JP5664512B2 - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP5664512B2
JP5664512B2 JP2011209360A JP2011209360A JP5664512B2 JP 5664512 B2 JP5664512 B2 JP 5664512B2 JP 2011209360 A JP2011209360 A JP 2011209360A JP 2011209360 A JP2011209360 A JP 2011209360A JP 5664512 B2 JP5664512 B2 JP 5664512B2
Authority
JP
Japan
Prior art keywords
light
separation element
polarization separation
reflected
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011209360A
Other languages
Japanese (ja)
Other versions
JP2013068584A (en
Inventor
善明 帆足
善明 帆足
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011209360A priority Critical patent/JP5664512B2/en
Publication of JP2013068584A publication Critical patent/JP2013068584A/en
Application granted granted Critical
Publication of JP5664512B2 publication Critical patent/JP5664512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光を照射しその反射光を受光することにより、光を反射した物体に関する情報を取得するレーダ装置に関する。   The present invention relates to a radar apparatus that obtains information on an object that reflects light by irradiating light and receiving reflected light.

従来、パルス状のレーザ光を照射し、その反射光を受光することによって、レーザ光を反射した物体との距離や相対速度等、物体に関する情報を取得するレーダ装置が知られている。   2. Description of the Related Art Conventionally, a radar apparatus is known that obtains information about an object such as a distance and a relative speed with respect to an object that reflects the laser light by irradiating pulsed laser light and receiving the reflected light.

この種のレーダ装置において、レーザ光を受光する受光部では、熱雑音等の雑音限界付近の非常に微小な信号を処理するため、ノイズの影響をできるだけ排除する必要がある。一方、レーザ光を発生させる発光部では、光源となる半導体レーザを駆動する際に、瞬時的に大きな電流を流す必要があるため、レーザ光の照射に伴って非常に大きな電磁ノイズが発生する。   In this type of radar apparatus, a light receiving unit that receives laser light processes a very small signal near a noise limit such as thermal noise, and therefore it is necessary to eliminate the influence of noise as much as possible. On the other hand, in a light emitting unit that generates laser light, it is necessary to flow a large current instantaneously when driving a semiconductor laser serving as a light source, and therefore, extremely large electromagnetic noise is generated with irradiation of the laser light.

このような発光部で発生するノイズが受光部に影響を与えることがないようにするために、発光部及び受光部を、個別に金属シールドで覆う等の対策が採られている(例えば、特許文献1参照)。   In order to prevent such noise generated in the light emitting unit from affecting the light receiving unit, measures such as individually covering the light emitting unit and the light receiving unit with a metal shield are taken (for example, patents). Reference 1).

特開平6−59038号公報JP-A-6-59038

ところで、金属シールドは光も遮蔽するため、金属シールド内の発光部が発生させたレーザ光を、金属シールドの外部に取り出したり、金属シールドの外部から到来するレーザ光を、金属シールド内の受光部に導いたりするために、金属シールドに開口部を設ける必要がある。   By the way, since the metal shield also shields light, the laser light generated by the light emitting part in the metal shield is taken out of the metal shield, or the laser light coming from the outside of the metal shield is received by the light receiving part in the metal shield. It is necessary to provide an opening in the metal shield in order to lead to

しかし、光を通過させるような開口は、通常、ノイズも通り抜けてしまう。このため、装置を小型化するために、発光部及び受光部を接近させて配置した場合には、それぞれが金属シールドで覆われていたとしても、金属シールドの開口部から電磁ノイズが漏洩,侵入することによって、受光部が必要とするS/Nを確保することができず、ひいては精度のよい測距を行うことができないという問題があった。   However, an aperture through which light passes usually passes through noise. For this reason, in order to reduce the size of the device, when the light emitting unit and the light receiving unit are arranged close to each other, even if each is covered with a metal shield, electromagnetic noise leaks and enters from the opening of the metal shield. As a result, the S / N required by the light receiving unit cannot be secured, and as a result, accurate distance measurement cannot be performed.

本発明は、上記問題点を解決するために、発光部で発生する電磁ノイズが受光部に与える影響を抑制した小型化可能なレーダ装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a radar device that can be miniaturized in which the influence of electromagnetic noise generated in a light emitting unit on the light receiving unit is suppressed.

上記目的を達成するためになされた発明である請求項1に記載のレーダ装置は、光を照射する発光部と、光を受光する受光部と、予め設定された第1偏光方向の成分の光を透過し、第1偏光方向と直交する第2偏光方向の成分の光を反射することにより、発光部から照射された照射光を、予め設定された投射方向に導くと共に、投射方向から到来する反射光を前記受光部に導く光路変更部とを備えている。   The radar apparatus according to claim 1, which is an invention made to achieve the above object, includes a light emitting unit that emits light, a light receiving unit that receives light, and light of a component in a preset first polarization direction. By reflecting the light of the component of the second polarization direction orthogonal to the first polarization direction, the irradiation light irradiated from the light emitting unit is guided to the preset projection direction and arrives from the projection direction An optical path changing unit for guiding reflected light to the light receiving unit.

そして、光路変更部は、照射光の波長より短い間隔で周期的に配置された金属細線からなる構造体(金属微細周期構造体)を有した偏光分離素子からなり、発光部及び受光部のうち一方が、光を通過させる開口部を有する電磁遮蔽体と、その開口部を塞ぎ且つ構造体が電磁遮蔽体と互いに導通するように設けた偏光分離素子とで形成された電磁遮蔽空間内に配置されている。 The optical path changing unit is composed of a polarization separation element having a structure (metal fine periodic structure) composed of fine metal wires periodically arranged at intervals shorter than the wavelength of the irradiation light. on the other hand but the electromagnetic shielding member having an opening through which light passes, the opening to the electromagnetic shielding in the space formed by the polarization separation element fort technique and structure is provided so as to electrically connected to each other and electromagnetically shield Has been placed.

なお、金属微細周期構造体による偏光分離素子は、必要な光(第1偏光方向の成分の光)を透過しつつ、不要な電磁波に対しては遮蔽体として作用する。
従って、本発明のレーダ装置によれば、電磁遮蔽体と偏光分離素子が形成する電磁遮蔽空間内に発光部が配置されている時には、発光部にて発生した電磁ノイズが電磁遮蔽体の開口部を介して電磁遮蔽空間外に漏洩することを抑制でき、また、電磁遮蔽空間内に受光部が配置されている時には、発光部にて発生した電磁ノイズが電磁遮蔽体の開口部を介して、受光部が配置された電磁遮蔽空間内に侵入することを抑制できる。つまり、発光部にて発生する電磁ノイズに対する受光部での耐性を向上させることができる。
Note that the polarization separation element using the metal fine periodic structure acts as a shield against unnecessary electromagnetic waves while transmitting necessary light (light having a component in the first polarization direction).
Therefore, according to the radar apparatus of the present invention, when the light emitting unit is arranged in the electromagnetic shielding space formed by the electromagnetic shield and the polarization separation element, the electromagnetic noise generated in the light emitting unit is caused by the opening of the electromagnetic shield. Leaking out of the electromagnetic shielding space can be suppressed, and when the light receiving unit is arranged in the electromagnetic shielding space, electromagnetic noise generated in the light emitting unit through the opening of the electromagnetic shielding body, Intrusion into the electromagnetic shielding space in which the light receiving unit is disposed can be suppressed. That is, it is possible to improve resistance at the light receiving unit against electromagnetic noise generated at the light emitting unit.

その結果、本発明のレーダ装置によれば、発光部及び受光部を接近させて配置すること、ひいては装置を小型化することができる。
なお、電磁遮蔽空間内に発光部を配置した場合、発光部,受光部,偏光分離素子は、例えば、請求項2に記載のように、偏光分離素子を透過した照射光の進行方向が投射方向となり、偏光分離素子で反射した反射光を受光部が受光する位置関係となるように配置すればよい。
As a result, according to the radar apparatus of the present invention, the light emitting part and the light receiving part can be arranged close to each other, and the apparatus can be downsized.
When the light emitting unit is arranged in the electromagnetic shielding space, the light emitting unit, the light receiving unit, and the polarization separation element are, for example, as claimed in claim 2, wherein the traveling direction of the irradiation light transmitted through the polarization separation element is the projection direction. Therefore, the reflection light reflected by the polarization separation element may be arranged so as to be in a positional relationship where the light receiving unit receives light.

また、電磁遮蔽空間内に受光部を配置した場合、発光部,受光部,偏光分離素子は、例えば、請求項3に記載のように、偏光分離素子で反射した照射光の進行方向が投射方向となり、偏光分離素子を透過した反射光を、受光部が受光する位置関係となるように配置すればよい。   In addition, when the light receiving unit is disposed in the electromagnetic shielding space, the light emitting unit, the light receiving unit, and the polarization separation element, for example, as in claim 3, the traveling direction of the irradiation light reflected by the polarization separation element is the projection direction. Therefore, the reflected light transmitted through the polarization separation element may be arranged so as to be in a positional relationship where the light receiving unit receives light.

ところで、反射光のうち、物体で鏡面反射した成分については、偏光方向が照射光と同じ状態に保持される。このような鏡面反射による反射光の成分は、偏光分離素子によって発光部側に戻されることになる。   By the way, the component of the reflected light that is specularly reflected by the object is kept in the same polarization direction as the irradiation light. The component of the reflected light due to such specular reflection is returned to the light emitting unit side by the polarization separation element.

そこで、請求項2又は請求項3に記載のレーダ装置では、請求項4に記載のように、偏光分離素子から投射方向に向かう照射光及び投射方向から到来し偏光分離素子に向かう反射光が通過する経路上に1/4波長板を設けることが望ましい。   Therefore, in the radar device according to claim 2 or claim 3, as described in claim 4, the irradiation light traveling from the polarization separation element toward the projection direction and the reflected light coming from the projection direction toward the polarization separation element pass through. It is desirable to provide a quarter wave plate on the path to be used.

このように構成された本発明のレーダ装置では、偏光分離素子から物体に到達する前と、物体から偏光分離素子に到達する前の2回、1/4波長板を通過する。その結果、鏡面反射して偏光分離素子に入射する反射光は、偏光分離素子を透過した照射光とは偏光方向が90°異なったものとなり、その殆どが偏光分離素子にて反射するため、反射光を効率よく受光部に導くことができる。 In the radar apparatus of the present invention configured as described above, the light passes through the quarter wavelength plate twice before reaching the object from the polarization separation element and before reaching the polarization separation element from the object. As a result, the reflected light that is specularly reflected and incident on the polarization separation element has a polarization direction that differs by 90 ° from the irradiation light that has passed through the polarization separation element, and most of the reflected light is reflected by the polarization separation element. Light can be efficiently guided to the light receiving unit.

また、請求項2乃至請求項4のいずれか一項に記載のレーダ装置は、請求項5に記載のように、偏光分離素子によって投射方向に導かれた照射光の進行方向を変化させることにより、予め設定された走査角度範囲内を走査する第1走査手段を備えていてもよい。   The radar apparatus according to any one of claims 2 to 4 can change the traveling direction of the irradiation light guided in the projection direction by the polarization separation element as described in claim 5. A first scanning unit that scans within a preset scanning angle range may be provided.

このように構成された本発明のレーダ装置によれば、物体の検知範囲を広げることができる。
請求項3に記載のレーダ装置では、請求項6に記載のように、更に、偏光分離素子を透過した反射光を、該反射光の入射方向に向けて反射する反射素子と、偏光分離素子と反射素子との間に設けられた1/4波長板とを備えていてもよい。この場合、受光部は、反射素子にて反射され1/4波長板を通過して到来する反射光を再帰反射光として、偏光分離素子で反射した再帰反射光を受光する位置に設けられていればよい。
According to the radar apparatus of the present invention configured as described above, the object detection range can be expanded.
In the radar apparatus according to claim 3, as described in claim 6, a reflection element that reflects the reflected light transmitted through the polarization separation element toward an incident direction of the reflection light, a polarization separation element, and You may provide the quarter wavelength plate provided between reflection elements. In this case, the light receiving unit is provided at a position for receiving the retroreflected light reflected by the polarization separation element using the reflected light reflected by the reflective element and passing through the quarter-wave plate as the retroreflected light. That's fine.

また、請求項6に記載のレーダ装置では、更に、請求項7に記載のように、予め設定された所定回転軸を中心に偏光分離素子を回動させることで、偏光分離素子で反射する照射光の進行方向を変化させることにより、予め設定された走査角度範囲内を走査する第2走査手段を備えていてもよい。   Further, in the radar apparatus according to claim 6, as described in claim 7, the irradiation reflected by the polarization separation element by rotating the polarization separation element about a predetermined rotation axis set in advance. You may provide the 2nd scanning means which scans within the preset scanning angle range by changing the advancing direction of light.

この場合、偏光分離素子を動作させることで走査が実現されるため、走査に必要な構成を簡略化することができる。   In this case, since the scanning is realized by operating the polarization separation element, the configuration necessary for the scanning can be simplified.

第1実施形態のレーダ装置の構成及び動作を示す説明図である。It is explanatory drawing which shows the structure and operation | movement of a radar apparatus of 1st Embodiment. 偏光分離素子の構成を示す平面図及び断面図である。It is the top view and sectional drawing which show the structure of a polarization beam splitting element. 第2実施形態のレーダ装置の構成及び動作を示す説明図である。It is explanatory drawing which shows the structure and operation | movement of the radar apparatus of 2nd Embodiment. 第3実施形態のレーダ装置の構成及び動作を示す説明図である。It is explanatory drawing which shows the structure and operation | movement of the radar apparatus of 3rd Embodiment.

以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
<全体構成>
図1は、本実施形態のレーダ装置1の構成及び動作を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
<Overall configuration>
FIG. 1 is an explanatory diagram showing the configuration and operation of the radar apparatus 1 of the present embodiment.

図1に示すように、レーダ装置1は、レーザダイオード等の発光素子を駆動してパルス状のレーザ光を発生させる発光部10と、発光部10から照射されたレーザ光を平行光にして投射する投光光学系11と、フォトダイオード等の受光素子によりレーザ光を受光する受光部12と、所定方向から到来するレーザ光を収束させて受光部12に導く受光光学系13と、投光光学系11を介して投射されるレーザ光(以下「照射光」という)を透過すると共に、その照射光の投射方向から到来するレーザ光(以下「反射光」という)を反射して受光光学系13に向かうように光路を屈曲させる光路変更部14と、光路変更部14を透過した照射光及び光路変更部14に向かう反射光の光路上に設けられた1/4波長板15と、1/4波長板15を通過した照射光を反射し、その反射角度を変化させることにより、予め設定された走査範囲内で照射光を走査する共に、走査範囲内から到来するレーザ光を1/4波長板15を介して光路変更部14に導く走査部16とを備えている。   As shown in FIG. 1, a radar apparatus 1 projects a light emitting unit 10 that generates a pulsed laser beam by driving a light emitting element such as a laser diode, and a laser beam emitted from the light emitting unit 10 as parallel light. A light projecting optical system 11, a light receiving unit 12 that receives laser light by a light receiving element such as a photodiode, a light receiving optical system 13 that converges laser light coming from a predetermined direction and guides it to the light receiving unit 12, and light projecting optics Laser light (hereinafter referred to as “irradiated light”) projected through the system 11 is transmitted, and laser light (hereinafter referred to as “reflected light”) coming from the projection direction of the irradiated light is reflected to receive the light receiving optical system 13. An optical path changing unit 14 that bends the optical path toward the optical path, a quarter-wave plate 15 provided on the optical path of the irradiation light transmitted through the optical path changing unit 14 and the reflected light toward the optical path changing unit 14, and 1/4 Wave plate 15 By reflecting the excess irradiation light and changing the reflection angle, the irradiation light is scanned within the preset scanning range, and the laser light coming from within the scanning range is passed through the quarter wavelength plate 15. And a scanning unit 16 that leads to the optical path changing unit 14.

なお、1/4波長板15は、直線偏光を円偏光に変換するとともに円偏光を直線偏光に変換する機能を有した周知のものである。また、走査部16は、MEMS、ガルバノ等より構成された周知のものである。   The quarter wavelength plate 15 is a well-known one having a function of converting linearly polarized light into circularly polarized light and converting circularly polarized light into linearly polarized light. Further, the scanning unit 16 is a well-known unit configured by MEMS, galvano, or the like.

ここで、図2は、(b)が光路変更部14の平面図、(a)がそのA−A断面図である。
図2に示すように、光路変更部14は、レーザ光を透過可能な材料で形成された板形状の基板141と、偏光分離機能を有する構造となるように基板141の面上に形成された偏光分離構造体142とで構成されたいわゆる偏光分離素子からなる。以下では、光路変更部14を偏光分離素子14ともいう。
Here, FIG. 2B is a plan view of the optical path changing unit 14 and FIG.
As shown in FIG. 2, the optical path changing unit 14 is formed on the surface of the substrate 141 so as to have a plate-shaped substrate 141 made of a material capable of transmitting laser light and a structure having a polarization separation function. It consists of a so-called polarization separation element composed of the polarization separation structure 142. Hereinafter, the optical path changing unit 14 is also referred to as a polarization separation element 14.

なお、偏光分離構造体142は、導電性材料(例えば、Al,Au,Ag,Cu等)により形成された複数の金属細線を、発光部10から照射されるレーザ光の波長よりも短い間隔で予め設定された方向(以下、格子方向という)に沿って平行に配置することにより構成された格子状の構造(ワイヤグリッド)を有する。このような微細な周期構造体は、周知の微細加工技術を用いることで形成することができる。   The polarization separation structure 142 has a plurality of fine metal wires formed of a conductive material (for example, Al, Au, Ag, Cu, etc.) at intervals shorter than the wavelength of the laser light emitted from the light emitting unit 10. It has a lattice-like structure (wire grid) configured by arranging in parallel along a preset direction (hereinafter referred to as a lattice direction). Such a fine periodic structure can be formed by using a well-known fine processing technique.

図1に戻り、偏光分離素子14,1/4波長板15は、投光光学系11から投射され直進するレーザ光が走査部16に至る光路(以下、照射光路という)上に位置し、しかも、偏光分離素子14及び1/4波長板15の略中心位置にレーザ光の光軸が位置するように配置されている。但し、偏光分離素子14は、照射光路に対して45°傾斜し、1/4波長板15は照射光路に対して正対するように配置されている。また、レーザダイオードによって発生させたレーザ光は偏光しているため、レーザ光の偏光方向と偏光分離素子14の格子方向とが一致するように偏光分離素子14は配置される。   Returning to FIG. 1, the polarization separation element 14 and the quarter-wave plate 15 are positioned on an optical path (hereinafter referred to as an irradiation optical path) where the laser light projected from the light projecting optical system 11 and travels straight reaches the scanning unit 16. In addition, the optical axis of the laser beam is arranged at substantially the center position of the polarization separating element 14 and the quarter wavelength plate 15. However, the polarization separation element 14 is inclined by 45 ° with respect to the irradiation light path, and the quarter-wave plate 15 is disposed so as to face the irradiation light path. In addition, since the laser light generated by the laser diode is polarized, the polarization separation element 14 is arranged so that the polarization direction of the laser light and the grating direction of the polarization separation element 14 coincide.

また、受光光学系13及び受光部12は、照射光路に対して直交し、且つ、偏光分離素子14の中心位置を通る軸(即ち、走査部16から偏光分離素子14に向かい、偏光分離素子14で反射したレーザ光の光軸)上に位置するように配置されている。   The light receiving optical system 13 and the light receiving unit 12 are orthogonal to the irradiation optical path and pass through the center position of the polarization separation element 14 (that is, from the scanning unit 16 toward the polarization separation element 14 and toward the polarization separation element 14). Are arranged so as to be located on the optical axis of the laser beam reflected by the laser beam.

そして、発光部10及び投光光学系11は、金属製の発光部シールド17に収納されており、その発光部シールド17には、発光部10が発生させたレーザ光を発光部シールド17の外部に取り出すための開口部が設けられ、更に、その開口部を塞ぐように、偏光分離素子14が設置されている。但し、発光部シールド17と偏光分離素子14の偏光分離構造体142とは互いに導通するように接続され共通のグランドに接地されている。つまり、発光部10及び投光光学系11は、発光部シールド17と偏光分離素子14とが形成する電磁遮蔽空間内に配置されるように構成されている。   The light emitting unit 10 and the light projecting optical system 11 are housed in a metal light emitting unit shield 17. The light emitting unit shield 17 receives laser light generated by the light emitting unit 10 outside the light emitting unit shield 17. An opening for taking out the light is provided, and a polarization separation element 14 is installed so as to close the opening. However, the light-emitting portion shield 17 and the polarization separation structure 142 of the polarization separation element 14 are connected to each other and grounded to a common ground. That is, the light emitting unit 10 and the light projecting optical system 11 are configured to be disposed in an electromagnetic shielding space formed by the light emitting unit shield 17 and the polarization separation element 14.

一方、受光部12は、金属製の受光部シールド18に収納されており、その受光部シールド18には、レーザ光を受光部シールド18内の受光部12に導くための開口部が設けられ、更に、その開口部を塞ぐように、受光光学系13を形成するレンズが設置されている。   On the other hand, the light receiving unit 12 is housed in a metal light receiving unit shield 18, and the light receiving unit shield 18 is provided with an opening for guiding laser light to the light receiving unit 12 in the light receiving unit shield 18. Further, a lens forming the light receiving optical system 13 is installed so as to close the opening.

<動作>
次に、このように構成されたレーダ装置1の動作を説明する。
まず、発光部10から照射されたレーザ光(以下、照射光という)は、投光光学系11により略平行光に変換され偏光分離素子14に到達する(光L11を参照)。偏光分離素子14に到達した照射光のうち、上記格子方向に平行な偏光方向を有する成分(TM成分)は、偏光分離素子14を透過し(光L12を参照)、1/4波長板15を通過して走査部16に到達する(光L13を参照)。なお、1/4波長板15を通過した照射光は直線偏光から円偏光に変換される。
<Operation>
Next, the operation of the radar apparatus 1 configured as described above will be described.
First, laser light (hereinafter referred to as irradiation light) emitted from the light emitting unit 10 is converted into substantially parallel light by the light projecting optical system 11 and reaches the polarization separation element 14 (see the light L11). Of the irradiated light that has reached the polarization separation element 14, a component having a polarization direction parallel to the grating direction (TM component) is transmitted through the polarization separation element 14 (see the light L <b> 12) and passes through the quarter wavelength plate 15. It passes through and reaches the scanning unit 16 (see the light L13). The irradiation light that has passed through the quarter-wave plate 15 is converted from linearly polarized light to circularly polarized light.

そして、走査部16に到達した照射光は、走査部16の動作に従って走査角度範囲内にレーダ波として照射される(光L14を参照)。
その後、物体Bで反射し入射方向に戻ってくるレーザ光(以下、反射光という)は、走査部16により照射光の到来方向に導かれる(光L15,L16を参照)。この走査部16に導かれた反射光は、1/4波長板15を通過して偏光分離素子14に到達する(光L17を参照)。なお、1/4波長板15を通過して偏光分離素子14に到達する反射光は、円偏光から直線偏光に変換され、しかも、偏光分離素子14を通過した照射光とは偏向方向が90°異なったもの(TE成分)となる。
And the irradiation light which reached | attained the scanning part 16 is irradiated as a radar wave within a scanning angle range according to the operation | movement of the scanning part 16 (refer light L14).
Thereafter, laser light reflected by the object B and returning to the incident direction (hereinafter referred to as reflected light) is guided by the scanning unit 16 in the arrival direction of the irradiation light (see the lights L15 and L16). The reflected light guided to the scanning unit 16 passes through the quarter wavelength plate 15 and reaches the polarization separating element 14 (see the light L17). The reflected light that passes through the quarter-wave plate 15 and reaches the polarization separation element 14 is converted from circularly polarized light to linearly polarized light, and the deflection direction is 90 ° with respect to the irradiation light that has passed through the polarization separation element 14. Different one (TE component).

このため、1/4波長板15を通過した反射光は、偏光分離素子14で反射して受光光学系13に導かれる。この反射光は、受光光学系13で収束され受光部12に到達して、受光部12にて受光信号に光電変換される(光L18を参照)。   Therefore, the reflected light that has passed through the quarter wavelength plate 15 is reflected by the polarization separation element 14 and guided to the light receiving optical system 13. The reflected light is converged by the light receiving optical system 13 and reaches the light receiving unit 12, and is photoelectrically converted into a light reception signal by the light receiving unit 12 (see the light L18).

そして、レーダ装置1では、この受光信号に基づき、図示しない信号処理部にて、発光部10がパルスレーザ光を照射した時刻と、受光部12が反射光を受光した時刻との差を計測し、その計測結果から、レーザ光を反射した物体までの距離が求められることになる。   In the radar apparatus 1, based on this light reception signal, a signal processing unit (not shown) measures the difference between the time when the light emitting unit 10 emits the pulsed laser light and the time when the light receiving unit 12 receives the reflected light. From the measurement result, the distance to the object reflecting the laser beam is obtained.

<効果>
以上説明したようにレーダ装置1によれば、発光部10が発光部シールド17及び偏光分離素子14が形成する電磁遮蔽空間内に配置されているため、発光部10がレーザ光を照射する時に発生させる電磁ノイズが、発光部シールド17の開口部から外部に漏洩することを抑制することができる。
<Effect>
As described above, according to the radar apparatus 1, since the light emitting unit 10 is disposed in the electromagnetic shielding space formed by the light emitting unit shield 17 and the polarization separation element 14, it occurs when the light emitting unit 10 emits laser light. It is possible to suppress leakage of electromagnetic noise to the outside from the opening of the light emitting unit shield 17.

つまり、発光部10にて発生し、受光部12に干渉する電磁ノイズの影響を低減することができるため、発光部10と受光部12とを接近配置させて装置を小型化しても、電磁ノイズの影響の少ない受光信号を得ること、ひいては正常な測距を行うことができる。   That is, since the influence of electromagnetic noise generated at the light emitting unit 10 and interfering with the light receiving unit 12 can be reduced, even if the light emitting unit 10 and the light receiving unit 12 are arranged close to each other to reduce the size of the apparatus, the electromagnetic noise is reduced. It is possible to obtain a received light signal that is less affected by this, and thus to perform normal distance measurement.

なお、本実施形態において、金属シールド17,18が電磁遮蔽体、走査部16が第1走査手段、レーザ光のTM成分が第1偏光方向の成分、TE成分が第2偏光方向の成分に相当する。   In the present embodiment, the metal shields 17 and 18 are electromagnetic shields, the scanning unit 16 is the first scanning means, the TM component of the laser light is a component in the first polarization direction, and the TE component is a component in the second polarization direction. To do.

[第2実施形態]
次に、第2実施形態について説明する。
<全体構成>
図3は、本実施形態のレーダ装置2の構成及び動作を示す説明図である。
[Second Embodiment]
Next, a second embodiment will be described.
<Overall configuration>
FIG. 3 is an explanatory diagram showing the configuration and operation of the radar apparatus 2 of the present embodiment.

図3に示すように、レーダ装置2は、レーダ装置1における発光部10,投光光学系11,受光部12,受光光学系13,偏光分離素子14,1/4波長板15,走査部16と同様に構成された発光部20,投光光学系21,受光部22,受光光学系23,偏光分離素子24(基板241,偏光分離構造体242),1/4波長板25,走査部26を備えている。   As shown in FIG. 3, the radar device 2 includes a light emitting unit 10, a light projecting optical system 11, a light receiving unit 12, a light receiving optical system 13, a polarization separating element 14, a quarter wavelength plate 15, and a scanning unit 16 in the radar device 1. The light emitting unit 20, the light projecting optical system 21, the light receiving unit 22, the light receiving optical system 23, the polarization separation element 24 (the substrate 241, the polarization separation structure 242), the quarter wavelength plate 25, and the scanning unit 26 configured in the same manner as in FIG. It has.

但し、レーダ装置2では、レーダ装置1の場合とは異なり、投光光学系21から偏光分離素子24に向かう照射光の偏光方向が偏光分離素子24の格子方向と直交するように配置されている。   However, unlike the radar apparatus 1, the radar apparatus 2 is arranged so that the polarization direction of the irradiation light from the light projecting optical system 21 toward the polarization separation element 24 is orthogonal to the grating direction of the polarization separation element 24. .

また、偏光分離素子24,1/4波長板25は、走査部26から戻ってくるレーザ光(反射光)が受光光学系23に至る直線の光路(以下、反射光路という)上に位置し、しかも、偏光分離素子24及び1/4波長板25の略中心位置にレーザ光の光軸が位置するように配置されている。但し、偏光分離素子24は、反射光路に対して45°傾斜し、1/4波長板25は反射光路に対して正対するように配置されている。   The polarization separation element 24 and the quarter wavelength plate 25 are positioned on a linear optical path (hereinafter referred to as a reflected optical path) where the laser light (reflected light) returning from the scanning unit 26 reaches the light receiving optical system 23. In addition, the optical axis of the laser beam is arranged at substantially the center position of the polarization separation element 24 and the quarter wavelength plate 25. However, the polarization separation element 24 is inclined by 45 ° with respect to the reflected light path, and the quarter-wave plate 25 is disposed so as to face the reflected light path.

更に、発光部20及び投光光学系21は、投光光学系21から照射された照射光の光軸が反射光路に対して直交し、且つ、偏光分離素子24の中心位置を通るように配置され、偏光分離素子24で反射した照射光が導かれる投射方向が、反射光路を逆行する方向となるように配置されている。   Further, the light emitting unit 20 and the light projecting optical system 21 are arranged so that the optical axis of the irradiated light emitted from the light projecting optical system 21 is orthogonal to the reflected light path and passes through the center position of the polarization separation element 24. Then, the projection direction in which the irradiation light reflected by the polarization separation element 24 is guided is arranged to be a direction reverse to the reflected light path.

そして、発光部20は、金属製の発光部シールド27に収納されており、その発光部シールド27には、発光部20から照射されたレーザ光を発光部シールド27の外部に取り出すための開口部が設けられ、更に、その開口部を塞ぐように、投光光学系21を形成するレンズが設置されている。   The light emitting unit 20 is housed in a metal light emitting unit shield 27. The light emitting unit shield 27 has an opening for taking out the laser light emitted from the light emitting unit 20 to the outside of the light emitting unit shield 27. Further, a lens for forming the light projecting optical system 21 is installed so as to close the opening.

一方、受光部22及び受光光学系23は、金属製の受光部シールド28に収納されており、その受光部シールド28には、レーザ光を受光部シールド28内の受光光学系23に導くための開口部が設けられ、更に、その開口部を塞ぐように、偏光分離素子24が設置されている。但し、受光部シールド28と偏光分離素子24の偏光分離構造体242とは互いに導通するように接続され、共通のグランドに接地されている。つまり、受光部22は、受光部シールド28と偏光分離素子24とが形成する電磁遮蔽空間内に配置されるように構成されている。   On the other hand, the light receiving unit 22 and the light receiving optical system 23 are housed in a metal light receiving unit shield 28, and the light receiving unit shield 28 guides laser light to the light receiving optical system 23 in the light receiving unit shield 28. An opening is provided, and a polarization separation element 24 is further installed so as to close the opening. However, the light-receiving unit shield 28 and the polarization separation structure 242 of the polarization separation element 24 are connected to each other and grounded to a common ground. That is, the light receiving unit 22 is configured to be disposed in an electromagnetic shielding space formed by the light receiving unit shield 28 and the polarization separation element 24.

<動作>
次に、このように構成されたレーダ装置2の動作を説明する。
まず、発光部20から照射されたレーザ光(照射光)は、投光光学系21により略平行光に変換され偏光分離素子24に到達する(光L21を参照)。偏光分離素子24に到達した照射光のうち、上記格子方向に直行した偏光方向を有する成分(TE成分)は、偏光分離素子14で反射することで光路が略90°変化し1/4波長板25に入射する(光L22を参照)。なお、発光部20から照射される照射光は偏光しているため、偏光分離素子24の偏光方向と照射光の偏光方向が直行するように適切に配置することによって、殆どの照射光を偏光分離素子24で反射させることができる。
<Operation>
Next, the operation of the radar apparatus 2 configured as described above will be described.
First, the laser light (irradiation light) emitted from the light emitting unit 20 is converted into substantially parallel light by the light projecting optical system 21 and reaches the polarization separation element 24 (see the light L21). Of the irradiation light that has reached the polarization separation element 24, a component (TE component) having a polarization direction orthogonal to the grating direction is reflected by the polarization separation element 14 to change the optical path by approximately 90 °, and a quarter-wave plate. 25 (see light L22). Since the irradiation light emitted from the light emitting unit 20 is polarized, most of the irradiation light is polarized and separated by properly arranging the polarization direction of the polarization separation element 24 and the polarization direction of the irradiation light to be orthogonal to each other. It can be reflected by the element 24.

1/4波長板25に入射された照射光は、直線偏光から円偏光に変換されて走査部16に到達する(光L23を参照)。走査部26に到達した照射光は、走査部26の動作に従って走査角度範囲内にレーダ波として照射される(光L24を参照)。   The irradiation light incident on the quarter-wave plate 25 is converted from linearly polarized light to circularly polarized light and reaches the scanning unit 16 (see the light L23). The irradiation light that has reached the scanning unit 26 is irradiated as a radar wave within a scanning angle range in accordance with the operation of the scanning unit 26 (see the light L24).

走査角度範囲内に存在する物体Bで反射し入射方向とは逆方向に戻ってくるレーザ光(反射光)は、走査部26により照射光の到来方向に導かれる(光L25,L26を参照)。この走査部26によって導かれた反射光は、1/4波長板25を通過することで、円偏波から直線偏光に変換されて偏光分離素子24に到達する(光L27を参照)。なお、1/4波長板25にて円偏光から直線偏光に変換された反射光は、1/4波長板25に入射する直線偏光の照射光とは偏光方向が90°異なったもの(TM成分)となる。   The laser beam (reflected light) reflected by the object B existing within the scanning angle range and returning in the direction opposite to the incident direction is guided by the scanning unit 26 in the direction of arrival of the irradiation light (see the light L25 and L26). . The reflected light guided by the scanning unit 26 passes through the quarter-wave plate 25, is converted from circularly polarized light to linearly polarized light, and reaches the polarization separation element 24 (see the light L27). The reflected light converted from circularly polarized light to linearly polarized light by the quarter wavelength plate 25 has a polarization direction different from that of the linearly polarized light incident on the quarter wavelength plate 25 (TM component). )

このため、1/4波長板25を通過した反射光は、偏光分離素子24で反射して受光光学系23に導かれる。この受光光学系23に導かれた反射光は、受光光学系13で収束して受光部22に到達して、受光部22にて受光信号に光電変換される(光L28を参照)。   Therefore, the reflected light that has passed through the quarter-wave plate 25 is reflected by the polarization separation element 24 and guided to the light receiving optical system 23. The reflected light guided to the light receiving optical system 23 is converged by the light receiving optical system 13 to reach the light receiving unit 22 and is photoelectrically converted into a light receiving signal by the light receiving unit 22 (see the light L28).

そして、レーダ装置2では、この受光信号に基づき、図示しない信号処理部にて、発光部20がパルスレーザ光を照射した時刻と、受光部22が反射光を受光した時刻との差を計測し、その計測結果から、レーザ光を反射した物体までの距離が求められることになる。   The radar device 2 measures the difference between the time when the light emitting unit 20 radiates the pulse laser beam and the time when the light receiving unit 22 receives the reflected light based on the light reception signal. From the measurement result, the distance to the object reflecting the laser beam is obtained.

なお、レーザ光が物体Bにて鏡面反射した成分については、偏光の向きが保存されるため、1/4波長板25の作用によって、その殆どを受光部22に導くことができるが、物体Bにて散乱反射した成分については、約半分が受光部22に導かれることになる。   The component of the laser beam that is specularly reflected by the object B can be mostly guided to the light receiving unit 22 by the action of the quarter-wave plate 25 because the polarization direction is preserved. About half of the components scattered and reflected by the light are guided to the light receiving unit 22.

<効果>
このように構成されたレーダ装置2によれば、受光部22が受光部シールド28及び偏光分離素子24が形成する電磁遮蔽空間内に配置されているため、レーザ光の照射時に発光部20にて発生した電磁ノイズが、反射光を取り込むために設けられた受光部シールド28の開口部から(即ち偏光分離素子24を介して)侵入することを抑制することができる。
<Effect>
According to the radar apparatus 2 configured as described above, the light receiving unit 22 is disposed in the electromagnetic shielding space formed by the light receiving unit shield 28 and the polarization separation element 24, so that the light emitting unit 20 performs the irradiation with the laser light. It is possible to suppress the generated electromagnetic noise from entering from the opening of the light receiving portion shield 28 provided for taking in the reflected light (that is, via the polarization separation element 24).

つまり、発光部20にて発生し、受光部22に干渉する電磁ノイズの影響を低減することができるため、発光部20と受光部22とを接近配置させて装置を小型化しても、電磁ノイズの影響の少ない受光信号を得ること、ひいては、正常な測距を行うことができる。   That is, since the influence of electromagnetic noise generated in the light emitting unit 20 and interfering with the light receiving unit 22 can be reduced, even if the light emitting unit 20 and the light receiving unit 22 are arranged close to each other and the apparatus is downsized, the electromagnetic noise is reduced. It is possible to obtain a received light signal that is less influenced by the above-mentioned, and thus to perform normal distance measurement.

[第3実施形態]
次に、第3実施形態について説明する。
<全体構成>
図4は、本実施形態のレーダ装置3の構成及び動作を示す説明図である。
[Third Embodiment]
Next, a third embodiment will be described.
<Overall configuration>
FIG. 4 is an explanatory diagram showing the configuration and operation of the radar apparatus 3 of the present embodiment.

図4に示すように、レーダ装置3は、レーダ装置1における、発光部10,投光光学系11,受光部12,受光光学系13,偏光分離素子14,1/4波長板15と同様に構成された発光部30,投光光学系31,受光部32,受光光学系33,偏光分離素子34(基板341,偏光分離構造体342),1/4波長板35を備えている。   As shown in FIG. 4, the radar device 3 is similar to the light emitting unit 10, the light projecting optical system 11, the light receiving unit 12, the light receiving optical system 13, the polarization separating element 14, and the quarter wavelength plate 15 in the radar device 1. The light emitting unit 30, the light projecting optical system 31, the light receiving unit 32, the light receiving optical system 33, the polarization separation element 34 (the substrate 341, the polarization separation structure 342), and the quarter wavelength plate 35 are provided.

但し、レーダ装置3では、レーダ装置1の場合とは異なり、照射光の偏光方向が偏光分離素子14の格子方向と直交するように配置される。また、投光光学系31及び受光光学系33は、偏光分離素子34を挟んで対向する位置に設けられ、偏光分離素子34の偏光分離構造体342側の面に照射光が投射され、基板341側の面で反射した反射光が受光光学系33を介して受光部32に導かれるように配置されている。   However, unlike the radar apparatus 1, the radar apparatus 3 is arranged so that the polarization direction of the irradiation light is orthogonal to the grating direction of the polarization separation element 14. Further, the light projecting optical system 31 and the light receiving optical system 33 are provided at positions facing each other with the polarization separation element 34 interposed therebetween, and irradiation light is projected onto the surface of the polarization separation element 34 on the side of the polarization separation structure 342, so that the substrate 341 is provided. The light reflected by the side surface is arranged so as to be guided to the light receiving unit 32 via the light receiving optical system 33.

また、偏光分離素子34は、中心軸を介して回動可能に支持され、図示しない駆動装置により、投光光学系31から入射するレーザ光の光軸に対して45°傾斜した角度を中心として設定された所定角度範囲内で角度を変化させることができるように構成されている。   The polarization separation element 34 is rotatably supported through a central axis, and is centered on an angle inclined by 45 ° with respect to the optical axis of the laser light incident from the light projecting optical system 31 by a driving device (not shown). The angle can be changed within a set predetermined angle range.

そして、偏光分離素子34で反射した照射光が照射される範囲を走査範囲として、1/4波長板35は、偏光分離素子34を挟んで走査範囲と対向する位置に配置されている。
更にレーダ装置3は、1/4波長板35を透過したレーザ光を、その入射方向とは逆方向に反射する機能を有した再帰性反射素子36を備えている。なお、再帰性反射素子36は、素子本体となる基板の表面に、例えばコーナーキューブアレイ、ビーズアレイ、及びプリズムアレイのいずれかを形成することにより構成される。
The ¼ wavelength plate 35 is disposed at a position facing the scanning range with the polarization separation element 34 interposed therebetween, with the range in which the irradiation light reflected by the polarization separation element 34 is irradiated as a scanning range.
Further, the radar apparatus 3 includes a retroreflective element 36 having a function of reflecting the laser light transmitted through the quarter wavelength plate 35 in the direction opposite to the incident direction. The retroreflective element 36 is configured by forming, for example, any one of a corner cube array, a bead array, and a prism array on the surface of a substrate serving as an element body.

また、発光部30は、金属製の発光部シールド37に収納されており、その発光部シールド37には、発光部30から照射されたレーザ光を発光部シールド37の外部に取り出すための開口部が設けられ、更に、その開口部を塞ぐように、投光光学系31を形成するレンズが設置されている。   The light emitting unit 30 is housed in a metal light emitting unit shield 37. The light emitting unit shield 37 has an opening for taking out the laser light emitted from the light emitting unit 30 to the outside of the light emitting unit shield 37. Further, a lens that forms the light projecting optical system 31 is installed so as to close the opening.

一方、受光部32及び受光光学系33,1/4波長板35,再帰性反射素子36は、金属製の受光部シールド38に収納されており、その受光部シールド38には、レーザ光を受光部シールド28内の受光光学系23に導くための開口部が設けられ、更に、その開口部を塞ぐように偏光分離素子34が設置されている。但し、受光部シールド38と偏光分離素子34の偏光分離構造体342とは互いに導通するように接続され、共通のグランドに接地されている。つまり、受光部32は、受光部シールド38と偏光分離素子34とが形成する電磁遮蔽空間内に配置されるように構成されている。   On the other hand, the light receiving unit 32, the light receiving optical system 33, the quarter wavelength plate 35, and the retroreflective element 36 are housed in a metal light receiving unit shield 38, and the light receiving unit shield 38 receives laser light. An opening for guiding the light receiving optical system 23 in the part shield 28 is provided, and a polarization separation element 34 is further installed so as to close the opening. However, the light receiving unit shield 38 and the polarization separation structure 342 of the polarization separation element 34 are connected to each other and are grounded to a common ground. In other words, the light receiving unit 32 is configured to be disposed in an electromagnetic shielding space formed by the light receiving unit shield 38 and the polarization separation element 34.

<動作>
次に、このように構成されたレーダ装置3の動作を説明する。
まず、発光部30から照射されたレーザ光(照射光)は、投光光学系31により略平行光に変換され偏光分離素子34に到達する(光L31を参照)。偏光分離素子34に到達した照射光のうち、格子方向に直行した偏光方向を有する成分(TE成分)は、偏光分離素子34で反射することで光路が変化し、走査範囲に向けて照射される(光L32を参照)。
<Operation>
Next, the operation of the radar apparatus 3 configured as described above will be described.
First, the laser light (irradiation light) emitted from the light emitting unit 30 is converted into substantially parallel light by the light projecting optical system 31 and reaches the polarization separation element 34 (see the light L31). Of the irradiation light that has reached the polarization separation element 34, a component (TE component) having a polarization direction orthogonal to the grating direction is reflected by the polarization separation element 34, and its optical path is changed to be irradiated toward the scanning range. (See light L32).

走査角度範囲内に存在する物体Bで反射し、入射方向とは逆方向に戻ってくるレーザ光(反射光)のうち、格子方向と同じ偏光方向を有する成分(TM成分)は、偏光分離素子34を透過して1/4波長板25に到達する(光L34を参照)。1/4波長板35を通過した反射光は、直線偏光から円偏光に変換されて再帰性反射素子36に到達する(光L35を参照)。   Of the laser light (reflected light) reflected by the object B existing within the scanning angle range and returning in the direction opposite to the incident direction, the component having the same polarization direction as the grating direction (TM component) is a polarization separation element. 34 and reaches the quarter-wave plate 25 (see the light L34). The reflected light that has passed through the quarter-wave plate 35 is converted from linearly polarized light to circularly polarized light and reaches the retroreflective element 36 (see the light L35).

再帰性反射素子36に到達した反射光は、再帰性反射素子36で入射方向とは逆方向に反射し、再び1/4波長板25に到達する(光L36を参照)。1/4波長板35を通過した反射光(再帰反射光)は、円偏光から直線偏光に変換されて偏光分離素子34に到達する(光L37を参照)。   The reflected light that has reached the retroreflective element 36 is reflected by the retroreflective element 36 in the direction opposite to the incident direction, and reaches the quarter-wave plate 25 again (see the light L36). The reflected light (retroreflected light) that has passed through the quarter-wave plate 35 is converted from circularly polarized light into linearly polarized light and reaches the polarization separation element 34 (see light L37).

偏光分離素子34に到達した反射光は、1/4波長板35を2度通過したことにより、偏光分離素子34を透過したTM成分からなる反射光とは、偏光方向が90°異なったもの(即ちTE成分)となっているため、偏光分離素子34で反射して受光光学系33に導かれる。この受光光学系33に導かれた反射光は、受光光学系33で収束して受光部32に到達し、受光部32にて受光信号に光電変換される(光L38を参照)。   The reflected light that has reached the polarization separation element 34 has a polarization direction different from that of the TM component that has passed through the polarization separation element 34 by 90 ° because it has passed through the quarter wavelength plate 35 twice ( In other words, the TE component is reflected by the polarization separation element 34 and guided to the light receiving optical system 33. The reflected light guided to the light receiving optical system 33 is converged by the light receiving optical system 33 and reaches the light receiving unit 32, and is photoelectrically converted into a light receiving signal by the light receiving unit 32 (see the light L38).

そして、レーダ装置3では、この受光信号に基づき、図示しない信号処理部にて、発光部30がパルスレーザ光を照射した時刻と、受光部32が反射光を受光した時刻との差を計測し、その計測結果から、レーザ光を反射した物体までの距離が、走査範囲内の方位毎に求められることになる。   In the radar device 3, based on the light reception signal, a signal processing unit (not shown) measures the difference between the time when the light emitting unit 30 emits the pulsed laser light and the time when the light receiving unit 32 receives the reflected light. From the measurement result, the distance to the object reflecting the laser beam is obtained for each azimuth in the scanning range.

なお、反射光のうち、物体Bにて鏡面反射した成分については、偏光の向きが保存されるため、その殆どが偏光分離素子34を透過して受光部22に導かれるが、物体Bにて散乱反射した成分については、約半分が偏光分離素子34を透過して受光部22に導かれることになる。   Of the reflected light, the component that is specularly reflected by the object B is preserved in the direction of polarization, and most of the component is transmitted through the polarization separation element 34 and guided to the light receiving unit 22. About half of the components reflected and reflected are transmitted through the polarization beam splitter 34 and guided to the light receiving unit 22.

また、図4中において、点線で示した部分(但し物体Bを除く)は、偏光分離素子34の角度を異なる角度に変化させることで照射光,反射光の経路が変化する様子を示したものである。   Further, in FIG. 4, a portion indicated by a dotted line (excluding the object B) shows a state in which the paths of the irradiation light and the reflected light are changed by changing the angle of the polarization separation element 34 to a different angle. It is.

<効果>
このように構成されたレーダ装置3によれば、受光部32が受光部シールド38及び偏光分離素子34が形成する電磁遮蔽空間内に配置されているため、レーザ光の照射時に発光部30にて発生した電磁ノイズが、反射光を取り込むために設けられた受光部シールド38の開口部から(即ち偏光分離素子34を介して)侵入することを抑制することができる。
<Effect>
According to the radar device 3 configured as described above, the light receiving unit 32 is disposed in the electromagnetic shielding space formed by the light receiving unit shield 38 and the polarization separation element 34, so that the light emitting unit 30 performs the irradiation with the laser light. The generated electromagnetic noise can be prevented from entering from the opening of the light receiving portion shield 38 provided for taking in the reflected light (that is, via the polarization separation element 34).

つまり、発光部30にて発生し、受光部32に干渉する電磁ノイズの影響を低減することができるため、発光部30と受光部32とを接近配置させて装置を小型化しても、電磁ノイズの影響の少ない受光信号を得ること、ひいては、正常な測距を行うことができる。   That is, since the influence of electromagnetic noise generated in the light emitting unit 30 and interfering with the light receiving unit 32 can be reduced, even if the light emitting unit 30 and the light receiving unit 32 are arranged close to each other and the apparatus is downsized, the electromagnetic noise is reduced. It is possible to obtain a received light signal that is less influenced by the above-mentioned, and thus to perform normal distance measurement.

なお、本実施形態において、偏光分離素子34を回動させるための構成が第2走査手段に相当する。
[他の実施形態]
以上、本発明のいくつかの実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を取ることができる。
In the present embodiment, the configuration for rotating the polarization separation element 34 corresponds to the second scanning unit.
[Other Embodiments]
As mentioned above, although several embodiment of this invention was described, this invention is not limited to the said embodiment, As long as it belongs to the technical scope of this invention, it can take a various form.

例えば、上記実施形態では、レーザ光によって走査角度範囲内を走査するように構成したが、第1及び第2実施形態における走査部16,26を省略したり、第3実施形態における偏光分離素子34を固定して取り付けたりすることで、走査をしないように構成してもよい。   For example, in the above embodiment, the scanning angle range is scanned by the laser beam. However, the scanning units 16 and 26 in the first and second embodiments are omitted, or the polarization separation element 34 in the third embodiment. It may be configured so that scanning is not performed by fixing and fixing the.

1,2,3…レーダ装置 10,20,30…発光部 11,21,31…投光光学系 12,22,32…受光部 13,23,33…受光光学系 14,24,34…光路変更部(偏光分離素子) 5,25,35…1/4波長板 16,26…走査部 17,27,37…発光部シールド 18,28,38…受光部シールド 36…再帰性反射素子   DESCRIPTION OF SYMBOLS 1, 2, 3 ... Radar apparatus 10, 20, 30 ... Light emission part 11, 21, 31 ... Light projection optical system 12, 22, 32 ... Light reception part 13, 23, 33 ... Light reception optical system 14, 24, 34 ... Optical path Change unit (polarized light separating element) 5, 25, 35... 1/4 wavelength plate 16, 26... Scanning unit 17, 27, 37 ... Light emitting unit shield 18, 28, 38 ... Light receiving unit shield 36.

Claims (7)

光を照射する発光部と、
光を受光する受光部と、
予め設定された第1偏光方向の成分の光を透過し、前記第1偏光方向と直交する第2偏光方向の成分の光を反射することにより、前記発光部から照射された照射光を、予め設定された投射方向に導くと共に、前記投射方向から到来する反射光を前記受光部に導く光路変更部と、
を備え、
前記光路変更部は、前記照射光の波長より短い間隔で周期的に配置された金属細線からなる構造体を有した偏光分離素子からなり、
前記発光部及び前記受光部のうち一方が、光を通過させる開口部を有する電磁遮蔽体と該開口部を塞ぎ且つ前記構造体が前記電磁遮蔽体と互いに導通するように設けた前記偏光分離素子とで形成された電磁遮蔽空間内に配置されていることを特徴とするレーダ装置。
A light emitting unit that emits light;
A light receiving portion for receiving light;
By transmitting the light of the first polarization direction component set in advance and reflecting the light of the second polarization direction component orthogonal to the first polarization direction, the irradiation light irradiated from the light emitting unit is An optical path changing unit that guides reflected light coming from the projection direction to the light receiving unit while guiding the set projection direction,
With
The optical path changing unit is a polarization separation element having a structure made of fine metal wires periodically arranged at intervals shorter than the wavelength of the irradiation light,
One of said light emitting portion and the light receiving portion, an electromagnetic shielding member having an opening for passing light, the polarization of opening the busy technique and the structure is arranged so as to electrically connected to each other with the electromagnetic shield A radar apparatus, wherein the radar apparatus is disposed in an electromagnetic shielding space formed by a separation element.
前記電磁遮蔽空間内には前記発光部が配置され、
前記発光部,前記受光部,前記偏光分離素子は、前記偏光分離素子を透過した前記照射光の進行方向が前記投射方向となり、前記偏光分離素子で反射した前記反射光を、前記受光部が受光する位置関係を有することを特徴とする請求項1に記載のレーダ装置。
The light emitting unit is disposed in the electromagnetic shielding space,
In the light emitting unit, the light receiving unit, and the polarization separation element, the traveling direction of the irradiation light transmitted through the polarization separation element is the projection direction, and the light reception unit receives the reflected light reflected by the polarization separation element. The radar apparatus according to claim 1, wherein the radar apparatus has a positional relationship.
前記電磁遮蔽空間内には前記受光部が配置され、
前記発光部,前記受光部,前記偏光分離素子は、前記偏光分離素子で反射した前記照射光の進行方向が前記投射方向となり、前記偏光分離素子を透過した前記反射光を、前記受光部が受光する位置関係を有することを特徴とする請求項1に記載のレーダ装置。
The light receiving unit is disposed in the electromagnetic shielding space,
In the light emitting unit, the light receiving unit, and the polarization separation element, the traveling direction of the irradiation light reflected by the polarization separation element is the projection direction, and the light reception unit receives the reflected light transmitted through the polarization separation element. The radar apparatus according to claim 1, wherein the radar apparatus has a positional relationship.
前記偏光分離素子から前記投射方向に向かう照射光及び前記投射方向から到来し前記偏光分離素子に向かう反射光が通過する経路上に1/4波長板を設けたことを特徴とする請求項2又は請求項3に記載のレーダ装置。   The quarter wavelength plate is provided on the path | route through which the irradiation light which goes to the said projection direction from the said polarization separation element, and the reflected light which comes from the said projection direction and goes to the said polarization separation element pass, The radar apparatus according to claim 3. 前記偏光分離素子によって前記投射方向に導かれた前記照射光の進行方向を変化させることにより、予め設定された走査角度範囲内を走査する第1走査手段を備えることを特徴とする請求項2乃至請求項4のいずれか一項に記載のレーダ装置。   3. A first scanning unit that scans within a preset scanning angle range by changing a traveling direction of the irradiation light guided in the projection direction by the polarization separation element. The radar apparatus according to claim 4. 前記偏光分離素子を透過した反射光を、該反射光の入射方向に向けて反射する反射素子と、
前記偏光分離素子と前記反射素子との間に設けられた1/4波長板と、
を備え、前記受光部は、前記反射素子にて反射され1/4波長板を通過して到来する反射光を再帰反射光として、前記偏光分離素子で反射した前記再帰反射光を受光する位置に設けられていることを特徴とする請求項3に記載のレーダ装置。
A reflection element that reflects the reflected light transmitted through the polarization separation element toward the incident direction of the reflected light; and
A quarter-wave plate provided between the polarization separation element and the reflection element;
The light receiving unit is configured to receive the retroreflected light reflected by the polarization separation element, with the reflected light reflected by the reflective element and passing through the quarter-wave plate as retroreflected light. The radar apparatus according to claim 3, wherein the radar apparatus is provided.
予め設定された所定回転軸を中心に前記偏光分離素子を回動させることで、前記偏光分離素子で反射する前記照射光の進行方向を変化させることにより、予め設定された走査角度範囲内を走査する第2走査手段を備えることを特徴とする請求項6に記載のレーダ装置。   By rotating the polarization separation element about a predetermined rotation axis set in advance, the traveling direction of the irradiation light reflected by the polarization separation element is changed, thereby scanning within a preset scan angle range. The radar apparatus according to claim 6, further comprising a second scanning unit configured to perform the second scanning unit.
JP2011209360A 2011-09-26 2011-09-26 Radar equipment Active JP5664512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011209360A JP5664512B2 (en) 2011-09-26 2011-09-26 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011209360A JP5664512B2 (en) 2011-09-26 2011-09-26 Radar equipment

Publications (2)

Publication Number Publication Date
JP2013068584A JP2013068584A (en) 2013-04-18
JP5664512B2 true JP5664512B2 (en) 2015-02-04

Family

ID=48474429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011209360A Active JP5664512B2 (en) 2011-09-26 2011-09-26 Radar equipment

Country Status (1)

Country Link
JP (1) JP5664512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226783B (en) * 2016-09-14 2019-02-12 苏州光讯环境科技有限公司 Atmospheric particulates optical parameter measurement system based on laser radar
KR102162047B1 (en) * 2017-02-17 2020-10-06 호쿠요덴키 가부시키가이샤 Object capture device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE100214T1 (en) * 1987-03-20 1994-01-15 Digital Optronics Corp IMAGE SYSTEM IN THREE DIMENSIONS WITH COHAERENT OPTICAL DETECTION.
JPH02226111A (en) * 1989-02-28 1990-09-07 Copal Electron Co Ltd Optical deflecting device
JPH0375544A (en) * 1989-08-18 1991-03-29 Nippon Telegr & Teleph Corp <Ntt> Apparatus for inspecting inside of laser tube
JPH05312646A (en) * 1992-05-15 1993-11-22 Mitsubishi Electric Corp Wavelength measuring apparatus and laser unit mounted thereon
JPH0659038A (en) * 1992-08-07 1994-03-04 Nissan Motor Co Ltd Laser radar for vehicle
JPH07333544A (en) * 1994-06-07 1995-12-22 Dainippon Screen Mfg Co Ltd Optical deflector
JPH09196620A (en) * 1996-01-12 1997-07-31 Yaskawa Electric Corp Reflection type optical displacement detector
JP3805316B2 (en) * 2003-03-14 2006-08-02 富士通株式会社 Optical scanning touch panel
JP2005114857A (en) * 2003-10-03 2005-04-28 Enplas Corp Optical element and optical pickup device using the same
JP5278819B2 (en) * 2009-05-11 2013-09-04 株式会社リコー Stereo camera device and vehicle exterior monitoring device using the same
JP5494569B2 (en) * 2011-05-24 2014-05-14 株式会社デンソー Radar equipment

Also Published As

Publication number Publication date
JP2013068584A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
JP6111617B2 (en) Laser radar equipment
US20090185158A1 (en) Device for optical distance measurement
US20190041498A1 (en) LIDAR Receiver Using a Waveguide and an Aperture
JP2014052366A (en) Optical measurement instrument and vehicle
KR20170071394A (en) Detecting device for lidar light source without rotation and scanning
US11867808B2 (en) Waveguide diffusers for LIDARs
JP2017129573A (en) Photoelectronic sensor and object detection method
TWI664398B (en) Optical rotary encoder
US20200309514A1 (en) Distance measuring module
JP6460445B2 (en) Laser range finder
JP5664512B2 (en) Radar equipment
US7826039B2 (en) Target acquisition device
KR20090108310A (en) Bi-directional optical module using optical fiber and laser range finder using the same
EP3364229B1 (en) Optical-scanning-type object detection device
US11333880B2 (en) Coaxial macro scanner system
JP7462747B2 (en) Multilayer Optical Devices and Systems
JPWO2018147454A1 (en) Scanning optical system and laser radar device
JP6388383B2 (en) Laser range finder
CN115480254A (en) Detection method and device
JP6015367B2 (en) Radar equipment
KR100976299B1 (en) Bi-directional optical module and laser range finder using the same
JP7475145B2 (en) Electromagnetic wave detector and scanner
US10823955B2 (en) Grating-based spatial mode filter for laser scanning
WO2020066718A1 (en) Electromagnetic wave detection device and information acquisition system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R151 Written notification of patent or utility model registration

Ref document number: 5664512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250