JP5659003B2 - adhesive - Google Patents

adhesive Download PDF

Info

Publication number
JP5659003B2
JP5659003B2 JP2010288065A JP2010288065A JP5659003B2 JP 5659003 B2 JP5659003 B2 JP 5659003B2 JP 2010288065 A JP2010288065 A JP 2010288065A JP 2010288065 A JP2010288065 A JP 2010288065A JP 5659003 B2 JP5659003 B2 JP 5659003B2
Authority
JP
Japan
Prior art keywords
adhesive
superparamagnetic particles
superparamagnetic
magnetic field
tau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010288065A
Other languages
Japanese (ja)
Other versions
JP2012136565A5 (en
JP2012136565A (en
Inventor
貴幸 八田
貴幸 八田
里美 藤岡
里美 藤岡
泰丈 廣田
泰丈 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferrotec Corp
Original Assignee
Ferrotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ferrotec Corp filed Critical Ferrotec Corp
Priority to JP2010288065A priority Critical patent/JP5659003B2/en
Publication of JP2012136565A publication Critical patent/JP2012136565A/en
Publication of JP2012136565A5 publication Critical patent/JP2012136565A5/ja
Application granted granted Critical
Publication of JP5659003B2 publication Critical patent/JP5659003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、接着剤に関する。   The present invention relates to an adhesive.

近年、微細な隙間に速やかに浸透できるように構成された接着剤として、特定の成分構成からなる接着剤が提案されている(特許文献1参照)。   In recent years, an adhesive having a specific component configuration has been proposed as an adhesive configured to be able to quickly penetrate into a minute gap (see Patent Document 1).

特開2004−263048号JP 2004-263048 A

しかし、上記接着剤においては、微細な隙間への浸透を実現するために、反応性希釈剤を配合して粘度を下げることで浸透性を向上させているため(先行技術文献1の段落0016)、接着対象の位置関係によっては、重力により接着剤自体が流れる『液だれ』が発生してしまい、接着対象を適切な位置関係で接着できなくなったり、接着対象周辺の美観を損ねてしまったりする恐れがある。   However, in the above adhesive, in order to achieve penetration into fine gaps, the permeability is improved by blending a reactive diluent to lower the viscosity (paragraph 0016 of Prior Art Document 1). Depending on the positional relationship of the bonding target, gravity may cause a “drip” that causes the adhesive itself to flow, making it impossible to bond the bonding target in an appropriate positional relationship or detracting from the beauty of the area around the bonding target. There is a fear.

本発明は、このような課題を解決するためになされたものであり、その目的は、接着対象を適切な位置関係で接着できなくなったり、接着対象周辺の美観を損ねてしまったりすることを防止するための技術を提供することである。   The present invention has been made to solve such a problem, and its purpose is to prevent the object to be bonded from being bonded in an appropriate positional relationship, or to impair the beauty of the periphery of the object to be bonded. Is to provide technology to

上記課題を解決するため第1の構成は、複数の超常磁性粒子それぞれを基材中に分散させてなる接着剤であって、前記超常磁性粒子それぞれは、少なくとも、該超常磁性粒子におけるニール緩和時間τnが、あらかじめ定められた交流磁界の周期Tよりも短くなる(τn<T)ように定められた粒径で形成されている。
The first configuration for solving the above problems, a plurality of superparamagnetic particles an adhesive obtained by dispersing in the substrate, wherein each superparamagnetic particles, at least, Neil relaxation in ultra paramagnetic particles The time τn is formed with a particle size determined so as to be shorter than a predetermined period T of the alternating magnetic field (τn <T).

このように構成された接着剤では、超常磁性粒子それぞれが分散されているため、接着に際して外部から磁場を印加することで、接着剤そのものを磁場が印加されている領域に保持させておいたり、磁場が印加されている領域を変位させることで接着剤そのものを移動させたりすることができる。   In the adhesive configured in this way, since the superparamagnetic particles are dispersed, by applying a magnetic field from the outside during bonding, the adhesive itself can be held in the region where the magnetic field is applied, The adhesive itself can be moved by displacing the region to which the magnetic field is applied.

これにより、微細な隙間に浸透できるように接着剤としての粘度を下げたとしても、接着時に外部から磁場を印加しておくことで、重力により接着剤自体が流れる『液だれ』を防止できるため、接着対象を適切な位置関係で接着できなくなったり、接着対象周辺の美観を損ねてしまったりするといったことを防止できる。   As a result, even if the viscosity of the adhesive is lowered so that it can penetrate into fine gaps, it is possible to prevent “drip” from flowing due to gravity by applying a magnetic field from the outside during bonding. It is possible to prevent the adhesion target from being unable to be adhered in an appropriate positional relationship, and the appearance around the adhesion target being impaired.

また、接着剤そのものを磁場が印加されている領域と共に移動させることができるため、微細な隙間において接着剤を浸透させるべき方向に磁場を印加することにより、その浸透をより適切かつ迅速に行うことができる。   In addition, since the adhesive itself can be moved together with the region where the magnetic field is applied, the penetration can be performed more appropriately and quickly by applying the magnetic field in the direction in which the adhesive should penetrate in the minute gap. Can do.

さらに、上記構成では、超常磁性粒子それぞれが分散されているため、接着剤として硬化した以降、超常磁性粒子自体の変位、つまりブラウン機構による磁化および消磁が制限される。そのため、超常磁性粒子の磁気応答は、粒子に内在する磁気モーメントの変位、つまりニール機構による磁化および消磁に依存する。   Further, in the above configuration, since the superparamagnetic particles are dispersed, after the curing as an adhesive, the displacement of the superparamagnetic particles themselves, that is, the magnetization and demagnetization by the Brownian mechanism are limited. Therefore, the magnetic response of superparamagnetic particles depends on the displacement of the magnetic moment inherent in the particles, that is, the magnetization and demagnetization by the Neil mechanism.

このとき、ニール機構により磁化および消磁するのに要する時間(緩和時間)τは、超常磁性粒子の粒径に応じて遅くなるが、超常磁性粒子それぞれは、少なくとも超常磁性粒子におけるニール緩和時間τnが、あらかじめ定められた交流磁界の周期Tよりも短くなる(τn<T)ように粒径が定められている。つまり、この交流磁界の周期Tが上記緩和時間τよりも短くなることはなく、この周期Tに磁気応答が追いつかなくなることがないため、結果的に磁気ヒステリシスを生じることはない。   At this time, the time (relaxation time) τ required for magnetization and demagnetization by the Neil mechanism is delayed according to the particle size of the superparamagnetic particles, but each superparamagnetic particle has at least the Neil relaxation time τn in the superparamagnetic particles. The particle diameter is determined so as to be shorter than the predetermined period T of the alternating magnetic field (τn <T). That is, the period T of the AC magnetic field does not become shorter than the relaxation time τ, and the magnetic response does not catch up with the period T, so that magnetic hysteresis does not occur as a result.

よって、接着対象が所定の磁場環境下で使用されるものである場合には、その交流磁界の周期Tに応じて粒径を決定しておくことで、磁気ヒステリシスが生じなくなり、外部に影響を及ぼすような磁束を発生することがない。つまり、上記接着剤であれば、磁場環境下で使用される接着対象であっても使用することができるという点で汎用性が高い。   Therefore, when the object to be bonded is used in a predetermined magnetic field environment, by determining the particle size according to the period T of the alternating magnetic field, magnetic hysteresis does not occur and the outside is affected. No magnetic flux is generated. That is, if it is the said adhesive agent, even if it is the adhesion | attachment object used in a magnetic field environment, it is versatile at the point that it can be used.

また、上記構成において、前記超常磁性粒子それぞれは、第2の構成のように、該超常磁性粒子の表面に非磁性のコーティング層が形成されている、とよい。
この構成であれば、超常磁性粒子それぞれに非磁性のコーティング層が形成されているため、この超常磁性粒子それぞれを基材中に分散させた際の両者の親和性を高めることができ、これにより、超常磁性粒子それぞれの位置関係を適切に維持することができる。
In the above structure, wherein each superparamagnetic particles, as in the second configuration, ultra-coating layer of non-magnetic surface of the paramagnetic particles are formed, and good.
In this configuration, since the non-magnetic coating layer is formed on each superparamagnetic particle, the affinity between the superparamagnetic particles can be increased when each superparamagnetic particle is dispersed in the substrate. The positional relationship between the superparamagnetic particles can be appropriately maintained.

超常磁性粒子における粒径と緩和時間との関係を示すグラフGraph showing the relationship between particle size and relaxation time in superparamagnetic particles 異なる温度、異方性定数における超常磁性粒子の粒径と緩和時間との関係を示すグラフGraph showing the relationship between the particle size and relaxation time of superparamagnetic particles at different temperatures and anisotropic constants

以下に本発明の実施形態を図面と共に説明する。
接着剤は、複数の超常磁性粒子それぞれを分散させてなるものであり、この超常磁性粒子それぞれの粒径は、磁気応答の速度に応じて定められている。
Embodiments of the present invention will be described below with reference to the drawings.
The adhesive is obtained by dispersing a plurality of superparamagnetic particles, and the particle diameter of each superparamagnetic particle is determined according to the speed of magnetic response.

磁気応答は、粒子そのものが反転するブラウン機構、および、粒子における磁気スピンが反転するニール機構それぞれによるものであり、図1に示すように、その速度は、ブラウン機構およびニール機構それぞれにおいて反転が起こる時間(緩和時間)τで決まる。   The magnetic response is due to the Brown mechanism in which the particle itself is inverted and the Neil mechanism in which the magnetic spin in the particle is inverted. As shown in FIG. 1, the speed is inverted in each of the Brown mechanism and the Neil mechanism. Determined by time (relaxation time) τ.

この緩和時間τは、超常磁性粒子の粒子直径dに応じて長くなるが、ニール機構による緩和時間τnの方が、ブラウン機構による緩和時間τbに比べて粒子直径による変動幅が大きく、一定の粒子直径dthを超えるまで緩和時間τbより小さいが、粒子直径dthを超えた以降、緩和時間τbより大きくなる。つまり、粒子直径dthを超えなければ、ブラウン機構よりもニール機構における磁気応答の方が速く、ニール機構による磁気応答が優勢になる一方、粒子直径dthを超えると、ブラウン機構よりもニール機構による磁気応答の方が遅くなり、ブラウン機構による磁気応答が優勢になる。
The relaxation time tau, is longer according to the particle element diameter d of the superparamagnetic particles, better relaxation time τn by Neil mechanism, large variation range by grain resonator diameter than the relaxation time τb Brownian mechanism relaxation time .tau.b smaller to greater than a certain particle stator diameter dth it is, after exceeding a particle element diameter dth, greater than the relaxation time .tau.b. In other words, does not exceed the particle element diameter dth, faster for the magnetic response in Neal mechanism than brown mechanism, while the magnetic response will dominate by Neil mechanism, it exceeds a particle element diameter dth, than brown mechanism The magnetic response by the Neil mechanism becomes slower and the magnetic response by the Brown mechanism becomes dominant.

また、ニール機構による緩和時間τnは、以下に示す式1により求められるものであり、定数(定数とみなせるものも含む)を除くと、温度T,異方性定数кおよび粒径Rに応じて決まる値になる。   Further, the relaxation time τn by the Neil mechanism is obtained by the following formula 1, and excluding constants (including those that can be regarded as constants), it depends on the temperature T, the anisotropic constant к, and the particle size R. It becomes a determined value.

図2に、この式1に基づき、複数の温度T(本実施形態では、―40℃(≒233K)、25℃(≒298K)、130℃(≒403K))それぞれにおける粒径Rに応じた緩和時間τnの変化を表したグラフ(同図(a))と、複数の異方性定数к(本実施形態では、30,41,50,60,70)それぞれにおける粒径Rに応じた緩和時間τnを表したグラフ(同図(b))と、を示す。なお、この例では、超常磁性粒子として酸化鉄系の材料を使用した場合における基準緩和時間τ0として10^(−9)secを使用している。 In FIG. 2, based on this equation 1, according to the particle size R at each of a plurality of temperatures T (in this embodiment, −40 ° C. (≈233 K), 25 ° C. (≈298 K), 130 ° C. (≈403 K)). Relaxation according to the particle size R in each of the graph (a) (a) showing the change in the relaxation time τn and a plurality of anisotropic constants к (30, 41, 50, 60, 70 in this embodiment). The graph (time figure (b)) showing time (tau) n is shown. In this example, 10 ^ (-9) sec is used as the reference relaxation time τ0 when an iron oxide-based material is used as the superparamagnetic particles.

このグラフをみると、温度Tが高くなるほど、または、異方性定数кが小さくなるほど、同じ粒径Rに対する磁気応答(周波数応答)の性能が悪化することが分かる。また、粒径Rがある程度小さい領域になると、温度Tおよび異方性定数кの違いによる影響が少なくなっているため、この領域の粒径Rを採用すれば、外部環境の温度Tや異方性定数кこれらファクターの影響を受けないようにすることができる。   From this graph, it can be seen that the higher the temperature T or the smaller the anisotropy constant к, the worse the performance of the magnetic response (frequency response) for the same particle size R. In addition, when the particle size R is in a region where the particle size R is small to some extent, the influence due to the difference in the temperature T and the anisotropy constant к is lessened. Sex constant к can be made unaffected by these factors.

このような特性に照らし、本実施形態では、少なくとも、超常磁性粒子におけるニール緩和時間τnが、接着対象が使用される環境下(つまり接着剤としての硬化後)で印加される交流磁界の周期Tよりも短くなる(τn<T)ように超常磁性粒子の粒径が定められている。   In light of such characteristics, in the present embodiment, at least the Neel relaxation time τn of the superparamagnetic particles is the period T of the alternating magnetic field applied in the environment in which the object to be bonded is used (that is, after curing as an adhesive). The diameter of the superparamagnetic particles is determined so as to be shorter (τn <T).

また、超常磁性粒子それぞれは、接着剤としての硬化後、ブラウン機構による変位が制限(本実施形態では、抑止)されるように保持され、それぞれが直接または間接的に密着することになる。ここでいう「間接的に密着」とは、超常磁性粒子表面に被膜を形成したり、何らかの媒体を介在させた状態での密着のことである。   Each of the superparamagnetic particles is held so that displacement by the Brownian mechanism is restricted (in this embodiment, suppressed) after being cured as an adhesive, and the superparamagnetic particles are directly or indirectly adhered to each other. Here, “indirect contact” refers to contact in a state where a film is formed on the surface of the superparamagnetic particle or some medium is interposed.

また、接着剤としての基材には、非磁性の部材として、例えば、エポキシ樹脂、アクリル樹脂、フェノール樹脂、クロロプレンゴム、ニトリルゴム、シアノアクリレート樹脂などが用いられる。   For the base material as an adhesive, for example, an epoxy resin, an acrylic resin, a phenol resin, a chloroprene rubber, a nitrile rubber, a cyanoacrylate resin, or the like is used as a nonmagnetic member.

なお、超常磁性粒子それぞれは、隣接する超常磁性粒子における超常磁性の特性を所定のしきい値以上損なってしまうことのない位置関係となっていればよく、その位置関係が維持される濃度を上限として基材中に分散さる。   Each superparamagnetic particle only needs to have a positional relationship that does not impair the superparamagnetic characteristics of adjacent superparamagnetic particles by more than a predetermined threshold, and the concentration at which the positional relationship is maintained is limited to an upper limit. As dispersed in the substrate.

こうして、超常磁性粒子を基材中に分散させる場合には、各超常磁性粒子の表面に非磁性のコーティング層を形成するなどの表面処理を施しておくことが、超常磁性粒子と基材との親和性を高めて安定的な分散を実現するために望ましい。このコーティング層としては、界面活性剤、酸化被膜、有機材料または非磁性の無機材料などを採用することが考えられる。   Thus, when the superparamagnetic particles are dispersed in the base material, surface treatment such as formation of a nonmagnetic coating layer on the surface of each superparamagnetic particle may be performed. Desirable to increase affinity and achieve stable dispersion. As this coating layer, it is conceivable to employ a surfactant, an oxide film, an organic material, a nonmagnetic inorganic material, or the like.

上記実施形態のような構成の接着剤では、超常磁性粒子それぞれが分散されているため、接着に際して外部から磁場を印加することで、接着剤そのものを磁場が印加されている領域に保持させておいたり、磁場が印加されている領域を変位させることで接着剤そのものを移動させたりすることができる。   Since the superparamagnetic particles are dispersed in the adhesive configured as in the above embodiment, the adhesive itself is held in the region where the magnetic field is applied by applying a magnetic field from the outside during bonding. Or the adhesive itself can be moved by displacing the region to which the magnetic field is applied.

これにより、微細な隙間に浸透できるように接着剤としての粘度を下げたとしても、接着時に外部から磁場を印加しておくことで、重力により接着剤自体が流れる『液だれ』を防止できるため、接着対象を適切な位置関係で接着できなくなったり、接着対象周辺の美観を損ねてしまったりするといったことを防止できる。   As a result, even if the viscosity of the adhesive is lowered so that it can penetrate into fine gaps, it is possible to prevent “drip” from flowing due to gravity by applying a magnetic field from the outside during bonding. It is possible to prevent the adhesion target from being unable to be adhered in an appropriate positional relationship, and the appearance around the adhesion target being impaired.

また、接着剤そのものを磁場が印加されている領域と共に移動させることができるため、微細な隙間において接着剤を浸透させるべき方向に磁場を印加することにより、その浸透をより適切かつ迅速に行うことができる。   In addition, since the adhesive itself can be moved together with the region where the magnetic field is applied, the penetration can be performed more appropriately and quickly by applying the magnetic field in the direction in which the adhesive should penetrate in the minute gap. Can do.

さらに、上記構成では、超常磁性粒子それぞれが分散されているため、接着剤として硬化した以降、超常磁性粒子自体の変位、つまりブラウン機構による磁化および消磁が制限される。そのため、超常磁性粒子の磁気応答は、粒子に内在する磁気モーメントの変位、つまりニール機構による磁化および消磁に依存する。   Further, in the above configuration, since the superparamagnetic particles are dispersed, after the curing as an adhesive, the displacement of the superparamagnetic particles themselves, that is, the magnetization and demagnetization by the Brownian mechanism are limited. Therefore, the magnetic response of superparamagnetic particles depends on the displacement of the magnetic moment inherent in the particles, that is, the magnetization and demagnetization by the Neil mechanism.

このとき、ニール機構により磁化および消磁するのに要する時間(緩和時間)τは、超常磁性粒子の粒径に応じて遅くなるが、超常磁性粒子それぞれは、少なくとも超常磁性粒子におけるニール緩和時間τnが、あらかじめ定められた交流磁界の周期Tよりも短くなる(τn<T)ように粒径が定められている。つまり、この交流磁界の周期Tが上記緩和時間τよりも短くなることはなく、この周期Tに磁気応答が追いつかなくなることがないため、結果的に磁気ヒステリシスを生じることはない。   At this time, the time (relaxation time) τ required for magnetization and demagnetization by the Neil mechanism is delayed according to the particle size of the superparamagnetic particles, but each superparamagnetic particle has at least the Neil relaxation time τn in the superparamagnetic particles. The particle diameter is determined so as to be shorter than the predetermined period T of the alternating magnetic field (τn <T). That is, the period T of the AC magnetic field does not become shorter than the relaxation time τ, and the magnetic response does not catch up with the period T, so that magnetic hysteresis does not occur as a result.

よって、接着対象が所定の磁場環境下で使用されるものである場合には、その交流磁界の周期Tに応じて粒径を決定しておくことで、磁気ヒステリシスが生じなくなり、外部に影響を及ぼすような磁束を発生することがない。つまり、上記接着剤であれば、磁場環境下で使用される接着対象であっても使用することができるという点で汎用性が高い。   Therefore, when the object to be bonded is used in a predetermined magnetic field environment, by determining the particle size according to the period T of the alternating magnetic field, magnetic hysteresis does not occur and the outside is affected. No magnetic flux is generated. That is, if it is the said adhesive agent, even if it is the adhesion | attachment object used in a magnetic field environment, it is versatile at the point that it can be used.

また、上記実施形態では、超常磁性粒子それぞれに非磁性のコーティング層が形成されているため、この超常磁性粒子それぞれを基材中に分散させた際の両者の親和性を高めることができ、これにより、超常磁性粒子それぞれの位置関係を適切に維持することができる。   Further, in the above embodiment, since the non-magnetic coating layer is formed on each superparamagnetic particle, the affinity between the superparamagnetic particles when dispersed in the substrate can be enhanced. Thus, the positional relationship between the superparamagnetic particles can be appropriately maintained.

Claims (4)

複数の超常磁性粒子それぞれを非磁性の基材中に分散させてなる接着剤であって、
前記超常磁性粒子それぞれは、当該接着剤による接着対象が使用される際に外部環境となる複数の温度のうち、最も磁気応答の性能が悪化する温度について、少なくとも、該温度における磁気応答の速度で規定されるニール緩和時間τnが、当該接着剤による接着対象が使用される磁場環境における交流磁界の周期Tよりも短くなる(τn<T)ように定められた粒子直径で形成されており、
当該接着剤として硬化した以降、前記超常磁性粒子それぞれのブラウン機構による変位が制限されるように保持される
ことを特徴とする接着剤。
An adhesive comprising a plurality of superparamagnetic particles dispersed in a non-magnetic base material,
Each of the superparamagnetic particles has a magnetic response performance at least at a temperature at which the performance of the magnetic response is most deteriorated among a plurality of temperatures that become an external environment when an object to be bonded by the adhesive is used. defined by Neal relaxation time .tau.n is, are formed in the shorter becomes (.tau.n <T) particle child diameter defined as than the period T of the alternating magnetic field in the magnetic field environment in which adhesion target by the adhesive is used ,
After being cured as the adhesive, the superparamagnetic particles are held so that the displacement due to the Brownian mechanism of each of the superparamagnetic particles is limited.
前記超常磁性粒子それぞれは、下記式1にて求められるニール緩和時間τnが、前記交流磁界の周期Tよりも短くなる(τn<T)ように選択された粒子直径で形成されている
ことを特徴とする請求項1に記載の接着剤。
Wherein each superparamagnetic particles, Neil relaxation time .tau.n obtained by the following equation 1, the shorter than the period T of the alternating magnetic field (.tau.n <T) selected to have formed in the particle element diameter as The adhesive according to claim 1.
前記超常磁性粒子それぞれは、隣接する超常磁性粒子における超常磁性の特性を所定のしきい値以上損なってしまう事のない位置関係が維持される濃度を上限として基材中に分散されている
ことを特徴とする請求項1または請求項2に記載の接着剤。
Each of the superparamagnetic particles is dispersed in the base material up to a concentration that maintains a positional relationship that does not impair the superparamagnetic properties of adjacent superparamagnetic particles beyond a predetermined threshold. The adhesive according to claim 1 or 2, wherein the adhesive is characterized.
前記超常磁性粒子それぞれは、該超常磁性粒子の表面に非磁性のコーティング層が形成されている
ことを特徴とする請求項1から3のいずれかに記載の接着剤。
The adhesive according to any one of claims 1 to 3, wherein each of the superparamagnetic particles has a nonmagnetic coating layer formed on a surface of the superparamagnetic particles.
JP2010288065A 2010-12-24 2010-12-24 adhesive Active JP5659003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288065A JP5659003B2 (en) 2010-12-24 2010-12-24 adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288065A JP5659003B2 (en) 2010-12-24 2010-12-24 adhesive

Publications (3)

Publication Number Publication Date
JP2012136565A JP2012136565A (en) 2012-07-19
JP2012136565A5 JP2012136565A5 (en) 2014-01-09
JP5659003B2 true JP5659003B2 (en) 2015-01-28

Family

ID=46674256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288065A Active JP5659003B2 (en) 2010-12-24 2010-12-24 adhesive

Country Status (1)

Country Link
JP (1) JP5659003B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233074A (en) * 1985-04-08 1986-10-17 Mazda Motor Corp Method of filling gap in bonding part of metallic plate
JPH03252108A (en) * 1990-02-28 1991-11-11 Tabuchi Denki Kk Magnetic fluid adhesive, manufacture and usage thereof and induction electromagnetic equipment
JP2515418B2 (en) * 1990-05-16 1996-07-10 松本油脂製薬株式会社 Polymerizable magnetic fluid
CA2158941A1 (en) * 1994-01-27 1995-08-03 Ciaran Bernard Mcardle Compositions and methods for providing anisotropic conductive pathways and bonds between two sets of conductors
DE10163399A1 (en) * 2001-12-21 2003-07-10 Sustech Gmbh & Co Kg Nanoparticulate preparation
US6936763B2 (en) * 2002-06-28 2005-08-30 Freescale Semiconductor, Inc. Magnetic shielding for electronic circuits which include magnetic materials
DE102006007564A1 (en) * 2006-02-16 2007-08-30 Röhm Gmbh Nanoscale superparamagnetic poly (meth) acrylate polymers
KR100882735B1 (en) * 2007-03-19 2009-02-06 도레이새한 주식회사 Anisotropic Conductive Film and Adhesion Method Thereof
WO2009122511A1 (en) * 2008-03-31 2009-10-08 株式会社フォスメガ Method for image formation
JP5765907B2 (en) * 2009-11-09 2015-08-19 株式会社フェローテック Magnetic members and electronic parts

Also Published As

Publication number Publication date
JP2012136565A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5765907B2 (en) Magnetic members and electronic parts
KR100882735B1 (en) Anisotropic Conductive Film and Adhesion Method Thereof
Mordina et al. Magnetorheology of polydimethylsiloxane elastomer/FeCo3 nanocomposite
WO2014071334A3 (en) Thermoset adhesive, automotive component using thermoset adhesive, and method of manufacturing same
CN105684463B (en) Receiver
WO2011149274A3 (en) Magnetic tunnel junction device having amorphous buffer layers that are magnetically connected together and that have perpendicular magnetic anisotropy
JP5659003B2 (en) adhesive
KR102137510B1 (en) Electrostatic Chuck
US20200299821A1 (en) Vapor deposition mask, method for producing vapor deposition mask, and method for producing organic semiconductor element
JP2002359126A (en) Inductance component
CN110735837A (en) Use of magnetic fields to increase the joint area of adhesive joints
GB2521444A (en) Sealing arrangement
JPH06122857A (en) Conductive adhesive and method for adhering
JP2013023970A (en) Vibration damper
JP5490843B2 (en) Electropneumatic converter with low hysteresis characteristics
JP2012136565A5 (en)
KR20180125825A (en) Curable composition
Jamari et al. Mini Review on Effect of Coatings on the Performance of Magnetorheological Materials
Park et al. Development Mechanical Characteristic of Magneto-Rheological (MR) Fluid by Adding Graphene Oxide
Hayato et al. Magnetic Field Aligned Assembly of Nonmagnetic Composite Dumbbells in Nanoparticle-Based Aqueous Ferrofluid
Fedorchenko et al. Granular structures based on manganese arsenide inclusions embedded in AIIBIVCV semiconductors host
TWM519801U (en) Ferrite mounting structure applied in circulator or isolator
JP2008177007A (en) Posture detecting device, and its manufacturing method
JP2019021840A (en) Magnetic sensor
Song et al. Rotational alignment of magnetic microdisks in composites for high frequency applications

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5659003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250