JP5656180B1 - Rotary drive device using temperature-sensitive magnetic material - Google Patents

Rotary drive device using temperature-sensitive magnetic material Download PDF

Info

Publication number
JP5656180B1
JP5656180B1 JP2014536007A JP2014536007A JP5656180B1 JP 5656180 B1 JP5656180 B1 JP 5656180B1 JP 2014536007 A JP2014536007 A JP 2014536007A JP 2014536007 A JP2014536007 A JP 2014536007A JP 5656180 B1 JP5656180 B1 JP 5656180B1
Authority
JP
Japan
Prior art keywords
temperature
magnetic material
sensitive magnetic
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014536007A
Other languages
Japanese (ja)
Other versions
JPWO2014141864A1 (en
Inventor
藤田恵三
Original Assignee
藤田 恵三
藤田 恵三
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤田 恵三, 藤田 恵三 filed Critical 藤田 恵三
Priority to JP2014536007A priority Critical patent/JP5656180B1/en
Application granted granted Critical
Publication of JP5656180B1 publication Critical patent/JP5656180B1/en
Publication of JPWO2014141864A1 publication Critical patent/JPWO2014141864A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Abstract

感温磁性材特性を利用した回転動力装置において、全体または円周縁部に高熱伝導率素材を用いた円形の回転部材の周壁に、空間領域(37)又は低熱伝導率素材(38)を挟んで等間隔に隔てられた複数の感温磁性材料(33)を周設し、該感温磁性材料が配設される周壁の内側に、加熱又は冷却、若しくは加熱及び冷却のための熱交換用媒体流通室(35)及び熱交換用媒体流通穴(34)を設けたローター(30)と、駆動用永久磁石(60)の近傍に配置され、区画化された加熱領域内の感温磁性材料に外部熱源からの熱を与える加熱装置(40)と、駆動用永久磁石に対し、加熱装置の反対側近傍に配置された冷却装置(50)とを適切な位置に配置して構成することにより、可逆減磁の下限と上限との間にキュリー点を有する感温磁性材料に、係る温度範囲内で加熱と冷却を効率良く繰り返すことが実現できる。In a rotary power device using temperature-sensitive magnetic material characteristics, a space region (37) or a low thermal conductivity material (38) is sandwiched between peripheral walls of a circular rotating member using a high thermal conductivity material as a whole or a circumferential edge. A plurality of temperature-sensitive magnetic materials (33) separated at equal intervals are provided around, and a heat exchange medium for heating or cooling or heating and cooling is provided inside a peripheral wall on which the temperature-sensitive magnetic material is disposed. A rotor (30) provided with a circulation chamber (35) and a heat exchange medium circulation hole (34), and a permanent magnet for driving (60) are arranged in the vicinity of the temperature-sensitive magnetic material in the partitioned heating region. By arranging the heating device (40) for applying heat from the external heat source and the cooling device (50) arranged in the vicinity of the opposite side of the heating device with respect to the driving permanent magnet at an appropriate position, Sense of having a Curie point between the lower and upper limits of reversible demagnetization The magnetic material can be realized be repeated efficiently heating and cooling within a temperature range of.

Description

本発明は、感温磁性材特性を利用した回転動力装置に関し、詳しくは、可逆温度変化(可逆減磁)の下限と上限との間にキュリー点を有し、該キュリー点付近で磁気特性が急変する特性の感温磁性材料を用い、係る可逆減磁の範囲内で加熱と冷却を同時に行うことで回転動力を得る装置に関する。  The present invention relates to a rotary power device using temperature-sensitive magnetic material characteristics, and more specifically, has a Curie point between a lower limit and an upper limit of reversible temperature change (reversible demagnetization), and the magnetic characteristics are near the Curie point. The present invention relates to a device for obtaining rotational power by using a temperature-sensitive magnetic material having a sudden change characteristic and simultaneously performing heating and cooling within the range of such reversible demagnetization.

近年の環境問題に対する国民の意識が高まり、特に、2011年3月11日に発生した東北地方太平洋沖地震以降は、原子力発電所からの放射能汚染の問題があり、水力、風力、若しくは太陽光等の自然エネルギーに基づく発電方法や技術に高い関心を示すようになっている。  Public awareness of environmental issues has increased in recent years, especially after the Tohoku-Pacific Ocean Earthquake that occurred on March 11, 2011, and there has been a problem of radioactive contamination from nuclear power plants. It has come to show high interest in power generation methods and technologies based on natural energy.

そして、これらの研究と同様、古くから磁性体を用いた動力発生装置の研究も進められている。特に近年では、希土類磁石のネオジム磁石のように、残留磁束密度と保磁力の大きな永久磁石が登場したことから、これを用いた動力装置や発電機等に関する技術が種々提案されている。しかしながら、どんなに強力な永久磁石を用いても、永久磁石のみでは駆動し続けることはできない。エネルギー保存の法則通り、質量を有する回転体を駆動し続けるためには、何らかのエネルギーを運動エネルギーとして取り出して与え続ける必要がある。従来からも、熱源があれば駆動が可能なスターリングエンジンや、円盤又は円筒の磁性材料に、磁性を失うキュリー付近まで熱を加えて駆動力を得る熱磁気エンジンがあった。これらは必要な熱エネルギーが得られれば熱源の種類は問わないといった利点がある。しかし、スターリングエンジンは、気体を熱膨張させるために必要な高温の燃焼ガス等が必要であり、常温に近い温度領域の熱源では駆動できないという欠点がある。また、熱磁気エンジンは熱交換サイクルの関係から高速回転に向かないという欠点がある。  Similar to these studies, research on power generation devices using magnetic materials has been underway for a long time. Particularly in recent years, permanent magnets having a large residual magnetic flux density and a coercive force have appeared, such as neodymium magnets of rare earth magnets, and various technologies relating to power units, generators, and the like using the permanent magnets have been proposed. However, no matter how strong a permanent magnet is used, the permanent magnet alone cannot continue to drive. According to the law of energy conservation, in order to continue to drive a rotating body having a mass, it is necessary to continue taking out some energy as kinetic energy. Conventionally, there have been Stirling engines that can be driven if there is a heat source, and thermomagnetic engines that obtain driving force by applying heat to the vicinity of Curie that loses magnetism to a disk or cylindrical magnetic material. These have the advantage that the type of heat source is not limited as long as necessary heat energy is obtained. However, the Stirling engine requires a high-temperature combustion gas necessary for thermally expanding gas, and has a drawback that it cannot be driven by a heat source in a temperature range close to room temperature. Further, the thermomagnetic engine has a drawback that it is not suitable for high-speed rotation because of the heat exchange cycle.

しかし、近年の技術開発によって、使用温度の範囲となる可逆温度変化(可逆減磁)の上限と下限との間にキュリー点を持ち、且つ、キュリー点付近でその磁気特性が急変する感温磁性材料が提供されるようになった。
そこで、本願発明は、上記の通り急速に技術の進歩が図られている感温磁性材料の温度変化に伴う磁性特性の変化を利用することとした。なお、最近ではキュリー点が80度前後にまで下げられたものが開発されているので、係る感温磁性材料を用いれば、温水と冷水だけでも駆動が可能であり、生産工場等から排出される水蒸気や内燃機関の冷却水、或いは一般家庭に設置されている給湯器や小型ボイラーなど、熱源として利用可能な範囲が広がり、熱源は容易に確保することができる。
However, due to recent technological development, there is a temperature-sensitive magnetism that has a Curie point between the upper and lower limits of reversible temperature change (reversible demagnetization) that is the range of operating temperature and whose magnetic characteristics change suddenly near the Curie point Material has been provided.
Therefore, the invention of the present application utilizes the change in magnetic properties accompanying the temperature change of the temperature-sensitive magnetic material for which technological advancement is rapidly progressing as described above. Recently, a material with a Curie point lowered to around 80 degrees has been developed, so if such a temperature-sensitive magnetic material is used, it can be driven only with hot and cold water and discharged from a production factory or the like. The range that can be used as a heat source, such as steam, cooling water for an internal combustion engine, or a hot water heater or small boiler installed in a general household, can be easily secured.

