JP5657927B2 - Sidewall rubber composition and pneumatic tire - Google Patents

Sidewall rubber composition and pneumatic tire Download PDF

Info

Publication number
JP5657927B2
JP5657927B2 JP2010140857A JP2010140857A JP5657927B2 JP 5657927 B2 JP5657927 B2 JP 5657927B2 JP 2010140857 A JP2010140857 A JP 2010140857A JP 2010140857 A JP2010140857 A JP 2010140857A JP 5657927 B2 JP5657927 B2 JP 5657927B2
Authority
JP
Japan
Prior art keywords
mass
group
rubber
parts
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010140857A
Other languages
Japanese (ja)
Other versions
JP2012001697A (en
Inventor
馬渕 貴裕
貴裕 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2010140857A priority Critical patent/JP5657927B2/en
Publication of JP2012001697A publication Critical patent/JP2012001697A/en
Application granted granted Critical
Publication of JP5657927B2 publication Critical patent/JP5657927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、サイドウォール用ゴム組成物、及びこれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for a sidewall and a pneumatic tire using the same.

従来より、タイヤの転がり抵抗を低減(転がり抵抗特性を向上)させることにより自動車の低燃費化が行なわれている。例えば、タイヤのトレッドを2層構造(内面層(ベーストレッド)及び表面層(キャップトレッド))とし、ベーストレッドに、優れた低発熱性を有するゴム組成物が使用されている。しかし、近年、低燃費化への要求が更に強くなり、タイヤにおける占有比率の高いトレッドだけでなく、トレッド以外の部材(例えばサイドウォール)に対しても、より優れた低発熱性が要求されている。 Conventionally, the fuel consumption of automobiles has been reduced by reducing the rolling resistance of tires (improving rolling resistance characteristics). For example, a tire tread has a two-layer structure (an inner surface layer (base tread) and a surface layer (cap tread)), and a rubber composition having excellent low heat generation is used for the base tread. However, in recent years, the demand for lower fuel consumption has become stronger, and not only treads with a high occupation ratio in tires but also more excellent low heat generation are required not only for treads (for example, sidewalls). Yes.

サイドウォール用ゴム組成物においては、キャップトレッド用ゴム組成物と異なり、従来から粒子径の大きいカーボンブラックが使用されており、カーボンブラックをシリカに変更しても低発熱性の向上効果はそれほど大きくない。また、シリカを配合すると、サイドウォールに必要な耐屈曲亀裂性が劣るという欠点も併せ持つ。そこで、低発熱性と耐屈曲亀裂性を高い次元で両立できるゴム組成物が求められている。また、低発熱性の向上のためにフィラーの配合量を減らすと、強度が低下し、破壊強度が悪化してしまう。 In the rubber composition for the sidewall, unlike the rubber composition for the cap tread, carbon black having a large particle diameter has been conventionally used. Even if the carbon black is changed to silica, the effect of improving the low heat generation is so large. Absent. In addition, when silica is blended, it also has the disadvantage that the flex crack resistance required for the sidewall is inferior. Therefore, there is a demand for a rubber composition that can achieve both low exothermic properties and bending crack resistance at a high level. Further, if the blending amount of the filler is reduced for improving the low heat buildup, the strength is lowered and the breaking strength is deteriorated.

特許文献1には、イソプレン系ゴムにリバージョン防止剤を配合し、転がり抵抗の低減と、耐摩耗性の向上が可能なタイヤ用ゴム組成物が開示されている。しかし、ゴム強度と転がり抵抗のバランス向上については、改善の余地がある。 Patent Document 1 discloses a tire rubber composition in which a reversion inhibitor is blended with isoprene-based rubber to reduce rolling resistance and improve wear resistance. However, there is room for improvement in improving the balance between rubber strength and rolling resistance.

特開2006−45471号公報JP 2006-45471 A

本発明は、前記課題を解決し、低燃費性、耐屈曲亀裂性を高い次元でバランスよく向上でき、操縦安定性、破壊強度も確保できるサイドウォール用ゴム組成物、及び該サイドウォール用ゴム組成物をタイヤのサイドウォールに用いた空気入りタイヤを提供することを目的とする。 The present invention solves the above-mentioned problems, and can improve fuel economy and flex crack resistance in a high level in a well-balanced manner, and can secure a steering stability and breaking strength, and a rubber composition for the sidewall It is an object of the present invention to provide a pneumatic tire using an object as a tire sidewall.

本発明は、下記式(1)で表される化合物により変性されたブタジエンゴムを含むゴム成分と、シリカと、硫黄と、下記式(2)で表される化合物とを含むサイドウォール用ゴム組成物に関する。

Figure 0005657927
(式(1)中、R、R及びRは、同一若しくは異なって、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R及びRは、同一若しくは異なって、水素原子又は分岐若しくは非分岐のアルキル基を表す。nは整数を表す。)
−S−S−A−S−S−R (2)
(式(2)において、Aは分岐若しくは非分岐の炭素数2〜10のアルキレン基、R及びRは、同一若しくは異なって、チッ素原子を含む1価の有機基を表す。) The present invention relates to a rubber composition for a sidewall comprising a rubber component containing a butadiene rubber modified with a compound represented by the following formula (1), silica, sulfur, and a compound represented by the following formula (2). Related to things.
Figure 0005657927
(In formula (1), R 1 , R 2 and R 3 are the same or different and are branched or unbranched alkyl groups, branched or unbranched alkoxy groups, branched or unbranched silyloxy groups, branched or unbranched. R 4 and R 5 are the same or different and each represents a hydrogen atom or a branched or unbranched alkyl group, and n represents an integer.
R 6 —S—S—A—S—S—R 7 (2)
(In Formula (2), A represents a branched or unbranched alkylene group having 2 to 10 carbon atoms, and R 6 and R 7 are the same or different and represent a monovalent organic group containing a nitrogen atom.)

上記サイドウォール用ゴム組成物は、ゴム成分100質量部に対して、上記式(2)で表される化合物を0.2〜20質量部含むことが好ましい。 The sidewall rubber composition preferably contains 0.2 to 20 parts by mass of the compound represented by the above formula (2) with respect to 100 parts by mass of the rubber component.

上記ゴム成分がイソプレン系ゴムを含むことが好ましい。 The rubber component preferably contains isoprene-based rubber.

本発明はまた、上記ゴム組成物を用いて作製したサイドウォールを有する空気入りタイヤに関する。 The present invention also relates to a pneumatic tire having a sidewall produced using the rubber composition.

本発明によれば、上記式(1)で表される化合物により変性されたブタジエンゴムを含むゴム成分と、シリカと、硫黄と、上記式(2)で表される化合物とを含むサイドウォール用ゴム組成物であるので、低燃費性、耐屈曲亀裂性を高い次元でバランスよく向上でき、操縦安定性、破壊強度も確保できる。また、熱劣化後の耐屈曲亀裂性も向上できるため、耐久性にも優れている。よって、該ゴム組成物をタイヤのサイドウォールに使用することにより、低燃費性、耐屈曲亀裂性のバランスに優れ、操縦安定性、破壊強度も確保され、更に耐久性にも優れた空気入りタイヤを提供することができる。 According to the present invention, for a sidewall comprising a rubber component containing a butadiene rubber modified with a compound represented by the above formula (1), silica, sulfur, and a compound represented by the above formula (2). Since it is a rubber composition, fuel economy and bending crack resistance can be improved in a well-balanced manner, and steering stability and breaking strength can be secured. Moreover, since the bending crack resistance after heat deterioration can also be improved, it is excellent also in durability. Therefore, by using the rubber composition for the tire sidewall, the pneumatic tire is excellent in balance between low fuel consumption and bending crack resistance, ensuring driving stability and breaking strength, and having excellent durability. Can be provided.

本発明のサイドウォール用ゴム組成物は、上記式(1)で表される化合物により変性されたブタジエンゴムを含むゴム成分と、シリカと、硫黄と、上記式(2)で表される化合物とを含む。 The rubber composition for a sidewall of the present invention includes a rubber component containing a butadiene rubber modified with a compound represented by the above formula (1), silica, sulfur, and a compound represented by the above formula (2). including.

カーボンブラックをシリカに置換した場合、低燃費性を向上できるものの耐屈曲亀裂成長性、破壊強度、操縦安定性が低下してしまう。また、カーボンブラックをシリカに置換し、上記式(1)で表される化合物により変性されたブタジエンゴムを配合することにより、カーボンブラックをシリカに置換したことに起因する破壊強度、操縦安定性の低下は抑制できるものの、耐屈曲亀裂成長性が低下してしまう。そこで、本発明では、カーボンブラックをシリカに置換し、上記式(1)で表される化合物により変性されたブタジエンゴムと共に、硫黄と、上記式(2)で表される化合物とを配合することにより、カーボンブラックをシリカに置換したことに起因する破壊強度、操縦安定性の低下を抑制すると共に、シリカ、上記式(1)で表される化合物により変性されたブタジエンゴムによる低燃費性の向上効果を維持しつつ、耐屈曲亀裂成長性を向上させることができる。これは、上記式(2)で表される化合物によりゴム分子間を架橋することにより、(a)従来のスルフィド結合による架橋(硫黄架橋)よりも架橋の結合力が向上した、(b)架橋鎖が長くなった(高分子量化された)ことにより、ゴム分子鎖のフレキシブル性が向上したためと推測される。また、従来のスルフィド結合による架橋(硫黄架橋)よりも架橋の結合力が向上したため、熱により結合が切れにくく、熱劣化後の耐屈曲亀裂性も向上でき、耐久性に優れるものと推測される。 When carbon black is replaced with silica, although low fuel consumption can be improved, resistance to flex crack growth, fracture strength, and steering stability are reduced. Further, by replacing carbon black with silica and blending butadiene rubber modified with the compound represented by the above formula (1), the fracture strength and steering stability resulting from the replacement of carbon black with silica are improved. Although the decrease can be suppressed, the bending crack growth resistance is decreased. Therefore, in the present invention, carbon black is substituted with silica, and sulfur and a compound represented by the above formula (2) are blended together with a butadiene rubber modified with the compound represented by the above formula (1). Thus, the reduction in fracture strength and steering stability resulting from the replacement of carbon black with silica is suppressed, and the improvement in fuel efficiency is achieved by butadiene rubber modified with silica and the compound represented by the above formula (1). The bending crack growth resistance can be improved while maintaining the effect. This is because, by cross-linking rubber molecules with the compound represented by the above formula (2), (a) the cross-linking strength is improved over the conventional cross-linking by sulfide bond (sulfur cross-linking), (b) cross-linking It is presumed that the flexibility of the rubber molecular chain was improved by the longer chain (high molecular weight). In addition, since the bonding strength of the cross-linking is improved compared to the conventional cross-linking by sulfide bond (sulfur cross-linking), it is difficult to break the bond due to heat, the resistance to bending cracking after heat deterioration can be improved, and it is presumed to be excellent in durability. .

本発明では、ゴム成分として、下記式(1)で表される化合物により末端が変性されたブタジエンゴム(変性ブタジエンゴム(変性BR))を含む。変性BRを含むことにより、ポリマー末端のゴム中での動きを抑制でき、更に、シリカの分散性を向上できるため、低燃費性、耐屈曲亀裂性を両立できる。また、破壊強度、操縦安定性を向上できる。 In the present invention, the rubber component includes butadiene rubber (modified butadiene rubber (modified BR)) whose terminal is modified with a compound represented by the following formula (1). By including the modified BR, the movement of the polymer terminal in the rubber can be suppressed, and further, the dispersibility of the silica can be improved, so that both low fuel consumption and flex crack resistance can be achieved. Moreover, breaking strength and handling stability can be improved.

Figure 0005657927
Figure 0005657927

上記式(1)のR、R及びRは、同一若しくは異なって、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基(−COOH)、メルカプト基(−SH)又はこれらの誘導体を表す。上記分岐若しくは非分岐のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基等の炭素数1〜4のアルキル基等が挙げられる。上記分岐若しくは非分岐のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基等の炭素数1〜8のアルコキシ基(好ましくは炭素数1〜6、より好ましくは炭素数1〜4)等が挙げられる。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等の炭素数5〜8のシクロアルコキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等の炭素数6〜8のアリールオキシ基等)も含まれる。 R 1 , R 2 and R 3 in the above formula (1) are the same or different and each represents a branched or unbranched alkyl group, a branched or unbranched alkoxy group, a branched or unbranched silyloxy group, a branched or unbranched group. An acetal group, a carboxyl group (—COOH), a mercapto group (—SH) or a derivative thereof is represented. Examples of the branched or unbranched alkyl group include alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and t-butyl group. . Examples of the branched or unbranched alkoxy group include an alkoxy group having 1 to 8 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group (preferably C1-C6, More preferably, C1-C4) etc. are mentioned. The alkoxy group includes a cycloalkoxy group (cycloalkoxy group having 5 to 8 carbon atoms such as cyclohexyloxy group) and an aryloxy group (aryloxy group having 6 to 8 carbon atoms such as phenoxy group and benzyloxy group). ) Is also included.

上記分岐若しくは非分岐のシリルオキシ基としては、例えば、炭素数1〜20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t−ブチルジメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、トリベンジルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基等)等が挙げられる。 Examples of the branched or unbranched silyloxy group include a silyloxy group substituted with an aliphatic group having 1 to 20 carbon atoms and an aromatic group (trimethylsilyloxy group, triethylsilyloxy group, triisopropylsilyloxy group, diethylisopropylsilyl group). Oxy group, t-butyldimethylsilyloxy group, t-butyldiphenylsilyloxy group, tribenzylsilyloxy group, triphenylsilyloxy group, tri-p-xylylsilyloxy group, and the like.

上記分岐若しくは非分岐のアセタール基としては、例えば、−C(RR′)−OR″、−O−C(RR′)−OR″で表される基を挙げることができる。前者としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、t−ブトキシメチル基、ネオペンチルオキシメチル基等が挙げられ、後者としては、メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、i−プロポキシメトキシ基、n−ブトキシメトキシ基、t−ブトキシメトキシ基、n−ペンチルオキシメトキシ基、n−ヘキシルオキシメトキシ基、シクロペンチルオキシメトキシ基、シクロヘキシルオキシメトキシ基等を挙げることができる。R、R及びRとしては、アルコキシ基が好ましく、メトキシ基がより好ましい。これにより、低燃費性、耐屈曲亀裂性を両立できる。 Examples of the branched or unbranched acetal group include groups represented by -C (RR ')-OR "and -O-C (RR')-OR". Examples of the former include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, an isopropoxymethyl group, a t-butoxymethyl group, and a neopentyloxymethyl group. The latter includes a methoxymethoxy group, an ethoxy group, and the like. Methoxy group, propoxymethoxy group, i-propoxymethoxy group, n-butoxymethoxy group, t-butoxymethoxy group, n-pentyloxymethoxy group, n-hexyloxymethoxy group, cyclopentyloxymethoxy group, cyclohexyloxymethoxy group, etc. Can be mentioned. R 1 , R 2 and R 3 are preferably alkoxy groups, and more preferably methoxy groups. Thereby, both low fuel consumption and bending crack resistance can be achieved.

上記式(1)のR及びRの分岐若しくは非分岐のアルキル基としては、例えば、上記分岐若しくは非分岐のアルキル基と同様の基を挙げることができる。R及びRとしては、分岐若しくは非分岐のアルキル基(好ましくは炭素数1〜3、より好ましくは炭素数1〜2)が好ましく、エチル基がより好ましい。これにより、低燃費性、耐屈曲亀裂性を両立できる。 Examples of the branched or unbranched alkyl group of R 4 and R 5 in the formula (1) include the same groups as the branched or unbranched alkyl group. R 4 and R 5 are preferably branched or unbranched alkyl groups (preferably having 1 to 3 carbon atoms, more preferably 1 to 2 carbon atoms), and more preferably ethyl groups. Thereby, both low fuel consumption and bending crack resistance can be achieved.

上記式(1)のn(整数)としては、1〜5が好ましい。これにより、低燃費性、耐屈曲亀裂性を両立できる。更には、nは2〜4がより好ましく、3が最も好ましい。nが0であると変性反応が阻害される場合があり、nが6以上であると変性剤としての効果が薄れる。 As n (integer) of said Formula (1), 1-5 are preferable. Thereby, both low fuel consumption and bending crack resistance can be achieved. Furthermore, n is more preferably 2 to 4, and most preferably 3. If n is 0, the denaturation reaction may be inhibited, and if n is 6 or more, the effect as a denaturing agent is reduced.

上記式(1)で表される化合物の具体例としては、3−アミノプロピルジメチルメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルエチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルジメチルブトキシシラン、3−アミノプロピルメチルジブトキシシラン、ジメチルアミノメチルトリメトキシシラン、2−ジメチルアミノエチルトリメトキシシラン、3−ジメチルアミノプロピルトリメトキシシラン、4−ジメチルアミノブチルトリメトキシシラン、ジメチルアミノメチルジメトキシメチルシラン、2−ジメチルアミノエチルジメトキシメチルシラン、3−ジメチルアミノプロピルジメトキシメチルシラン、4−ジメチルアミノブチルジメトキシメチルシラン、ジメチルアミノメチルトリエトキシシラン、2−ジメチルアミノエチルトリエトキシシラン、3−ジメチルアミノプロピルトリエトキシシラン、4−ジメチルアミノブチルトリエトキシシラン、ジメチルアミノメチルジエトキシメチルシラン、2−ジメチルアミノエチルジエトキシメチルシラン、3−ジメチルアミノプロピルジエトキシメチルシラン、4−ジメチルアミノブチルジエトキシメチルシラン、ジエチルアミノメチルトリメトキシシラン、2−ジエチルアミノエチルトリメトキシシラン、3−ジエチルアミノプロピルトリメトキシシラン、4−ジエチルアミノブチルトリメトキシシラン、ジエチルアミノメチルジメトキシメチルシラン、2−ジエチルアミノエチルジメトキシメチルシラン、3−ジエチルアミノプロピルジメトキシメチルシラン、4−ジエチルアミノブチルジメトキシメチルシラン、ジエチルアミノメチルトリエトキシシラン、2−ジエチルアミノエチルトリエトキシシラン、3−ジエチルアミノプロピルトリエトキシシラン、4−ジエチルアミノブチルトリエトキシシラン、ジエチルアミノメチルジエトキシメチルシラン、2−ジエチルアミノエチルジエトキシメチルシラン、3−ジエチルアミノプロピルジエトキシメチルシラン、4−ジエチルアミノブチルジエトキシメチルシラン等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the compound represented by the above formula (1) include 3-aminopropyldimethylmethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, Aminopropyldimethylethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethylbutoxysilane, 3-aminopropylmethyldibutoxysilane, dimethylaminomethyltrimethoxysilane, 2-dimethyl Aminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 4-dimethylaminobutyltrimethoxysilane, dimethylaminomethyldimethoxymethylsilane, 2-dimethylaminoethyldimethoxy Methylsilane, 3-dimethylaminopropyldimethoxymethylsilane, 4-dimethylaminobutyldimethoxymethylsilane, dimethylaminomethyltriethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, 4-dimethylaminobutyl Triethoxysilane, dimethylaminomethyldiethoxymethylsilane, 2-dimethylaminoethyldiethoxymethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 4-dimethylaminobutyldiethoxymethylsilane, diethylaminomethyltrimethoxysilane, 2- Diethylaminoethyltrimethoxysilane, 3-diethylaminopropyltrimethoxysilane, 4-diethylaminobutyltrimethoxysilane, diethylamino Tildimethoxymethylsilane, 2-diethylaminoethyldimethoxymethylsilane, 3-diethylaminopropyldimethoxymethylsilane, 4-diethylaminobutyldimethoxymethylsilane, diethylaminomethyltriethoxysilane, 2-diethylaminoethyltriethoxysilane, 3-diethylaminopropyltriethoxysilane 4-diethylaminobutyltriethoxysilane, diethylaminomethyldiethoxymethylsilane, 2-diethylaminoethyldiethoxymethylsilane, 3-diethylaminopropyldiethoxymethylsilane, 4-diethylaminobutyldiethoxymethylsilane, and the like. These may be used alone or in combination of two or more.

変性BRのビニル含量は、好ましくは35質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。ビニル含量が35質量%を超えると、低発熱性が損なわれる傾向にある。ビニル含量の下限は特に限定されない。
なお、ビニル含量(1,2−結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定できる。
The vinyl content of the modified BR is preferably 35% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less. When the vinyl content exceeds 35% by mass, the low exothermic property tends to be impaired. The lower limit of the vinyl content is not particularly limited.
The vinyl content (1,2-bond butadiene unit amount) can be measured by infrared absorption spectrum analysis.

上記式(1)で表される化合物(変性剤)によるブタジエンゴムの変性方法としては、特公平6−53768号公報、特公平6−57767号公報等に記載されている方法等、従来公知の手法を用いることができる。例えば、ブタジエンゴムと変性剤とを接触させればよく、ブタジエンゴムを重合し、該重合体ゴム溶液中に変性剤を所定量添加する方法、ブタジエンゴム溶液中に変性剤を添加して反応させる方法等が挙げられる。 Examples of the modification method of butadiene rubber with the compound (modifier) represented by the above formula (1) include conventionally known methods such as methods described in JP-B-6-53768 and JP-B-6-57767. Techniques can be used. For example, the butadiene rubber may be brought into contact with the modifying agent, the butadiene rubber is polymerized, and a predetermined amount of the modifying agent is added to the polymer rubber solution, and the modifying agent is added to the butadiene rubber solution and reacted. Methods and the like.

変性されるブタジエンゴム(BR)としては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のBR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。 The butadiene rubber (BR) to be modified is not particularly limited. For example, BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., BR150B and other high cis content BR, Ube Industries, Ltd. BR containing a syndiotactic polybutadiene crystal such as VCR412 and VCR617 manufactured by the same company can be used.

ゴム成分100質量%中の変性BRの含有量は、好ましくは5質量%以上、より好ましくは30質量%以上である。5質量%未満であると、低燃費性の向上効果が期待ほど得られないおそれがある。該変性ブタジエンゴムの含有量は、好ましくは70質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下である。70質量%を超えると、破壊強度が十分に得られず、また、加工性が悪化する傾向もある。 The content of the modified BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 30% by mass or more. If it is less than 5% by mass, the effect of improving fuel economy may not be obtained as expected. The content of the modified butadiene rubber is preferably 70% by mass or less, more preferably 60% by mass or less, and still more preferably 50% by mass or less. If it exceeds 70% by mass, sufficient fracture strength cannot be obtained, and processability tends to deteriorate.

変性BR以外に本発明で使用できるゴム成分としては、特に限定されず、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等のジエン系ゴムが挙げられる。ジエン系ゴムは、単独で用いてもよく、2種以上を併用してもよい。なかでも、破壊強度、耐屈曲亀裂性を確保できるという理由から、イソプレン系ゴム、BR及び変性BRの組合せ、イソプレン系ゴム及び変性BRの組合せで用いることが好ましく、イソプレン系ゴム及び変性BRの組合せがより好ましい。 The rubber component that can be used in the present invention other than the modified BR is not particularly limited, and isoprene-based rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), Examples thereof include diene rubbers such as acrylonitrile butadiene rubber (NBR) and butyl rubber (IIR). Diene rubbers may be used alone or in combination of two or more. Among these, it is preferable to use a combination of isoprene-based rubber, BR and modified BR, a combination of isoprene-based rubber and modified BR, because the fracture strength and bending crack resistance can be secured, and a combination of isoprene-based rubber and modified BR. Is more preferable.

イソプレン系ゴムとしては、イソプレンゴム(IR)、天然ゴム(NR)、改質天然ゴム等が挙げられる。NRには、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)も含まれ、改質天然ゴムとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等が挙げられる。また、NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。イソプレン系ゴムのなかでも、破壊強度、耐屈曲亀裂性をバランスよく確保できることから、NRが好ましい。 Examples of the isoprene-based rubber include isoprene rubber (IR), natural rubber (NR), and modified natural rubber. NR includes deproteinized natural rubber (DPNR) and high-purity natural rubber (HPNR). Modified natural rubber includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), and grafted natural rubber. Etc. Moreover, as NR, what is common in tire industry, such as SIR20, RSS # 3, TSR20, can be used, for example. Among isoprene-based rubbers, NR is preferable because the fracture strength and bending crack resistance can be secured in a well-balanced manner.

イソプレン系ゴムの含有量は、ゴム成分100質量%中、20質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が更に好ましい。20質量%未満であると、十分な破壊強度と低発熱性を確保できないおそれがある。イソプレン系ゴムの含有量は、80質量%以下が好ましく、70質量%以下がより好ましい。80質量%を超えると、その他のポリマー(変性BR、BRなど)の割合が低下し、十分な低発熱効果が得られないおそれがある。 The content of isoprene-based rubber is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass or more, in 100% by mass of the rubber component. If it is less than 20% by mass, sufficient fracture strength and low heat build-up may not be ensured. The content of isoprene-based rubber is preferably 80% by mass or less, and more preferably 70% by mass or less. If it exceeds 80% by mass, the ratio of other polymers (modified BR, BR, etc.) may decrease, and a sufficient low heat generation effect may not be obtained.

ゴム成分100質量%中のイソプレン系ゴムと変性BRの合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは100質量%である。80質量%未満であると、低燃費性、耐屈曲亀裂性を高い次元でバランスよく向上できないおそれがあり、操縦安定性、破壊強度も確保できないおそれがある。 The total content of isoprene-based rubber and modified BR in 100% by mass of the rubber component is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. If it is less than 80% by mass, the fuel economy and flex crack resistance may not be improved in a well-balanced manner, and steering stability and fracture strength may not be ensured.

BR(非変性)としては、上述の変性されるBRと同様のものを使用できる。 As BR (non-modified), the same BR as the above-mentioned modified BR can be used.

ゴム成分100質量%中のBR(非変性)の含有量は、好ましくは5質量%以上、より好ましくは15質量%以上である。5質量%未満であると、十分な低発熱性を確保できないおそれがある。上記BR(非変性)の含有量は、好ましくは80質量%以下、より好ましくは60質量%以下である。80質量%を超えると、その他のポリマー(変性BR、NRなど)の割合が低下し、十分な破壊強度が得られないおそれがある。 The content of BR (non-modified) in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 15% by mass or more. If it is less than 5% by mass, sufficient low heat build-up may not be ensured. The BR (non-modified) content is preferably 80% by mass or less, more preferably 60% by mass or less. If it exceeds 80% by mass, the ratio of other polymers (modified BR, NR, etc.) decreases, and there is a possibility that sufficient fracture strength cannot be obtained.

本発明では、シリカが使用される。変性BRとともに、シリカを配合することにより、良好な低発熱性及び高いゴム強度が得られ、低燃費性及び破壊強度を両立できる。シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。 In the present invention, silica is used. By blending silica with the modified BR, good low heat buildup and high rubber strength can be obtained, and both low fuel consumption and breaking strength can be achieved. The silica is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid), and the like, but wet process silica is preferable because of its large number of silanol groups.

シリカのチッ素吸着比表面積(NSA)は、40m/g以上が好ましく、75m/g以上がより好ましく、100m/g以上が更に好ましい。40m/g未満では、加硫後の破壊強度が低下する傾向がある。また、シリカのNSAは、220m/g以下が好ましく、150m/g以下がより好ましく、125m/g以下が更に好ましい。220m/gを超えると、低発熱性、混練加工性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 40 m 2 / g or more, more preferably 75 m 2 / g or more, and still more preferably 100 m 2 / g or more. If it is less than 40 m < 2 > / g, there exists a tendency for the fracture strength after vulcanization to fall. The N 2 SA of the silica is preferably 220 m 2 / g or less, more preferably 150m 2 / g, 125m 2 / g or less is more preferable. If it exceeds 220 m 2 / g, the low heat build-up and kneading workability tend to be reduced.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

シリカの含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、更に好ましくは30質量部以上である。10質量部未満であると、シリカ配合による充分な効果が得られない傾向がある。上記シリカの含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは75質量部以下である。150質量部を超えると、シリカのゴムへの分散が困難になり、ゴムの加工性が悪化する傾向がある。
本発明では、低燃費性の向上のためにフィラー(シリカ)の配合量を減らす必要が無いため(シリカの含有量を上記量とできるため)、強度が低下し、破壊強度が悪化することを防止できる。
The content of silica is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and further preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. When the amount is less than 10 parts by mass, there is a tendency that a sufficient effect due to silica blending cannot be obtained. The content of the silica is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 75 parts by mass or less. When the amount exceeds 150 parts by mass, it is difficult to disperse silica in rubber, and the processability of rubber tends to deteriorate.
In the present invention, it is not necessary to reduce the blending amount of the filler (silica) in order to improve fuel economy (because the silica content can be the above amount), the strength is reduced and the breaking strength is deteriorated. Can be prevented.

本発明のゴム組成物では、更にシランカップリング剤を配合することが好ましい。シランカップリング剤を配合することにより、転がり抵抗の低減(低燃費性の向上)と、加工性の改良を同時に達成できる。シランカップリング剤としては、従来公知のシランカップリング剤を用いることができ、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィドなどのスルフィド系;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシランなどのメルカプト系;ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系;3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシランなどのアミノ系;γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランなどのグリシドキシ系;3−ニトロプロピルトリメトキシシラン、3−ニトロプロピルトリエトキシシランなどのニトロ系;3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、2−クロロエチルトリメトキシシラン、2−クロロエチルトリエトキシシランなどのクロロ系;などを挙げることができる。なかでも、加工性が良好である点から、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィドが好ましい。これらのシランカップリング剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In the rubber composition of the present invention, it is preferable to further contain a silane coupling agent. By blending a silane coupling agent, reduction in rolling resistance (improvement in fuel efficiency) and improvement in workability can be achieved at the same time. As the silane coupling agent, a conventionally known silane coupling agent can be used. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, 3-trimethoxy Sulfide systems such as silylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-trimethoxysilylpropyl methacrylate monosulfide; 3-mercaptopropyltrimethoxysilane, 3- Mercapto type such as mercaptopropyltriethoxysilane; Vinyl type such as vinyltriethoxysilane and vinyltrimethoxysilane; 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, -Amino compounds such as (2-aminoethyl) aminopropyltriethoxysilane and 3- (2-aminoethyl) aminopropyltrimethoxysilane; γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane , Glycidoxy systems such as γ-glycidoxypropylmethyldiethoxysilane and γ-glycidoxypropylmethyldimethoxysilane; nitro systems such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane; 3-chloropropyl And chloro-based compounds such as trimethoxysilane, 3-chloropropyltriethoxysilane, 2-chloroethyltrimethoxysilane, and 2-chloroethyltriethoxysilane. Of these, bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide are preferred from the viewpoint of good processability. These silane coupling agents may be used alone or in combination of two or more.

シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは2質量部以上、より好ましくは6質量部以上、更に好ましくは8質量部以上である。2質量部未満では、転がり抵抗の低減効果(低燃費性の向上効果)が充分に得られないおそれがある。該含有量は、好ましくは20質量部以下、より好ましくは15質量部以下である。20質量部を超えると、高価なシランカップリング剤を配合した量に見合った転がり抵抗の低減効果(低燃費性の向上効果)が得られないおそれがある。 The content of the silane coupling agent is preferably 2 parts by mass or more, more preferably 6 parts by mass or more, and still more preferably 8 parts by mass or more with respect to 100 parts by mass of silica. If it is less than 2 parts by mass, the rolling resistance reduction effect (improvement of fuel efficiency) may not be sufficiently obtained. The content is preferably 20 parts by mass or less, more preferably 15 parts by mass or less. When it exceeds 20 parts by mass, there is a possibility that the rolling resistance reduction effect (improvement of fuel efficiency) corresponding to the amount of the expensive silane coupling agent blended cannot be obtained.

本発明では、硫黄が使用される。硫黄としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄などが挙げられ、例えば、オイル処理した不溶性硫黄が好適に用いられる。 In the present invention, sulfur is used. Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. For example, oil-treated insoluble sulfur is preferably used.

硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上である。0.1質量部未満であると、ゴム強度が悪化する傾向がある。硫黄の含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは5.0質量部以下、特に好ましくは1.0質量部以下である。20質量部を超えると、ゴムの破断伸び及び耐屈曲亀裂成長性が悪化する傾向がある。硫黄の含有量が1.0質量部以下の場合に、特に下記式(2)で表される化合物による耐屈曲亀裂成長性の向上効果が高くなる。 The sulfur content is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and still more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 0.1 parts by mass, the rubber strength tends to deteriorate. The sulfur content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 5.0 parts by mass or less, and particularly preferably 1.0 part by mass or less. When it exceeds 20 parts by mass, the elongation at break and the resistance to flex crack growth of rubber tend to deteriorate. When the sulfur content is 1.0 part by mass or less, the effect of improving the flex crack growth resistance by the compound represented by the following formula (2) is particularly high.

本発明では、下記式(2)で表される化合物(架橋剤)が使用される。下記式(2)で表される化合物を配合することにより、結合エネルギーが高く、熱安定性が高いCC結合をゴム組成物に保有させることができる。そのため、カーボンブラックをシリカに置換したことに起因する破壊強度、操縦安定性の低下を抑制すると共に、シリカ、上記式(1)で表される化合物により変性されたブタジエンゴムによる低燃費性の向上効果を維持しつつ、耐屈曲亀裂成長性を向上させることができる。
−S−S−A−S−S−R (2)
(式(2)において、Aは分岐若しくは非分岐の炭素数2〜10のアルキレン基、R及びRは、同一若しくは異なって、チッ素原子を含む1価の有機基を表す。)
Aのアルキレン基としては、非分岐のアルキレン基が好ましい。
In the present invention, a compound (crosslinking agent) represented by the following formula (2) is used. By compounding the compound represented by the following formula (2), the rubber composition can have a CC bond having high binding energy and high thermal stability. Therefore, the reduction in fracture strength and steering stability due to the replacement of carbon black with silica is suppressed, and the improvement in fuel efficiency is achieved by butadiene rubber modified with silica and the compound represented by the above formula (1). The bending crack growth resistance can be improved while maintaining the effect.
R 6 —S—S—A—S—S—R 7 (2)
(In Formula (2), A represents a branched or unbranched alkylene group having 2 to 10 carbon atoms, and R 6 and R 7 are the same or different and represent a monovalent organic group containing a nitrogen atom.)
The alkylene group for A is preferably an unbranched alkylene group.

アルキレン基の炭素数は2〜10が好ましく、4〜8がより好ましい。アルキレン基の炭素数が1では、熱的な安定性が悪く、アルキレン基を有することによる効果が得られない傾向があり、アルキレン基の炭素数が11以上では、−S−S−A−S−S−で表される架橋鎖の形成が困難になる傾向がある。 2-10 are preferable and, as for carbon number of an alkylene group, 4-8 are more preferable. When the carbon number of the alkylene group is 1, thermal stability is poor, and there is a tendency that the effect of having the alkylene group is not obtained. When the alkylene group has 11 or more carbon atoms, —S—S—A—S There is a tendency that formation of a crosslinked chain represented by -S- becomes difficult.

上記条件を満たすアルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基などがあげられる。なかでも、ポリマー間に−S−S−A−S−S−で表される架橋がスムーズに形成され、熱的にも安定であるという理由から、ヘキサメチレン基が好ましい。 Examples of the alkylene group satisfying the above conditions include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, decamethylene group and the like. Among these, a hexamethylene group is preferred because a cross-link represented by -S-S-ASS- is formed smoothly between the polymers and is thermally stable.

及びRとしては、チッ素原子を含む1価の有機基であれば特に限定されず、芳香環を少なくとも1つ含むものが好ましく、炭素原子がジチオ基に結合したN−C(=S)−で表される結合基を含むものがより好ましい。 R 6 and R 7 are not particularly limited as long as they are monovalent organic groups containing a nitrogen atom, and those containing at least one aromatic ring are preferred, and N—C (= Those containing a linking group represented by S)-are more preferred.

及びRは、それぞれ同一でも、異なっていてもよいが、製造の容易さなどの理由から、同一であることが好ましい。 R 6 and R 7 may be the same or different from each other, but are preferably the same for reasons such as ease of production.

上記条件を満たす化合物としては、例えば、1,2−ビス(N,N’−ジベンジルチオカルバモイルジチオ)エタン、1,3−ビス(N,N’−ジベンジルチオカルバモイルジチオ)プロパン、1,4−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ブタン、1,5−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ペンタン、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン、1,7−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘプタン、1,8−ビス(N,N’−ジベンジルチオカルバモイルジチオ)オクタン、1,9−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ノナン、1,10−ビス(N,N’−ジベンジルチオカルバモイルジチオ)デカンなどがあげられる。なかでも、熱的に安定であり、分極性に優れるという理由から、1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサンが好ましい。 Examples of the compound satisfying the above conditions include 1,2-bis (N, N′-dibenzylthiocarbamoyldithio) ethane, 1,3-bis (N, N′-dibenzylthiocarbamoyldithio) propane, 1, 4-bis (N, N′-dibenzylthiocarbamoyldithio) butane, 1,5-bis (N, N′-dibenzylthiocarbamoyldithio) pentane, 1,6-bis (N, N′-dibenzylthio) Carbamoyldithio) hexane, 1,7-bis (N, N′-dibenzylthiocarbamoyldithio) heptane, 1,8-bis (N, N′-dibenzylthiocarbamoyldithio) octane, 1,9-bis (N , N′-dibenzylthiocarbamoyldithio) nonane, 1,10-bis (N, N′-dibenzylthiocarbamoyldithio) decane and the like. Among these, 1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane is preferable because it is thermally stable and has excellent polarizability.

式(2)で表される化合物の含有量は、ゴム成分100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.4質量部以上である。0.2質量部未満であると、耐屈曲亀裂性の向上について効果が見られないおそれがある。式(2)で表される化合物の含有量は、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下、特に好ましくは5質量部以下である。20質量部を超えると、ゴム強度(破壊強度)、操縦安定性、耐屈曲亀裂性が悪化するおそれがある。 The content of the compound represented by the formula (2) is preferably 0.2 parts by mass or more, more preferably 0.3 parts by mass or more, further preferably 0.4 parts by mass with respect to 100 parts by mass of the rubber component. That's it. If the amount is less than 0.2 parts by mass, the effect of improving the bending crack resistance may not be observed. Content of the compound represented by Formula (2) becomes like this. Preferably it is 20 mass parts or less, More preferably, it is 15 mass parts or less, More preferably, it is 10 mass parts or less, Most preferably, it is 5 mass parts or less. If it exceeds 20 parts by mass, the rubber strength (breaking strength), steering stability, and bending crack resistance may be deteriorated.

本発明のゴム組成物には、前記成分以外にも、ゴム組成物の製造に一般に使用される配合剤、例えば、カーボンブラック、クレー等の補強用充填剤、酸化亜鉛、ステアリン酸、各種老化防止剤、オイル等の軟化剤、ワックス、加硫促進剤などを適宜配合することができる。 In addition to the above components, the rubber composition of the present invention includes compounding agents generally used in the production of rubber compositions, for example, reinforcing fillers such as carbon black and clay, zinc oxide, stearic acid, various anti-aging agents. Agents, softeners such as oil, waxes, vulcanization accelerators and the like can be appropriately blended.

オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物を用いても良い。プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル(アロマオイル)などが挙げられる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などが挙げられる。なかでも、ゴム成分との相溶性が良好であるという理由から、芳香族系プロセスオイルが好ましい。 As the oil, for example, process oil, vegetable oil or fat, or a mixture thereof may be used. Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil (aromatic oil). Vegetable oils include castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, beet flower oil, sesame oil, Examples include olive oil, sunflower oil, palm kernel oil, cocoon oil, jojoba oil, macadamia nut oil, safflower oil, and tung oil. Of these, aromatic process oils are preferred because of their good compatibility with the rubber component.

オイルの含有量は、ゴム成分100質量部に対して、好ましくは2質量部以上、より好ましくは5質量部以上である。2質量部未満であると、加工性が悪化するおそれがある。オイルの含有量は、好ましくは25質量部以下、より好ましくは20質量部以下、更に好ましくは15質量部以下である。25質量部を超えると、ゴムが柔らかくなりすぎ、フィラーの分散が悪化し、低燃費性、耐屈曲亀裂性、操縦安定性、破壊強度が低下するおそれがある。 The oil content is preferably 2 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 2 parts by mass, the workability may be deteriorated. The oil content is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 15 parts by mass or less. When the amount exceeds 25 parts by mass, the rubber becomes too soft, the filler dispersion is deteriorated, and there is a risk that the fuel efficiency, the flex crack resistance, the steering stability, and the breaking strength are lowered.

加硫促進剤としては、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド(TBBS)、N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(CBS)、N,N’−ジシクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(DZ)、メルカプトベンゾチアゾール(MBT)、ジベンゾチアゾリルジスルフィド(MBTS)、ジフェニルグアニジン(DPG)などが挙げられる。なかでも、加硫特性に優れ、加硫後のゴムの物性において、低発熱性に優れ、破壊強度向上の効果も大きいという理由から、TBBS、CBS、DZなどのスルフェンアミド系加硫促進剤が好ましく、CBSがより好ましい。 Examples of the vulcanization accelerator include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N, N′-dicyclohexyl-2- Examples include benzothiazolylsulfenamide (DZ), mercaptobenzothiazole (MBT), dibenzothiazolyl disulfide (MBTS), and diphenylguanidine (DPG). Among them, sulfenamide-based vulcanization accelerators such as TBBS, CBS, and DZ are excellent because of their excellent vulcanization characteristics, excellent physical properties of rubber after vulcanization, excellent low heat build-up, and great effect of improving fracture strength. Are preferred, and CBS is more preferred.

本発明のゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。 As a method for producing the rubber composition of the present invention, a known method can be used. For example, the above components are kneaded using a rubber kneader such as an open roll or a Banbury mixer, and then vulcanized. Can be manufactured.

本発明のゴム組成物は、タイヤのサイドウォールに好適に使用できる。 The rubber composition of the present invention can be suitably used for tire sidewalls.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのサイドウォールの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, a rubber composition containing various additives as required is extruded according to the shape of the sidewall of the tire at an unvulcanized stage, and molded by a normal method on a tire molding machine, After bonding together with other tire members to form an unvulcanized tire, the tire can be manufactured by heating and pressing in a vulcanizer.

また、本発明のタイヤは、乗用車用タイヤ、バス用タイヤ、トラック用タイヤ等として好適に用いられる。 The tire of the present invention is suitably used as a passenger car tire, bus tire, truck tire, and the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
NR:RSS#3
BR1:宇部興産(株)製のBR130B(シス含量:96質量%)
BR2:住友化学(株)製の変性ブタジエンゴム(変性BR)(ビニル含量:15質量%、上記式(1)のR、R及びR=−OCH、R及びR=−CHCH、n=3の化合物により変性)
カーボンブラック:三菱化学(株)製のダイヤブラックN550(NSA:42m/g)
シリカ:Rhodia社製のZeosil1115MP(チッ素吸着比表面積(NSA):115m/g)
シランカップリング剤:デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
プロセスオイル:ジャパンエナジー社製のプロセスX−140(芳香族系プロセスオイル)
ワックス:大内新興化学工業(株)製のサンノワックスN
老化防止剤:住友化学(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ステアリン酸:日油(株)製の椿
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:軽井沢硫黄(株)製の粉末硫黄
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド)
KA9188:バイエル社製のVulcurenKA9188(1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
NR: RSS # 3
BR1: BR130B manufactured by Ube Industries, Ltd. (cis content: 96% by mass)
BR2: Modified butadiene rubber (modified BR) manufactured by Sumitomo Chemical Co., Ltd. (vinyl content: 15% by mass, R 1 , R 2 and R 3 of the above formula (1) = — OCH 3 , R 4 and R 5 = − CH 2 CH 3 , modified by n = 3 compound)
Carbon black: Diamond black N550 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 42 m 2 / g)
Silica: Zeosil 1115MP manufactured by Rhodia (nitrogen adsorption specific surface area (N 2 SA): 115 m 2 / g)
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa
Process oil: Process X-140 (aromatic process oil) manufactured by Japan Energy
Wax: Sanno Wax N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Anti-aging agent: Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Zinc oxide manufactured by NOF Corporation: Zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur vulcanization accelerator manufactured by Karuizawa Sulfur Co., Ltd. CZ: Ouchi Shinsei Chemical Co., Ltd. Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide)
KA9188: Vulcuren KA9188 (1,6-bis (N, N′-dibenzylthiocarbamoyldithio) hexane) manufactured by Bayer

実施例1〜4及び比較例1〜3
表1に示す配合処方にしたがい、1.7Lバンバリーミキサーを用いて、硫黄、加硫促進剤、及びKA9188以外の材料を150℃の条件下で3分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄、加硫促進剤、及びKA9188を添加し、オープンロールを用いて、50℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を170℃で12分間プレス加硫し、加硫ゴム組成物を得た。
得られた未加硫ゴム組成物をサイドウォール形状に成形して、他のタイヤ部材とはりあわせ、170℃で12分間25kgfの条件下で加硫することにより、試験用タイヤ(タイヤサイズ:195/65R15)を作製した。
Examples 1-4 and Comparative Examples 1-3
In accordance with the formulation shown in Table 1, materials other than sulfur, a vulcanization accelerator, and KA9188 were kneaded for 3 minutes at 150 ° C. using a 1.7 L Banbury mixer to obtain a kneaded product. Next, sulfur, a vulcanization accelerator, and KA9188 were added to the obtained kneaded material, and kneaded for 5 minutes under a condition of 50 ° C. using an open roll, to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized at 170 ° C. for 12 minutes to obtain a vulcanized rubber composition.
The obtained unvulcanized rubber composition was molded into a sidewall shape, bonded to another tire member, and vulcanized under conditions of 25 kgf for 12 minutes at 170 ° C., so that a test tire (tire size: 195 / 65R15).

得られた未加硫ゴム組成物、加硫ゴム組成物、試験用タイヤについて下記の評価を行った。結果を表1に示す。 The following evaluation was performed about the obtained unvulcanized rubber composition, the vulcanized rubber composition, and the test tire. The results are shown in Table 1.

(熱劣化条件)
得られた加硫ゴム組成物を80℃のオーブンで168時間熱劣化(老化)させた。得られたものを熱劣化サンプル(熱劣化後の耐屈曲亀裂性テストサンプル)とした。
(Thermal degradation conditions)
The obtained vulcanized rubber composition was thermally deteriorated (aged) for 168 hours in an oven at 80 ° C. The obtained sample was used as a thermally deteriorated sample (flexible crack resistance test sample after heat deterioration).

(1)ムーニー粘度
JIS K6300に準じて、130℃で所定の未加硫ゴム組成物のムーニー粘度を測定した。測定結果を、比較例1を100として、下記計算式により指数表示した。指数が大きいほど粘度が低く、加工が容易であることを示す。
(ムーニー粘度指数)=(比較例1のムーニー粘度)/(各配合のムーニー粘度)×100
(1) Mooney viscosity The Mooney viscosity of a predetermined unvulcanized rubber composition was measured at 130 ° C. according to JIS K6300. The measurement results were indexed according to the following calculation formula, with Comparative Example 1 being 100. The larger the index, the lower the viscosity and the easier the processing.
(Mooney viscosity index) = (Mooney viscosity of Comparative Example 1) / (Mooney viscosity of each formulation) × 100

(2)転がり抵抗
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度70℃、初期歪み10%、動歪み2%の条件下で、各配合の加硫ゴム組成物のtanδを測定し、比較例1のtanδを100として、下記計算式により指数表示した。指数が大きいほど、転がり抵抗特性(低燃費性)が優れている。
(転がり抵抗指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(2) Tan δ of each vulcanized rubber composition using a rolling resistance viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.) at a temperature of 70 ° C., an initial strain of 10%, and a dynamic strain of 2%. The tan δ of Comparative Example 1 was set to 100, and an index was displayed according to the following calculation formula. The larger the index, the better the rolling resistance characteristics (low fuel consumption).
(Rolling resistance index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100

(3)破壊強度
加硫ゴム組成物について、JIS K6251に準じて3号ダンベルを用いて引張り試験を実施し、破断強度(TB)を破断時伸び(EB)(%)を測定した。TB×EB/2の数値を破壊強度とした。比較例1の破壊強度を100として、下記計算式により指数表示した。指数が大きいほど破壊強度に優れる。
(破壊強度指数)=(各配合の破壊強度)/(比較例1の破壊強度)×100
(3) Breaking strength The vulcanized rubber composition was subjected to a tensile test using a No. 3 dumbbell according to JIS K6251, and the breaking strength (TB) was measured as the elongation at break (EB) (%). The numerical value of TB × EB / 2 was taken as the breaking strength. The fracture strength of Comparative Example 1 was taken as 100, and the index was expressed by the following calculation formula. The larger the index, the better the breaking strength.
(Destructive strength index) = (Destructive strength of each formulation) / (Destructive strength of Comparative Example 1) × 100

(4)操縦安定性
試験用タイヤを車輌(国産FF2000cc)の全輪に装着してテストコースを実車走行し、ドライバーの官能評価により操縦安定性を評価した。その際に、10点を満点とし、比較例1の操縦安定性を6点としてそれぞれ相対評価を行った。数値が大きいほど、操縦安定性に優れることを示す。
(4) Steering stability test tires were mounted on all the wheels of a vehicle (domestic FF2000cc), and the vehicle was run on the test course, and the steering stability was evaluated by sensory evaluation of the driver. At that time, relative evaluation was performed with 10 points being the perfect score and the steering stability of Comparative Example 1 being 6 points. The larger the value, the better the steering stability.

(5)(耐屈曲亀裂性)
加硫ゴム組成物を用い、JIS−K−6260「加硫ゴム及び熱可塑性ゴム−デマッチャ屈曲亀裂試験方法」に基づいてサンプルを作製し、屈曲亀裂成長試験を行い、70%伸張を100万回繰り返してサンプルを屈曲させた後、発生した亀裂の長さを測定した。
そして、比較例1の測定値(長さ)を100とし、下記計算式により指数表示した。指数が大きいほど、亀裂の成長が抑制され、耐屈曲亀裂性に優れることを示す。
(耐屈曲亀裂性指数)=(比較例1の測定値)/(各配合の測定値)×100
また、熱劣化サンプルを用いて同様の試験を行い、下記計算式により指数表示した。
指数が大きいほど、亀裂の成長が抑制され、熱劣化後の耐屈曲亀裂性(耐久性)に優れることを示す。
(熱劣化後の耐屈曲亀裂性指数)=(比較例1の測定値)/(各配合の測定値)×100
(5) (Bending crack resistance)
Using a vulcanized rubber composition, a sample was prepared based on JIS-K-6260 “Vulcanized Rubber and Thermoplastic Rubber—Dematcher Bending Crack Test Method”, a bending crack growth test was conducted, and 70% elongation was 1 million times. After repeatedly bending the sample, the length of the generated crack was measured.
And the measured value (length) of the comparative example 1 was set to 100, and it displayed by the index | exponent by the following formula. The larger the index, the more the crack growth is suppressed and the better the flex crack resistance.
(Bending crack resistance index) = (Measured value of Comparative Example 1) / (Measured value of each formulation) × 100
Moreover, the same test was done using the heat-degraded sample, and the index was expressed by the following formula.
The larger the index is, the more the crack growth is suppressed and the better the resistance to bending cracking (durability) after thermal degradation.
(Bending crack resistance index after thermal degradation) = (Measured value of Comparative Example 1) / (Measured value of each formulation) × 100

Figure 0005657927
Figure 0005657927

上記式(1)で表される化合物により変性されたブタジエンゴムを含むゴム成分と、シリカと、硫黄と、上記式(2)で表される化合物とを含む実施例は、低燃費性、耐屈曲亀裂性、熱劣化後の耐屈曲亀裂性(耐久性)を高い次元でバランスよく向上でき、操縦安定性、破壊強度も確保できた。 Examples including a rubber component containing a butadiene rubber modified with a compound represented by the above formula (1), silica, sulfur, and a compound represented by the above formula (2) have low fuel consumption, Bending crack resistance and resistance to bending cracking (durability) after heat deterioration can be improved in a well-balanced manner, and steering stability and fracture strength can be secured.

一方、カーボンブラックのみを配合した比較例1は、実施例と比較して、低燃費性、耐屈曲亀裂性、熱劣化後の耐屈曲亀裂性(耐久性)が劣っていた。上記式(1)で表される化合物、上記式(2)で表される化合物を配合しない比較例2は、実施例と比較して、低燃費性、破壊強度、操縦安定性、耐屈曲亀裂成長性、熱劣化後の耐屈曲亀裂性(耐久性)が劣っていた。上記式(2)で表される化合物を配合しない比較例3は、実施例と比較して、耐屈曲亀裂成長性、熱劣化後の耐屈曲亀裂性(耐久性)が劣っていた。 On the other hand, the comparative example 1 which mix | blended only carbon black was inferior in the fuel-efficient property, the bending crack resistance, and the bending crack resistance (durability) after heat deterioration compared with the Example. In Comparative Example 2 in which the compound represented by the above formula (1) and the compound represented by the above formula (2) are not blended, fuel efficiency, fracture strength, steering stability, and flex crack resistance compared to the Examples The growth property and resistance to flex cracking (durability) after heat deterioration were inferior. The comparative example 3 which does not mix | blend the compound represented by the said Formula (2) was inferior in the bending crack growth resistance and the bending crack resistance (durability) after heat deterioration compared with the Example.

Claims (4)

下記式(1)で表される化合物により変性されたブタジエンゴムを含むゴム成分と、
チッ素吸着比表面積40〜125m/gのシリカと、
硫黄と、
下記式(2)で表される化合物とを含み、
前記ゴム成分100質量%中の前記式(1)で表される化合物により変性されたブタジエンゴムの含有量は、5質量%以上、
前記ゴム成分100質量部に対して、前記シリカの含有量が30〜150質量部、前記硫黄の含有量が0.1〜20質量部、前記式(2)で表される化合物の含有量が0.2〜20質量部であるサイドウォール用ゴム組成物。
Figure 0005657927
(式(1)中、R、R及びRは、同一若しくは異なって、分岐若しくは非分岐のアルキル基、分岐若しくは非分岐のアルコキシ基、分岐若しくは非分岐のシリルオキシ基、分岐若しくは非分岐のアセタール基、カルボキシル基、メルカプト基又はこれらの誘導体を表す。R及びRは、エチル基を表す。nは整数を表す。)
−S−S−A−S−S−R (2)
(式(2)において、Aは分岐若しくは非分岐の炭素数2〜10のアルキレン基、R及びRは、同一若しくは異なって、チッ素原子を含む1価の有機基を表す。)
A rubber component containing a butadiene rubber modified with a compound represented by the following formula (1);
A silica with a nitrogen adsorption specific surface area of 40 to 125 m 2 / g;
Sulfur and
A compound represented by the following formula (2):
The content of the butadiene rubber modified with the compound represented by the formula (1) in 100% by mass of the rubber component is 5% by mass or more,
The content of the silica is 30 to 150 parts by mass, the sulfur content is 0.1 to 20 parts by mass, and the content of the compound represented by the formula (2) is 100 parts by mass of the rubber component. A rubber composition for a sidewall, which is 0.2 to 20 parts by mass.
Figure 0005657927
(In formula (1), R 1 , R 2 and R 3 are the same or different and are branched or unbranched alkyl groups, branched or unbranched alkoxy groups, branched or unbranched silyloxy groups, branched or unbranched. An acetal group, a carboxyl group, a mercapto group, or a derivative thereof, wherein R 4 and R 5 represent an ethyl group, and n represents an integer.)
R 6 —S—S—A—S—S—R 7 (2)
(In Formula (2), A represents a branched or unbranched alkylene group having 2 to 10 carbon atoms, and R 6 and R 7 are the same or different and represent a monovalent organic group containing a nitrogen atom.)
前記ゴム成分100質量部に対して、オイルの含有量が2〜25質量部である請求項1記載のサイドウォール用ゴム組成物。 The rubber composition for a sidewall according to claim 1, wherein the content of oil is 2 to 25 parts by mass with respect to 100 parts by mass of the rubber component. 前記ゴム成分がイソプレン系ゴムを含む請求項1又は2記載のサイドウォール用ゴム組成物。 The rubber composition for a sidewall according to claim 1 or 2, wherein the rubber component contains an isoprene-based rubber. 請求項1〜3のいずれかに記載のゴム組成物を用いて作製したサイドウォールを有する空気入りタイヤ。 The pneumatic tire which has a side wall produced using the rubber composition in any one of Claims 1-3.
JP2010140857A 2010-06-21 2010-06-21 Sidewall rubber composition and pneumatic tire Active JP5657927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140857A JP5657927B2 (en) 2010-06-21 2010-06-21 Sidewall rubber composition and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140857A JP5657927B2 (en) 2010-06-21 2010-06-21 Sidewall rubber composition and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2012001697A JP2012001697A (en) 2012-01-05
JP5657927B2 true JP5657927B2 (en) 2015-01-21

Family

ID=45534042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140857A Active JP5657927B2 (en) 2010-06-21 2010-06-21 Sidewall rubber composition and pneumatic tire

Country Status (1)

Country Link
JP (1) JP5657927B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231829B2 (en) * 2013-09-11 2017-11-15 住友ゴム工業株式会社 Pneumatic tire
JP6166134B2 (en) * 2013-09-11 2017-07-19 住友ゴム工業株式会社 Pneumatic tire
JP6166136B2 (en) * 2013-09-11 2017-07-19 住友ゴム工業株式会社 Pneumatic tire
JP6231828B2 (en) * 2013-09-11 2017-11-15 住友ゴム工業株式会社 Pneumatic tire
JP6166135B2 (en) * 2013-09-11 2017-07-19 住友ゴム工業株式会社 Pneumatic tire

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657767B2 (en) * 1987-01-28 1994-08-03 住友化学工業株式会社 Modified rubber composition
JP2001342293A (en) * 2000-05-31 2001-12-11 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP2002037927A (en) * 2000-07-21 2002-02-06 Bridgestone Corp Pneumatic tire
JP4563702B2 (en) * 2004-03-17 2010-10-13 住友ゴム工業株式会社 Rubber composition for tire tread
JP4606807B2 (en) * 2004-08-09 2011-01-05 住友ゴム工業株式会社 Rubber composition for tire tread
JP4884316B2 (en) * 2006-07-11 2012-02-29 住友ゴム工業株式会社 Rubber composition for bead apex and tire having bead apex using the same
JP5065651B2 (en) * 2006-10-30 2012-11-07 東洋ゴム工業株式会社 Rubber composition for tire sidewall
JP4638933B2 (en) * 2007-12-07 2011-02-23 住友ゴム工業株式会社 Rubber composition for tire
JP2009214700A (en) * 2008-03-10 2009-09-24 Bridgestone Corp Rubber composition and pneumatic tire using the same
JP4806438B2 (en) * 2008-10-08 2011-11-02 住友ゴム工業株式会社 Rubber composition and pneumatic tire

Also Published As

Publication number Publication date
JP2012001697A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP4881362B2 (en) Rubber composition and tire
JP4806438B2 (en) Rubber composition and pneumatic tire
JP4783356B2 (en) Rubber composition
JP5134592B2 (en) Rubber composition for cap tread and tire having cap tread comprising the same
JP5543226B2 (en) Rubber composition for tire and pneumatic tire
JP5466415B2 (en) Rubber composition and tire for base tread
JP5486176B2 (en) Rubber composition for tire
JP5415740B2 (en) Rubber composition and pneumatic tire
JP2011144324A (en) Rubber composition for tire and pneumatic tire
JP5872125B1 (en) Rubber composition and tire
JP2009113794A (en) Tire
JP2011144349A (en) Rubber composition for use in tire, and pneumatic tire
WO2009084285A1 (en) Rubber composition for tire
JP2018188567A (en) Tire tread and tire
JP2011236368A (en) Rubber composition for sidewall and pneumatic tire
JP2011012161A (en) Rubber composition for tire and pneumatic tire
JP5468891B2 (en) Rubber composition for tire and pneumatic tire
JP5373366B2 (en) Rubber composition and tire for reinforcing layer for wing or run flat tire
JP5657927B2 (en) Sidewall rubber composition and pneumatic tire
JP5457164B2 (en) Rubber composition for pneumatic tread and pneumatic tire
JP2011057922A (en) Tire rubber composition and pneumatic tire
JP5702070B2 (en) Sidewall rubber composition and pneumatic tire
JP5255910B2 (en) Rubber composition for breaker cushion and tire having breaker cushion using the same
JP5415743B2 (en) Chafer or clinch rubber composition and pneumatic tire
JP7447426B2 (en) Rubber composition manufacturing method and tire manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5657927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250