JP5657465B2 - Method for producing allyl alcohol compound - Google Patents

Method for producing allyl alcohol compound Download PDF

Info

Publication number
JP5657465B2
JP5657465B2 JP2011100306A JP2011100306A JP5657465B2 JP 5657465 B2 JP5657465 B2 JP 5657465B2 JP 2011100306 A JP2011100306 A JP 2011100306A JP 2011100306 A JP2011100306 A JP 2011100306A JP 5657465 B2 JP5657465 B2 JP 5657465B2
Authority
JP
Japan
Prior art keywords
compound
reaction
allyl
allyl alcohol
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011100306A
Other languages
Japanese (ja)
Other versions
JP2012232903A (en
Inventor
矢田 和之
和之 矢田
岡野 茂
茂 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2011100306A priority Critical patent/JP5657465B2/en
Publication of JP2012232903A publication Critical patent/JP2012232903A/en
Application granted granted Critical
Publication of JP5657465B2 publication Critical patent/JP5657465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アリルアルコール化合物の製造方法に関する。本発明により得られるアリルアルコール化合物は、農薬、医薬および香料などの中間体、樹脂モノマーや樹脂添加剤などの原料として有用である。   The present invention relates to a method for producing an allyl alcohol compound. The allyl alcohol compound obtained by the present invention is useful as a raw material for intermediates such as agricultural chemicals, medicines and fragrances, resin monomers and resin additives.

アリルアルコール化合物の製造方法としては、ハロゲン化アリル化合物を加水分解する方法が知られている(特許文献1〜3参照)。
反応速度を向上させるために、原料および/または反応生成物の沸点以上の高温下に、アルカリ水溶液と反応させて加水分解を行う方法が開示されている(特許文献1参照)。また、第一銅化合物の存在下にアリル型クロライドを加水分解してアリル型不飽和アルコールを製造する方法が開示されており、アリル型不飽和アルコールの選択性を高めるには反応混合物を中性〜弱アルカリ性に保つこと、強アルカリを用いる場合には必要量のアルカリを反応の進行に従い順次加えていくことが重要であることが知られている(特許文献2参照)。さらに、メタリルクロライドを加水分解してメタリルアルコールを得る方法として、塩化水素吸収体存在下に一価の銅触媒を用いて加水分解を行う方法が知られている(特許文献3参照)。
As a method for producing an allyl alcohol compound, a method of hydrolyzing an allyl halide compound is known (see Patent Documents 1 to 3).
In order to improve the reaction rate, a method is disclosed in which hydrolysis is performed by reacting with an aqueous alkali solution at a high temperature equal to or higher than the boiling point of the raw material and / or reaction product (see Patent Document 1). Also disclosed is a method for producing an allyl unsaturated alcohol by hydrolyzing an allyl chloride in the presence of a cuprous compound. To increase the selectivity of the allyl unsaturated alcohol, the reaction mixture is neutralized. It is known that it is important to keep a weak alkalinity and to add a required amount of alkali sequentially as the reaction proceeds when a strong alkali is used (see Patent Document 2). Furthermore, as a method of hydrolyzing methallyl chloride to obtain methallyl alcohol, a method of performing hydrolysis using a monovalent copper catalyst in the presence of a hydrogen chloride absorber is known (see Patent Document 3).

米国特許第2072015号U.S. Patent No. 2072015 特公昭45−10126号公報Japanese Patent Publication No. 45-10126 特開昭61−33号公報JP-A-61-33

特許文献1には、原料および/または反応生成物を液相に捕捉するために内容液の蒸気圧以上の圧力下に行うことが望ましい旨が記述されているが、具体的な加圧方法や加圧雰囲気についての詳細な記述はない。特許文献2には、反応混合物を中性〜弱アルカリ性に保つことが望ましいこと、また、特許文献3には、塩化水素吸収体としてアルカリ金属の水酸化物、炭酸塩、重炭酸塩を使用する場合、系中のpHが6以下となると異性化が進行し収率を下げる一方、pHが8以上となると反応率が低下するとともにジメタリルエーテルが増加してやはり収率を下げるため、pHを6〜8の範囲になるように塩化水素吸収体の滴下速度を調整することが記載されているが、工業的には、反応中のpHを測定しながら滴下速度を調整することは困難である。また、常圧で反応を行うため、反応温度を内容物の沸点以上に上げることができないという問題がある。一方、塩化水素吸収体として弱塩基であるアルカリ金属の重炭酸塩を使用すればpH調整は不要だが、安価な重炭酸ナトリウム(炭酸水素ナトリウム)は水への溶解度が低く、重炭酸カリウム(炭酸水素カリウム)は水への溶解性が良好だが、高価なためコスト面で工業的な使用が難しい。   Patent Document 1 describes that it is desirable to carry out under a pressure equal to or higher than the vapor pressure of the content liquid in order to trap the raw materials and / or reaction products in the liquid phase. There is no detailed description of the pressurized atmosphere. In Patent Document 2, it is desirable to keep the reaction mixture neutral to weakly alkaline. In Patent Document 3, alkali metal hydroxides, carbonates, and bicarbonates are used as hydrogen chloride absorbers. In this case, when the pH in the system is 6 or less, isomerization proceeds and lowers the yield. On the other hand, when the pH is 8 or more, the reaction rate decreases and dimethallyl ether increases to decrease the yield. Although it is described that the dropping rate of the hydrogen chloride absorber is adjusted to be in the range of 6 to 8, it is difficult to adjust the dropping rate industrially while measuring the pH during the reaction. . In addition, since the reaction is carried out at normal pressure, there is a problem that the reaction temperature cannot be raised above the boiling point of the contents. On the other hand, if alkali metal bicarbonate, which is a weak base, is used as the hydrogen chloride absorber, pH adjustment is not necessary, but inexpensive sodium bicarbonate (sodium bicarbonate) has low solubility in water, and potassium bicarbonate (carbonate Potassium hydrogen) has good solubility in water, but is expensive and difficult to use industrially in terms of cost.

本発明者らは鋭意検討した結果、ハロゲン化アリル化合物を、塩基性化合物および一価の銅化合物存在下、二酸化炭素雰囲気下に加水分解することで、反応系中のpH調整等の複雑な操作を行わずともアリルアルコール化合物が選択率よく得られることを見出した。   As a result of intensive studies, the present inventors have carried out hydrolysis of an allyl halide compound in a carbon dioxide atmosphere in the presence of a basic compound and a monovalent copper compound, thereby performing complicated operations such as pH adjustment in the reaction system. It has been found that an allyl alcohol compound can be obtained with high selectivity without performing the above step.

すなわち、本発明は、下記[1]〜[3]を提供する。
[1]塩基性化合物および一価の銅化合物存在下、二酸化炭素雰囲気下でハロゲン化アリル化合物を加水分解することを特徴とするアリルアルコール化合物の製造方法。
[2]二酸化炭素の分圧を0.01〜2MPa(ゲージ圧)で行うことを特徴とする[1]のアリルアルコール化合物の製造方法。
[3]塩基性化合物が水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムから選ばれる少なくとも1種であることを特徴とする[1]または[2]のアリルアルコール化合物の製造方法。
That is, the present invention provides the following [1] to [3].
[1] A method for producing an allyl alcohol compound, comprising hydrolyzing an allyl halide compound in a carbon dioxide atmosphere in the presence of a basic compound and a monovalent copper compound.
[2] The method for producing an allyl alcohol compound according to [1], wherein the partial pressure of carbon dioxide is 0.01 to 2 MPa (gauge pressure).
[3] The method for producing an allyl alcohol compound according to [1] or [2], wherein the basic compound is at least one selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.

本発明によれば、医薬品、農薬および香料などの機能性化合物の合成原料として有用なアリルアルコール化合物を、反応系中のpH調整などの複雑な操作を行わずとも選択率よく得ることができる。   According to the present invention, an allyl alcohol compound useful as a raw material for synthesizing functional compounds such as pharmaceuticals, agricultural chemicals and fragrances can be obtained with high selectivity without performing complicated operations such as pH adjustment in the reaction system.

本発明の方法では、塩基性化合物および一価の銅化合物存在下、二酸化炭素雰囲気下でハロゲン化アリル化合物を加水分解することでアリルアルコール化合物を製造する。   In the method of the present invention, an allyl alcohol compound is produced by hydrolyzing an allyl halide compound in a carbon dioxide atmosphere in the presence of a basic compound and a monovalent copper compound.

本発明の方法に使用するハロゲン化アリル化合物は、不飽和炭化水素化合物のアリル位の水素原子のひとつがハロゲン原子で置換された化合物であり、例えば3−クロロプロペン(塩化アリル)、3−ブロモプロペン(臭化アリル)、3−クロロ−2−メチル−1−プロペン(塩化メタリル)、3−ブロモ−2−メチル−1−プロペン(臭化メタリル)、1−クロロ−2−ブテン(塩化クロチル)、3−クロロ−1−ブテン、1−クロロ−3−メチル−2−ブテン(塩化プレニル)、3−クロロ−1−ペンテン、3−クロロシクロヘキセン、1−クロロ−2−オクテン、3−クロロ−1−オクテン、1−クロロ−2,7−オクタジエン、3−クロロ−1,7−オクタジエン、1−フェニル−3−クロロ−1−プロペン(塩化シンナミル)、3−クロロ−3−フェニル−1−プロペンなどが挙げられる。これらの中でも、工業的に容易に入手できる観点から、3−クロロプロペン(塩化アリル)、3−クロロ−2−メチル−1−プロペン(塩化メタリル)が好ましい。   The allyl halide compound used in the method of the present invention is a compound in which one of the hydrogen atoms at the allylic position of an unsaturated hydrocarbon compound is substituted with a halogen atom. For example, 3-chloropropene (allyl chloride), 3-bromo Propene (allyl bromide), 3-chloro-2-methyl-1-propene (methallyl chloride), 3-bromo-2-methyl-1-propene (methallyl bromide), 1-chloro-2-butene (crotyl chloride) ), 3-chloro-1-butene, 1-chloro-3-methyl-2-butene (prenyl chloride), 3-chloro-1-pentene, 3-chlorocyclohexene, 1-chloro-2-octene, 3-chloro -1-octene, 1-chloro-2,7-octadiene, 3-chloro-1,7-octadiene, 1-phenyl-3-chloro-1-propene (cinnamyl chloride), 3 Such as chloro-3-phenyl-1-propene, and the like. Among these, 3-chloropropene (allyl chloride) and 3-chloro-2-methyl-1-propene (methallyl chloride) are preferable from the viewpoint of industrial availability.

本発明の方法では、加水分解によりハロゲン化アリルから遊離するハロゲン原子を捕捉するハロゲン捕捉剤として、塩基性化合物を使用する。塩基性化合物としてはハロゲン原子を捕捉する能力を有していれば特に限定はないが、加水分解反応速度、目的とするアリルアルコール化合物の選択性、反応系への溶解性などの観点から、無機塩基が好ましい。かかる無機塩基としては、アルカリ金属またはアルカリ土類金属の水酸化物、炭酸塩、酢酸塩などが挙げられ、入手容易性などの観点から水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムが好ましい。これらの塩基性化合物は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
塩基性化合物の使用量は、ハロゲン化アリル化合物が有するハロゲン原子に対して1〜2当量が好ましい。塩基性化合物の使用量が1当量より少ないと反応が十分に進行しないか、あるいはアリルアルコールの化合物の選択率が低下する傾向があり、一方、2当量よりも多いと経済性に劣る傾向となる。塩基性化合物は、粉体または水溶液のいずれの形態でも良く、作業性の観点から、水溶液として用いることが好ましい。
In the method of the present invention, a basic compound is used as a halogen scavenger for capturing a halogen atom liberated from an allyl halide by hydrolysis. The basic compound is not particularly limited as long as it has an ability to capture a halogen atom, but it is inorganic from the viewpoint of hydrolysis reaction rate, selectivity of the desired allyl alcohol compound, solubility in the reaction system, and the like. A base is preferred. Examples of such inorganic bases include alkali metal or alkaline earth metal hydroxides, carbonates and acetates, and sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate are preferred from the viewpoint of availability. . These basic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
As for the usage-amount of a basic compound, 1-2 equivalent is preferable with respect to the halogen atom which a halogenated allyl compound has. When the amount of the basic compound used is less than 1 equivalent, the reaction does not proceed sufficiently or the selectivity of the allyl alcohol compound tends to decrease, whereas when it exceeds 2 equivalents, the economy tends to be inferior. . The basic compound may be in the form of a powder or an aqueous solution, and is preferably used as an aqueous solution from the viewpoint of workability.

本発明の方法で用いる一価の銅化合物としては、例えば酸化第一銅、塩化第一銅、臭化第一銅、酢酸第一銅などが挙げられる。これらの中でも入手容易性の観点から酸化第一銅、塩化第一銅が好ましい。一価の銅化合物の使用量に特に制限はないが、ハロゲン化アリルに対して0.1〜5モル%が好ましい。一価の銅化合物の使用量が0.1モル%よりも少ないと反応速度が遅くなる傾向となり、5モル%よりも多いと経済性に劣る傾向となる。   Examples of the monovalent copper compound used in the method of the present invention include cuprous oxide, cuprous chloride, cuprous bromide, cuprous acetate and the like. Among these, cuprous oxide and cuprous chloride are preferable from the viewpoint of availability. Although there is no restriction | limiting in particular in the usage-amount of a monovalent copper compound, 0.1-5 mol% is preferable with respect to an allyl halide. When the amount of the monovalent copper compound used is less than 0.1 mol%, the reaction rate tends to be slow, and when it is more than 5 mol%, the economy tends to be inferior.

本発明の方法で、使用する水の量に特に制限は無いが、ハロゲン化アリルに対して1.5〜5質量倍が好ましい。1.5質量倍よりも少ないと反応が十分に進行しない傾向となり、5質量倍よりも多いと容積効率が低下して経済性に劣る傾向となる。   Although there is no restriction | limiting in particular in the quantity of the water to be used by the method of this invention, 1.5-5 mass times is preferable with respect to an allyl halide. When the amount is less than 1.5 times by mass, the reaction tends not to proceed sufficiently. When the amount is more than 5 times by mass, the volumetric efficiency is lowered and the economy tends to be inferior.

本発明の方法は、溶媒の存在下または非存在下に実施できる。使用する溶媒としては、反応に影響を与えるものでなければ特に制限はなく、テトラヒドロフラン、1,3−ジオキサン、ジエチルエーテルなどのエーテル;酢酸エチル、酢酸ブチルなどのエステル;ヘキサン、ヘプタン、トルエン、キシレン、メシチレンなどの脂肪族または芳香族炭化水素などが挙げられる。これらの溶媒は、1種を単独で使用しても良いし、2種以上を併用しても良い。本発明の方法においては、生成物との分離操作を省略する観点から、溶媒の非存在下で実施することが好ましい。   The process of the present invention can be carried out in the presence or absence of a solvent. The solvent to be used is not particularly limited as long as it does not affect the reaction, ethers such as tetrahydrofuran, 1,3-dioxane and diethyl ether; esters such as ethyl acetate and butyl acetate; hexane, heptane, toluene and xylene And aliphatic or aromatic hydrocarbons such as mesitylene. These solvents may be used alone or in combination of two or more. In the method of this invention, it is preferable to implement in absence of a solvent from a viewpoint which abbreviate | omits separation operation with a product.

本発明の方法は、二酸化炭素雰囲気下に反応を行う。二酸化炭素としては、二酸化炭素ガスまたはドライアイスを使用できる。条件制御などの観点から二酸化炭素ガスを用いるのが好ましい。二酸化炭素の分圧としては、0.01〜2MPa(ゲージ圧)の範囲であるのが好ましく、0.01〜1MPa(ゲージ圧)の範囲であることがより好ましい。二酸化炭素の分圧が0.01MPaより低いと、アリルアルコール化合物の選択率が低下する傾向となり、2MPaより高いと、経済性に劣る傾向となる。反応温度は、40〜140℃の範囲であるのが好ましく、60〜120℃の範囲であるのがより好ましい。反応温度が40℃より低いと反応が極めて遅くなる傾向となり、140℃より高いと選択率が低下する傾向となる。反応時間に特に制限はないが、通常1〜20時間の範囲であるのが好ましい。また、反応系に窒素やアルゴンなどの不活性ガスが共存していても良いが、反応性の観点から、二酸化炭素のみ存在するのが好ましい。   The method of the present invention performs the reaction under a carbon dioxide atmosphere. Carbon dioxide gas or dry ice can be used as carbon dioxide. Carbon dioxide gas is preferably used from the viewpoint of condition control and the like. The partial pressure of carbon dioxide is preferably in the range of 0.01 to 2 MPa (gauge pressure), and more preferably in the range of 0.01 to 1 MPa (gauge pressure). If the partial pressure of carbon dioxide is lower than 0.01 MPa, the selectivity of the allyl alcohol compound tends to decrease, and if it is higher than 2 MPa, the economy tends to be inferior. The reaction temperature is preferably in the range of 40 to 140 ° C, and more preferably in the range of 60 to 120 ° C. If the reaction temperature is lower than 40 ° C, the reaction tends to be extremely slow, and if it is higher than 140 ° C, the selectivity tends to decrease. Although there is no restriction | limiting in particular in reaction time, Usually, it is preferable that it is the range of 1 to 20 hours. Moreover, although inert gas, such as nitrogen and argon, may coexist in the reaction system, it is preferable that only carbon dioxide exists from the viewpoint of reactivity.

本発明の方法は、攪拌型反応槽、循環型反応槽などを用いて実施でき、回分方式または連続方式のいずれで行っても良い。また、必要であれば、未反応の原料を蒸留や抽出などにより分離、回収して、再循環して使用することができる。連続方式では、単一反応器または直列もしくは並列の複数の反応器を用いて実施できる。   The method of the present invention can be carried out using a stirring reaction tank, a circulation reaction tank or the like, and may be carried out by either a batch system or a continuous system. If necessary, unreacted raw materials can be separated and recovered by distillation, extraction, etc., and recycled before use. The continuous mode can be carried out using a single reactor or a plurality of reactors in series or in parallel.

このようにして得られたアリルアルコール化合物は、ろ過、層分離、蒸留、抽出などの手段により分離することができ、必要に応じてさらに精製蒸留を行うことで純度を高めることができる。   The allyl alcohol compound thus obtained can be separated by means such as filtration, layer separation, distillation, extraction and the like, and the purity can be increased by further performing purification distillation as necessary.

以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されない。なお、ガスクロマトグラフィーの測定は、以下の条件で行なった。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. Gas chromatography measurement was performed under the following conditions.

(ガスクロマトグラフィー測定)
分析機器:GC−17A(株式会社島津製作所製)
検出機器:FID(水素炎イオン化型検出器)
使用カラム:CBP−10(カラム長さ50m、内径0.22mm、膜厚0.25μm)(株式会社島津製作所製)
分析条件:Injection Temp.250℃、Detection Temp.250℃
昇温条件:60℃(2分保持)→10℃/分で昇温→250℃
(Gas chromatography measurement)
Analytical instrument: GC-17A (manufactured by Shimadzu Corporation)
Detection equipment: FID (hydrogen flame ionization detector)
Column used: CBP-10 (column length 50 m, inner diameter 0.22 mm, film thickness 0.25 μm) (manufactured by Shimadzu Corporation)
Analysis conditions: Injection Temp. 250 ° C., Detection Temp. 250 ° C
Temperature rising condition: 60 ° C. (2 minutes hold) → Temperature rising at 10 ° C./min→250° C.

<実施例1>
電磁攪拌装置、温度計、加熱装置を備えた内容積1Lの耐圧反応容器に、水172g、40%水酸化ナトリウム水溶液113.3g(水酸化ナトリウム1.13mol)および塩化第一銅0.28gを入れ、二酸化炭素ガスで反応器内部を置換した。さらに二酸化炭素ガスを吸収させた後、反応器の二酸化炭素分圧を0.02MPaに調節した。その後、徐々に70℃まで加熱し反応温度を70℃に保ちながら塩化メタリル100g(1.11mol)を2時間かけて供給し、供給終了後、さらに70℃で2時間反応を継続させた。反応終了後、反応混合液を室温まで冷却し、固形分をろ過し、ろ液をガスクロマトグラフィーにて分析した。塩化メタリルの転化率は99%、メタリルアルコールの選択率は98%、ジメタリルエーテルの選択率は1%であった。
<Example 1>
Into a 1 L pressure-resistant reaction vessel equipped with an electromagnetic stirrer, thermometer, and heating device, 172 g of water, 113.3 g of 40% sodium hydroxide aqueous solution (1.13 mol of sodium hydroxide) and 0.28 g of cuprous chloride were added. The inside of the reactor was replaced with carbon dioxide gas. Further, after carbon dioxide gas was absorbed, the partial pressure of carbon dioxide in the reactor was adjusted to 0.02 MPa. Thereafter, 100 g (1.11 mol) of methallyl chloride was supplied over 2 hours while gradually heating to 70 ° C. and maintaining the reaction temperature at 70 ° C., and the reaction was further continued at 70 ° C. for 2 hours after completion of the supply. After completion of the reaction, the reaction mixture was cooled to room temperature, the solid content was filtered, and the filtrate was analyzed by gas chromatography. The conversion of methallyl chloride was 99%, the selectivity of methallyl alcohol was 98%, and the selectivity of dimethallyl ether was 1%.

<実施例2>
実施例1において、二酸化炭素分圧を0.02MPaから0.8MPaに、反応温度を70℃から120℃に、塩化メタリル供給終了後の反応時間を2時間から1時間に変更した以外は同様の操作を行った。塩化メタリルの転化率は99%、メタリルアルコールの選択率は97%で、ジメタリルエーテルの選択率は2%であった。
<Example 2>
In Example 1, the carbon dioxide partial pressure was changed from 0.02 MPa to 0.8 MPa, the reaction temperature was changed from 70 ° C. to 120 ° C., and the reaction time after completion of the supply of methallyl chloride was changed from 2 hours to 1 hour. The operation was performed. The conversion of methallyl chloride was 99%, the selectivity of methallyl alcohol was 97%, and the selectivity of dimethallyl ether was 2%.

<実施例3>
実施例1において、塩化メタリル100g(1.11mol)に代えて塩化アリル84g(1.11mol)を用いる以外は同様の操作を行った。塩化アリルの転化率は99%、アリルアルコールの選択率は98%で、ジアリルエーテルの生成は1%以下であった。
<Example 3>
In Example 1, the same operation was performed except that 84 g (1.11 mol) of allyl chloride was used instead of 100 g (1.11 mol) of methallyl chloride. The conversion rate of allyl chloride was 99%, the selectivity of allyl alcohol was 98%, and the formation of diallyl ether was 1% or less.

<実施例4>
実施例2において、水の量を172gから240gに、40%水酸化ナトリウム水溶液113.3g(水酸化ナトリウム1.13mol)に代えて炭酸ナトリウム60g(1.13mol)を用いる以外は同様の操作を行った。塩化メタリルの転化率は99%、メタリルアルコールの選択率は98%で、ジメタリルエーテルの生成は1%以下であった。
<Example 4>
In Example 2, the same operation was performed except that the amount of water was changed from 172 g to 240 g, and 60 g (1.13 mol) of sodium carbonate was used instead of 113.3 g (sodium hydroxide 1.13 mol) of 40% aqueous sodium hydroxide. went. The conversion of methallyl chloride was 99%, the selectivity of methallyl alcohol was 98%, and the production of dimethallyl ether was 1% or less.

<実施例5>
実施例1において、塩化メタリルの供給時間を2時間から0.5時間に変えた以外は同様の操作を行った。塩化メタリルの転化率は94%、メタリルアルコールの選択率は97%で、ジメタリルエーテルの生成は2%であった。
<Example 5>
In Example 1, the same operation was performed except that the supply time of methallyl chloride was changed from 2 hours to 0.5 hours. The conversion of methallyl chloride was 94%, the selectivity of methallyl alcohol was 97%, and the production of dimethallyl ether was 2%.

<比較例1>
実施例1において、二酸化炭素ガスの代わりに窒素ガスで反応器内部の置換および加圧を行った以外は同様の操作を行った。塩化メタリルの転化率は99%、メタリルアルコールの選択率は89%であり、ジメタリルエーテルの選択率は9%と副生物の増加が有意に認められた。
<Comparative Example 1>
In Example 1, the same operation was performed except that the inside of the reactor was replaced and pressurized with nitrogen gas instead of carbon dioxide gas. The conversion of methallyl chloride was 99%, the selectivity of methallyl alcohol was 89%, and the selectivity of dimethallyl ether was 9%, indicating a significant increase in by-products.

以上より、二酸化炭素雰囲気下において、塩基性化合物と一価の銅化合物存在下にハロゲン化アリル化合物を加水分解してアリルアルコール化合物を製造する本発明の方法(実施例1〜5)は、窒素ガス雰囲気下(比較例1)に比べて、高効率でアリルアルコールを得ることができた。   As mentioned above, the method (Examples 1-5) of this invention which manufactures an allyl alcohol compound by hydrolyzing a halogenated allyl compound in presence of a basic compound and a monovalent copper compound in a carbon dioxide atmosphere is nitrogen. Allyl alcohol could be obtained with higher efficiency than in a gas atmosphere (Comparative Example 1).

本発明によれば、医薬品、農薬および香料などの機能性化合物の合成原料として有用なアリルアルコール化合物を、反応系中のpH調整などの複雑な操作を行わずとも選択率よく得ることができる。   According to the present invention, an allyl alcohol compound useful as a raw material for synthesizing functional compounds such as pharmaceuticals, agricultural chemicals and fragrances can be obtained with high selectivity without performing complicated operations such as pH adjustment in the reaction system.

Claims (3)

塩基性化合物および一価の銅化合物存在下、二酸化炭素雰囲気下でハロゲン化アリル化合物を加水分解することを特徴とするアリルアルコール化合物の製造方法。   A method for producing an allyl alcohol compound, comprising hydrolyzing an allyl halide compound in a carbon dioxide atmosphere in the presence of a basic compound and a monovalent copper compound. 二酸化炭素の分圧を0.01〜2MPa(ゲージ圧)で行うことを特徴とする請求項1記載のアリルアルコール化合物の製造方法。    The method for producing an allyl alcohol compound according to claim 1, wherein the partial pressure of carbon dioxide is 0.01 to 2 MPa (gauge pressure). 塩基性化合物が水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムから選ばれる少なくとも1種であることを特徴とする請求項1または2記載のアリルアルコール化合物の製造方法。
3. The method for producing an allyl alcohol compound according to claim 1, wherein the basic compound is at least one selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.
JP2011100306A 2011-04-28 2011-04-28 Method for producing allyl alcohol compound Active JP5657465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011100306A JP5657465B2 (en) 2011-04-28 2011-04-28 Method for producing allyl alcohol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011100306A JP5657465B2 (en) 2011-04-28 2011-04-28 Method for producing allyl alcohol compound

Publications (2)

Publication Number Publication Date
JP2012232903A JP2012232903A (en) 2012-11-29
JP5657465B2 true JP5657465B2 (en) 2015-01-21

Family

ID=47433611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011100306A Active JP5657465B2 (en) 2011-04-28 2011-04-28 Method for producing allyl alcohol compound

Country Status (1)

Country Link
JP (1) JP5657465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679717B1 (en) * 2013-06-27 2016-11-25 주식회사 엘지화학 A Method for Preparation of Allyl alcohol and the Allyl alcohol Prepared by the Same
CN104755451A (en) * 2013-06-27 2015-07-01 Lg化学株式会社 Method for preparing allyl alcohol
CN104341255B (en) * 2014-09-19 2016-08-24 江苏苏博特新材料股份有限公司 A kind of preparation method of unsaturated alcohol

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2072015A (en) * 1932-10-04 1937-02-23 Shell Dev Process for the treatment of unsaturated halides
JPS6133A (en) * 1984-06-08 1986-01-06 Mitsubishi Rayon Co Ltd Production of methallyl alcohol
JP2002371023A (en) * 2001-06-13 2002-12-26 Toagosei Co Ltd Method for producing (meth)allyl alcohol

Also Published As

Publication number Publication date
JP2012232903A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP6687281B2 (en) Method for producing conjugated diene
CN113227025B (en) Method for producing cyclobutene
JP5360208B2 (en) Method for producing high purity fluorine-containing ether
JP5446272B2 (en) 2-Methyl-3- (3,4-methylenedioxyphenyl) propanal and method for producing the same
EP2305626B1 (en) Method for producing fluorine-containing ether
JP5657465B2 (en) Method for producing allyl alcohol compound
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
KR20150047491A (en) Method for producing unsaturated acid and/or unsaturated acid ester
CN107365244B (en) Method for preparing 1H-perhalo cyclic olefin by hydrogen-halogen exchange reaction through hydrogen source provided by organic solvent
JP5848819B2 (en) Method for producing adamantyl (meth) acrylate
EP3196183B1 (en) Method for producing 2&#39;-trifluoromethyl group-substituted aromatic ketone
JP5442001B2 (en) Method for producing high purity terminal olefin compound
JP5858830B2 (en) Process for producing polychloropropane
CN107032952B (en) Preparation process of 2-methallyl alcohol
JP5412669B2 (en) Method for producing 4,4&#39;-dihydroxydiphenyl ether
JP6834179B2 (en) Method for producing ester compound
JP7470080B2 (en) (6Z,9Z)-6,9-dodecadien-1-yne and method for producing same
JP4079880B2 (en) Method for producing cyclododecanone
JP2010138096A (en) METHOD FOR PRODUCING 2-t-BUTOXYETHYL ACETATE OR 1-(t-BUTOXY)-2-PROPYL ACETATE
JP2011079763A (en) Process for producing fluorine-containing alkyl bromide
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP2016160224A (en) Method for producing asymmetric alkyl ether having tertiary alkyl group
RU2669566C2 (en) Method for producing pentafluorophenol and polyfluorophenols
JP5073990B2 (en) Process for producing N, N&#39;-dimethylethylenediamine
WO2002018317A2 (en) Production of tertiary esters from ketenes and tertiary alcohols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150