なお、本願以外にも、感温磁性材料の特性に着目し、熱を加えることで動力等を発生させる種々の技術が提案されている。例えば、「感温磁性材料から円筒状に形成された回転自在な回転ドラムと、この回転ドラムの内側及び外側に配置されしかも該回転ドラムの内周面と外周面に磁極を対向して設けられた対向磁石と、回転ドラムの一部分を加熱して形成された加熱領域と、回転ドラムの他の部分を冷却して形成された冷却領域から構成され、加熱領域と冷却領域の温度差により発生するマックスウェル応力により回転ドラムを回転させることを特徴とする対向磁石型熱磁気エンジン。」が公知技術となっている(特許文献1参照)。  In addition to the present application, various techniques for generating power and the like by applying heat have been proposed by paying attention to the characteristics of the temperature-sensitive magnetic material. For example, “a rotatable rotating drum formed in a cylindrical shape from a temperature-sensitive magnetic material, and disposed on the inner and outer sides of the rotating drum, and with magnetic poles facing the inner and outer peripheral surfaces of the rotating drum. The counter magnet, a heating area formed by heating a part of the rotating drum, and a cooling area formed by cooling the other part of the rotating drum are generated due to a temperature difference between the heating area and the cooling area. "An opposed magnet type thermomagnetic engine characterized by rotating a rotating drum by Maxwell stress" is known (see Patent Document 1).

また、「回転自在に軸支した感熱磁性材製の円筒体と、前記円筒体の円周方向に磁極を位置せしめて円筒体の外周面と対向状に配設した磁石と、円筒体の一部分を加熱する加熱領域と、円筒体の他の部分を冷却する冷却領域とから形成した熱磁気エンジンに於いて、前記感熱磁性材製の円筒体を、複数個の厚みの薄い感熱磁性材製の円筒体を同芯状に積層固定した構成としたことを特徴とする熱磁気エンジン。」が公知技術となっている(特許文献2参照)。Further, “a cylindrical body made of a heat-sensitive magnetic material that is rotatably supported, a magnet that is positioned opposite to the outer peripheral surface of the cylindrical body with a magnetic pole positioned in the circumferential direction of the cylindrical body, and a part of the cylindrical body In the thermomagnetic engine formed from a heating region for heating the cooling region and a cooling region for cooling the other part of the cylindrical body, the cylindrical body made of the thermosensitive magnetic material is made of a plurality of thin thermosensitive magnetic materials. A thermomagnetic engine characterized by a configuration in which cylindrical bodies are stacked and fixed concentrically is known technology (see Patent Document 2).

上記特許文献1及び特許文献2に係る技術も、本願発明と同様に、感温磁性材料の温度特性を利用している点で共通している。しかしながら、いずれの技術も回転体が一体の感温磁性材料製のドラムであり、該ドラムの回転方向の前後に高温部と低温部とを作ることで駆動するものである。そうすると、一体構造のドラムの一部を加熱しても、伝熱により加熱領域が必要以上に広がってしまい、熱の交換サイクルの効率がよくないものであったと思量される。The techniques according to Patent Document 1 and Patent Document 2 are common in that the temperature characteristics of the temperature-sensitive magnetic material are used, as in the present invention. However, any of these techniques is a drum made of a temperature-sensitive magnetic material in which a rotating body is integrated, and is driven by forming a high temperature portion and a low temperature portion before and after the rotation direction of the drum. In this case, even if a part of the drum having the integral structure is heated, the heating region is unnecessarily widened by heat transfer, and it is considered that the efficiency of the heat exchange cycle is not good.

特開2002−281774号公報JP 2002-281774 A 特許第4234235号Patent No. 4234235

太陽光発電では夜間にエネルギーを得ることができず、火力発電では燃焼ガスによる環境破壊問題があり、水力は高低差や水源が必要であり、風力では風が強い地域でないと効率が悪い。そこで、化石燃料等による燃焼を伴わず、天候や地形にも左右されず、安定した動力の供給を得ることができる動力装置技術の提供が待ち望まれている。本願の発明者は、このような問題を解決すべく、磁性材料の温度変化に伴う磁性特性の変化に着目し、可逆減磁の下限と上限との間にキュリー点を有する感温磁性材料に、係る温度範囲内で加熱と冷却を効率良く繰り返せば、上記の問題を解決できる回転動力装置ができるのではないかとの着想の下、磁力と熱エネルギーを運動エネルギーに変換して回転駆動する本願発明に至ったものである。In the case of solar power generation, energy cannot be obtained at night. In the case of thermal power generation, there is a problem of environmental destruction caused by combustion gas. Hydropower requires a height difference and a water source, and wind power is not efficient unless the wind is strong. Therefore, there is a demand for the provision of a power device technique that can provide a stable power supply without being affected by the weather and topography without being combusted by fossil fuels or the like. In order to solve such a problem, the inventor of the present application pays attention to a change in magnetic properties accompanying a temperature change of the magnetic material, and a temperature-sensitive magnetic material having a Curie point between the lower limit and the upper limit of reversible demagnetization. Under the idea that a rotating power device capable of solving the above problems can be achieved by efficiently repeating heating and cooling within such a temperature range, this application converts the magnetic force and heat energy into kinetic energy and rotationally drives it. Invented.

本発明は、感温磁性材料に温度差を与えて回転動力を得る装置であって、本体と、ローターと、加熱装置と、冷却装置と、駆動用永久磁石と、から構成され、前記ローターは、全体または円周縁部に高熱伝導率素材を用いた円形の回転部材であって、該ローターの中心には前記本体にベアリングを介して回転自在に備えるための出力軸を有し、該ローターの周壁には、空間領域又は低熱伝導率素材を挟んで等間隔に隔てられた複数の感温磁性材料が周設され、該感温磁性材料には可逆温度変化(可逆減磁)の下限と上限との間にキュリー点を有し、該キュリー点付近で磁気特性が急変する特性の感温磁性材料を用い、該感温磁性材料が配設される周壁の内側には、加熱又は冷却、若しくは加熱及び冷却のための熱交換用媒体流通室及び熱交換用媒体流通穴が設けられて成り、前記加熱装置は、前記駆動用永久磁石の近傍に配置され、区画化された加熱領域内の前記感温磁性材料をその可逆温度変化の上限を超えないように外部熱源からの熱を与える装置であり、前記冷却装置は、前記駆動用永久磁石に対し、前記加熱装置の反対側近傍に配置され、前記加熱装置により加熱された前記感温磁性材料を、その可逆温度変化の下限を超えないように冷却する装置であり、前記駆動用永久磁石は、前記ローターに周設される前記感温磁性材料の温度変化に伴う減磁に作用させ、磁極特性により該ローターを回転駆動するために必要な最大エネルギー積を有する残留磁束密度と保磁力の大きな永久磁石を用い、前記本体に、前記ローター、前記加熱装置、前記冷却装置、及び前記駆動用永久磁石とを、適切な位置に配置させて構成されることを特徴とする感温磁性材特性を利用する構成を採用した。 The present invention is an apparatus for obtaining a rotational power by giving a temperature difference to a temperature-sensitive magnetic material, and is composed of a main body, a rotor, a heating device, a cooling device, and a driving permanent magnet, A circular rotating member using a high thermal conductivity material on the entire circumference or on the periphery of the rotor, and having an output shaft provided rotatably at the center of the rotor via a bearing at the center of the rotor, The peripheral wall is provided with a plurality of temperature-sensitive magnetic materials spaced at equal intervals across a space region or a low thermal conductivity material, and the temperature-sensitive magnetic material has lower and upper limits of reversible temperature change (reversible demagnetization). A temperature-sensitive magnetic material having a Curie point between and a magnetic property that changes suddenly in the vicinity of the Curie point, and inside the peripheral wall on which the temperature-sensitive magnetic material is disposed, heating or cooling, or Heat exchange medium distribution chamber for heating and cooling and heat exchange A medium flow hole is provided, and the heating device is disposed in the vicinity of the driving permanent magnet so that the temperature-sensitive magnetic material in the partitioned heating region does not exceed the upper limit of the reversible temperature change. An apparatus for applying heat from an external heat source, wherein the cooling device is disposed near the opposite side of the heating device with respect to the driving permanent magnet, and the temperature-sensitive magnetic material heated by the heating device is The device is a device for cooling so as not to exceed the lower limit of the reversible temperature change, and the driving permanent magnet acts on the demagnetization accompanying the temperature change of the temperature-sensitive magnetic material provided around the rotor, and the magnetic pole characteristics A permanent magnet having a large residual energy density and a large coercive force having a maximum energy product required for rotationally driving the rotor is used, and the rotor, the heating device, the cooling device, and the driving permanent are used in the main body. A stone, and employs a configuration that utilizes the temperature-sensitive magnetic material properties, characterized in that it is constituted by properly positioned.

また、本発明は、前記加熱装置における加熱手段が、太陽光を集光して熱源とし、該集光した光を加熱領域内の前記感温磁性材料に投射して加熱する構成を採用し、前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用したことを特徴とする感温磁性材特性を利用した構成の回転動力装置とすることもできる。  Further, the present invention employs a configuration in which the heating means in the heating device condenses sunlight to be a heat source, projects the condensed light onto the thermosensitive magnetic material in a heating region, The cooling means in the cooling device may be a rotary power device having a configuration utilizing a temperature-sensitive magnetic material characteristic in which a configuration using air cooling or low-temperature water as a refrigerant is employed.

また、本発明は、前記加熱装置における加熱手段が、外部熱源から生じた高温気体を熱媒として加熱する構成を採用し、前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用したことを特徴とする前記記載の感温磁性材特性を利用した回転動力装置とすることもできる。Further, the present invention employs a configuration in which the heating means in the heating device heats a high-temperature gas generated from an external heat source as a heat medium, and the cooling means in the cooling device uses air cooling or low-temperature water as a refrigerant. It is also possible to provide a rotary power device using the temperature-sensitive magnetic material characteristics described above.

また、本発明は、前記加熱装置における加熱手段に、外部熱源から生じた高温水を熱媒として加熱する構成を採用し、前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用し、前記感温磁性材料の可逆温度変化(可逆減磁)の上限が100度を超え、且つ、キュリー点が100度以下である特性の前記感温磁性材料を用いることを特徴とする、前記に記載の感温磁性材特性を利用した回転動力装置とすることもできる。Further, the present invention employs a configuration in which high temperature water generated from an external heat source is heated as a heating medium in the heating unit in the heating device, and air cooling or low temperature water is used as a cooling medium in the cooling device. In which the upper limit of the reversible temperature change (reversible demagnetization) of the thermosensitive magnetic material exceeds 100 degrees and the Curie point is 100 degrees or less. A rotational power device using the temperature-sensitive magnetic material characteristics described above can also be used.

また、前記駆動用永久磁石が、前記ローターに取りつけられる前記感温磁性材との位置関係において、前記本体に対して上方または下方に位置調整を可能とすることを特徴とする、前記に記載の感温磁性材特性を利用とした回転動力装置とすることもできる。  The drive permanent magnet can be adjusted upward or downward with respect to the main body in a positional relationship with the temperature-sensitive magnetic material attached to the rotor. It can also be set as the rotational power apparatus using the temperature-sensitive magnetic material characteristic.

また、前記駆動用永久磁石が、同極を向かい合い、前記感温磁性材を挟み込むように配置されることを特徴とする前記に記載の感温磁性材特性を利用とした回転動力装置とすることもできる。  Further, the drive permanent magnet is disposed so as to face the same pole and sandwich the temperature-sensitive magnetic material, wherein the rotational power device uses the temperature-sensitive magnetic material characteristics described above. You can also.

本発明に係る回転動力装置によれば、生産工場等から排出される水蒸気や内燃機関の冷却水、或いは一般家庭に設置されている給湯器や小型ボイラーなどの熱源でも駆動することができ、熱源と冷却水さえ確保できる環境にあればどこでも利用が可能であるという優れた効果を発揮する。The rotary power device according to the present invention can be driven by a heat source such as steam discharged from a production factory or the like, cooling water of an internal combustion engine, or a water heater or a small boiler installed in a general household. And it has the excellent effect that it can be used anywhere as long as it is in an environment where even cooling water can be secured.

また、本発明に係る回転動力装置によれば、構造がシンプルであり、部品点数も少ないことから製作が容易でコストも低く抑えられるという効果も奏する。  Further, according to the rotary power device according to the present invention, since the structure is simple and the number of parts is small, it is possible to produce easily and reduce the cost.

また、本発明に係る回転動力装置によれば、区画化された複数の感温磁性材料が、空間領域又は低熱伝導率素材を挟んで等間隔に隔てられて周設されているので、従来の円筒形状の感温磁性体を用いた熱磁気エンジン等と比して、無駄な加熱やその冷却を不要とし、隣設され横並びになる感温磁性材料同士の温度差が明確になり、効率の良い熱交換サイクルを実現できるといった優れた効果も発揮する。Further, according to the rotational power device according to the present invention, the plurality of partitioned temperature-sensitive magnetic materials are provided around the space region or the low thermal conductivity material so as to be spaced at equal intervals. Compared to a thermomagnetic engine using a cylindrical temperature-sensitive magnetic body, unnecessary heating and cooling are unnecessary, and the temperature difference between adjacent temperature-sensitive magnetic materials becomes clear and efficient. The excellent effect of realizing a good heat exchange cycle is also exhibited.

本発明に係る回転動力装置の基本構成を示す概略説明斜視図である。1 is a schematic explanatory perspective view showing a basic configuration of a rotary power device according to the present invention. 請求項2に係る太陽光利用型の実施形態を示す説明図である。It is explanatory drawing which shows embodiment using the sunlight which concerns on Claim 2. 請求項3に係る回転動力装置の実施形態を示す説明平面図である。FIG. 5 is an explanatory plan view showing an embodiment of a rotary power device according to claim 3. 請求項3に係る回転動力装置の熱交換説明断面図である。It is heat exchange explanatory sectional drawing of the rotary power apparatus which concerns on Claim 3. 請求項4に係る回転動力装置の実施形態を示す説明平面図である。FIG. 6 is an explanatory plan view showing an embodiment of a rotary power device according to claim 4. 請求項4に係る回転動力装置の熱交換説明断面図である。It is heat exchange explanatory sectional drawing of the rotary power apparatus which concerns on Claim 4. 駆動用永久磁石の位置調整機構を示す説明図である。It is explanatory drawing which shows the position adjustment mechanism of the permanent magnet for a drive. 駆動用永久磁石の同極を対向させた磁力の斥力状態説明図である。It is a repulsive state explanatory drawing of the magnetic force which made the same pole of the drive permanent magnet oppose.

本発明に係る回転動力装置は、可逆温度変化(可逆減磁)の下限と上限との間にキュリー点を有し、該キュリー点付近で磁気特性が急変する特性の感温磁性材料を用いて、係る使用温度範囲内で、加熱と冷却を効率よく繰り返し、磁性体の極性による異極の引き合い又は同極の反発により、加熱された感温磁性材料の減磁による磁力の低下と、該加熱により減磁された感温磁性材料を冷却することによる磁性の復活に作用させて、駆動力を発生させることを最大の特徴とするものである。以下、図面に基づいて説明する。  The rotational power device according to the present invention uses a temperature-sensitive magnetic material having a Curie point between a lower limit and an upper limit of reversible temperature change (reversible demagnetization), and a magnetic characteristic that changes suddenly near the Curie point. In such a use temperature range, heating and cooling are efficiently repeated, and the magnetic force decreases due to demagnetization of the heated temperature-sensitive magnetic material by attracting different polarities or repelling the same polarity due to the polarity of the magnetic material. The greatest feature is to generate a driving force by acting on the recovery of magnetism by cooling the temperature-sensitive magnetic material demagnetized by. Hereinafter, description will be given based on the drawings.

図1は、本発明に係る回転動力装置10の基本構成を示す概略説明斜視図である。図1(a)は全体概略説明であり、図1(b)はローター30において、複数の感温磁性材料33が空間領域37を挟んで等間隔に隔てられた構成を採用した場合の配置状態を示し、図1(c)は ローター30において、複数の感温磁性材料33が低熱伝導率素材38を挟んで等間隔に隔てられた構成を採用した場合の配置状態を示している。  FIG. 1 is a schematic explanatory perspective view showing a basic configuration of a rotary power device 10 according to the present invention. FIG. 1A is an overall schematic explanation, and FIG. 1B is an arrangement state in the case where a plurality of temperature-sensitive magnetic materials 33 are separated at equal intervals across a space region 37 in the rotor 30. FIG. 1C shows an arrangement state in the case where the rotor 30 adopts a configuration in which a plurality of temperature-sensitive magnetic materials 33 are equally spaced with a low thermal conductivity material 38 interposed therebetween.

本発明に係る回転動力装置10は、本体20と、ローター30と、加熱装置40と、冷却装置50と、駆動用永久磁石60と、から構成されている。The rotational power device 10 according to the present invention includes a main body 20, a rotor 30, a heating device 40, a cooling device 50, and a driving permanent magnet 60.

ローター30は、全体または円周縁部に高熱伝導率素材を用いた円形の回転部材であって、該ローター30の中心には前記本体20にベアリング32を介して回転自在に備えるための出力軸31を有し、該ローター30の周壁には、空間領域37又は低熱伝導率素材38を挟んで等間隔に隔てられた複数の感温磁性材料33が周設され、該感温磁性材料33が配設される周壁の内側には、加熱又は冷却、若しくは加熱及び冷却のための熱交換用媒体流通室35及び熱交換用媒体流通穴34が設けられている。高熱伝導率素材としては、一般に入手し易く機能的にもコスト的にもアルミ(250W/(mK))や銅(401W/(mK))等が良く、他方、 低熱伝導率素材38としては、一般的な素材にガラスウール断熱材(0.04W/(mK))やグラスファイバー(0.04W/(mK))がある。なお、近年では空気分子の運動を規制する微細なマイクロポア構造を有した超微細ヒュームドシリカと赤外線の不透過材(高純度ジルコニア)で構成された、極めて熱伝導率が低い(0.021W/mk)断熱材も入手が容易となっている。ただし、本願発明は、これらの素材に限定されるものではなく、使用目的やコスト等から適宜選択することができるものである。The rotor 30 is a circular rotary member using a high thermal conductivity material on the whole or on the periphery of the circle, and an output shaft 31 is provided at the center of the rotor 30 to be rotatably provided on the main body 20 via a bearing 32. A plurality of temperature-sensitive magnetic materials 33 are provided on the peripheral wall of the rotor 30 at regular intervals with the space region 37 or the low thermal conductivity material 38 interposed therebetween. Inside the peripheral wall to be provided, a heat exchange medium flow chamber 35 and a heat exchange medium flow hole 34 for heating or cooling or heating and cooling are provided. As the high thermal conductivity material, aluminum (250 W / (mK)), copper (401 W / (mK)), etc. are generally easy to obtain and functionally and cost-effective. On the other hand, as the low thermal conductivity material 38, Common materials include glass wool insulation (0.04 W / (mK)) and glass fiber (0.04 W / (mK)). In recent years, it has a very low thermal conductivity (0.021 W) composed of ultra-fine fumed silica having a fine micropore structure that regulates the movement of air molecules and an infrared opaque material (high-purity zirconia). / Mk) Insulation is also readily available. However, the present invention is not limited to these materials, and can be appropriately selected from the purpose of use and cost.

感温磁性材料33には可逆温度変化(可逆減磁)の下限と上限との間にキュリー点を有し、該キュリー点付近で磁気特性が急変する特性の感温磁性材料33を用いる。例えば、IH調理器に使用されている日立金属のMS材や、株式会社NEOMAXのMS−T等である。極性については、N極又はS極のいずれを駆動用永久磁石60と作用させても良い。The temperature-sensitive magnetic material 33 has a Curie point between the lower limit and the upper limit of the reversible temperature change (reversible demagnetization), and the temperature-sensitive magnetic material 33 has a characteristic in which the magnetic characteristics change suddenly near the Curie point. For example, Hitachi Metals MS materials used in IH cookers, NE-MAX Co., Ltd. MS-T, and the like. As for the polarity, either the N pole or the S pole may be caused to act on the driving permanent magnet 60.

加熱装置40は、駆動用永久磁石60の近傍に配置され、区画化された加熱領域内の前記感温磁性材料33のみに対して、その可逆温度変化の上限を超えないように外部熱源からの熱を与える装置である。請求項1に係る回転動力装置10では、熱源については特に限定するものではなく、どのような熱源であっても利用できることを特徴とするものである。但し、理想的な熱源としては、常にキュリー点を超え、可逆温度変化(可逆減磁)の下限と上限との間の温度の熱媒41の供給が受けられるものであることが望ましい。なお、請求項2では、熱源として太陽光を利用することを特定しており、請求項3では、工場や内燃機関等から排出される燃焼ガス、或いはボイラーからの水蒸気等を利用することを特定しており、請求項4では、温水を利用することを特定している。The heating device 40 is arranged in the vicinity of the driving permanent magnet 60, and only the temperature-sensitive magnetic material 33 in the partitioned heating region is supplied from an external heat source so as not to exceed the upper limit of the reversible temperature change. It is a device that gives heat. In the rotary power device 10 according to the first aspect, the heat source is not particularly limited, and any heat source can be used. However, as an ideal heat source, it is desirable that the supply of the heat medium 41 always exceeds the Curie point and has a temperature between the lower limit and the upper limit of the reversible temperature change (reversible demagnetization). In claim 2, it is specified that sunlight is used as a heat source, and in claim 3, it is specified that combustion gas discharged from a factory, an internal combustion engine or the like, or steam from a boiler is used. In claim 4, it is specified that hot water is used.

冷却装置50は、駆動用永久磁石60に対し、加熱装置40の反対側近傍に配置され、該加熱装置40により加熱された感温磁性材料33を、その可逆温度変化の下限を超えないように冷却する装置である。冷却手段としては、自然空冷、強制空冷、水冷が考えられるが、冷却効果の高さからいっても水冷式が望ましい。The cooling device 50 is disposed in the vicinity of the driving permanent magnet 60 on the opposite side of the heating device 40 so that the temperature-sensitive magnetic material 33 heated by the heating device 40 does not exceed the lower limit of the reversible temperature change. A device for cooling. As a cooling means, natural air cooling, forced air cooling, and water cooling are conceivable, but the water cooling type is desirable from the viewpoint of high cooling effect.

駆動用永久磁石60は、ローター30に周設される感温磁性材料33の温度変化に伴う減磁に作用させ、磁極特性により該ローター30を回転駆動するために必要な最大エネルギー積を有する残留磁束密度と保磁力の大きな永久磁石を用いる。係る駆動用永久磁石60の磁力は駆動力に大きく影響するため強力なものが良い。吸着力や反発力の強さで選択すると、ネオジム磁石となるが、冷却装置50の冷却手段が水冷式を採用する場合は、ネオジム磁石は酸化しやすく、また、加熱装置40からの熱の影響により磁性が落ちやすいため、サマリウムコバルト磁石が望ましい。但し、本願発明に係る駆動用永久磁石60は、これに限定されるものではなく、駆動が可能な磁力を有する永久磁石であればよい。従って、係る永久磁石の種類選択についての説明は、フェライト磁石等、他種類の永久磁石などを除く趣旨ではない。また、駆動用永久磁石60は、本体20が円滑に回転させるために、位置調整機構を用いて本体20の六方に位置を修正可能とすることが望ましい。また、係る磁石を二個用いて同極を向かい合わせ、僂本体20を挟み込むように配置し、磁束を広げ、磁力を高めることも可能とする。The permanent magnet 60 for driving acts on demagnetization accompanying the temperature change of the temperature-sensitive magnetic material 33 provided around the rotor 30 and has a residual energy having a maximum energy product necessary for rotationally driving the rotor 30 due to magnetic pole characteristics. Use permanent magnets with large magnetic flux density and coercivity. Since the magnetic force of the driving permanent magnet 60 greatly affects the driving force, a strong one is preferable. If it is selected based on the strength of the attractive force and the repulsive force, it becomes a neodymium magnet. However, when the cooling means of the cooling device 50 adopts a water cooling type, the neodymium magnet is easily oxidized, and the influence of heat from the heating device 40 Therefore, samarium-cobalt magnets are preferable. However, the driving permanent magnet 60 according to the present invention is not limited to this, and may be a permanent magnet having a magnetic force that can be driven. Therefore, the description of selecting the type of permanent magnet is not intended to exclude other types of permanent magnets such as ferrite magnets. Further, it is desirable that the position of the driving permanent magnet 60 can be corrected in six directions of the main body 20 by using a position adjusting mechanism so that the main body 20 rotates smoothly. In addition, two such magnets are used so that the same poles face each other, and the bag main body 20 is sandwiched so as to widen the magnetic flux and increase the magnetic force.

本体20は、ローター30、加熱装置40、冷却装置50、及び駆動用永久磁石60とを、適切な位置に配置させるためのフレーム21及びカバー22である。ローター30の直径や、感温磁性材料33の吸着力又は反発力などから必要な強度計算をし、十分な安全率をかけて設計する。The main body 20 is a frame 21 and a cover 22 for arranging the rotor 30, the heating device 40, the cooling device 50, and the driving permanent magnet 60 at appropriate positions. The required strength is calculated from the diameter of the rotor 30 and the attractive force or repulsive force of the temperature-sensitive magnetic material 33, and designed with a sufficient safety factor.

図2は、請求項2に係る回転動力装置10の実施形態を示す説明図である。前記加熱装置40における加熱手段が、太陽光を集光して熱源とし、該集光した光を加熱領域内の前記感温磁性材料33に投射して加熱する構成を採用する場合は、図2に示すように、該加熱装置40の構成は凹レンズを組み合わせた一般的な集光装置で良い。但し、最低でも使用する感温磁性材料33のキュリー点以上に加熱できる能力を備えていることが必要である。なお、係る加熱手段を採用する場合は、図2に示すように、区画化された感温磁性材料33を二つ以上加熱する。逆回転方向の磁力の影響を少なくし、回転方向の安定と効率を高めるためである。  FIG. 2 is an explanatory view showing an embodiment of the rotary power device 10 according to claim 2. When the heating means in the heating device 40 employs a configuration in which sunlight is collected to be used as a heat source, and the collected light is projected onto the temperature-sensitive magnetic material 33 in a heating region and heated. As shown in FIG. 5, the configuration of the heating device 40 may be a general condensing device combined with a concave lens. However, it is necessary to have the ability to heat at least the Curie point of the temperature-sensitive magnetic material 33 to be used. In addition, when employ | adopting such a heating means, as shown in FIG. 2, two or more compartmentalized temperature-sensitive magnetic materials 33 are heated. This is to reduce the influence of the magnetic force in the reverse rotation direction and to increase the stability and efficiency in the rotation direction.

図3は、請求項3に係る回転動力装置10の実施形態を示す説明平面図であり、図4は、図3に示すA−A部及びB−B部の断面を示し、加熱装置40と冷却装置50との関係において、請求項3に係る回転動力装置の熱交換説明断面図である。
前記加熱装置40における加熱手段が、外部熱源から生じた高温気体を熱媒41として加熱する構成を採用する場合、熱媒41の流れ方向に沿うように下から上、冷媒51の流れ方向は上から下となる。なお、熱交換用媒体流通穴34は、熱交換用媒体流通室35の開口面積と等しくし、ローター30へ不要な圧力がかからないようにする。それ以外の構造は液体の場合と同様である。
FIG. 3 is an explanatory plan view showing an embodiment of the rotary power device 10 according to claim 3, and FIG. 4 shows a cross section of the AA part and the BB part shown in FIG. FIG. 5 is a cross-sectional view explaining heat exchange of a rotary power device according to a third aspect in relation to the cooling device 50.
When the heating means in the heating device 40 employs a configuration in which a high-temperature gas generated from an external heat source is heated as the heat medium 41, the flow direction of the refrigerant 51 is upward from the bottom and the flow direction of the refrigerant 51 is upward. From below. The heat exchange medium circulation hole 34 is made equal to the opening area of the heat exchange medium circulation chamber 35 so that unnecessary pressure is not applied to the rotor 30. The other structure is the same as that of the liquid.

図5は、請求項4に係る回転動力装置10の実施形態を示す説明平面図であり、図6は、図5に示すA−A部及びB−B部の断面を示し、加熱装置40と冷却装置50との関係において、請求項4に係る回転動力装置の熱交換説明断面図である。
図5及び図6は、加熱装置40における加熱手段として、外部熱源から生じた高温水を熱媒41とし、加熱冷却装置50における冷却手段に空冷又は低温水を冷媒51とする構成を採用した場合の実施例を示している。なお、感温磁性材料33の可逆温度変化(可逆減磁)の上限が100度を超え、且つ、キュリー点が100度以下である特性の前記感温磁性材料33を用いることが必要である。例えば日立金属のMS90等である。
FIG. 5 is an explanatory plan view showing an embodiment of the rotary power device 10 according to claim 4. FIG. 6 shows a cross section of the AA part and the BB part shown in FIG. FIG. 5 is a cross-sectional view explaining heat exchange of a rotary power device according to a fourth aspect in relation to the cooling device 50.
5 and 6 show a case in which high temperature water generated from an external heat source is used as the heat medium 41 as heating means in the heating device 40, and air cooling or low temperature water is used as the refrigerant 51 in the cooling means in the heating and cooling device 50. Example of the present invention is shown. Note that it is necessary to use the temperature-sensitive magnetic material 33 having the characteristics that the upper limit of the reversible temperature change (reversible demagnetization) of the temperature-sensitive magnetic material 33 exceeds 100 degrees and the Curie point is 100 degrees or less. For example, Hitachi Metals MS90.

係る構成を採用する場合は、ローター30の熱交換用媒体流通室35に流入した冷媒51又は熱媒41がオーバーフローによって混和するのを避ける必要がある。そこで、ローター30の円周縁部上方には、開口段差部36を設け、冷媒51又は熱媒41がオーバーフローしても、隣設の熱交換用媒体流通室35へ流出するのを防ぐ形状とする。When such a configuration is adopted, it is necessary to avoid the refrigerant 51 or the heat medium 41 flowing into the heat exchange medium flow chamber 35 of the rotor 30 from being mixed by overflow. Therefore, an opening step 36 is provided above the circumferential edge of the rotor 30 to prevent the refrigerant 51 or the heat medium 41 from overflowing to the adjacent heat exchange medium flow chamber 35 even if it overflows. .

図7は、駆動用永久磁石の位置調整機構70を設けた構成の回転動力装置10を示す説明図である。図7(a)は、周方向への水平位置に駆動用永久磁石60を配置した状態を示し、図7(b)は単に駆動用永久磁石60を上方へ移動させた状態を示し、図7(c)は、上方に二つの駆動用永久磁石60で感温磁性材料33を挟み込むように備えた場合の状態をそれぞれ示している。FIG. 7 is an explanatory diagram showing the rotary power device 10 having a configuration in which a position adjusting mechanism 70 for the driving permanent magnet is provided. FIG. 7A shows a state in which the driving permanent magnet 60 is arranged at a horizontal position in the circumferential direction, and FIG. 7B shows a state in which the driving permanent magnet 60 is simply moved upward. (C) has shown the state at the time of providing so that the temperature-sensitive magnetic material 33 may be inserted | pinched by the two permanent magnets 60 for a drive upward.

本発明に係る回転動力装置10の駆動力は、使用する感温磁性材料33のキュリー点温度への加熱と、冷却による温度差を駆動用永久磁石33作ることによって、大きな力を得ることができる。但し、キュリー点以下でも温度差があれば、回転駆動するものであり、駆動用永久磁石60の磁力が及ぶ領域において、温度差を作ることが重要となる。更に、高速化や高出力化を図るには、駆動用永久磁石60の取付け位置、及び、その大きさや形状によっても動作特性が大きく変化するため、諸条件に応じて、適宜、選択することが望ましい。The driving force of the rotary power device 10 according to the present invention can be obtained with a large force by making a temperature difference due to heating and cooling of the temperature-sensitive magnetic material 33 to be used to the driving permanent magnet 33. . However, if there is a temperature difference even below the Curie point, it is rotationally driven, and it is important to create a temperature difference in the region where the magnetic force of the driving permanent magnet 60 reaches. Furthermore, in order to achieve high speed and high output, the operating characteristics greatly change depending on the mounting position of the driving permanent magnet 60 and its size and shape. Therefore, it can be appropriately selected according to various conditions. desirable.

なお、駆動用永久磁石60には、単に強力な磁力を用いればよいというものではない。例えば、ローター30の中心方向に向かう磁界特性の駆動用永久磁石60の場合では、周方向に並んだ感温磁性材料33の温度差を拾いにくく、回転方向の変動や回転速度の変動など安定性に欠ける動作となってしまう。他方、周方向に向かって長い形状であると、この温度差を拾いやすくなるので安定した駆動力を得ることができる。また、ローター30に向かう厚みと断面積の比率などによっても、磁界特性は大きく変化する。このことは、実験装置を用いて、種々の形状や種類の永久磁石を用いて実験を行った結果わかったことである。The driving permanent magnet 60 does not simply have to use a strong magnetic force. For example, in the case of the driving permanent magnet 60 having a magnetic field characteristic toward the center direction of the rotor 30, it is difficult to pick up the temperature difference between the temperature-sensitive magnetic materials 33 arranged in the circumferential direction, and stability such as fluctuations in the rotation direction and fluctuations in the rotation speed. Will be lacking. On the other hand, if the shape is long in the circumferential direction, this temperature difference can be easily picked up, so that a stable driving force can be obtained. Further, the magnetic field characteristics greatly change depending on the ratio of the thickness and the cross-sectional area toward the rotor 30. This is the result of experiments conducted using various types and types of permanent magnets using an experimental apparatus.

また、回転動作している感温磁性材料33を加熱して、狙った通りのキュリー点付近の温度にすることは難しいため、加速方向に対し、残った磁性によるブレーキ現象が常に生じていることになる。そこで、加熱による温度上昇ではキュリー点には達せずに、磁性を失わせることができなかった逆回転方向に働く磁力の影響を少なくし、回転方向の安定と効率を高めるために駆動用永久磁石60の取付け位置を調整できるようにすることが望ましい。実験の結果によれば、周方向へ距離を離すよりも、上下方向へ移動させた方が、他が同条件の下では回転数を上げることができた。具体的な構造については図面に示していないが、位置調整機構71の構造については、スライドガイド70とネジによる固定のアジャスト機構などが考えられる。In addition, since it is difficult to heat the temperature-sensitive magnetic material 33 that is rotating to a temperature near the Curie point as intended, a brake phenomenon due to the remaining magnetism always occurs in the acceleration direction. become. Therefore, in order to reduce the influence of the magnetic force acting in the reverse rotation direction, which did not reach the Curie point and could not lose the magnetism due to the temperature rise due to heating, the permanent magnet for driving to increase the stability and efficiency of the rotation direction It is desirable to be able to adjust the mounting position of 60. According to the results of the experiment, it was possible to increase the number of rotations under the same conditions when moving in the vertical direction rather than separating the distance in the circumferential direction. Although the specific structure is not shown in the drawings, the structure of the position adjusting mechanism 71 may be a slide guide 70 and an adjusting mechanism fixed with screws.

図8は、駆動用永久磁石60の同極を対向させた磁力の斥力状態説明図である。駆動用永久磁石60の同極(特にN極同士)を向い合わせると、図8(a)のように押し潰されてローター30の周方向に磁界が及ぶことになり、図8(bb)に示すようにS極とN極を向かい合わせたときとでは、温度差の大きな感温磁性材料33を捉えることができる領域に大きな差が生じ、後記の実験条件でN極同士を向かい合わせたときと異極を向かい合わせたときでは約20rpmもの回転差が生じた。即ち、駆動用永久磁石60の同極(N極)同士の中間位置は、斥力によってつり合うため、最も磁性を受ける領域において、滑らかな通過を図ることができる。FIG. 8 is an explanatory diagram of the repulsive state of the magnetic force in which the same poles of the driving permanent magnet 60 are opposed to each other. When the same polarity (especially N poles) of the driving permanent magnet 60 is faced, it is crushed as shown in FIG. 8A and a magnetic field is applied in the circumferential direction of the rotor 30, as shown in FIG. As shown, when the S pole and the N pole face each other, there is a large difference in the region where the temperature-sensitive magnetic material 33 having a large temperature difference can be captured, and when the N poles face each other under the experimental conditions described later. When the opposite poles were opposed to each other, a rotation difference of about 20 rpm occurred. That is, since the intermediate position between the same poles (N poles) of the drive permanent magnet 60 is balanced by repulsive force, smooth passage can be achieved in the region that receives the most magnetism.

実験に用いた装置のローター30の外径は200mm、厚さ30mm、重量998g。感温磁性材料33は、厚さ1mm、縦×横が28mm×16mm、26枚。熱源にはドライヤーによる温風、及びガストーチによる燃焼気体を使用。駆動用永久磁石60には直径10mm×長さ30mm、30mm×30mmの厚さ1mm、30mm×30mmの厚さ10mm、直径50mm×厚さ10mm、40mm×20mmの厚さ3mm、その他これらを組み合わせたものを使用し、実験当初はネオジム磁石を使用したが、耐熱性が悪く熱の影響を受けて磁力の減衰が著しいため、サマリウムコバルト磁石に代えたところ、2ヶ月経過して毎日約30分から1時間駆動しても、回転数や立ち上がりなどのレスポンスに大きな変化はみられなかった。また、駆動用永久磁石60の取付け位置については、感温磁性材料33から周方向へ離してみたり、接触するほどに近づけてみたり、更には上下方向のシフトや、片側のみの配置と両側向かい合わせの配置等、種々の位置関係で実験したところ、これらの配置構成によって、それぞれ異なる結果となった。最も良い結果が得られたのは、外径30mm、内径10mm、厚さ10mmのドーナツ状のネオジム磁石を用いた駆動用永久磁石60を二個用い、N極同士を向かい合わせて、やや上方にセットした場合であった。立ち上がりの速さと回転の安定性がよく、80rpmを安定状態のまま30分以上回転させ、この設定条件の下、約1ヶ月のあいだ、毎日回転状態をチェックを行った。結果としては、30日を過ぎても、大きな変化は見られなかった。キュリー点を超えないように使用すれば相当な耐久性が期待できると思われる。The outer diameter of the rotor 30 of the apparatus used for the experiment was 200 mm, thickness 30 mm, and weight 998 g. The temperature-sensitive magnetic material 33 has a thickness of 1 mm, a length × width of 28 mm × 16 mm, and 26 sheets. The heat source uses warm air from a dryer and combustion gas from a gas torch. The driving permanent magnet 60 has a diameter of 10 mm × length of 30 mm, a thickness of 30 mm × 30 mm of 1 mm, a thickness of 30 mm × 30 mm of 10 mm, a diameter of 50 mm × thickness of 10 mm, a thickness of 40 mm × 20 mm of 3 mm, and other combinations. The neodymium magnet was used at the beginning of the experiment. However, since the heat resistance was poor and the magnetic force was greatly attenuated due to the influence of heat, it was replaced with a samarium cobalt magnet. Even when driven for a long time, there was no significant change in the response such as the number of revolutions or the rise. In addition, the mounting position of the driving permanent magnet 60 can be separated from the temperature-sensitive magnetic material 33 in the circumferential direction, or closer to the contact with the temperature-sensitive magnetic material 33. Experiments with various positional relationships such as facing each other resulted in different results depending on these arrangements. The best result was obtained by using two drive permanent magnets 60 using a donut-shaped neodymium magnet having an outer diameter of 30 mm, an inner diameter of 10 mm, and a thickness of 10 mm. It was the case of setting. The speed of rising and the stability of rotation were good, and 80 rpm was rotated for 30 minutes or more in a stable state, and the rotation state was checked every day for about one month under this set condition. As a result, there was no significant change after 30 days. If it is used so as not to exceed the Curie point, considerable durability is expected.

10 回転動力装置
20 本体
21 フレーム
22 カバー
30 ローター
31 出力軸
32 ベアリング
33 感温磁性材料
34 熱交換用媒体流通穴
35 熱交換用媒体流通室
36 開口段差部
37 空間領域
38 低熱伝導率素材
40 加熱装置
41 熱媒
50 冷却装置
51 冷媒
60 駆動用永久磁石
61 磁力線
R1 周方向磁性領域
R2 周方向磁性領域
70 位置調整機構
DESCRIPTION OF SYMBOLS 10 Rotating power unit 20 Main body 21 Frame 22 Cover 30 Rotor 31 Output shaft 32 Bearing 33 Temperature-sensitive magnetic material 34 Heat exchange medium flow hole 35 Heat exchange medium flow chamber 36 Opening step part 37 Space area 38 Low thermal conductivity material 40 Heating Device 41 Heat medium 50 Cooling device 51 Refrigerant 60 Driving permanent magnet 61 Magnetic field line R1 Circumferential magnetic region R2 Circumferential magnetic region 70 Position adjustment mechanism

Claims (6)

感温磁性材料に温度差を与えて回転動力を得る装置であって、
本体と、
ローターと、
加熱装置と、
冷却装置と、
駆動用永久磁石と、から構成され、

前記ローターは、
全体または円周縁部に高熱伝導率素材を用いた円形の回転部材であって、
該ローターの中心には前記本体にベアリングを介して回転自在に備えるための出力軸を有し、
該ローターの周壁には、空間領域又は低熱伝導率素材を挟んで等間隔に隔てられた複数の感温磁性材料が周設され、
該感温磁性材料には可逆温度変化(可逆減磁)の下限と上限との間にキュリー点を有し、該キュリー点付近で磁気特性が急変する特性の感温磁性材料を用い、
該感温磁性材料が配設される周壁の内側には、加熱又は冷却、若しくは加熱及び冷却のための熱交換用媒体流通室及び熱交換用媒体流通穴が設けられて成り、

前記加熱装置は、前記駆動用永久磁石の近傍に配置され、区画化された加熱領域内の前記感温磁性材料をその可逆温度変化の上限を超えないように外部熱源からの熱を与える装置であり、

前記冷却装置は、前記駆動用永久磁石に対し、前記加熱装置の反対側近傍に配置され、前記加熱装置により加熱された前記感温磁性材料を、その可逆温度変化の下限を超えないように冷却する装置であり、

前記駆動用永久磁石は、前記ローターに周設される前記感温磁性材料の温度変化に伴う減磁に作用させ、磁極特性により該ローターを回転駆動するために必要な最大エネルギー積を有する残留磁束密度と保磁力の大きな永久磁石を用い、

前記本体に、前記ローター、前記加熱装置、前記冷却装置、及び前記駆動用永久磁石とを、適切な位置に配置させて構成されることを特徴とする感温磁性材特性を利用した回転動力装置。
An apparatus for obtaining rotational power by giving a temperature difference to a temperature-sensitive magnetic material,
The body,
With the rotor,
A heating device;
A cooling device;
A permanent magnet for driving, and

The rotor is
A circular rotating member using a high thermal conductivity material on the whole or on the periphery of the circle,
In the center of the rotor, there is an output shaft for providing the main body rotatably via a bearing,
On the peripheral wall of the rotor, a plurality of temperature-sensitive magnetic materials spaced apart at equal intervals across a space region or a low thermal conductivity material are provided,
The temperature-sensitive magnetic material has a Curie point between a lower limit and an upper limit of reversible temperature change (reversible demagnetization), and uses a temperature-sensitive magnetic material having a characteristic that magnetic characteristics change suddenly near the Curie point,
Inside the peripheral wall where the temperature-sensitive magnetic material is disposed, heating or cooling, or a heat exchange medium circulation chamber and a heat exchange medium circulation hole for heating and cooling are provided,

The heating device is a device that is arranged in the vicinity of the driving permanent magnet and applies heat from an external heat source to the thermosensitive magnetic material in the partitioned heating region so as not to exceed the upper limit of the reversible temperature change. Yes,

The cooling device is disposed in the vicinity of the driving permanent magnet on the opposite side of the heating device, and cools the thermosensitive magnetic material heated by the heating device so as not to exceed the lower limit of the reversible temperature change. Device to

The driving permanent magnet acts on the demagnetization accompanying the temperature change of the temperature-sensitive magnetic material provided around the rotor, and the residual magnetic flux having the maximum energy product necessary for rotationally driving the rotor by the magnetic pole characteristics. Use permanent magnets with high density and coercivity,

A rotary power device using temperature-sensitive magnetic material characteristics, wherein the main body includes the rotor, the heating device, the cooling device, and the driving permanent magnet arranged at appropriate positions. .
前記加熱装置における加熱手段が、太陽光を集光して熱源とし、該集光した光を加熱領域内の前記感温磁性材料に投射して加熱する構成を採用し、
前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用したことを特徴とする前記請求項1に記載の感温磁性材特性を利用した回転動力装置。
The heating means in the heating device employs a configuration in which sunlight is condensed to be a heat source, and the condensed light is projected and heated onto the temperature-sensitive magnetic material in a heating region,
The rotary power device using the temperature-sensitive magnetic material characteristics according to claim 1, wherein the cooling means in the cooling device employs a configuration using air cooling or low-temperature water as a refrigerant.
前記加熱装置における加熱手段が、外部熱源から生じた高温気体を熱媒として加熱する構成を採用し、
前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用したことを特徴とする前記請求項1に記載の感温磁性材特性を利用した回転動力装置。
The heating means in the heating device adopts a configuration in which a high-temperature gas generated from an external heat source is heated as a heat medium,
The rotary power device using the temperature-sensitive magnetic material characteristics according to claim 1, wherein the cooling means in the cooling device employs a configuration using air cooling or low-temperature water as a refrigerant.
前記加熱装置における加熱手段には外部熱源から生じた高温水を熱媒として加熱する構成を採用し、
前記冷却装置における冷却手段には、空冷又は低温水を冷媒とする構成を採用し、
前記感温磁性材料の可逆温度変化(可逆減磁)の上限が100度を超え、且つ、キュリー点が100度以下である特性の前記感温磁性材料を用いていることを特徴とする前記請求項1に記載の感温磁性材特性を利用した回転動力装置。
The heating means in the heating device employs a configuration in which high-temperature water generated from an external heat source is heated as a heat medium,
The cooling means in the cooling device adopts a configuration using air cooling or low-temperature water as a refrigerant,
The temperature-sensitive magnetic material having the characteristics that the upper limit of the reversible temperature change (reversible demagnetization) of the temperature-sensitive magnetic material exceeds 100 degrees and the Curie point is 100 degrees or less is used. A rotational power device using the temperature-sensitive magnetic material characteristic according to Item 1.
前記駆動用永久磁石が、前記ローターに取りつけられる前記感温磁性材との位置関係において、前記本体に対して上方または下方に位置調整をするための位置調整機構を備えたことを特徴とする前記請求項1から前記請求項4のいずれかに記載の回転動力装置。The drive permanent magnet includes a position adjustment mechanism for adjusting the position upward or downward with respect to the main body in a positional relationship with the temperature-sensitive magnetic material attached to the rotor. The rotary power device according to any one of claims 1 to 4. 前記駆動用永久磁石の同極を向かい合わせ、前記感温磁性材を挟み込むように配置されることを特徴とする前記請求項1から前記請求項5のいずれかに記載の回転動力装置。The rotary power device according to any one of claims 1 to 5, wherein the driving permanent magnets are arranged so that the same poles face each other and the temperature-sensitive magnetic material is sandwiched therebetween.
JP2014536007A 2013-03-12 2014-02-25 Rotary drive device using temperature-sensitive magnetic material Expired - Fee Related JP5656180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014536007A JP5656180B1 (en) 2013-03-12 2014-02-25 Rotary drive device using temperature-sensitive magnetic material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013049749 2013-03-12
JP2013049749 2013-03-12
PCT/JP2014/054415 WO2014141864A1 (en) 2013-03-12 2014-02-25 Rotary drive device using temperature-sensitive magnetic material
JP2014536007A JP5656180B1 (en) 2013-03-12 2014-02-25 Rotary drive device using temperature-sensitive magnetic material

Publications (2)

Publication Number Publication Date
JP5656180B1 true JP5656180B1 (en) 2015-01-21
JPWO2014141864A1 JPWO2014141864A1 (en) 2017-02-16

Family

ID=51536539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014536007A Expired - Fee Related JP5656180B1 (en) 2013-03-12 2014-02-25 Rotary drive device using temperature-sensitive magnetic material

Country Status (2)

Country Link
JP (1) JP5656180B1 (en)
WO (1) WO2014141864A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553332A (en) * 2016-02-02 2016-05-04 魏永祥 Thermal power installation
JP2020174516A (en) * 2019-04-11 2020-10-22 香取 健二 Energy conversion element
JP7037688B1 (en) 2021-01-19 2022-03-16 健二 香取 Energy conversion element and temperature control device using it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2020065B1 (en) * 2017-12-12 2019-06-21 Helios Nova B V Generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730137A (en) * 1986-11-03 1988-03-08 Vollers Gary L Energy conversion system
JP2005086904A (en) * 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730137A (en) * 1986-11-03 1988-03-08 Vollers Gary L Energy conversion system
JP2005086904A (en) * 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553332A (en) * 2016-02-02 2016-05-04 魏永祥 Thermal power installation
CN105553332B (en) * 2016-02-02 2018-03-20 杨柳清 A kind of heat energy power mechanism
JP2020174516A (en) * 2019-04-11 2020-10-22 香取 健二 Energy conversion element
JP6997822B2 (en) 2019-04-11 2022-01-18 健二 香取 Energy conversion element
JP7037688B1 (en) 2021-01-19 2022-03-16 健二 香取 Energy conversion element and temperature control device using it
WO2022158282A1 (en) * 2021-01-19 2022-07-28 健二 香取 Energy conversion element and temperature control device using same
JP2022111021A (en) * 2021-01-19 2022-07-29 健二 香取 Energy conversion element and temperature regulator using the same

Also Published As

Publication number Publication date
JPWO2014141864A1 (en) 2017-02-16
WO2014141864A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
TWI467122B (en) Centrifugal magnetic heating device
JP5656180B1 (en) Rotary drive device using temperature-sensitive magnetic material
JP3955888B2 (en) Permanent magnet type eddy current heating device
TWI452244B (en) Water heating system
TWI522530B (en) Thermal magnetic engine and thermal magnetic engine system
US4730137A (en) Energy conversion system
CN103200719B (en) Double-rotor electromagnetic heating machine
US20110061399A1 (en) Heat-power conversion magnetism devices
US20130247572A1 (en) Magnetic thermal device
CN103414385B (en) Magnetic-heating device
CN102088800B (en) Magnetic heating machine
CN101373113B (en) Permanent magnetism body system for rotary magnetic refrigeration
RU191076U1 (en) Universal heat pump installation for agricultural premises
CN203387437U (en) Magnetic heating device
TWM398024U (en) Axially magnetic flux type permanent magnetic wind power generator with magnetic levitation
CN103312230A (en) Magnetic heating thermoelectric generator
JPS5950873B2 (en) heat generator
KR102059041B1 (en) Generating device using ferrofluid
JPH01232174A (en) Power plant utilizing temperature sensing magnetic substance
TWI591940B (en) Frictionless wind power generation system
KR101533534B1 (en) A round shape plate type eddy current induction heating equipment
JP3191137U (en) Thermomagnetic engine
CN102130541B (en) Hub motor
CN104748385A (en) Strong magnetic inner rotor suit type multi-mouse-cage cyclonal self-electricity-generation multifunctional heater
EP2659580B1 (en) Thermodynamic device based on a magnetic field and curie effect

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5656180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees