JP5664379B2 - Anode electrode for visible light decomposition of water and water visible light decomposition apparatus - Google Patents

Anode electrode for visible light decomposition of water and water visible light decomposition apparatus Download PDF

Info

Publication number
JP5664379B2
JP5664379B2 JP2011061136A JP2011061136A JP5664379B2 JP 5664379 B2 JP5664379 B2 JP 5664379B2 JP 2011061136 A JP2011061136 A JP 2011061136A JP 2011061136 A JP2011061136 A JP 2011061136A JP 5664379 B2 JP5664379 B2 JP 5664379B2
Authority
JP
Japan
Prior art keywords
visible light
water
electrode
titanium oxide
light decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011061136A
Other languages
Japanese (ja)
Other versions
JP2012197470A (en
Inventor
政行 八木
政行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2011061136A priority Critical patent/JP5664379B2/en
Publication of JP2012197470A publication Critical patent/JP2012197470A/en
Application granted granted Critical
Publication of JP5664379B2 publication Critical patent/JP5664379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明は、エネルギー分野や環境分野において水を酸素と水素に分解するために用いられる水の可視光分解用アノード電極に関する。   The present invention relates to an anode electrode for visible light decomposition of water used to decompose water into oxygen and hydrogen in the energy field and the environment field.

可視光で水を酸素と水素に分解することのできる電極は、これまでほとんど知られていなかったが、最近、TaON電極が水の可視光分解の光アノードとして動作することが報告された(非特許文献1)。しかし、このTaON電極では、酸素発生に基づく光アノード電流を得るために、−0.0V vs Ag/AgClのバイアスが必要であり、利用できる可視光も540nm以下に限定されていた。   Until now, few electrodes have been known that can decompose water into oxygen and hydrogen with visible light, but recently it has been reported that a TaON electrode acts as a photoanode for visible light decomposition of water (non- Patent Document 1). However, this TaON electrode requires a bias of −0.0 V vs Ag / AgCl in order to obtain a photoanode current based on oxygen generation, and the available visible light is limited to 540 nm or less.

J. Am. Chem. Soc., 2010, 132, 11828-11829J. Am. Chem. Soc., 2010, 132, 11828-11829

そこで、本発明は、低いバイアスで光アノード電流を与え、長波長域の可視光を利用することのできる、新規の水の可視光分解用アノード電極を提供することを目的とする。   Accordingly, an object of the present invention is to provide a novel anode electrode for visible light decomposition of water which can provide a photoanode current with a low bias and can use visible light in a long wavelength region.

本発明の水の可視光分解用アノード電極は、酸化チタン電極に硫化アンチモンを析出させて得られたことを特徴とする。   The anode electrode for visible light decomposition of water according to the present invention is obtained by depositing antimony sulfide on a titanium oxide electrode.

また、前記酸化チタン電極は、ナノポーラス酸化チタン電極であることを特徴とする。   The titanium oxide electrode is a nanoporous titanium oxide electrode.

本発明の水の可視光分解装置は、本発明の水の可視光分解用アノード電極を備えたことを特徴とする。   The visible light decomposition apparatus for water according to the present invention includes the anode electrode for visible light decomposition according to the present invention.

本発明の水の可視光分解用アノード電極及び水の可視光分解装置によれば、−0.5V vs Ag/AgClのバイアスで光アノード電流を与え、650nm以下の可視光を利用できる。   According to the anode electrode for visible light decomposition of water and the visible light decomposition apparatus for water according to the present invention, a photoanode current is applied with a bias of −0.5 V vs Ag / AgCl, and visible light of 650 nm or less can be used.

実施例1における水の可視光分解用アノード電極のサイクリックボルタモグラムを示す。The cyclic voltammogram of the anode electrode for visible light decomposition of water in Example 1 is shown. 実施例1における水の可視光分解用アノード電極の入射光電流変換効率(IPCE)の作用スペクトルを示す。The action spectrum of the incident photocurrent conversion efficiency (IPCE) of the anode electrode for visible light decomposition of water in Example 1 is shown.

本発明の水の可視光分解用アノード電極は、酸化チタン電極に硫化アンチモンを析出させて得られたものである。また、本発明の水の可視光分解装置は、上記の水の可視光分解用アノード電極を備えたものである。なお、以下の説明において、本発明の水の可視光分解用アノード電極を硫化アンチモン/酸化チタン複合電極という。   The anode electrode for visible light decomposition of the present invention is obtained by depositing antimony sulfide on a titanium oxide electrode. Moreover, the visible-light-decomposing apparatus of water of this invention is equipped with said anode electrode for visible-light decomposition of water. In the following description, the anode electrode for visible light decomposition of water according to the present invention is referred to as an antimony sulfide / titanium oxide composite electrode.

ここで、酸化チタン電極としては、例えば、ITO基板上に酸化チタン層を形成して作成した電極を用いることができる。また、酸化チタン電極としては、比表面積が大きいことから、微細な多孔質構造を有するナノポーラス酸化チタン電極が好適に用いられる。なお、ナノポーラス酸化チタン電極は、粒径が30〜40nmで、酸化チタン層の厚さが7〜10μmのものが最も好適に用いられる。   Here, as the titanium oxide electrode, for example, an electrode formed by forming a titanium oxide layer on an ITO substrate can be used. Moreover, as a titanium oxide electrode, since the specific surface area is large, the nanoporous titanium oxide electrode which has a fine porous structure is used suitably. A nanoporous titanium oxide electrode having a particle size of 30 to 40 nm and a titanium oxide layer thickness of 7 to 10 μm is most preferably used.

また、酸化チタン電極に硫化アンチモンを析出させる際に、酸化チタン電極を浸漬する硫化アンチモン溶液は、1〜1.3M SbClアセトン溶液と0.8〜1.2M Na水溶液を1:8〜12の容積比で混合した後、水を加えて容積比で3〜4倍に薄めたものが好適に用いられる。 In addition, when depositing antimony sulfide on the titanium oxide electrode, the antimony sulfide solution in which the titanium oxide electrode is immersed is a 1 to 1.3 M SbCl 3 acetone solution and a 0.8 to 1.2 M Na 2 S 2 O 3 aqueous solution. After mixing at a volume ratio of 1: 8 to 12, water added to dilute 3 to 4 times by volume ratio is preferably used.

また、酸化チタン電極に硫化アンチモンを析出させる条件としては、0〜10℃で12〜36hが好ましい。   Moreover, as conditions for depositing antimony sulfide on the titanium oxide electrode, 12 to 36 h is preferable at 0 to 10 ° C.

本発明による硫化アンチモン/酸化チタン複合電極を作用極として用い、白金線を対極として用いた電解槽を構成し、硫化アンチモン/酸化チタン複合電極に可視光照射することにより、水を酸素と水素に分解することができる。   An electrolytic cell using an antimony sulfide / titanium oxide composite electrode according to the present invention as a working electrode and a platinum wire as a counter electrode is constructed, and the antimony sulfide / titanium oxide composite electrode is irradiated with visible light, whereby water is converted into oxygen and hydrogen. Can be disassembled.

なお、硫化アンチモン/酸化チタン複合電極は色素増感太陽電池の負極として報告されている(Nano Lett. 2010, 10, 2609-2612)。しかし、硫化アンチモン/酸化チタン複合電極を水の可視光分解系の光アノードとして用いた例はない。   An antimony sulfide / titanium oxide composite electrode has been reported as a negative electrode of a dye-sensitized solar cell (Nano Lett. 2010, 10, 2609-2612). However, there is no example in which the antimony sulfide / titanium oxide composite electrode is used as a photoanode for water visible light decomposition system.

以下、より具体的に、本発明の水の可視光分解用アノード電極について説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の思想を逸脱しない範囲で種々の変形実施が可能である。   Hereinafter, the anode electrode for visible light decomposition of water according to the present invention will be described more specifically. Note that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.

以下に示すように、硫化アンチモン/酸化チタン複合電極を作製した。1.15M SbClアセトン溶液(3.0ml)と1M Na水溶液(30ml)を混合し、水を加えて100mlとした。この混合溶液にナノポーラス酸化チタン電極を4℃で24h浸漬して、酸化チタン電極上に硫化アンチモンを析出させた。作製した電極を水でよく洗い、空気中で乾燥した。 As shown below, an antimony sulfide / titanium oxide composite electrode was prepared. 1.15M SbCl 3 acetone solution (3.0 ml) and 1M Na 2 S 2 O 3 aqueous solution (30 ml) were mixed, and water was added to make 100 ml. A nanoporous titanium oxide electrode was immersed in this mixed solution at 4 ° C. for 24 hours to deposit antimony sulfide on the titanium oxide electrode. The produced electrode was washed thoroughly with water and dried in air.

硫化アンチモン/酸化チタン複合電極のサイクリックボルタモグラムを図1に示す。   A cyclic voltammogram of the antimony sulfide / titanium oxide composite electrode is shown in FIG.

光源は150Wハロゲンランプに420nm以下の光をカットするフィルターを装着したものを用い、光強度は100mW・cm−2に設定し、pH=7の0.1Mのリン酸バッファー溶液中で試験を行った。5mV・s−1で電位を掃引しながら測定した。 The light source is a 150 W halogen lamp equipped with a filter that cuts light of 420 nm or less, the light intensity is set to 100 mW · cm −2 , and the test is performed in a 0.1 M phosphate buffer solution at pH = 7. It was. The measurement was performed while sweeping the potential at 5 mV · s −1 .

その結果、暗時では、−0.3V vs Ag/AgCl以上でアノード電流は見られなかったが(点線CV)、420nm以上の可視光を照射したとき、−0.5V vs Ag/AgCl付近で水の酸化に基づくアノード電流が立ち上がり、200μA・cm−2の光電流が観察された。また、1時間の光電解を行った後、電解セル気相中で発生した水素と酸素を検出した。このように、硫化アンチモン/酸化チタン複合電極を光アノードとして用いて水の可視光分解が達成された。 As a result, in the dark, anode current was not seen at −0.3 V vs Ag / AgCl or higher (dotted line CV), but when irradiated with visible light of 420 nm or higher, around −0.5 V vs Ag / AgCl. The anode current based on the oxidation of water rose and a photocurrent of 200 μA · cm −2 was observed. Further, after photoelectrolysis for 1 hour, hydrogen and oxygen generated in the gas phase of the electrolytic cell were detected. Thus, visible light decomposition of water was achieved using the antimony sulfide / titanium oxide composite electrode as a photoanode.

図2に硫化アンチモン/酸化チタン複合電極(Sb/TiO)を光アノードとしたときの入射光電流変換効率(IPCE)の作用スペクトルを示す。 FIG. 2 shows an action spectrum of incident photocurrent conversion efficiency (IPCE) when an antimony sulfide / titanium oxide composite electrode (Sb 2 S 3 / TiO 2 ) is used as a photoanode.

このとき、500Wキセノンランプを光源とし、モノクロメーターで取り出した各波長の単色光を硫化アンチモン/酸化チタン複合電極に照射した。また、印加電圧は−0.2V vs Ag/AgClとし、pH=7の0.1M リン酸バッファー溶液中で試験を行った。また、比較のために、硫化アンチモンを複合させていない酸化チタン電極(TiO)を用いて同様に試験を行った。 At this time, using a 500 W xenon lamp as a light source, monochromatic light of each wavelength extracted by a monochromator was irradiated to the antimony sulfide / titanium oxide composite electrode. The applied voltage was −0.2 V vs. Ag / AgCl, and the test was performed in a 0.1 M phosphate buffer solution with pH = 7. For comparison, a similar test was performed using a titanium oxide electrode (TiO 2 ) not combined with antimony sulfide.

硫化アンチモンを複合させていない酸化チタン電極(○)では400nm以上の可視光で光電流はほとんど見られなかったが、硫化アンチモン/酸化チタン複合電極(●)を光アノードとしたときでは、はっきりと光電流の発生が観察された。このように、硫化アンチモン/酸化チタン複合電極によれば、650nm以下の可視光で光電流が得られることが確認された。   No photocurrent was seen with visible light of 400 nm or more with a titanium oxide electrode (○) that was not combined with antimony sulfide. Generation of photocurrent was observed. Thus, according to the antimony sulfide / titanium oxide composite electrode, it was confirmed that a photocurrent was obtained with visible light of 650 nm or less.

Claims (3)

酸化チタン電極に硫化アンチモンを析出させて得られたことを特徴とする水の可視光分解用アノード電極。 An anode electrode for visible light decomposition of water obtained by depositing antimony sulfide on a titanium oxide electrode. 前記酸化チタン電極は、ナノポーラス酸化チタン電極であることを特徴とする請求項1記載の水の可視光分解用アノード電極。 The anode electrode for visible light decomposition of water according to claim 1, wherein the titanium oxide electrode is a nanoporous titanium oxide electrode. 請求項1又は2記載の水の可視光分解用アノード電極を備えたことを特徴とする水の可視光分解装置。 A visible light decomposition apparatus for water comprising the anode electrode for visible light decomposition according to claim 1 or 2.
JP2011061136A 2011-03-18 2011-03-18 Anode electrode for visible light decomposition of water and water visible light decomposition apparatus Expired - Fee Related JP5664379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061136A JP5664379B2 (en) 2011-03-18 2011-03-18 Anode electrode for visible light decomposition of water and water visible light decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061136A JP5664379B2 (en) 2011-03-18 2011-03-18 Anode electrode for visible light decomposition of water and water visible light decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2012197470A JP2012197470A (en) 2012-10-18
JP5664379B2 true JP5664379B2 (en) 2015-02-04

Family

ID=47179985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061136A Expired - Fee Related JP5664379B2 (en) 2011-03-18 2011-03-18 Anode electrode for visible light decomposition of water and water visible light decomposition apparatus

Country Status (1)

Country Link
JP (1) JP5664379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6867685B2 (en) * 2017-06-22 2021-05-12 国立研究開発法人産業技術総合研究所 Hexavalent chromium manufacturing method, manufacturing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899385B1 (en) * 2006-03-31 2008-06-27 Imra Europ Sas Soc Par Actions SOLID PHOTOVOLTAIC DEVICE COMPRISING ANTIMONY SULFIDE ABSORBER LAYER
CN102575361B (en) * 2009-11-10 2014-08-20 松下电器产业株式会社 Photoelectrochemical cell and energy system using same

Also Published As

Publication number Publication date
JP2012197470A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
Bai et al. A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays
Morales-Guio et al. Hydrogen evolution from a copper (I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
Jia et al. 1D alignment of ZnO@ ZIF-8/67 nanorod arrays for visible-light-driven photoelectrochemical water splitting
Guo et al. CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction
Wang et al. Architecting smart “umbrella” Bi 2 S 3/rGO-modified TiO 2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light
Zeng et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting
Dos Santos et al. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting
Allam et al. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti− Nb− Zr− O mixed oxide nanotube arrays
Song et al. Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates
Chi et al. A CdS-modified TiO2 nanocrystalline photoanode for efficient hydrogen generation by visible light
Tsui et al. Modification of TiO2 nanotubes by Cu2O for photoelectrochemical, photocatalytic, and photovoltaic devices
Sang et al. Effect of quantum dot deposition on the interfacial flatband potential, depletion layer in TiO2 nanotube electrodes, and resulting H2 generation rates
Devadoss et al. Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu 2 O–TiO 2 electrodes
Qiu et al. Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells
Xu et al. Interface band engineering charge transfer for 3D MoS2 photoanode to boost photoelectrochemical water splitting
Li et al. Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for photoelectrocatalytic overall water splitting
Cheng et al. Carbon doped TiO2 nanowire arrays with improved photoelectrochemical water splitting performance
Yin et al. Fabrication of plasmonic Au/TiO2 nanotube arrays with enhanced photoelectrocatalytic activities
Krengvirat et al. Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation
Shi et al. CuO-functionalized silicon photoanodes for photoelectrochemical water splitting devices
Siavash Moakhar et al. AuPd bimetallic nanoparticle decorated TiO 2 rutile nanorod arrays for enhanced photoelectrochemical water splitting
González-Pedro et al. Panchromatic solar-to-H2 conversion by a hybrid quantum dots–dye dual absorber tandem device
JP2016050361A (en) Process for oxidizing water, cell for oxidizing water, water oxidation catalyst, and electrode for electrochemical water oxidation
Jeong et al. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co–Pi
Iwamoto et al. Electrochemical self-assembly of nanostructured CuSCN/rhodamine B hybrid thin film and its dye-sensitized photocathodic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5664379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees