JP5663466B2 - Lithium ion conductive material - Google Patents
Lithium ion conductive material Download PDFInfo
- Publication number
- JP5663466B2 JP5663466B2 JP2011283352A JP2011283352A JP5663466B2 JP 5663466 B2 JP5663466 B2 JP 5663466B2 JP 2011283352 A JP2011283352 A JP 2011283352A JP 2011283352 A JP2011283352 A JP 2011283352A JP 5663466 B2 JP5663466 B2 JP 5663466B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- conductive material
- ion conductive
- potential
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Description
本発明は、リチウムイオン伝導性材料に関する。 The present invention relates to a lithium ion conductive material.
従来、二次電池の電解質として、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート等の有機溶媒に、LiPF6、LiBF6等の支持塩を溶解させた非水系電解液が用いられている。しかし、前記電解液を用いる二次電池では、容器が破損した場合等に該電解液が外部に漏洩する虞がある。 Conventionally, as an electrolyte for a secondary battery, a nonaqueous electrolytic solution in which a supporting salt such as LiPF 6 or LiBF 6 is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, diethyl carbonate, or dimethyl carbonate has been used. However, in the secondary battery using the electrolytic solution, there is a possibility that the electrolytic solution leaks to the outside when the container is damaged.
また、前記電解液と共にリチウムイオンを用いる二次電池では、リチウム金属、リチウム合金、グラファイト等からなる負極にリチウムデンドライド(樹枝状晶)が析出、成長するという問題がある。前記リチウムデンドライドが正極にまで到達すると、前記二次電池内部で短絡を引き起こすことがある。 In addition, the secondary battery using lithium ions together with the electrolytic solution has a problem that lithium dendride (dendritic crystal) is deposited and grows on the negative electrode made of lithium metal, lithium alloy, graphite or the like. When the lithium dendride reaches the positive electrode, it may cause a short circuit inside the secondary battery.
そこで、前記二次電池の電解質として、固体電解質等のリチウムイオン伝導性材料を用いることが検討されている。前記リチウムイオン伝導性材料として、例えば、化学式Li7La3Zr2O12で表され、ガーネット型構造を備える複合金属酸化物が知られており、該複合金属酸化物は、優れたリチウムイオン伝導性と優れた電気化学的安定性とを備えているとされている(例えば非特許文献1参照)。 Therefore, the use of a lithium ion conductive material such as a solid electrolyte as the electrolyte of the secondary battery has been studied. As the lithium ion conductive material, for example, a composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 and having a garnet structure is known, and the composite metal oxide has excellent lithium ion conductivity. And excellent electrochemical stability (for example, see Non-Patent Document 1).
しかしながら、前記化学式Li7La3Zr2O12で表され、ガーネット型構造を備える複合金属酸化物を前記二次電池の固体電解質として用いるためには、さらにリチウムイオン伝導性と電気化学的安定性とを向上させることが望まれる。 However, in order to use a composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 and having a garnet structure as a solid electrolyte of the secondary battery, lithium ion conductivity and electrochemical stability are further increased. It is desirable to improve.
そこで、本発明は、かかる事情に鑑み、前記複合金属酸化物と同等のリチウムイオン伝導性を備えると共に、さらに優れた電気化学的安定性を備えるリチウムイオン伝導性材料を提供することを目的とする。 Therefore, in view of such circumstances, an object of the present invention is to provide a lithium ion conductive material having lithium ion conductivity equivalent to that of the composite metal oxide and further having excellent electrochemical stability. .
かかる目的を達成するために、本発明のリチウムイオン伝導性材料は、化学式Li7La3−xAxZr2O12(式中、AはY、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属であり、xは0.1≦x≦0.2の範囲である)で表されガーネット型構造を備える複合金属酸化物からなることを特徴とする。 In order to achieve this object, the lithium ion conductive material of the present invention has the chemical formula Li 7 La 3-x A x Zr 2 O 12 (wherein A is selected from the group consisting of Y, Nd, Sm, Gd). And x is in the range of 0.1 ≦ x ≦ 0.2 ), and is characterized by comprising a composite metal oxide having a garnet-type structure.
前記化学式Li7La3Zr2O12で表されガーネット型構造を備える複合金属酸化物のリチウムイオン伝導性を向上させるために、構成元素の一部を置換したり、他の元素を添加したりすることが考えられる。ところが、前記複合金属酸化物は、構成元素の一部を置換したり、他の元素を添加したりすると、その電気化学的安定性が損なわれることがある。この傾向は、Nb等の価数変化を起こしやすい元素や、Al等のようにLiの一部を置換したときにLiサイトに欠陥を作りやすい元素を用いて前記構成元素の一部を置換したときに顕著になる。 In order to improve the lithium ion conductivity of the composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 and having a garnet-type structure, a part of the constituent elements may be substituted or other elements may be added. It is possible to do. However, the electrochemical stability of the composite metal oxide may be impaired if a part of the constituent elements is replaced or other elements are added. This tendency was caused by replacing some of the constituent elements with elements that easily cause valence changes such as Nb, or elements that easily cause defects at the Li site when a part of Li was replaced, such as Al. Sometimes it becomes noticeable.
また、前記複合金属酸化物を構成するLaの一部を、Mg、Ca、Sr、Ba等の2価の金属Mで置換すると、置換後の複合金属酸化物が電気的中性を保つために安定な組成は、化学式Li7+xLa3−xMxZr2O12で表されるものとなる。前記組成は、化学式Li7La3Zr2O12で表される複合金属酸化物の結晶格子中で、Liが安定して存在できるLiサイトの数よりもLiの数が多くなり結晶構造の規則性が崩れるので、別の結晶構造が生成しやすくなって安定性が損なわれる傾向がある。 In addition, when a part of La constituting the composite metal oxide is replaced with a divalent metal M such as Mg, Ca, Sr, Ba, etc., the composite metal oxide after replacement is kept electrically neutral. The stable composition is represented by the chemical formula Li 7 + x La 3-x M x Zr 2 O 12 . In the composition, the number of Li in the crystal lattice of the composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 is larger than the number of Li sites where Li can stably exist, and the crystal structure rule As a result, the stability tends to be impaired because another crystal structure is easily generated.
そこで、本発明は、前記複合金属酸化物を構成するLaの一部を、Laと同じ3価の金属であり、Laのイオン半径値に近いイオン半径を備えるY、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属で置換する。このようにすることにより、前記複合金属酸化物の結晶構造や格子定数の変化を抑制することができ、そのリチウムイオン伝導性を損なうことなく、より優れた電気化学的安定性を得ることができる。 Therefore, in the present invention, a part of La constituting the composite metal oxide is a trivalent metal similar to La, and includes Y, Nd, Sm, and Gd having an ionic radius close to the ionic radius value of La. Substitution with any one metal selected from the group. By doing so, changes in the crystal structure and lattice constant of the composite metal oxide can be suppressed, and better electrochemical stability can be obtained without impairing lithium ion conductivity. .
本発明のリチウムイオン伝導性材料において、前記複合金属酸化物は、Li化合物とLa化合物とZr化合物と、Y、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属の化合物とを混合した混合原料を焼成してなる。このとき、前記複合金属酸化物は、前記混合原料に、Al化合物とSi化合物、又はAl化合物とGe化合物からなる焼結助剤を添加して焼成してなることが好ましい。前記混合原料に前記焼結助剤を添加して焼成することにより焼結が促進されるので、得られる前記複合金属酸化物を緻密化することができる。 In the lithium ion conductive material of the present invention, the composite metal oxide includes a Li compound, a La compound, a Zr compound, and a compound of any one metal selected from the group consisting of Y, Nd, Sm, and Gd. The mixed raw material in which is mixed is fired. At this time, the composite metal oxide is preferably formed by adding a sintering aid composed of an Al compound and an Si compound or an Al compound and a Ge compound to the mixed raw material. Since the sintering is promoted by adding the sintering aid to the mixed raw material and firing, the resulting composite metal oxide can be densified.
また、本発明のリチウムイオン伝導性材料において、Aは、Nd、Sm、Gdのいずれか1種の金属であってもよいが、Yであることが好ましい。本発明のリチウムイオン伝導性材料において、AがYであるときには、AがNd、Sm、Gdのいずれか1種の金属である場合に比較して電位窓を広くすることができ、さらに優れた電気化学的安定性を得ることができる。 In the lithium ion conductive material of the present invention, A may be any one of Nd, Sm, and Gd, but Y is preferable. In the lithium ion conductive material of the present invention, when A is Y, the potential window can be widened compared with the case where A is any one metal of Nd, Sm, and Gd. Electrochemical stability can be obtained.
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
本実施形態のリチウムイオン伝導性材料は、化学式Li7La3−xAxZr2O12(式中、AはY、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属であり、xは0.1≦x≦0.2の範囲である)で表されガーネット型構造を備える複合金属酸化物からなる。 The lithium ion conductive material of the present embodiment has a chemical formula Li 7 La 3-x A x Zr 2 O 12 (wherein A is any one metal selected from the group consisting of Y, Nd, Sm, and Gd) And x is in a range of 0.1 ≦ x ≦ 0.2 ) and is made of a composite metal oxide having a garnet structure.
本実施形態のリチウムイオン伝導性材料は、化学式Li7La3Zr2O12で表される複合金属酸化物において、Laの一部を、Laと同じ3価の金属であり、Laのイオン半径値に近いイオン半径を備えるY、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属、好ましくはYで置換したものである。本実施形態のリチウムイオン伝導性材料は、このようにすることにより、化学式Li7La3Zr2O12で表される前記複合金属酸化物の結晶構造や格子定数の変化を抑制することができ、そのリチウムイオン伝導性を損なうことなく、より優れた電気化学的安定性を得ることができる。 The lithium ion conductive material of this embodiment is a composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12 , wherein a part of La is a trivalent metal the same as La, and the ion radius of La It is substituted with any one metal selected from the group consisting of Y, Nd, Sm, Gd having an ionic radius close to the value, preferably Y. In this way, the lithium ion conductive material of the present embodiment can suppress changes in the crystal structure and lattice constant of the composite metal oxide represented by the chemical formula Li 7 La 3 Zr 2 O 12. More excellent electrochemical stability can be obtained without impairing the lithium ion conductivity.
本実施形態のリチウムイオン伝導性材料は、Li化合物と、La化合物と、Zr化合物と、Y、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属の化合物とを混合した混合原料を焼成することにより得ることができる。また、このとき、前記混合原料に、Al化合物とSi化合物、又はAl化合物とGe化合物からなる焼結助剤を添加して焼成することにより、焼結を促進し、緻密化されたリチウムイオン伝導性材料を得ることができる。 The lithium ion conductive material of the present embodiment is a mixture in which a Li compound, a La compound, a Zr compound, and a compound of any one metal selected from the group consisting of Y, Nd, Sm, and Gd are mixed. It can be obtained by firing the raw material. Also, at this time, sintering is promoted by adding a sintering aid composed of an Al compound and Si compound or an Al compound and Ge compound to the mixed raw material, thereby promoting the densified lithium ion conduction. Can be obtained.
前記Li化合物としては、例えば、LiOH又はその水和物、Li2CO3、LiNO3、CH3COOLi等を挙げることができる。前記La化合物としては、La2O3、La(OH)3、La2(CO3)3、La(NO3)3、(CH3COO)3La等を挙げることができる。前記Zr化合物としては、Zr2O2、ZrO(NO3)2、ZrO(CH3COO)2、Zr(OH)2CO3、ZrO2等を挙げることができる。 As the Li compound, for example, a LiOH or a hydrate thereof, Li 2 CO 3, LiNO 3 , CH 3 COOLi like. Examples of the La compound include La 2 O 3 , La (OH) 3 , La 2 (CO 3 ) 3 , La (NO 3 ) 3 , (CH 3 COO) 3 La, and the like. Examples of the Zr compound include Zr 2 O 2 , ZrO (NO 3 ) 2 , ZrO (CH 3 COO) 2 , Zr (OH) 2 CO 3 , ZrO 2 and the like.
また、Y化合物としては、Y2O3、Y2(CO3)3、Y(NO3)3、(CH3COO)3Y等を挙げることができる。Nd化合物としては、Nd2O3、Nd2(CO3)3、Nd(NO3)3、(CH3COO)3Nd等を挙げることができる。Sm化合物としては、Sm2O3、Sm2(CO3)3、Sm(NO3)3、(CH3COO)3Sm等を挙げることができる。Gd化合物としては、Gd2O3、Gd2(CO3)3、Gd(NO3)3、(CH3COO)3Gd等を挙げることができる。 Examples of the Y compound include Y 2 O 3 , Y 2 (CO 3 ) 3 , Y (NO 3 ) 3 , (CH 3 COO) 3 Y, and the like. Examples of the Nd compound include Nd 2 O 3 , Nd 2 (CO 3 ) 3 , Nd (NO 3 ) 3 , (CH 3 COO) 3 Nd, and the like. Examples of the Sm compound include Sm 2 O 3 , Sm 2 (CO 3 ) 3 , Sm (NO 3 ) 3 , (CH 3 COO) 3 Sm, and the like. Examples of the Gd compound include Gd 2 O 3 , Gd 2 (CO 3 ) 3 , Gd (NO 3 ) 3 , (CH 3 COO) 3 Gd, and the like.
また、前記Al化合物としては、Al2O3、Al(OH)3、Al(NO3)3等を挙げることができる。前記Si化合物としては、SiO2、テトラエトキシシラン、オルトケイ酸等を挙げることができる。前記Ge化合物としては、GeO2、ゲルマニウムエトキシド、GeCl4等を挙げることができる。 Examples of the Al compound include Al 2 O 3 , Al (OH) 3 , Al (NO 3 ) 3 and the like. Examples of the Si compound include SiO 2 , tetraethoxysilane, and orthosilicic acid. Examples of the Ge compound include GeO 2 , germanium ethoxide, GeCl 4 and the like.
前記焼成は、まず、前記混合原料をボールミル、ミキサー等の粉砕、混合機器により、粉砕、混合した後、850〜950℃の範囲の温度に5〜7時間の範囲の時間保持して一次焼成する。次に、前記一次焼成により得られた焼成体を再度ボールミル、ミキサー等の粉砕、混合機器により、粉砕、混合した後、1000〜1100℃の範囲の温度に5〜7時間の時間保持して二次焼成する。 In the firing, first, the mixed raw material is ground and mixed by a pulverizing and mixing device such as a ball mill, a mixer, etc., and then subjected to primary firing at a temperature in the range of 850 to 950 ° C. for 5 to 7 hours. . Next, the fired body obtained by the primary firing is pulverized and mixed again with a ball mill, a mixer or the like using a mixing device, and then held at a temperature in the range of 1000 to 1100 ° C. for 5 to 7 hours. Next firing.
この結果、化学式Li7La3−xAxZr2O12(式中、AはY、Nd、Sm、Gdからなる群から選択されるいずれか1種の金属であり、xは0<x<3の範囲である)で表されガーネット型構造を備える複合金属酸化物を得ることができる。尚、前記焼成の際に前記焼結助剤を用いるときには、前記一次焼成の前に前記混合原料に該焼結助剤を添加し、該混合原料と共に粉砕、混合する。 As a result, the chemical formula Li 7 La 3-x A x Zr 2 O 12 (wherein A is any one metal selected from the group consisting of Y, Nd, Sm, Gd, and x is 0 <x A composite metal oxide having a garnet-type structure can be obtained. When the sintering aid is used in the firing, the sintering aid is added to the mixed raw material before the primary firing, and pulverized and mixed with the mixed raw material.
前記焼成により得られた前記複合金属酸化物は、前記リチウムイオン伝導性材料として用いるために、1〜50μmの範囲の粒径を備えるようにされていることが好ましい。50μmより大きな粒径の粒子が多く含まれる場合には、前記焼成により得られた前記複合金属酸化物を、例えば、ボールミル、ミキサー等の粉砕、混合機器により粉砕して、1〜50μmの範囲の粒径を備えるようにする。 In order to use the composite metal oxide obtained by the firing as the lithium ion conductive material, it is preferable to have a particle size in the range of 1 to 50 μm. When many particles having a particle diameter larger than 50 μm are contained, the composite metal oxide obtained by the firing is pulverized by, for example, a ball mill, a mixer or the like, and mixed by a mixing device, and the range of 1 to 50 μm. Provide particle size.
前記リチウムイオン伝導性材料は、さらに前記複合金属酸化物からなる焼結体としてもよい。前記焼結体は、前記焼成により得られた前記複合金属酸化物の粉末をダイに収容して仮成形した後、1000〜1200℃の範囲の温度で焼結処理することにより得ることができる。前記焼結処理は、大気下、真空下、アルゴン雰囲気下等で行うことができ、処理の間に加圧することにより、緻密化された焼結体を得ることができる。 The lithium ion conductive material may be a sintered body made of the composite metal oxide. The sintered body can be obtained by accommodating the powder of the composite metal oxide obtained by the firing in a die and temporarily forming it, followed by sintering at a temperature in the range of 1000 to 1200 ° C. The sintering treatment can be performed in the air, in a vacuum, in an argon atmosphere, or the like, and a dense sintered body can be obtained by applying pressure during the treatment.
前記リチウムイオン伝導性材料は、前記焼結体とすることにより粒界抵抗を低減して、さらにリチウムイオン伝導性を向上させることができる。 By using the lithium ion conductive material as the sintered body, it is possible to reduce the grain boundary resistance and further improve the lithium ion conductivity.
本実施形態のリチウムイオン伝導性材料の電気化学的安定性は、前記化学式で表されガーネット型構造を備える複合金属酸化物の単位格子に1原子を挿入又は1原子を脱離させた際の自由エネルギー変化から酸化還元電位を算出することにより評価することができる。前記自由エネルギー変化は、第一原理電子状態計算プログラムであるVASP(Vienna Ab initio Simulation Package)を用いて、GGA(Generalized Gradient Approximation)/PAW(Projector Augmented Wave)法により、カットオフエネルギー480eV、k点=3×3×3の条件で、第一原理計算法により、求めることができる。尚、前記酸化還元電位は、Li+/Li電極反応の電位を基準とするときの還元電位及び酸化電位である。 The electrochemical stability of the lithium ion conductive material of the present embodiment is free when one atom is inserted or desorbed from the unit cell of the composite metal oxide represented by the above chemical formula and having a garnet structure. It can be evaluated by calculating the oxidation-reduction potential from the energy change. The free energy change is determined by using a first-principles electronic state calculation program VASP (Vienna Ab initio Simulation Package), GGA (Generalized Gradient Approximation) / PAW (Projector Augmented Wave) method, cut-off energy 480 eV, k point. = 3 × 3 × 3 can be obtained by the first principle calculation method. The oxidation-reduction potential is a reduction potential and an oxidation potential based on the potential of the Li + / Li electrode reaction.
次に、本発明の実施例及び比較例を示す。 Next, examples and comparative examples of the present invention are shown.
〔実施例1〕
本実施例では、まず、水酸化リチウム一水和物を、真空雰囲気下、350℃の温度で6時間加熱し脱水処理することにより、水酸化リチウム無水物を得た。また、酸化ランタンを、大気雰囲気下、950℃の温度で24時間加熱することにより、脱水及び脱炭酸処理した。
[Example 1]
In this example, lithium hydroxide monohydrate was first dehydrated by heating at 350 ° C. for 6 hours in a vacuum atmosphere to obtain lithium hydroxide anhydride. In addition, lanthanum oxide was dehydrated and decarboxylated by heating at 950 ° C. for 24 hours in an air atmosphere.
次に、得られた水酸化リチウム無水物、脱水及び脱炭酸された酸化ランタンに加え、酸化イットリウムと、酸化ジルコニウムとを、Li:La:Y:Zr=7.7:2.9:0.1:2のモル比となるように秤量し、遊星型ボールミル(商品名:premium line P-7、フリッチュジャパン株式会社製)を用いて、360rpmの回転数で3時間粉砕混合し、混合原料を得た。 Next, in addition to the obtained lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide and zirconium oxide were mixed with Li: La: Y: Zr = 7.7: 2.9: 0. Weigh so that the molar ratio is 1: 2, and use a planetary ball mill (trade name: premium line P-7, manufactured by Fritsch Japan Co., Ltd.) to grind and mix for 3 hours at 360 rpm. Obtained.
次に、前記混合原料をアルミナ製坩堝に収容し、大気雰囲気下、900℃の温度に6時間保持して一次焼成することにより、粉末状の一次焼成物を得た。次に、得られた一次焼成物を、前記遊星型ボールミルを用いて、360rpmの回転数で3時間粉砕混合した後、アルミナ製坩堝に収容し、大気雰囲気下、1050℃の温度に6時間保持して二次焼成することにより、粉末状の二次焼成物を得た。 Next, the mixed raw material was accommodated in an alumina crucible, and held in an air atmosphere at a temperature of 900 ° C. for 6 hours for primary firing, thereby obtaining a powdery primary fired product. Next, the obtained primary fired product was pulverized and mixed for 3 hours at a rotation speed of 360 rpm using the planetary ball mill, and then stored in an alumina crucible and kept at a temperature of 1050 ° C. for 6 hours in an air atmosphere. Then, a secondary baked product in powder form was obtained by secondary calcination.
次に、得られた二次焼成物を、前記遊星型ボールミルを用いて、360rpmの回転数で3時間粉砕し、粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.9Y0.1Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなるものであった。 Next, the obtained secondary fired product was pulverized for 3 hours at 360 rpm using the planetary ball mill, to obtain a powdery lithium ion conductive material. The obtained lithium ion conductive material was represented by the chemical formula Li 7 La 2.9 Y 0.1 Zr 2 O 12 and consisted of a composite metal oxide having a garnet-type structure.
次に、得られたリチウムイオン伝導性材料10gを内径が20mmの黒鉛製焼結ダイに装入し、該黒鉛製焼結ダイを放電プラズマ焼結装置(商品名SPS−3.20S、SPSシンテックス株式会社製)の真空チャンバー内に配置した。次に、真空チャンバー内を圧力20Paの真空雰囲気とした後、20MPaの圧力の加圧下に、900〜1000Aの範囲の直流電流を300Hzでパルス印加することにより、100℃/分の昇温速度で800℃まで昇温させた。次に、5℃/分の昇温速度で1170℃まで昇温させ、1170℃の温度に10分間保持して焼結することにより、前記リチウムイオン伝導性材料からなる焼結体を得た。 Next, 10 g of the obtained lithium ion conductive material was charged into a graphite sintered die having an inner diameter of 20 mm, and the graphite sintered die was placed into a discharge plasma sintering apparatus (trade names SPS-3.20S, SPS thin). (Tex Co., Ltd.) vacuum chamber. Next, after making the inside of the vacuum chamber a vacuum atmosphere with a pressure of 20 Pa, by applying a direct current in a range of 900 to 1000 A at 300 Hz under a pressure of 20 MPa, a heating rate of 100 ° C./min. The temperature was raised to 800 ° C. Next, it heated up to 1170 degreeC with the temperature increase rate of 5 degree-C / min, and it hold | maintained for 10 minutes at the temperature of 1170 degreeC, and obtained the sintered compact which consists of the said lithium ion conductive material.
次に、得られた焼結体をダイアモンドカッターにて750μmの厚さに切断し、シリコンカーバイドの耐水ペーパーにて研磨処理することにより、500μmの厚さの円盤状焼結体を得た。次に、前記円盤状焼結体を試料として、該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求めると共に、リチウムイオン伝導率を測定した。 Next, the obtained sintered body was cut into a thickness of 750 μm with a diamond cutter and polished with water-resistant paper of silicon carbide to obtain a disk-shaped sintered body with a thickness of 500 μm. Next, using the disk-shaped sintered body as a sample, the density of the lithium ion conductive material forming the disk-shaped sintered body was determined, and the lithium ion conductivity was measured.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度は、該円盤状焼結体の体積をマイクロメータにより計測した後、該円盤状焼結体の乾燥重量を該体積で除することにより算出した。 The density of the lithium ion conductive material forming the disk-shaped sintered body is determined by measuring the volume of the disk-shaped sintered body with a micrometer and then dividing the dry weight of the disk-shaped sintered body by the volume. Calculated by
前記円盤状焼結体を形成するリチウムイオン伝導性材料のリチウムイオン伝導率は、次のようにして測定した。まず、前記円盤状焼結体の一方の面にAuをスパッタして、直径15mmの作用極を形成した。次に、前記円盤状焼結体の一方の面にAuをスパッタして、電極界面抵抗を低下させるための界面層を形成した後、該界面層上に、厚さ0.05mm、直径15mmのLi箔を貼付して対極を形成した。次に、前記作用極及び前記対極に接触抵抗を低減するためのCuメッシュを貼付して、試験体を形成した。 The lithium ion conductivity of the lithium ion conductive material forming the disk-shaped sintered body was measured as follows. First, Au was sputtered on one surface of the disk-shaped sintered body to form a working electrode having a diameter of 15 mm. Next, Au is sputtered on one surface of the disk-shaped sintered body to form an interface layer for reducing electrode interface resistance, and then a 0.05 mm thickness and a diameter of 15 mm are formed on the interface layer. A counter electrode was formed by attaching Li foil. Next, a Cu mesh for reducing contact resistance was attached to the working electrode and the counter electrode to form a test body.
次に、前記試験体を2極セルに装着し、インピーダンスアナライザ1287(商品名、Solartron社製、1〜0.1MHz、電圧振幅20mV)を用いて交流インピーダンス測定を行った。そして、交流抵抗値から前記円盤状焼結体を形成するリチウムイオン伝導性材料のリチウムイオン伝導率を算出した。前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度及びリチウムイオン伝導率を表2に示す。 Next, the test body was mounted on a two-pole cell, and AC impedance measurement was performed using an impedance analyzer 1287 (trade name, manufactured by Solartron, 1 to 0.1 MHz, voltage amplitude 20 mV). And the lithium ion conductivity of the lithium ion conductive material which forms the said disk shaped sintered compact was computed from AC resistance value. Table 2 shows the density and lithium ion conductivity of the lithium ion conductive material forming the disk-shaped sintered body.
次に、前記試験体を用いて、前記円盤状焼結体を形成するリチウムイオン伝導性材料の電気化学的安定性の評価を行った。前記電気化学的安定性の評価は、前記試験体を2極セルに装着し、マルチスタット1470E(商品名、Solartron社製)を用いてリニアスイープボルタンメトリーを測定することにより行った。電位走査速度は0.2V/秒とし、酸化側の走査電位範囲はLi+/Li電極反応の電位を基準として2.0〜8.0Vの範囲とし、還元側の走査電位範囲はLi+/Li電極反応の電位を基準として2.0〜−3.0Vの範囲とした。 Next, the electrochemical stability of the lithium ion conductive material forming the disk-shaped sintered body was evaluated using the test body. The electrochemical stability was evaluated by mounting the test specimen on a bipolar cell and measuring linear sweep voltammetry using a multistat 1470E (trade name, manufactured by Solartron). The potential scanning speed is 0.2 V / sec, the scanning potential range on the oxidation side is in the range of 2.0 to 8.0 V with reference to the potential of the Li + / Li electrode reaction, and the scanning potential range on the reduction side is Li + / The potential of Li electrode reaction was set to a range of 2.0 to -3.0 V with reference to the potential of Li electrode reaction.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
還元側の電位走査におけるLiの析出に伴う電流ピーク以外の電流ピークが確認された電位を反応電位として表2に示す。 Table 2 shows the potential at which a current peak other than the current peak accompanying Li precipitation in the potential scan on the reduction side was confirmed as a reaction potential.
〔実施例2〕
本実施例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化イットリウムと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Y:Zr:Si:Al=7.7:2.9:0.1:2:0.05:0.05のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.9Y0.1Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.05モルのSiと0.05モルのAlとを含んでいた。
[Example 2]
In this example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Y: Zr: Si: Except that the mixed raw material was obtained so that the molar ratio was Al = 7.7: 2.9: 0.1: 2: 0.05: 0.05 A lithium ion conductive material was obtained. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 2.9 Y 0.1 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure. It contained 0.05 moles of Si and 0.05 moles of Al.
次に、本実施例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-shaped sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
還元側の電位走査の結果を図1に示す。 The result of potential scanning on the reduction side is shown in FIG.
〔実施例3〕
本実施例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化イットリウムと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Y:Zr:Si:Al=7.7:2.9:0.1:2:0.1:0.1のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.9Y0.1Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.1モルのSiと0.1モルのAlとを含んでいた。
Example 3
In this example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Y: Zr: Si: Except that the mixed raw material was obtained so that the molar ratio was Al = 7.7: 2.9: 0.1: 2: 0.1: 0.1 A lithium ion conductive material was obtained. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 2.9 Y 0.1 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure. It contained 0.1 mol of Si and 0.1 mol of Al.
次に、本実施例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-shaped sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
〔実施例4〕
本実施例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化イットリウムと、酸化ジルコニウムとを、Li:La:Y:Zr=7.7:2.8:0.2:2のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.8Y0.2Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなるものであった。
Example 4
In this example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide, and zirconium oxide were mixed with Li: La: Y: Zr = 7.7: 2.8: 0.2. : A powdery lithium ion conductive material was obtained in exactly the same manner as in Example 1 except that the mixed raw material was obtained so as to have a molar ratio of 2. The obtained lithium ion conductive material was represented by the chemical formula Li 7 La 2.8 Y 0.2 Zr 2 O 12 and consisted of a composite metal oxide having a garnet-type structure.
次に、本実施例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-shaped sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
〔実施例5〕
本実施例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化イットリウムと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Y:Zr:Si:Al=7.7:2.8:0.2:2:0.05:0.05のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.8Y0.2Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.05モルのSiと0.05モルのAlとを含んでいた。
Example 5
In this example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Y: Zr: Si: Except that the mixed raw material was obtained in a molar ratio of Al = 7.7: 2.8: 0.2: 2: 0.05: 0.05, it was exactly the same as in Example 1 and was in powder form A lithium ion conductive material was obtained. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 2.8 Y 0.2 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure. It contained 0.05 moles of Si and 0.05 moles of Al.
次に、本実施例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-shaped sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
〔実施例6〕
本実施例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化イットリウムと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Y:Zr:Si:Al=7.7:2.8:0.2:2:0.1:0.1のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La2.8Y0.2Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.1モルのSiと0.1モルのAlとを含んでいた。
Example 6
In this example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, yttrium oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Y: Zr: Si: Except that the mixed raw material was obtained so that the molar ratio was Al = 7.7: 2.8: 0.2: 2: 0.1: 0.1 A lithium ion conductive material was obtained. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 2.8 Y 0.2 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure. It contained 0.1 mol of Si and 0.1 mol of Al.
次に、本実施例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-shaped sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本実施例で得られたリチウムイオン伝導性材料は、前記表1に示すLi7La3−xYxZr2O12と同等であり、Li7La3Zr2O12よりも広い電位窓を備えている。すなわち、Li7La3Zr2O12よりも酸化電位が高く、還元電位が低くなっている。 The lithium ion conductive material obtained in this example is equivalent to Li 7 La 3-x Y x Zr 2 O 12 shown in Table 1, and has a wider potential window than Li 7 La 3 Zr 2 O 12. I have. That is, the oxidation potential is higher and the reduction potential is lower than that of Li 7 La 3 Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていた。また、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認された以外は電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐還元性を備えていた。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance. In addition, in the potential scan on the reduction side, no current peak was confirmed except that a current peak accompanying Li precipitation was observed in the vicinity of 0 to −1 V, and the lithium ion conductive material had sufficient reduction resistance. It was.
〔比較例1〕
本比較例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化ジルコニウムとを、Li:La:Zr=7.7:3:2のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La3Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなるものであった。
[Comparative Example 1]
In this comparative example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, and zirconium oxide were mixed in a molar ratio of Li: La: Zr = 7.7: 3: 2. A powdery lithium ion conductive material was obtained in exactly the same manner as in Example 1 except that. The obtained lithium ion conductive material was represented by the chemical formula Li 7 La 3 Zr 2 O 12 and consisted of a composite metal oxide having a garnet-type structure.
次に、本比較例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-like sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this comparative example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本比較例で得られたリチウムイオン伝導性材料は、前記表1に示すように、Li7La3−xYxZr2O12よりも狭い電位窓を備えている。 As shown in Table 1, the lithium ion conductive material obtained in this comparative example has a narrower potential window than Li 7 La 3 -x Y x Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていたが、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認され、さらに−1.6V付近に前記試験体の分解又は短絡に伴う電流ピークが確認された。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance, but 0 in the potential scan on the reduction side. The current peak accompanying precipitation of Li was confirmed in the vicinity of ~ -1V, and the current peak associated with the decomposition or short circuit of the specimen was confirmed in the vicinity of -1.6V.
〔比較例2〕
本比較例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Zr:Si:Al=7.7:3:2:0.05:0.05のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La3Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.05モルのSiと0.05モルのAlとを含んでいた。
[Comparative Example 2]
In this comparative example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Zr: Si: Al = 7.7: A powdery lithium ion conductive material was obtained in exactly the same manner as in Example 1 except that the mixed raw material was obtained in a molar ratio of 3: 2: 0.05: 0.05. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 3 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure, and 0.05 mol of Si with respect to 7 mol of Li. And 0.05 mol of Al.
次に、本比較例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-like sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this comparative example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本比較例で得られたリチウムイオン伝導性材料は、前記表1に示すように、Li7La3−xYxZr2O12よりも狭い電位窓を備えている。 As shown in Table 1, the lithium ion conductive material obtained in this comparative example has a narrower potential window than Li 7 La 3 -x Y x Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていたが、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認され、さらに−2.3V付近に前記試験体の分解又は短絡に伴う電流ピークが確認された。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance, but 0 in the potential scan on the reduction side. The current peak accompanying precipitation of Li was confirmed in the vicinity of ~ -1V, and the current peak associated with the decomposition or short circuit of the test specimen was confirmed in the vicinity of -2.3V.
還元側の電位走査の結果を図1に示す。 The result of potential scanning on the reduction side is shown in FIG.
〔比較例3〕
本比較例では、水酸化リチウム無水物と、脱水及び脱炭酸された酸化ランタンと、酸化ジルコニウムと、無水シリカと、水酸化アルミニウムとを、Li:La:Zr:Si:Al=7.7:3:2:0.1:0.1のモル比となるようにして混合原料を得た以外は、実施例1と全く同一にして粉末状のリチウムイオン伝導性材料を得た。得られたリチウムイオン伝導性材料は、化学式Li7La3Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなると共に、7モルのLiに対し、0.1モルのSiと0.1モルのAlとを含んでいた。
[Comparative Example 3]
In this comparative example, lithium hydroxide anhydride, dehydrated and decarboxylated lanthanum oxide, zirconium oxide, anhydrous silica, and aluminum hydroxide were mixed with Li: La: Zr: Si: Al = 7.7: A powdery lithium ion conductive material was obtained in exactly the same manner as in Example 1 except that the mixed raw material was obtained in a molar ratio of 3: 2: 0.1: 0.1. The obtained lithium ion conductive material is represented by the chemical formula Li 7 La 3 Zr 2 O 12 and is composed of a composite metal oxide having a garnet-type structure, and 0.1 mol of Si with respect to 7 mol of Li. And 0.1 mol of Al.
次に、本比較例で得られたリチウムイオン伝導性材料を用いた以外は、実施例1と全く同一にして円盤状焼結体を形成し、実施例1と全く同一にして該円盤状焼結体を形成するリチウムイオン伝導性材料の密度を求め、リチウムイオン伝導率を測定すると共に、電気化学的安定性の評価を行った。 Next, a disc-like sintered body is formed in exactly the same manner as in Example 1 except that the lithium ion conductive material obtained in this comparative example is used, and the disc-like sintered material is formed in exactly the same manner as in Example 1. The density of the lithium ion conductive material forming the aggregate was determined, the lithium ion conductivity was measured, and the electrochemical stability was evaluated.
前記円盤状焼結体を形成するリチウムイオン伝導性材料の密度、リチウムイオン伝導率及び反応電位を表2に示す。 Table 2 shows the density, lithium ion conductivity, and reaction potential of the lithium ion conductive material forming the disk-shaped sintered body.
本比較例で得られたリチウムイオン伝導性材料は、前記表1に示すように、Li7La3−xYxZr2O12よりも狭い電位窓を備えている。 As shown in Table 1, the lithium ion conductive material obtained in this comparative example has a narrower potential window than Li 7 La 3 -x Y x Zr 2 O 12 .
そこで、前記リニアスイープボルタンメトリーにおいて、酸化側の電位走査では反応に伴う電流ピークは確認されず、前記リチウムイオン伝導性材料は十分な耐酸化性を備えていたが、還元側の電位走査では、0〜−1V付近にLiの析出に伴う電流ピークが確認され、さらに−0.8V付近に前記試験体の分解又は短絡に伴う電流ピークが確認された。 Therefore, in the linear sweep voltammetry, no current peak associated with the reaction was confirmed in the potential scan on the oxidation side, and the lithium ion conductive material had sufficient oxidation resistance, but 0 in the potential scan on the reduction side. A current peak associated with Li deposition was observed in the vicinity of ˜−1 V, and a current peak associated with the decomposition or short circuit of the test specimen was confirmed in the vicinity of −0.8 V.
表2から、化学式Li7La3Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物のLaサイトの一部をYで置換した実施例1〜6のリチウムイオン伝導性材料は、化学式Li7La3Zr2O12で表わされ、ガーネット型構造を備える複合金属酸化物からなる比較例1〜3のリチウムイオン伝導性材料に対し、ほぼ同等のイオン伝導率を備えていることが明らかである。 From Table 2, the lithium ion conductive materials of Examples 1 to 6 represented by the chemical formula Li 7 La 3 Zr 2 O 12 and in which a part of the La site of the composite metal oxide having a garnet structure is substituted with Y are as follows. The lithium ion conductive material represented by the chemical formula Li 7 La 3 Zr 2 O 12 and composed of a composite metal oxide having a garnet structure has substantially the same ionic conductivity. It is clear.
また、前記比較例1〜3のリチウムイオン伝導性材料が、リニアスイープボルタンメトリーにおける還元側の電位走査において、前記反応電位として示される前記試験体の分解又は短絡に伴う電流ピークを示すのに対し、前記実施例1〜6のリチウムイオン伝導性材料は、該反応電位が観測されず、優れた耐還元性を備えており、優れた電気化学的安定性を備えていることが明らかである。 In addition, the lithium ion conductive materials of Comparative Examples 1 to 3 show a current peak accompanying decomposition or short-circuiting of the specimen shown as the reaction potential in the potential scan on the reduction side in linear sweep voltammetry, It is apparent that the lithium ion conductive materials of Examples 1 to 6 have no reaction potential, have excellent reduction resistance, and have excellent electrochemical stability.
また、前記混合原料にAl化合物及びSi化合物を含む前記実施例2,3,5,6のリチウムイオン伝導性材料は、密度が4.88以上であり、緻密な焼結体を形成していることが明らかである。 Further, the lithium ion conductive materials of Examples 2, 3, 5 and 6 containing Al compound and Si compound in the mixed raw material have a density of 4.88 or more and form a dense sintered body. It is clear.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283352A JP5663466B2 (en) | 2011-12-26 | 2011-12-26 | Lithium ion conductive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283352A JP5663466B2 (en) | 2011-12-26 | 2011-12-26 | Lithium ion conductive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013134852A JP2013134852A (en) | 2013-07-08 |
JP5663466B2 true JP5663466B2 (en) | 2015-02-04 |
Family
ID=48911421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011283352A Expired - Fee Related JP5663466B2 (en) | 2011-12-26 | 2011-12-26 | Lithium ion conductive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5663466B2 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9362546B1 (en) | 2013-01-07 | 2016-06-07 | Quantumscape Corporation | Thin film lithium conducting powder material deposition from flux |
ES2890654T3 (en) | 2013-10-07 | 2022-01-21 | Quantumscape Battery Inc | Garnet Materials for Li Secondary Batteries and Manufacturing Methods and Use of the Garnet Materials |
US9660270B2 (en) | 2014-04-24 | 2017-05-23 | Daiichi Kigenso Kagaku Kogyo Co., Ltd. | Method for producing garnet-type compound, garnet-type compound, and all-solid lithium secondary cell containing said garnet-type compound |
KR102609408B1 (en) | 2015-04-16 | 2023-12-04 | 퀀텀스케이프 배터리, 인코포레이티드 | Setter plate for producing solid electrolyte and method for producing dense solid electrolyte using the same |
CN107851774A (en) | 2015-07-21 | 2018-03-27 | 昆腾斯科普公司 | Casting and the method and material of sintering green compact garnet |
JP2017033926A (en) | 2015-07-29 | 2017-02-09 | セントラル硝子株式会社 | Garnet type oxide sintered compact and production method therefor |
US9966630B2 (en) | 2016-01-27 | 2018-05-08 | Quantumscape Corporation | Annealed garnet electrolyte separators |
US20170331092A1 (en) | 2016-05-13 | 2017-11-16 | Quantumscape Corporation | Solid electrolyte separator bonding agent |
US11158880B2 (en) | 2016-08-05 | 2021-10-26 | Quantumscape Battery, Inc. | Translucent and transparent separators |
EP3529839A1 (en) | 2016-10-21 | 2019-08-28 | QuantumScape Corporation | Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same |
JP7389649B2 (en) * | 2017-03-31 | 2023-11-30 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | System and method for forming a simple lithium metal anode interface with a solid electrolyte |
EP4369453A3 (en) | 2017-06-23 | 2024-10-02 | QuantumScape Battery, Inc. | Lithium-stuffed garnet electrolytes with secondary phase inclusions |
US10347937B2 (en) | 2017-06-23 | 2019-07-09 | Quantumscape Corporation | Lithium-stuffed garnet electrolytes with secondary phase inclusions |
WO2019090360A1 (en) | 2017-11-06 | 2019-05-09 | Quantumscape Corporation | Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets |
JP7156488B2 (en) * | 2018-02-19 | 2022-10-19 | セイコーエプソン株式会社 | Electrolytes, batteries, electronics, methods of making electrolytes and batteries |
JP6969422B2 (en) * | 2018-02-19 | 2021-11-24 | セイコーエプソン株式会社 | How to manufacture electrolytes, batteries, electronic devices, electrolytes and batteries |
CA3101863A1 (en) | 2018-06-06 | 2019-12-12 | Quantumscape Corporation | Solid-state battery |
JP7155944B2 (en) * | 2018-11-28 | 2022-10-19 | セイコーエプソン株式会社 | Solid electrolyte, method for producing solid electrolyte, secondary battery, electronic device |
DE102020111624A1 (en) * | 2020-04-29 | 2021-11-04 | Schott Ag | Aluminum-doped lithium ion conductor based on a garnet structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5083336B2 (en) * | 2009-02-04 | 2012-11-28 | 株式会社豊田中央研究所 | Garnet-type lithium ion conductive oxide |
JP5525388B2 (en) * | 2009-09-03 | 2014-06-18 | 日本碍子株式会社 | Ceramic material and manufacturing method thereof |
JP6144007B2 (en) * | 2011-06-29 | 2017-06-07 | 株式会社豊田中央研究所 | Garnet-type ion conductive oxide and method for producing the same |
-
2011
- 2011-12-26 JP JP2011283352A patent/JP5663466B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013134852A (en) | 2013-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5663466B2 (en) | Lithium ion conductive material | |
Meesala et al. | An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li 7 La 3 Zr 2 O 12 | |
CN109417194B (en) | Sulfide-based solid electrolyte for lithium secondary battery | |
Abrha et al. | Dual-doped cubic garnet solid electrolytes with superior air stability | |
JP2013149493A (en) | Lithium ion-conducting material | |
Djenadic et al. | Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications | |
Li et al. | Optimizing Li+ conductivity in a garnet framework | |
Lan et al. | Realizing Li 7 La 3 Zr 2 O 12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications | |
Nikodimos et al. | A new high-Li+-conductivity Mg-doped Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries | |
US10396395B2 (en) | Solid electrolyte material and method for producing the same | |
Kataoka et al. | Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li7− xLa3Zr2− xTaxO12 using single-crystal | |
JP2012246196A (en) | Lithium ion conductive inorganic substance | |
JPWO2018038164A1 (en) | Sulfide solid electrolyte | |
Zhou et al. | Sr2+ and Mo6+ co-doped Li7La3Zr2O12 with superior ionic conductivity | |
JP2019006634A (en) | Manufacturing method of solid electrolyte, and solid electrolyte | |
Li et al. | Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries | |
US20230420733A1 (en) | Ion conductive solid and all-solid-state battery | |
Li et al. | Effect of Ga-Bi co-doped on structural and ionic conductivity of Li 7 La 3 Zr 2 O 12 solid electrolytes derived from sol–gel method | |
US10403933B2 (en) | Solid electrolyte material and method for producing the same | |
JP2011079707A (en) | Ceramic material and method for manufacturing the same | |
JP6115780B2 (en) | Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
CN111056839A (en) | Boron compound doped lithium lanthanum zirconium oxygen solid electrolyte and preparation method thereof | |
CN105826601B (en) | Li4SiO4-Li3PO4-LiBO2Solid solution ceramic lithium ion conductor | |
JP2011171248A (en) | Solid electrolyte and all-solid lithium secondary battery | |
WO2021215403A1 (en) | Lithium ion-conductive glass ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141111 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5663466 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |