JP5661673B2 - Multi-tank cell recycle fermentation method ethanol continuous production method - Google Patents

Multi-tank cell recycle fermentation method ethanol continuous production method Download PDF

Info

Publication number
JP5661673B2
JP5661673B2 JP2012073277A JP2012073277A JP5661673B2 JP 5661673 B2 JP5661673 B2 JP 5661673B2 JP 2012073277 A JP2012073277 A JP 2012073277A JP 2012073277 A JP2012073277 A JP 2012073277A JP 5661673 B2 JP5661673 B2 JP 5661673B2
Authority
JP
Japan
Prior art keywords
fermentation
cell
ethanol
continuous production
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073277A
Other languages
Japanese (ja)
Other versions
JP2013085552A (en
Inventor
逢盛 王
逢盛 王
文乾 李
文乾 李
崇至 李
崇至 李
Original Assignee
國立中正大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中正大學 filed Critical 國立中正大學
Publication of JP2013085552A publication Critical patent/JP2013085552A/en
Application granted granted Critical
Publication of JP5661673B2 publication Critical patent/JP5661673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

本発明は一種のエタノール生産の方法に係り、特に、多槽式菌体リサイクル発酵方式エタノール連続生産によりエタノールの生産効率をアップする方法に関する。   The present invention relates to a kind of ethanol production method, and more particularly, to a method for increasing ethanol production efficiency by continuous production of multi-tank cell recycle fermentation ethanol.

バイオマスアルコールは、バイオエタノールとも称され、微生物を利用してバイオマス中の糖質を変換して得られるエタノールである。バイオマスは生物由来で、石化有機物ではなく、一般には植物の光合成作用により発生する炭素含有化合物である。   Biomass alcohol is also called bioethanol, and is ethanol obtained by converting carbohydrates in biomass using microorganisms. Biomass is derived from living organisms, not a petrified organic substance, but is generally a carbon-containing compound generated by the photosynthetic action of plants.

近年、世界的な石油需要の激増に加え、国際政治が不安定な状態にあることから、オイル価格が下がらない。台湾のエネルギー源需要状況は、大量の石油輸入に依存しており、経済上、工業の製造コストと消費物価が大幅に押し上げられ、民生の不安定を形成し、このような現象は間接的に国家の安全に影響を与える。また、世界各国が経済の繁栄を追求する過程で、大量に各種資源を使用すると同時に環境を汚染し、グローバルな気候の温暖化問題が日増しに厳重となっている。各国は温室ガス排出を減少するため、積極的に各種のクリーンエネルギー技術の開発に取り組んでおり、たとえば、バイオマスエネルギー、風力エネルギー、太陽エネルギー、水素エネルギー、及び燃料電池、IGCC(石炭ガス化複合発電)等が挙げられる。この状況下で、バイオマスエネルギー源開発はエネルギー源自主、農業発展、環境保護及び経済成長の総合的な効果を有する。台湾のエネルギー源の98%以上は輸入に頼っており、国際石油、ガス市場は日増しに厳しくなる状況で、輸入に頼らないエネルギー源の開発は意義があり、農業発展の新契機も提供する。エネルギー源作物は成長過程中に二酸化炭素などの温室ガスを吸収し、環境の改善に役立つ。且つバイオマスエネルギー源産業は、一端ある規模に到達すると、雇用、所得、生産等の効果に巨大な貢献を果たす。このため、エネルギー源、環境及び経済等のいずれの層面から考慮しても、バイオマスエネルギーは非常に推進に値する項目である。   In recent years, oil prices have not fallen due to the steep rise in global oil demand and the unstable state of international politics. Taiwan's demand for energy sources is dependent on imports of large quantities of oil. Economically, manufacturing costs and consumer prices are greatly boosted, creating consumer instability. Affects national security. In the process of pursuing economic prosperity, countries around the world use a large amount of various resources and at the same time pollute the environment, and the global warming problem of the global climate is becoming increasingly severe. Each country is actively developing various clean energy technologies to reduce greenhouse gas emissions. For example, biomass energy, wind energy, solar energy, hydrogen energy, and fuel cells, IGCC (Coal Gasification Combined Cycle Power Generation) ) And the like. Under this circumstance, biomass energy source development has the combined effects of energy source independence, agricultural development, environmental protection and economic growth. More than 98% of Taiwan's energy sources rely on imports, and the international oil and gas market is becoming increasingly severe, and the development of energy sources that do not rely on imports is meaningful and provides new opportunities for agricultural development. . Energy source crops absorb greenhouse gases such as carbon dioxide during the growth process and help improve the environment. And once the biomass energy source industry reaches a certain scale, it will make a huge contribution to the effects of employment, income and production. For this reason, biomass energy is an item that is extremely worthy of promotion, regardless of the level of energy source, environment and economy.

1970年代の石油危機の時、ブラジル、米国は積極的にバイオマスアルコール工業の発展に力を注ぎ、近年、二酸化炭素の排出量過多、地球温暖化、国際原油供給の不安定と価格の持続的高騰などの因子の影響の下、ますます多くの国家が力を入れるようになった。2006年に世界のバイオマスアルコール生産量4千万キロリットルの90%はブラジルと米国で生産されていた。ブラジルはサトウキビを原料とし、米国はトウモロコシを主としてバイオマスアルコールを生産し、サトウキビとトウモロコシはそれぞれ糖質とでんぷん質の作物である。台湾の経済部はすでに国営事業としてバイオマスアルコール工場を設置し、サトウキビ、サトウモロコシを原料としてバイオマスアルコールの生産を行うことを指示している。   During the oil crisis in the 1970s, Brazil and the United States actively focused on the development of the biomass alcohol industry. In recent years, excessive carbon dioxide emissions, global warming, instability of international crude oil supply and sustained price increases Under the influence of such factors, more and more nations have come to put power. In 2006, 90% of the world's 40 million kiloliters of biomass alcohol production was produced in Brazil and the United States. Brazil uses sugar cane as a raw material, the United States mainly produces corn and biomass alcohol, and sugar cane and corn are sugar and starchy crops, respectively. The Ministry of Economic Affairs of Taiwan has already set up a biomass alcohol factory as a state-run business and has instructed to produce biomass alcohol from sugar cane and sugar corn.

バイオマスアルコールは一種の大宗化学物質であり、大量生産してコストを下げることが必要であり、発酵プロセスの改善は極めて重要な研究課題である。バイオマスアルコールの発酵方法は、常にバッチ発酵、フィードバッチ式及び連続式発酵を使用する。バッチ発酵は発酵時間が長く、生産量が小さいか、或いは固体発酵プロセスに比較的常用される。ただし、高い糖濃度の下での発酵は基質抑制作用を発生し、発酵時間が過長となり大幅にエタノール生産速度を下げる。基質(たとえばブドウ糖)抑制を改善するため、フィードバッチ式発酵を採用できるが、なおもエタノール抑制問題を有し、連続発酵の利用は、このような抑制作用を低減し、並びに生産率を高めることができる。連続発酵は生産率を高めることができるが、発酵時の希釈率(dilution rate)は菌体の成長率より大きくなってはならず、そうでなければ菌体のオーバーフロー現象が形成され得る。   Biomass alcohol is a kind of Daejong chemical substance, and it is necessary to reduce the cost by mass production. Improvement of the fermentation process is a very important research subject. The fermentation method of biomass alcohol always uses batch fermentation, feed batch type and continuous type fermentation. Batch fermentation has a long fermentation time, a small output, or is relatively commonly used in solid state fermentation processes. However, fermentation under a high sugar concentration generates a substrate-inhibiting action, and the fermentation time becomes excessive, greatly reducing the ethanol production rate. Feedbatch fermentation can be employed to improve substrate (eg, glucose) suppression, but still has ethanol suppression problems, and the use of continuous fermentation reduces such suppression and increases production rates. Can do. Continuous fermentation can increase the production rate, but the dilution rate during fermentation should not be greater than the growth rate of the cells, otherwise cell overflow phenomenon may be formed.

比較的早期の特許文献1によると、薄膜濾過の方式で、Zymomonas mobilis発酵液中の菌体と製品を分離し、菌体を発酵槽に戻して連続発酵させ、これは発酵槽内の菌体濃度を高めることができるが、薄膜濾過方式で菌体をリサイクルするコストは比較的高く、並びに不経済である。   According to Patent Document 1, which is relatively early, the cells and the product in the Zymomonas mobilis fermentation broth are separated by a membrane filtration method, and the cells are returned to the fermenter for continuous fermentation, which is the cells in the fermenter. Although the concentration can be increased, the cost of recycling the bacterial cells by the membrane filtration method is relatively high and uneconomical.

特許文献2は、単一発酵槽に沈降式の菌体リサイクル装置を配備することでブドウ糖を発酵させてエタノールを得ており、使用する凝集酵母は呼吸代謝欠陥のSaccharomyces uvarum 変異株(Saccharomyces uvarum 26602 由来)とされ、実施例はブドウ糖フィード濃度135 g/L、希釈率 0.129 h-1で連続発酵させ、得られたエタノール生産率(ethanol productivity)は、6.7 gL-1h-1 であり、もしエタノール生産率を高めるなら、希釈率はさらに高める必要がある。 In Patent Literature 2, ethanol is obtained by fermenting glucose by deploying a sedimentation type cell recycling apparatus in a single fermenter, and the Saccharomyces uvarum mutant strain (Saccharomyces uvarum 26602) is used for the agglutination yeast used. In this example, continuous fermentation was performed at a glucose feed concentration of 135 g / L and a dilution rate of 0.129 h −1 , and the ethanol productivity obtained was 6.7 g L −1 h −1. If the ethanol production rate is increased, the dilution rate needs to be further increased.

最近提出された特許文献3によると、単一発酵槽に沈降式の菌体リサイクル装置を配備し高濃度のブドウ糖を発酵させてエタノールを得ており、使用する凝集酵母はSaccharomyces cerevisae AM12 とし、ブドウ糖フィード濃度は200 g/L、希釈率(D) は 0.2 ≦ D≦0.3 で操作し、エタノール生産率は15 gL-1h-1以上に達する。 According to Patent Document 3 recently filed, a single cell fermenter is equipped with a sedimentation type cell recycling device to ferment high concentrations of glucose to obtain ethanol, and the aggregating yeast used is Saccharomyces cerevisae AM12. The feed concentration is 200 g / L, the dilution rate (D) is 0.2 ≤ D ≤ 0.3, and the ethanol production rate reaches 15 gL -1 h -1 or higher.

エタノール発酵は原料の違いにより、発酵可能な糖はブドウ糖とは限らず、且つ糖類濃度は常に高濃度に制御可能であるとはいえず、もしサトウキビの絞り汁を原料としてバイオマスエタノールを製造するなら、サトウキビの絞り汁中の糖類は主に蔗糖であり、濃度は約80 g/L で、高濃度に濃縮して更に発酵させるとすれば、コストパフォーマンスが悪くなる。近年、凝集酵母を発酵菌株となす論文があり、単一の発酵槽を使用しての連続式菌体リサイクル発酵プロセスの研究がなされているが、この論文によると、初絞りのサトウキビの汁を栄養基質材料とし、希釈率 0.24 h-1 で、エタノール生産率は 9.14 gL-1h-1である。このことから、材料をサトウキビの絞り汁に変えると、ブドウ糖を材料とする発酵方法に較べ、発酵エタノール生産率は大幅に下がる。 Due to the difference in raw materials for ethanol fermentation, the fermentable sugar is not limited to glucose, and the sugar concentration cannot always be controlled to a high level. If sugarcane juice is used as raw material to produce biomass ethanol, The sugar in sugarcane juice is mainly sucrose, and the concentration is about 80 g / L. If it is concentrated to a high concentration and further fermented, the cost performance will deteriorate. In recent years, there has been a paper on the use of flocculent yeast as a fermentation strain, and research on continuous cell recycling fermentation processes using a single fermenter has been conducted. According to this paper, As a nutrient substrate material, the dilution rate is 0.24 h −1 and the ethanol production rate is 9.14 gL −1 h −1 . For this reason, when the material is changed to sugarcane juice, the fermented ethanol production rate is significantly reduced compared to the fermentation method using glucose as the material.

ゆえに、もし、発酵原料の制限を受けず、すなわち、サトウキビの絞り汁をエタノールに変換でき且つ変換効率、生産率をアップできる発酵方法があれば、エネルギー源、環境、及び経済のいずれの層面から見ても、大きなメリットがある。   Therefore, if there is a fermentation method that is not restricted by fermentation raw materials, that is, cane sugar cane juice can be converted into ethanol, and conversion efficiency and production rate can be improved, from any aspect of energy source, environment and economy Even if it sees, there is a big merit.

米国特許第4443544号明細書U.S. Pat. No. 4,443,544 米国特許第4567145号明細書US Pat. No. 4,567,145 国際特許第WO2008120644号明細書International Patent No. WO2008120644

前述の問題を解決するため、本発明の目的は一種のエタノールを生産する方法を提供することにあり、特に、多槽式菌体リサイクル発酵方式でエタノールを連続生産する効率を高める方法である。   In order to solve the above-mentioned problems, an object of the present invention is to provide a method for producing a kind of ethanol, and in particular, a method for increasing the efficiency of continuous production of ethanol by a multi-tank cell recycle fermentation system.

前述の目的は、本発明の提供する多槽式菌体リサイクル発酵方式エタノール連続生産方法は、
(a)原料を提供するステップ、該原料は、糖類、窒素源、鉱物質、及びビタミンで組成された混合液であり、該糖類は蔗糖、ブドウ糖、果糖或いはそれらの任意の組合せとされ、且つサトウキビの絞り汁を糖類ソースとして用いることができ、サトウキビの絞り汁濃度は60g −100g/L とされる。
(b)該原料を高希釈率で第1発酵エリアにフィードするステップ、そのうち該第1発酵エリアは事前に凝集酵母菌を接種しておく。
(c)該原料を発酵させて発酵液を生成し、該発酵液と該凝集酵母菌を該第1発酵エリアより第1細胞沈降エリアにオーバーフローさせ、並びに該凝集酵母菌を、該第1細胞沈降エリアより該第1発酵エリアに戻すステップ。
(d)ステップ(c)の該発酵液を該原料とし、少なくとも一つの第2発酵エリアと少なくとも一つの第2細胞沈降エリアを利用し、該第2発酵エリアに該凝集酵母菌を接種し、重複してステップ(b)とステップ(c)を少なくとも一回以上、該発酵液中のエタノール生産率が毎時間13g/Lを超過するまで繰り返すステップ。
以上のステップを包含し、そのうち、ステップ(b)の該高希釈率は0.25〜0.48g/Lh の間とする。
The above-mentioned object is a multi-tank cell recycle fermentation method ethanol continuous production method provided by the present invention.
(A) providing a raw material, the raw material being a mixture composed of sugars, nitrogen sources, minerals, and vitamins, wherein the sugars are sucrose, glucose, fructose or any combination thereof; and Sugarcane juice can be used as a sugar source, and the sugarcane juice concentration is 60 g-100 g / L.
(B) A step of feeding the raw material to the first fermentation area at a high dilution rate, in which the first fermentation area is inoculated with a flocculating yeast in advance.
(C) fermenting the raw material to produce a fermentation broth, overflowing the fermentation broth and the aggregated yeast from the first fermentation area to the first cell sedimentation area, and Returning from the settling area to the first fermentation area.
(D) using the fermentation broth of step (c) as the raw material, utilizing at least one second fermentation area and at least one second cell sedimentation area, inoculating the aggregated yeast in the second fermentation area, Repeating step (b) and step (c) at least once and repeating until the ethanol production rate in the fermentation liquid exceeds 13 g / L per hour.
Including the above steps, of which the high dilution rate in step (b) is between 0.25 and 0.48 g / Lh.

本発明はまた、一種の多槽式菌体リサイクル発酵方式エタノール連続生産システムを提供し、それは、
原料槽であって、原料を保存し、該原料は、糖類、窒素源、ミネラル及びビタミンで組成された混合液であり、該糖類は蔗糖、ブドウ糖、果糖或いはそれらの任意の組合せとされ、且つサトウキビの絞り汁を糖類ソースとして用いることができ、サトウキビの絞り汁濃度は60g −100g/L とされる、上記原料槽と、
第1発酵槽であって、該原料槽に連通し、且つ該原料が高希釈率で該第2発酵槽にフィードされ、並びに発酵液を生成し、該第1発酵槽に凝集酵母菌が接種され、且つ酸素含有ガスが通入される、上記第1発酵槽と、
第1細胞沈降器であって、該第1発酵槽に連通し、該第1発酵槽よりオーバーフローした該発酵液と該凝集酵母菌が流入し、且つ該凝集酵母菌が該第1細胞沈降器より該第1発酵槽に流し戻される、上記第1細胞沈降器と、
少なくとも一つの第2発酵槽であって、該第1細胞沈降器に連通し、該第1細胞沈降器より該発酵液が該第2発酵槽に送られ、該第2発酵槽に該凝集酵母菌が接種され且つ酸素含有ガスが通入される、上記少なくとも一つの第2発酵槽と、
少なくとも一つの第2細胞沈降器であって、該第2発酵槽に連通し、該第1細胞沈降器と該第2細胞沈降器がいずれも直立式容器とされ、該第2発酵槽よりオーバーフローした該発酵液と該凝集酵母菌が該第2細胞沈降器に流入し、該凝集酵母菌が該第2細胞沈降器より該第2発酵槽に流し戻される、上記少なくとも一つの第2細胞沈降器と、
を包含し、そのうち、該該高希釈率は0.25〜0.48g/Lh の間とされ、該発酵液中のエタノール生産率が毎時間13g/Lを超過する時、該発酵液はエタノール収集ユニットに流入させられる。
The present invention also provides a kind of multi-tank cell recycle fermentation ethanol continuous production system,
A raw material tank for storing the raw material, wherein the raw material is a mixed liquid composed of sugar, nitrogen source, mineral and vitamin, and the sugar is sucrose, glucose, fructose or any combination thereof; and Sugar cane juice can be used as a saccharide source, and the sugar cane juice concentration is 60 g-100 g / L,
A first fermenter that communicates with the raw material tank and feeds the raw material to the second fermenter at a high dilution rate, produces a fermentation liquor, and inoculates the first fermenter with flocculant yeast And the first fermentor in which an oxygen-containing gas is introduced,
A first cell sedimentator, which is communicated with the first fermentor, wherein the fermented liquid overflowing from the first fermentor and the flocculated yeast flow in, and the flocculated yeast is the first cell sedimentator. The first cell sedimentator to be poured back into the first fermentor;
At least one second fermenter that communicates with the first cell sedimentator, the fermented liquid is sent from the first cell sedimentator to the second fermenter, and the flocculent yeast is fed to the second fermenter The at least one second fermentor inoculated with fungus and infused with oxygen-containing gas;
At least one second cell sedimentator, communicated with the second fermentor, wherein the first cell sedimentator and the second cell sedimentator are both upright containers, overflowing from the second fermentor The at least one second cell sedimentation wherein the fermented liquid and the aggregated yeast flow into the second cell sedimentator, and the aggregated yeast is flowed back from the second cell sedimentator to the second fermenter. And
Wherein the high dilution rate is between 0.25 and 0.48 g / Lh, and when the ethanol production rate in the fermentation broth exceeds 13 g / L per hour, the fermentation broth is ethanol Into the collecting unit.

本発明の多槽式菌体リサイクル発酵方式エタノール連続生産システムの好ましい実施例において、該システムは更に第1発酵槽と第2発酵槽を連接する連通管を包含し、該連通管はスイッチを具えている。   In a preferred embodiment of the multi-tank cell recycle fermentation ethanol continuous production system of the present invention, the system further includes a communication pipe connecting the first fermentation tank and the second fermentation tank, the communication pipe having a switch. It is.

本発明の使用する技術特徴は、十分に菌体リサイクルと多槽直列連続操作の相乗効果の長所を有し、ゆえに、本発明を利用してエタノールを生産する方法は、高希釈率で発酵を進めることができ、雑菌の生長を防止し、システムの安定を維持する等の長所を有する。且つ本発明のエタノール生産の方法は原料の制限を受けず、直接サトウキビの絞り汁を糖類原料として発酵を行うことができ、特許文献3(国際特許第WO2008120644号)と比較して、本発明は比較的高い希釈率の下で操作可能で、蔗糖濃度が80g/Lの時に、18.0gL-1h-1の エタノール生産率を有する。反対に、特許文献3は、200g/Lという非常に高いブドウ糖濃度を使用しなければ、エタノール生産率を15gL-1h-1以上とすることができない。このほか、本発明は凝集酵母菌の特性を利用し、菌体を発酵槽に留め、発酵槽内の菌体密度を維持し、エタノール生産コストを下げ、生産効率をアップする。 The technical features used by the present invention have the advantage of a synergistic effect of cell recycle and multi-tank serial continuous operation. Therefore, the method of producing ethanol using the present invention is capable of fermentation at a high dilution rate. It has the advantages of being able to proceed, preventing the growth of various bacteria, and maintaining the stability of the system. In addition, the ethanol production method of the present invention is not limited by the raw material, and can be directly fermented with sugarcane juice as a saccharide raw material. Compared with Patent Document 3 (International Patent No. WO2000081644), the present invention It can be operated at a relatively high dilution rate and has an ethanol production rate of 18.0 gL −1 h −1 when the sucrose concentration is 80 g / L. On the other hand, in Patent Document 3, the ethanol production rate cannot be increased to 15 gL −1 h −1 or more unless a very high glucose concentration of 200 g / L is used. In addition, the present invention utilizes the characteristics of the agglutinating yeast to keep the cells in the fermenter, maintain the cell density in the fermenter, lower the ethanol production cost, and increase the production efficiency.

本発明の実施例の発酵システム構造図である。It is a fermentation system structure figure of the example of the present invention. 本発明の第2発酵槽出口の細胞濃度、エタノール濃度、蔗糖濃度、ブドウ糖濃度、及び果糖濃度の時間に伴う変化図である。図中、「生物量」とは、Saccharomyces diastaticus LORRE-316 酵母菌の重量を指す。It is a change figure with the time of the cell concentration of the 2nd fermenter exit of this invention, ethanol concentration, sucrose concentration, glucose concentration, and fructose concentration. In the figure, “biomass” refers to the weight of Saccharomyces diastaticus LORRE-316 yeast.

本発明の技術内容、構造特徴、達成する目的を詳細に説明するため、以下に実施例を挙げ並びに図面を組み合わせて説明する。   In order to describe in detail the technical contents, structural features, and objects to be achieved of the present invention, examples will be described below in combination with the drawings.

本発明は多槽式菌体リサイクル発酵方式エタノール連続生産方法を提供し、それに使用される多槽式菌体リサイクル発酵方式エタノール連続生産システムは、二組以上の生物反応器(発酵槽)と細胞沈降循環リサイクル装置を包含する。一定濃度の糖類(蔗糖、ブドウ糖、果糖或いはそれらの任意の組合せ)をフィードし、0.8〜0.9の菌体リサイクル比率(r)及び0.25〜0.48gL-1h-1の希釈率(D)に設定して連続発酵させると、開始期(start−up)の後、発酵槽の菌体濃度は安定値に達し、この時、発酵槽内の糖類及び製品(エタノール)の濃度はいずれも維持されて不変である。 The present invention provides a multi-tank cell recycle fermentation method ethanol continuous production method, and the multi-tank cell recycle fermentation method ethanol continuous production system used therefor includes two or more sets of bioreactors (fermenters) and cells. Includes settling circulation recycling equipment. Feed a certain concentration of sugar (sucrose, glucose, fructose or any combination thereof), with a cell recycling ratio (r) of 0.8-0.9 and 0.25-0.48 gL -1 h -1 When continuous fermentation is carried out with the dilution rate (D) set, the cell concentration in the fermenter reaches a stable value after the start-up, and at this time, the saccharide and product (ethanol) in the fermenter All concentrations are maintained and unchanged.

酵母菌の生長には糖類、窒素源、ビタミン及びミネラル等の供給が必要であり、そのうち、各種のビタミン中、ビタミンB群が最も重要であり、この部分は、酵母抽出物及びペプトン(peptone)より提供される。   The growth of yeast requires supply of sugars, nitrogen sources, vitamins, minerals, etc. Among them, vitamin B group is the most important among various vitamins, and this part is composed of yeast extract and peptone. More provided.

上記細胞沈降循環リサイクル装置の構造は簡単であり、任意の直立する容器が細胞沈降の場所とされ得て、発酵槽出口に接続され、凝集酵母菌は迅速に凝集し並びに重力により沈降し、底部の細胞がポンプで発酵槽に送られ、上層の上澄液は次の発酵槽に送られるかエタノール収集ユニットに送られる。   The structure of the cell sedimentation circulation recycling apparatus is simple, any upright container can be a place for cell sedimentation, connected to the fermenter outlet, the aggregating yeast rapidly aggregates and settles by gravity, the bottom Cells are pumped to the fermentor and the upper supernatant is sent to the next fermentor or to the ethanol collection unit.

本発明の実施例は、Saccharomyces diastaticus LORRE-316 酵母菌(それはすでに2012年1月19日に中華人民共和国典型培養物保藏中心(CHINA CENTER FOR TYPE CULTURE COLLECTION (CCTCC))に寄託され、その寄託コードはCCTCC M 2012010である。)を使用しているが、本発明の実施上はこのような凝集酵母菌に局限されるわけではなく、凝集性を有するエタノール生産酵母菌であれば、いずれも応用可能である。   An example of the present invention was deposited with the Saccharomyces diastaticus LORRE-316 yeast (which was already deposited on 19 January 2012 in China's CHINA CENTER FOR TYPE CULTURE COLLECTION (CCTCC)) and its deposit code Is CCTCC M 2012010), but is not limited to such an aggregating yeast in the practice of the present invention, and any ethanol-producing yeast having an aggregating property can be applied. Is possible.

本発明の実施例で使用する発酵方法は、図1に示されるように、二組の発酵槽を例として使用している。図1の発酵システム1中、原料は、原料槽14より第1スイッチ181を通り第1発酵槽121に進入し、さらに第2スイッチ182より第1細胞沈降器131に進入し、第1細胞沈降器131中で、菌体は凝集し並びに重力により沈降し、第1細胞沈降器131の底部に酵母菌細胞をため、さらに、第4スイッチ184より該第1発酵槽121に流し戻す。このほか、第1細胞沈降器131中、上澄液である発酵液は、第5スイッチ185より第2発酵槽122に流入し、さらに第6スイッチ186より第2細胞沈降器132に進入し、第2細胞沈降器132中で、菌体は凝集し並びに重力により沈降し、第2細胞沈降器132の底部に酵母菌細胞をため、さらに第7スイッチ187より第2発酵槽122に戻す。このほか、第2細胞沈降器132中の上澄液である発酵液は、第8スイッチ188よりエタノール収集ユニット15に流入する。   The fermentation method used in the examples of the present invention uses two sets of fermenters as an example, as shown in FIG. In the fermentation system 1 of FIG. 1, the raw material enters the first fermenter 121 from the raw material tank 14 through the first switch 181, and further enters the first cell sedimentator 131 from the second switch 182, thereby first cell sedimentation. In the vessel 131, the bacterial cells aggregate and settle by gravity, and the yeast cells are stored at the bottom of the first cell sedimentator 131, and then flowed back to the first fermenter 121 through the fourth switch 184. In addition, in the first cell sedimentator 131, the fermentation broth, which is the supernatant, flows into the second fermenter 122 from the fifth switch 185, and further enters the second cell sedimentator 132 from the sixth switch 186, In the second cell sedimentator 132, the bacterial cells aggregate and settle by gravity. The yeast cells are stored at the bottom of the second cell sedimentator 132 and then returned to the second fermenter 122 from the seventh switch 187. In addition, the fermentation broth, which is the supernatant in the second cell sedimentator 132, flows into the ethanol collection unit 15 from the eighth switch 188.

そのうち、第1発酵槽121と第2発酵槽122の容量は5Lとされ、第1細胞沈降器131と第2細胞沈降器132は、直径4cmで高さ42.5cmの円柱型ガラス管とされる。このほか、第1発酵槽121と第2発酵槽122はそれぞれ通気装置に接続され、該通気装置は、ガス制御装置111とガス濾過装置112を包含し、第1発酵槽121と第2発酵槽122内にガスを通入する。該ガスは酸素含有ガスであり、空気或いは酸素ガスとされ得る。且つ第1発酵槽121と第2発酵槽122にコンピュータ17が接続され、該コンピュータ17により第1発酵槽121と第2発酵槽122内のpH値、温度及び酸素溶解量が制御され、そのうち、pH値は5〜6、常用発酵温度は摂氏30〜40度、通気量は1vvmとされる。   Among them, the first fermenter 121 and the second fermenter 122 have a capacity of 5 L, and the first cell sedimentator 131 and the second cell sedimentator 132 are cylindrical glass tubes having a diameter of 4 cm and a height of 42.5 cm. The In addition, the 1st fermenter 121 and the 2nd fermenter 122 are each connected to the aeration apparatus, and this aeration apparatus contains the gas control apparatus 111 and the gas filtration apparatus 112, and the 1st fermentation tank 121 and the 2nd fermentation tank. Gas is passed through 122. The gas is an oxygen-containing gas and can be air or oxygen gas. And the computer 17 is connected to the 1st fermenter 121 and the 2nd fermenter 122, The pH value, temperature, and oxygen dissolution amount in the 1st fermenter 121 and the 2nd fermenter 122 are controlled by this computer 17, Among them, The pH value is 5 to 6, the normal fermentation temperature is 30 to 40 degrees Celsius, and the aeration rate is 1 vvm.

第1発酵槽121の後の発酵槽が開始期に比較的高い基質濃度を有するようにして、発酵槽内の菌体濃度が比較的急速に高まるように、本発明では発酵初期に発酵槽と発酵槽の間の管線(図1中の第3スイッチ183で制御される管線)を開放するが、安定した連続操作期に入ると、この連通は原則的に閉じられる。これにより、発酵槽濃度を急速に安定させて連続操作期動作に入れるようにする。低濃度の糖類、たとえば80g/Lの蔗糖溶液をフィードする時、効果は比較的明かではないが、発明者は別の実施例(文中未表示)において、高濃度、たとえば150g/Lより高い濃度でフィードしたところ、あきらかに発酵槽の菌体濃度が連続操作期の濃度に達するまでの時間を短縮できた。   In the present invention, the fermenter after the first fermenter 121 has a relatively high substrate concentration at the start, and so that the bacterial cell concentration in the fermenter increases relatively rapidly. Although the pipeline between the fermenters (the pipeline controlled by the third switch 183 in FIG. 1) is opened, this communication is closed in principle when a stable continuous operation period is entered. As a result, the fermenter concentration is rapidly stabilized and put into a continuous operation period operation. When feeding low concentrations of sugars such as 80 g / L sucrose solution, the effect is relatively unclear, but in another embodiment (not shown in the text), the inventor has a high concentration such as higher than 150 g / L. As a result, the time until the cell concentration in the fermenter reached the concentration in the continuous operation period was clearly reduced.

[実施例1−1]
・二つの発酵槽を分離した発酵試験
本発明の実施例の二槽連続式菌体リサイクルモジュールの発酵システムは図1に示されるようである。80g/Lの蔗糖溶液を基質としてフィードし、発酵液組成は以下の表のようである。温度は摂氏35度、pH値は5、ガス制御装置111と気体濾過装置112で通入する空気流量は1vvm、攪拌器16の回転速度は100rpmに設定して連続式菌体リサイクルの発酵を行う。

Figure 0005661673
菌体リサイクル比r=0.8及び希釈率D=0.42h-1で操作すると、8〜9時間で安定した連続発酵状態となり、且つ二槽の間の直接連通(すなわち図1中の第3スイッチ183)は遮断される。この時、第2発酵槽122内の細胞濃度は25.8g/Lで、出口エタノール濃度は37g/Lであり、残留蔗糖濃度は0.8g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は15.5gL-1h-1であった。エタノール生産率の定義は、エタノール生産率=希釈率(D)×出口エタノール濃度である。開始期より安定した連続発酵にいたるまでの、第2発酵槽122出口の細胞濃度、エタノール濃度、蔗糖濃度、ブドウ糖濃度、及び果糖濃度は時間の変化と共に、図2のようである。 [Example 1-1]
-Fermentation test which isolate | separated two fermenters The fermentation system of the two tank continuous-type microbial cell recycling module of the Example of this invention is as FIG. 1 shows. An 80 g / L sucrose solution was fed as a substrate, and the composition of the fermentation broth is as shown in the following table. The temperature is 35 degrees Celsius, the pH value is 5, the flow rate of air passing through the gas control device 111 and the gas filtration device 112 is 1 vvm, the rotation speed of the stirrer 16 is set to 100 rpm, and fermentation of continuous bacterial cell recycling is performed. .
Figure 0005661673
When operated at a cell recycle ratio r = 0.8 and dilution rate D = 0.42 h −1 , a stable continuous fermentation state was achieved in 8 to 9 hours, and direct communication between the two tanks (that is, the first in FIG. 1) 3 switch 183) is cut off. At this time, the cell concentration in the second fermenter 122 is 25.8 g / L, the outlet ethanol concentration is 37 g / L, the residual sucrose concentration is 0.8 g / L, and there is no residual glucose and fructose. The ethanol production rate was 15.5 gL −1 h −1 . The definition of the ethanol production rate is ethanol production rate = dilution rate (D) × exit ethanol concentration. The cell concentration, ethanol concentration, sucrose concentration, glucose concentration, and fructose concentration at the outlet of the second fermentor 122 from the start to the stable continuous fermentation are as shown in FIG.

[実施例1−2]
・二つの発酵槽を分離し且つ希釈率を高めた発酵試験
二組の5L発酵槽と二組の細胞沈降器を直列接続して細胞リサイクル発酵させ、発酵液組成及び発酵条件は実施例1−1と同じとする。
菌体リサイクル比r=0.8及び希釈率D=0.48h-1で操作すると、10時間で安定した連続発酵状態となり、且つ二槽の間の直接連通(すなわち図1中の第3スイッチ183)は遮断される。この時、第2発酵槽122内の細胞濃度は25−26g/を維持し、出口エタノール濃度は37.5g/Lであり、残留蔗糖濃度は2.6g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は18.0gL-1h-1であった。
[Example 1-2]
Fermentation test in which two fermenters were separated and the dilution rate was increased. Two sets of 5 L fermenters and two sets of cell sedimentators were connected in series for cell recycle fermentation. Same as 1.
When operated at a cell recycle ratio r = 0.8 and dilution rate D = 0.48 h −1 , a stable continuous fermentation state was obtained in 10 hours, and direct communication between the two tanks (ie, the third switch in FIG. 1). 183) is blocked. At this time, the cell concentration in the second fermentor 122 is maintained at 25-26 g / L, the outlet ethanol concentration is 37.5 g / L, the residual sucrose concentration is 2.6 g / L, and glucose and fructose remain. The ethanol production rate was 18.0 gL −1 h −1 .

[実施例1−3]
・実施例1−2の二つの発酵槽を連通させた対照試験
二組の5L発酵槽と二組の細胞沈降器を直列接続して細胞リサイクル発酵させ、発酵液組成及び発酵条件は実施例1−1と同じとする。
菌体リサイクル比r=0.8及び希釈率D=0.48h-1で操作すると、10時間で安定した連続発酵状態となり、且つ二槽の間の直接連通(すなわち図1中の第3スイッチ183)は開放される。この時、第2発酵槽122内の細胞濃度は30g/であり、出口エタノール濃度は37g/Lであり、残留蔗糖濃度は6.7g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は17.8gL-1h-1であった。
[Example 1-3]
-Control test in which the two fermenters of Example 1-2 were communicated. Two sets of 5L fermenters and two sets of cell sedimentators were connected in series to ferment cell recycle. Same as -1.
When operated at a cell recycle ratio r = 0.8 and dilution rate D = 0.48 h −1 , a stable continuous fermentation state was obtained in 10 hours, and direct communication between the two tanks (ie, the third switch in FIG. 1). 183) is opened. At this time, the cell concentration in the second fermenter 122 is 30 g / L, the outlet ethanol concentration is 37 g / L, the residual sucrose concentration is 6.7 g / L, there is no residual glucose and fructose, and ethanol production The rate was 17.8 gL −1 h −1 .

[実施例2−1]
・二つの発酵槽を連通させた発酵試験
二組の5L発酵槽と二組の細胞沈降器を直列接続して細胞リサイクル発酵させ、発酵液組成及び発酵条件は実施例1−1と同じとする。
第1発酵槽の後の発酵槽が、開始期に比較的高い基質濃度を有して、発酵槽内の菌体濃度が比較的急速に高まるように、第1発酵槽121と第2発酵槽122の間を直通させる第3スイッチ183は開くが、安定した連続操作期に入ると、この連通は原則的に閉じる。
菌体リサイクル比r=0.8及び希釈率D=0.36h-1で操作すると、10時間で安定した連続発酵状態となる。この時、第2発酵槽122内の細胞濃度は30g/であり、出口エタノール濃度は36g/Lであり、残留蔗糖濃度は1.3g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は13.3gL-1h-1であった。
[Example 2-1]
・ Fermentation test in which two fermenters were in communication Two sets of 5L fermenters and two sets of cell sedimentators were connected in series for cell recycle fermentation, and the composition of the fermentation liquor and fermentation conditions were the same as in Example 1-1. .
The first fermenter 121 and the second fermenter so that the fermenter after the first fermenter has a relatively high substrate concentration at the start, and the bacterial cell concentration in the fermenter increases relatively rapidly. The third switch 183 that directly connects between the 122 is opened, but this communication is closed in principle when a stable continuous operation period is entered.
When operated at a cell recycle ratio r = 0.8 and dilution rate D = 0.36 h −1 , a stable continuous fermentation state is achieved in 10 hours. At this time, the cell concentration in the second fermenter 122 is 30 g / L, the outlet ethanol concentration is 36 g / L, the residual sucrose concentration is 1.3 g / L, there is no glucose and fructose residue, and ethanol production The rate was 13.3 gL −1 h −1 .

[実施例2−2]
・二つの発酵槽を連通させ並びに菌体リサイクル比を高めた発酵試験
二組の5L発酵槽と二組の細胞沈降器を直列接続して細胞リサイクル発酵させ、発酵液組成及び発酵条件は実施例1−1と同じとする。
菌体リサイクル比r=0.9及び希釈率D=0.36h-1で操作すると、10時間で安定した連続発酵状態となるが、二つの発酵槽の間の直接連通(第3スイッチ183)は開放されている。このとき、第2発酵槽122内の細胞濃度は32.3g/Lであり、出口エタノール濃度は38.3g/Lであり、残留蔗糖濃度は0.62g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は13.8gL-1h-1であった。
[Example 2-2]
・ Fermentation test in which two fermenters were connected and the cell recycling ratio was increased. Two sets of 5L fermenters and two sets of cell sedimentators were connected in series for cell recycle fermentation. Same as 1-1.
When operated at a cell recycling ratio r = 0.9 and dilution rate D = 0.36 h −1 , a stable continuous fermentation state is obtained in 10 hours, but direct communication between the two fermenters (third switch 183) Is open. At this time, the cell concentration in the second fermenter 122 is 32.3 g / L, the outlet ethanol concentration is 38.3 g / L, the residual sucrose concentration is 0.62 g / L, and glucose and fructose remain. rather, ethanol production rate was 13.8gL -1 h -1.

[実施例3]
・蔗糖濃度を高めた発酵試験
二組の5L発酵槽と二組の細胞沈降器を直列接続して細胞リサイクル発酵させ、発酵液組成及び発酵条件は実施例1−1と同じとするが、ただし発酵液組成中の蔗糖濃度は160g/Lとする。
菌体リサイクル比r=0.9及び希釈率D=0.2h-1で操作すると、15時間で安定した連続発酵状態となるが、二つの発酵槽の間の直接連通(第3スイッチ183)は開放されている。このとき、第2発酵槽122内の細胞濃度は40g/であり、出口エタノール濃度は72g/Lであり、残留蔗糖濃度は0.92g/Lであり、ブドウ糖及び果糖の残留はなく、エタノール生産率は14.4gL-1h-1であった。
[Example 3]
-Fermentation test with increased sucrose concentration Two sets of 5L fermenters and two sets of cell sedimentators were connected in series for cell recycle fermentation, and the composition of fermentation broth and fermentation conditions were the same as in Example 1-1, except that The sucrose concentration in the fermentation broth composition is 160 g / L.
When operated at a cell recycling ratio r = 0.9 and dilution rate D = 0.2 h −1 , a stable continuous fermentation state is achieved in 15 hours, but direct communication between the two fermenters (third switch 183) Is open. At this time, the cell concentration in the second fermenter 122 is 40 g / L, the outlet ethanol concentration is 72 g / L, the residual sucrose concentration is 0.92 g / L, there is no residual glucose and fructose, and ethanol production The rate was 14.4 gL −1 h −1 .

上述の実施例から分かるように、本発明の多槽式菌体リサイクル発酵方式エタノール連続生産システムは、基質及び製品の抑制作用を低減することができ、前の発酵槽製品(エタノール)濃度が低くこのため製品抑制作用は小さく、後の発酵槽基質(糖類)濃度は低く、基質抑制作用が小さい。且つ本発明の方法は糖類原料の制限を受けず、直接サトウキビの絞り汁(濃度約80g/L)を発酵させてエタノールを得られ、並びにエタノール生産率を高め、比較的高いエタノール生産率を得るために予め糖類原料を濃縮しておく必要がない。   As can be seen from the above examples, the multi-tank cell recycle fermentation ethanol continuous production system of the present invention can reduce the inhibitory action of the substrate and product, and the previous fermenter product (ethanol) concentration is low. For this reason, the product inhibitory action is small, the subsequent fermenter substrate (saccharide) concentration is low, and the substrate inhibitory action is small. In addition, the method of the present invention is not limited by the sugar raw material, and can be obtained by directly fermenting sugarcane juice (concentration of about 80 g / L) to obtain ethanol, as well as increasing the ethanol production rate and obtaining a relatively high ethanol production rate. Therefore, it is not necessary to concentrate the saccharide raw material in advance.

このほか、本発明の方法は、高希釈率下で操作でき、高希釈率により雑菌の生長を防止し、システムの安定度を維持できる長所がある。連続発酵製造のエタノールの生産効率に影響を与える因子は、糖類濃度のほか、希釈率が主要な因子となるが、連続発酵が安定状態に達する時、希釈率は発酵槽内の菌体の生長速度に等しくなり、ゆえに比較的低い希釈率が比較的容易に達成され、フィードされた糖類が完全に消化され残留する糖の存在がなくなる。   In addition, the method of the present invention has the advantages that it can be operated at a high dilution rate, prevents the growth of bacteria by the high dilution rate, and maintains the stability of the system. Factors affecting the production efficiency of ethanol in continuous fermentation production are not only the sugar concentration but also the dilution rate, but when continuous fermentation reaches a stable state, the dilution rate is the growth rate of the cells in the fermenter. Equal to the speed, and therefore a relatively low dilution ratio is achieved relatively easily, the fed sugars are completely digested and no residual sugar is present.

総合すると、本発明は十分に細胞リサイクルと多槽直列の連続操作の長所の相乗作用を十分に利用し、従来とは異なるエタノール発酵プロセスを提供し、本発明の方法は糖類原料の制限を受けず、また、高希釈率下で操作でき、製造コストを節約でき、雑菌生長を防止しシステムが安定する等の長所を有する。   Taken together, the present invention fully utilizes the synergistic effect of cell recycling and continuous operation in a multi-tank series, provides an ethanol fermentation process different from the conventional one, and the method of the present invention is limited by saccharide raw materials. In addition, it can be operated at a high dilution rate, saves manufacturing costs, prevents the growth of germs, and stabilizes the system.

1 発酵システム
111 ガス制御装置
112 気体濾過装置
121 第1発酵槽
122 第2発酵槽
131 第1細胞沈降器
132 第2細胞沈降器
14 原料槽
15 エタノール収集ユニット
16 攪拌器
17 コンピュータ
181 第1スイッチ
182 第2スイッチ
183 第3スイッチ
184 第4スイッチ
185 第5スイッチ
186 第6スイッチ
187 第7スイッチ
188 第8スイッチ
DESCRIPTION OF SYMBOLS 1 Fermentation system 111 Gas control apparatus 112 Gas filtration apparatus 121 1st fermentation tank 122 2nd fermentation tank 131 1st cell sedimentator 132 2nd cell sedimentator 14 Raw material tank 15 Ethanol collection unit 16 Stirrer 17 Computer 181 1st switch 182 2nd switch 183 3rd switch 184 4th switch 185 5th switch 186 6th switch 187 7th switch 188 8th switch

Claims (11)

多槽式菌体リサイクル発酵方式エタノール連続生産方法において、
(a)糖類、窒素源、鉱物質、及びビタミンで組成した混合液である原料を提供するステップ、
(b)事前に凝集酵母菌を接種しておいた第1発酵エリアに該原料を高希釈率でフィードするステップ、
(c)該原料を発酵させて発酵液を生成し、該発酵液と該凝集酵母菌を該第1発酵エリアより第1細胞沈降エリアにオーバーフローさせ、並びに該凝集酵母菌を、該第1細胞沈降エリアより該第1発酵エリアに戻すステップ、
(d)ステップ(c)の該発酵液を該原料とし、少なくとも一つの第2発酵エリアと少なくとも一つの第2細胞沈降エリアを利用し、そのうち該第2発酵エリアに該凝集酵母菌を接種し、重複してステップ(b)とステップ(c)を少なくとも一回以上、該発酵液中のエタノール生産率が毎時間13g/Lを超過するまで繰り返すステップ、
以上を包含し、
そのうち、ステップ(b)の高希釈率は0.25〜0.48h-1であり、残留糖濃度は1g/L以下であり、且つ該凝集酵母菌はSaccharomyces diastaticus LORRE-316 とし、その寄託コードは CCTCC M2012010であり、該第1発酵エリアと該第2発酵エリアの間は、安定発酵状態に至るまでは連通状態とすることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産方法。
In the multi-tank cell recycle fermentation method ethanol continuous production method,
(A) providing a raw material which is a mixed liquid composed of sugars, nitrogen source, mineral substance, and vitamin;
(B) a step of feeding the raw material at a high dilution rate to the first fermentation area that has been previously inoculated with the flocculating yeast;
(C) fermenting the raw material to produce a fermentation broth, overflowing the fermentation broth and the aggregated yeast from the first fermentation area to the first cell sedimentation area, and Returning from the sedimentation area to the first fermentation area;
(D) Using the fermentation broth of step (c) as the raw material, using at least one second fermentation area and at least one second cell sedimentation area, inoculating the second fermentation area with the aggregated yeast. Repeating the steps (b) and (c) at least once, until the ethanol production rate in the fermentation liquid exceeds 13 g / L per hour,
Including the above,
Among them, the high dilution ratio in step (b) is 0.25 to 0.48 h −1 , the residual sugar concentration is 1 g / L or less, and the flocculating yeast is Saccharomyces diastaticus LORRE-316, and its deposit code Is a CCTCC M2012010 , wherein the first fermentation area and the second fermentation area are in a state of communication until a stable fermentation state is reached. .
請求項1記載の多槽式菌体リサイクル発酵方式エタノール連続生産方法において、該糖類は蔗糖、ブドウ糖、果糖或いはそれらの任意の組合せとすることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産方法。   The multi-tank cell recycle fermentation ethanol method according to claim 1, wherein the saccharide is sucrose, glucose, fructose or any combination thereof. Continuous production method. 請求項1又は請求項2記載の多槽式菌体リサイクル発酵方式エタノール連続生産方法において、サトウキビの絞り汁を糖類ソースとし、該サトウキビの絞り汁の濃度は60g −100g/L とすることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産方法。   3. The multi-tank cell recycle fermentation method ethanol continuous production method according to claim 1 or 2, wherein sugarcane juice is used as a saccharide source, and the concentration of the sugarcane juice is 60 g-100 g / L. A multi-tank cell recycle fermentation method ethanol continuous production method. 請求項1記載の多槽式菌体リサイクル発酵方式エタノール連続生産方法において、該第1発酵エリアと該第2発酵エリアに酸素含有ガスを通入し、これら発酵エリア内の温度は摂氏30−40度とし、pH値は5−6とすることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産方法。   The multi-tank cell recycle fermentation ethanol continuous production method according to claim 1, wherein an oxygen-containing gas is introduced into the first fermentation area and the second fermentation area, and the temperature in these fermentation areas is 30-40 degrees Celsius. The multi-tank cell recycle fermentation method ethanol continuous production method, wherein the pH value is 5-6. 多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、
原料を保存し、該原料は、糖類、窒素源、ミネラル及びビタミンで組成された混合液である原料を保存する、原料槽と、
該原料槽に連通し、且つ該原料が高希釈率でフィードされ、並びに発酵液を生成し、凝集酵母菌が接種されると共に、酸素含有ガスが通入される、第1発酵槽と、
該第1発酵槽に連通し、該第1発酵槽よりオーバーフローした該発酵液と該凝集酵母菌が流入し、且つ該凝集酵母菌を該第1発酵槽に流し戻す、第1細胞沈降器と、
該第1細胞沈降器に連通し、該第1細胞沈降器より該発酵液が流入し、該凝集酵母菌が接種され且つ酸素含有ガスが通入される、少なくとも一つの第2発酵槽と、
該第2発酵槽に連通し、該第2発酵槽よりオーバーフローした該発酵液と該凝集酵母菌が流入し、該凝集酵母菌を該第2発酵槽に流し戻す、少なくとも一つの第2細胞沈降器と、
該第1発酵槽と該第2発酵槽を接続する連通管と、
を包含し、該高希釈率は0.25〜0.48h-1であり、残留糖濃度は1g/L以下であり、且つ該凝集酵母菌はSaccharomyces diastaticus LORRE-316 とし、その寄託コードは CCTCC M2012010であり、且つ該第2細胞沈降器の該発酵液中のエタノール生産率が毎時13g/Lを超過する時、該第2細胞沈降器内の該発酵液はエタノール収集ユニットに収集されることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。
In the multi-tank cell recycle fermentation method ethanol continuous production system,
A raw material tank for storing the raw material, the raw material storing a raw material which is a mixed liquid composed of sugars, nitrogen source, mineral and vitamin;
A first fermentor that communicates with the raw material tank and that feeds the raw material at a high dilution rate, produces a fermentation liquor, is inoculated with flocculated yeast, and is fed with an oxygen-containing gas;
A first cell sedimentator that communicates with the first fermenter, the fermented liquid overflowing from the first fermentor and the flocculating yeast, and flows the flocculated yeast back into the first fermentor; ,
At least one second fermentor that communicates with the first cell sedimentator, into which the fermentation broth flows from the first cell sedimentator, inoculated with the flocculent yeast, and into which oxygen-containing gas is introduced;
At least one second cell sedimentation that communicates with the second fermenter, the fermented liquid overflowing from the second fermenter and the flocculating yeast flow in, and flows the flocculated yeast back into the second fermenter. And
A communication pipe connecting the first fermentor and the second fermentor;
The high dilution ratio is 0.25 to 0.48 h −1 , the residual sugar concentration is 1 g / L or less, and the flocculating yeast is Saccharomyces diastaticus LORRE-316, and the deposit code is CCTCC When the ethanol production rate of the second cell sedimentator in the fermentation broth exceeds 13 g / L per hour, the fermentation broth in the second cell sedimentator is collected in the ethanol collection unit. A multi-tank cell recycle fermentation system ethanol continuous production system.
請求項5記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、該糖類は蔗糖、ブドウ糖、果糖或いはそれらの任意の組合せとされることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell recycle fermentation system according to claim 5, wherein the saccharide is sucrose, glucose, fructose or any combination thereof. Ethanol continuous production system. 請求項5又は請求項6記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、サトウキビの絞り汁が糖類ソースとされ、該サトウキビの絞り汁の濃度は60g −100g/L とされることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell recycle fermentation ethanol continuous production system according to claim 5 or 6, wherein sugarcane juice is used as a saccharide source, and the concentration of sugarcane juice is 60 g-100 g / L. A multi-tank cell recycle fermentation system ethanol continuous production system. 請求項5記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、該第1細胞沈降器と該第2細胞沈降器はいずれも直立式容器とされることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell recycle fermentation method ethanol continuous production system according to claim 5, wherein both the first cell sedimentator and the second cell sedimentator are upright containers. Bacteria recycle fermentation ethanol continuous production system. 請求項5記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、該連通管はスイッチを具えたことを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell recycle fermentation fermentation ethanol continuous production system according to claim 5, wherein the communication pipe includes a switch. 請求項5記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、該第1発酵槽と該第2発酵槽に接続された通気装置を包含することを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell microbial cell recycle fermentation method ethanol continuous production system according to claim 5, comprising a venting device connected to the first fermenter and the second fermenter. Recycle fermentation ethanol continuous production system. 請求項10記載の多槽式菌体リサイクル発酵方式エタノール連続生産システムにおいて、該通気装置は酸素含有ガスを該第1発酵槽と該第2発酵槽に通入し、且つこれら発酵槽内の温度は摂氏30−40度とされ、pH値は5−6とされることを特徴とする、多槽式菌体リサイクル発酵方式エタノール連続生産システム。   The multi-tank cell recycle fermentation ethanol continuous production system according to claim 10, wherein the aeration apparatus passes an oxygen-containing gas into the first fermentation tank and the second fermentation tank, and the temperature in the fermentation tank. Is a multi-tank cell recycle fermentation fermentation ethanol continuous production system, characterized in that the temperature is 30-40 degrees Celsius and the pH value is 5-6.
JP2012073277A 2011-10-20 2012-03-28 Multi-tank cell recycle fermentation method ethanol continuous production method Active JP5661673B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100138062A TWI432572B (en) 2011-10-20 2011-10-20 A method for continuously producing ethanol with a cell recycling multi-tank system
TW100138062 2011-10-20

Publications (2)

Publication Number Publication Date
JP2013085552A JP2013085552A (en) 2013-05-13
JP5661673B2 true JP5661673B2 (en) 2015-01-28

Family

ID=48530142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073277A Active JP5661673B2 (en) 2011-10-20 2012-03-28 Multi-tank cell recycle fermentation method ethanol continuous production method

Country Status (2)

Country Link
JP (1) JP5661673B2 (en)
TW (1) TWI432572B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014156998A1 (en) * 2013-03-28 2017-02-16 旭硝子株式会社 Chemical product manufacturing method and manufacturing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179488A (en) * 1990-11-09 1992-06-26 Agency Of Ind Science & Technol Continuous method for fermenting alcohol using agglutinative microorganism
JP2500353B2 (en) * 1993-04-01 1996-05-29 通商産業省基礎産業局長 Continuous alcohol production method for recycling flocculent microorganisms

Also Published As

Publication number Publication date
TWI432572B (en) 2014-04-01
JP2013085552A (en) 2013-05-13
TW201317344A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
Zabed et al. Bioethanol production from fermentable sugar juice
Domínguez-Bocanegra et al. Production of bioethanol from agro-industrial wastes
US9068202B2 (en) Fermentation process
Thatoi et al. Bioethanol production from tuber crops using fermentation technology: a review
US7449313B2 (en) Systems and processes for cellulosic ethanol production
Xu et al. Continuous ethanol production using self-flocculating yeast in a cascade of fermentors
CN100478445C (en) Circulation production process for alcohol with potatoes as main materials
CN102719371B (en) Clostridium beijerinckii and method for preparing biological butanol through fermentation of xylose residue serving as raw material thereof
CN101638673B (en) Method for manufacturing alcohol by utilizing fermentation of plant straws
Singh et al. Development of sequential-co-culture system (Pichia stipitis and Zymomonas mobilis) for bioethanol production from Kans grass biomass
KR20110139236A (en) Methods of sustaining culture viability
WO2010072093A1 (en) Method for producing cellulosic ethanol
US20080085536A1 (en) Production of Cellulose in Halophilic Photosynthetic Prokaryotes (Cyanobacteria)
US20140154755A1 (en) Fermentation process
US9783835B2 (en) Method for producing a lipid in a fermentation process
Smachetti et al. Microalgal biomass as an alternative source of sugars for the production of bioethanol
CN103421850A (en) Method used for producing bioethanol with Scenedesmusabundans
JP5845484B2 (en) Novel yeast and method for producing ethanol using the same
JP5661673B2 (en) Multi-tank cell recycle fermentation method ethanol continuous production method
CN111575322B (en) Method for producing medium-chain fatty acid by taking sugar-containing wastewater as raw material without electron donor
CN108410912B (en) Method for directly preparing butanol by using starch-containing waste
CN102154128B (en) Pichia anomala strain capable of directly preparing xylose into alcohol
CN101081990B (en) Preparation method of biological diesel fuel
KR20130046382A (en) Continuous fermentation divice and multi-step continuous fermentation process using the same
Kamarudin et al. AT-303: COMPARISON OF SAGO AND SWEET SORGHUM FOR ETHANOL PRODUCTION USING SACCHAROMYCES CEREVISIAE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250