and pinching treatment device equipped with it
JP2010174883A (en) * 2008-12-30 2010-08-12 Masao Suzuki Device for controlling trace amount of flow

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906727A (en) * 1973-09-26 1975-09-23 Melvin Corp Hydrostatic drive with direction memory
US6886332B2 (en) * 2002-02-05 2005-05-03 Parker-Hannifin Corporation Bi-rotational, two-stage hydraulic system
JP2005076781A (en) * 2003-09-01 2005-03-24 Shin Caterpillar Mitsubishi Ltd Drive unit of working machine
JP2006125627A (en) * 2004-09-29 2006-05-18 Kobelco Contstruction Machinery Ltd Hydraulic circuit of construction machinery
US7578127B2 (en) * 2007-04-10 2009-08-25 Deere & Company Flow continuity for multiple hydraulic circuits and associated method
KR101617609B1 (en) * 2008-02-12 2016-05-18 파커-한니핀 코포레이션 Flow Management System for Hydraulic Work Machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163505U (en) * 1979-05-14 1980-11-25
JPS5846256A (en) * 1981-09-11 1983-03-17 Nippei Toyama Corp Hydraulic driving device
JP2006292067A (en) * 2005-04-11 2006-10-26 Taihei Dengyo Kaisha Ltd Hydraulic circuit for high-pressure hydraulic system
JP2007298073A (en) * 2006-04-28 2007-11-15 Hokuto Kenki Service Kk Hydraulic driving unit, and pinching treatment device equipped with it
JP2010174883A (en) * 2008-12-30 2010-08-12 Masao Suzuki Device for controlling trace amount of flow

Also Published As

Publication number Publication date
WO2014017475A1 (en) 2014-01-30
US20150121860A1 (en) 2015-05-07
JPWO2014017475A1 (en) 2016-07-11
US9458864B2 (en) 2016-10-04
EP2749774A1 (en) 2014-07-02
EP2749774A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5668259B2 (en) Hydraulic drive circuit
US9194107B2 (en) Regenerative hydraulic systems and methods of use
US9080310B2 (en) Closed-loop hydraulic system having regeneration configuration
US9057389B2 (en) Meterless hydraulic system having multi-actuator circuit
US8978374B2 (en) Meterless hydraulic system having flow sharing and combining functionality
US8984873B2 (en) Meterless hydraulic system having flow sharing and combining functionality
EP2980324B1 (en) Hydraulic system for construction equipment
US20130298542A1 (en) Hydraulic system with return pressure control
US20160061185A1 (en) Hydraulic system
US20170114804A1 (en) Device for recovering hydraulic energy in an implement and a corresponding implement
JP2016169818A (en) Hydraulic driving system
US8978373B2 (en) Meterless hydraulic system having flow sharing and combining functionality
US20130098459A1 (en) Closed-Loop Hydraulic System Having Flow Combining and Recuperation
JP2008279834A (en) Hydraulically driven vehicle
US20140060034A1 (en) Electro-Hydraulic Control Design for Pump Discharge Pressure Control
JP5840681B2 (en) Method and apparatus for operating a driven shaft in a machine tool
KR101737633B1 (en) Emergency Steering Device for Construction Machinery
US10001147B2 (en) Independent metering valve priority in open center hydraulic system
JP5872170B2 (en) Construction machine control equipment
US8783025B2 (en) Split valve pump controlled hydraulic system
Busquets et al. Priority-based supervisory controller for a displacement-controlled excavator with pump switching
KR102010592B1 (en) hydraulic system of Construction machinery
Çalışkan Development and control of a single rod electro hydrostatic actuator
JP5197478B2 (en) Hybrid construction machinery

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140804

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20140821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5668259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250