JP5656040B2 - Li2O-Al2O3-SiO2 based crystallized glass - Google Patents

Li2O-Al2O3-SiO2 based crystallized glass Download PDF

Info

Publication number
JP5656040B2
JP5656040B2 JP2007140056A JP2007140056A JP5656040B2 JP 5656040 B2 JP5656040 B2 JP 5656040B2 JP 2007140056 A JP2007140056 A JP 2007140056A JP 2007140056 A JP2007140056 A JP 2007140056A JP 5656040 B2 JP5656040 B2 JP 5656040B2
Authority
JP
Japan
Prior art keywords
glass
tio
crystallized glass
sio
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007140056A
Other languages
Japanese (ja)
Other versions
JP2008007398A (en
Inventor
慎護 中根
慎護 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2007140056A priority Critical patent/JP5656040B2/en
Publication of JP2008007398A publication Critical patent/JP2008007398A/en
Application granted granted Critical
Publication of JP5656040B2 publication Critical patent/JP5656040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Glass Compositions (AREA)

Description

本発明は、Li2O−Al23−SiO2系結晶化ガラスに関するものである。 The present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass.

結晶化ガラスは、機械的強度が高く、加工しやすいことからさまざまな用途に使用されている。例えば特許文献1〜3には主結晶としてβ−石英固溶体(Li2O・Al23・nSiO2[ただしn≧2])やβ−スポジュメン固溶体(Li2O・Al23・nSiO2[ただしn≧4])を析出してなるLi2O−Al23−SiO2系結晶化ガラスが開示されており、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス、リフレクタ等に使用されている。 Crystallized glass is used in various applications because it has high mechanical strength and is easy to process. For example, Patent Documents 1 to 3 primary crystals as β- quartz solid solution (Li 2 O · Al 2 O 3 · nSiO 2 [ provided that n ≧ 2]) and β- spodumene solid solution (Li 2 O · Al 2 O 3 · nSiO 2 [where n ≧ 4]) is disclosed, and Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass is disclosed, for front windows such as petroleum stoves and wood stoves, for color filters and image sensors It is used for substrates for high-tech products such as substrates, setters for firing electronic components, shelf plates for microwave ovens, top plates for electromagnetic cooking, window glass for fire doors, reflectors, and the like.

上記したLi2O−Al23−SiO2系結晶化ガラスは、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有している。また、結晶化工程における熱処理条件を変更することによって析出結晶を変化させることができるため、同一組成の原ガラスから透明な結晶化ガラス(β−石英固溶体が析出)と白色不透明な結晶化ガラス(β−スポジュメン固溶体が析出)の両方を製造することが可能であり、用途に応じて使い分けることができる。 The Li 2 O—Al 2 O 3 —SiO 2 crystallized glass described above has excellent thermal characteristics because it has a low coefficient of thermal expansion and high mechanical strength. In addition, since the precipitated crystals can be changed by changing the heat treatment conditions in the crystallization process, transparent crystallized glass (β-quartz solid solution is precipitated) and white opaque crystallized glass ( Both of β-spodumene solid solution can be produced and can be used properly according to the application.

一般的なガラスの製造と同様に、結晶化ガラスの製造でも環境面と製造面の両面から、市場から回収されたガラスを原料(カレット)として再使用している。近年、電磁調理器の普及に伴ない、結晶化ガラス製の調理器用トッププレートの出荷量が増えているとともに、市場から回収される調理器用トッププレートの量も増えている。   Similar to general glass manufacturing, glass recovered from the market is reused as a raw material (cullet) from both the environmental and manufacturing aspects in the manufacturing of crystallized glass. In recent years, with the spread of electromagnetic cookers, the shipment amount of crystallized glass top plates for cookers has increased, and the amount of cooker top plates recovered from the market has also increased.

特許文献4、5、6、7に開示されているように、調理器用トッププレートの多くは、結晶化ガラス板に無機顔料を含む装飾層もしくは遮光層が形成されており、加熱装置等の内部を隠蔽するとともに優れた美観を有している。この無機顔料の主な成分としてFe、Ni、Cr、Co、Mnなどの酸化物が使用されている。
特公昭39−21049号公報 特公昭40−20182号公報 特開平1−308845号公報 特開2003−168548号公報 特開2003−338360号公報 米国特許出願公開第2003/006231号明細書 特開平8−165143号公報
As disclosed in Patent Documents 4, 5, 6, and 7, most of the top plates for cookers have a decorative layer or a light-shielding layer containing an inorganic pigment formed on a crystallized glass plate. And has an excellent aesthetics. Oxides such as Fe, Ni, Cr, Co, and Mn are used as main components of the inorganic pigment.
Japanese Examined Patent Publication No. 39-21049 Japanese Patent Publication No. 40-20182 JP-A-1-308845 JP 2003-168548 A JP 2003-338360 A US Patent Application Publication No. 2003/006231 JP-A-8-165143

無機顔料によって装飾されたLi2O−Al23−SiO2系結晶化ガラスからなる調理器用トッププレートを、そのまま粉砕してガラス原料として使用すると、ガラスが着色し、さらに、結晶化ガラスとするために結晶を析出させるとガラスマトリックスに無機顔料の成分が濃縮されるため、着色が強くなるという問題を有している。 When a cooker top plate made of Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass decorated with an inorganic pigment is crushed as it is and used as a glass raw material, the glass is colored, and further, crystallized glass and For this reason, when crystals are precipitated, the components of the inorganic pigment are concentrated in the glass matrix, so that there is a problem that coloring becomes strong.

また、無機顔料を含む装飾層や遮光層は、ガラスフリット等で強固に接着されているため、結晶化ガラス板と装飾層や遮光層を全て分離するには非常に手間がかかる。   In addition, since the decorative layer and the light shielding layer containing an inorganic pigment are firmly bonded with glass frit or the like, it is very troublesome to separate the crystallized glass plate from the decorative layer and the light shielding layer.

本発明の目的は、市場から回収されたガラスを有効に利用するとともに、手間をかけることなく、着色の少ないLi2O−Al23−SiO2系結晶化ガラスを提供することである。 An object of the present invention is to provide Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass with less coloring without effectively using glass collected from the market.

本発明者は、鋭意検討した結果、無機顔料の成分がある程度ガラス中に混入していても、TiO2、ZnOおよびMgOの含有量を適度に制御することによって、ガラスを結晶化しても無機顔料による着色を抑制できることを見出し、本発明として提案するものである。 As a result of intensive studies, the present inventor has found that even if the inorganic pigment component is mixed in the glass to some extent, even if the glass is crystallized by appropriately controlling the content of TiO 2 , ZnO and MgO, the inorganic pigment The present inventors have found that coloring due to can be suppressed and propose as the present invention.

すなわち、本発明のLi2O−Al23−SiO2系結晶化ガラスは、質量換算で、TiO2+MgO+ZnOが1.5〜4.3%、TiO 2 /(TiO 2 +MgO+ZnO)が0.2〜0.9、Fe23が50〜500ppm、Fe 2+ /全Feが90%以下、CoO+Cr23+NiO+MnOが5〜100ppm、CoO+NiOが0〜70ppmを含有し、Fe 2+ /全Feが90%以下の結晶性ガラスを熱処理して得られるLi2O−Al23−SiO2系結晶化ガラスであって、4mm厚でL***表色系のa*値が−2〜2、b*値が−10〜20であることを特徴とする。 That is, the Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is 1.5 to 4.3% of TiO 2 + MgO + ZnO, and TiO 2 / (TiO 2 + MgO + ZnO) is 0. 2 to 0.9, Fe 2 O 3 is 50 to 500 ppm, Fe 2+ / total Fe is 90% or less, CoO + Cr 2 O 3 + NiO + MnO is 5 to 100 ppm, CoO + NiO is 0 to 70 ppm , Fe 2+ / total Fe is a is that Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass obtained by heat-treating 90% or less of crystalline glass, a * value at 4mm thickness L * a * b * color system It is characterized in that −2 to 2 and b * value is −10 to 20.

本発明のLi2O−Al23−SiO2系結晶化ガラスは、質量換算で、Fe23が50〜500ppm、CoO+Cr23+NiO+MnOが5〜100ppm、CoO+NiOが0〜60ppmの着色成分を含有しているにもかかわらず、TiO2、ZnOおよびMgOの含有量を適度に制御することで、白色不透明または無色透明な材料となる。具体的には、4mm厚でL***表色系のa*値を−2〜2、b*値を−10〜20にすることが出来る。特に、結晶化度が60質量%以上の結晶化ガラスに対して効果が大きい。 The Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass of the present invention is 50 to 500 ppm Fe 2 O 3, 5 to 100 ppm CoO + Cr 2 O 3 + NiO + MnO, and 0 to 60 ppm CoO + NiO in terms of mass. Despite containing coloring components, a white opaque or colorless and transparent material can be obtained by appropriately controlling the contents of TiO 2 , ZnO and MgO. Specifically, when the thickness is 4 mm, the a * value of the L * a * b * color system can be -2 to 2, and the b * value can be -10 to 20. In particular, the effect is great for crystallized glass having a crystallinity of 60% by mass or more.

すなわち、結晶が析出した後のガラスマトリックス中に濃縮されて存在する着色イオン(ここではFe、Ni、Cr、Co、Mnなどのイオン)の価数や配位状態をTiO2、ZnOおよびMgOで制御することで、着色イオンに起因する結晶化ガラスの着色を抑制するものである。 That is, the valence and coordination state of colored ions (here, ions of Fe, Ni, Cr, Co, Mn, etc.) that are concentrated in the glass matrix after the crystals are precipitated are expressed as TiO 2 , ZnO, and MgO. By controlling, coloring of the crystallized glass caused by colored ions is suppressed.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

尚、本発明書における百分率等は、特に示されない限り、それぞれ質量を基準とする。   The percentages and the like in the present invention are based on mass unless otherwise indicated.

本発明のLi2O−Al23−SiO2系結晶化ガラスは、SiO2、Al23、Li2O以外に、核形成剤としてTiO2を必須成分として含有し、β―石英固溶体(β―ユークリプタイト固溶体)を析出する。 The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass of the present invention contains TiO 2 as an essential component in addition to SiO 2 , Al 2 O 3 and Li 2 O, and β-quartz A solid solution (β-eucryptite solid solution) is precipitated.

また、ガラス原料やカレットから、不純物成分として、Fe23を含有し、それ以外に、NiO、Cr23、CoO及びMnOの群から選択された少なくとも1成分の不純物を含む。 Further, Fe 2 O 3 is contained as an impurity component from the glass raw material or cullet, and in addition, at least one impurity selected from the group of NiO, Cr 2 O 3 , CoO and MnO is included.

Fe23の含有量を50ppmよりも少なくしようとすると、Fe23の含有量の少ない高価な珪砂や長石などの原料または着色層などの被膜を取り除いたカレットを使用しなければならず本発明の目的に反する。一方、500ppmよりも多いと、いくらTiO2、ZnOおよびMgOの含有量を適度に制御してもb*値を−10〜20にすることが困難である。Fe23の好ましい範囲は110〜450ppm、さらに好ましい範囲は170〜400ppmである。 If you try to less than 50ppm and the content of Fe 2 O 3, it is necessary to use a cullet removal of the coating, such as a raw material or a coloring layer such as a less expensive silica sand and feldspar of the content of Fe 2 O 3 Contrary to the object of the present invention. On the other hand, if it exceeds 500 ppm, it is difficult to make the b * value -10 to 20 even if the content of TiO 2 , ZnO and MgO is appropriately controlled. A preferable range of Fe 2 O 3 is 110 to 450 ppm, and a more preferable range is 170 to 400 ppm.

CoO、Cr23、NiO、MnOの合量を5ppmよりも少なくしようとすると、使用する未処理のカレットの量を少なくするか、着色層などの被膜を取り除かなければならず本発明の目的に反する。一方、100ppmよりも多いと、いくらTiO2、ZnOおよびMgOの含有量を適度に制御してもa*値を−2〜2にすることが困難である。CoO、Cr23、NiO、MnOの合量の好ましい範囲は5〜90ppm、さらに好ましい範囲は15〜80ppmである。 If the total amount of CoO, Cr 2 O 3 , NiO, and MnO is to be less than 5 ppm, the amount of untreated cullet to be used must be reduced or a coating such as a colored layer must be removed. Contrary to On the other hand, if it exceeds 100 ppm, it is difficult to make the a * value from −2 to 2 even if the contents of TiO 2 , ZnO and MgO are controlled appropriately. A preferable range of the total amount of CoO, Cr 2 O 3 , NiO, and MnO is 5 to 90 ppm, and a more preferable range is 15 to 80 ppm.

CoOとNiOは特に着色の強い成分でありその合量が60ppmよりも多いと、いくらTiO2、ZnOおよびMgOの含有量を適度に制御してもa*値を−2〜2にすることが困難である。好ましくは50ppm以下である。 CoO and NiO are particularly strongly colored components. If the total amount is more than 60 ppm, the a * value should be -2 to 2 even if the content of TiO 2 , ZnO and MgO is appropriately controlled. Is difficult. Preferably it is 50 ppm or less.

本発明の結晶化ガラスが、Li2O−Al23−SiO2系結晶化ガラスであると、熱膨張係数が低く、機械的強度も高いため、優れた熱的特性を有する。特に、主結晶がβ−石英固溶体であると透明な結晶化ガラスが得られるため、さまざまな用途に使用することが出来、波長380〜780nmにおける可視光線の平均透過率が、5mm厚で65%以上であると、8mm以下であれば窓材としても使用できるため好ましい。より好ましくは75%以上、更に好ましい範囲は80%以上である。 When the crystallized glass of the present invention is Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass, it has excellent thermal characteristics because it has a low coefficient of thermal expansion and high mechanical strength. In particular, when the main crystal is a β-quartz solid solution, a transparent crystallized glass can be obtained, so that it can be used for various applications. The average visible light transmittance at a wavelength of 380 to 780 nm is 65% at a thickness of 5 mm. If it is above, it can be used as a window material if it is 8 mm or less. More preferably, it is 75% or more, and a further preferable range is 80% or more.

Li2O−Al23−SiO2系結晶化ガラスの場合、TiO2は核形成剤であり、ZnOおよびMgOは結晶の構成成分であるが、これらの成分がガラスマトリックス中に残存した場合、着色イオンの価数や配位状態に影響を及ぼす。質量%表記で、TiO2が0.3〜3%、TiO2+MgO+ZnOが1.5〜8%、TiO2/(TiO2+MgO+ZnO)が0.2〜0.9であると、TiO2、MgOおよびZnOの一部が結晶に取り込まれて消費され、結晶化後のガラスマトリックス中にTiO2、MgOおよびZnOが適量に残存するためFe、Co、Cr、Ni、Mnなどのイオンの着色が弱まるような価数や配位状態を取ることによって着色が抑制される。 In the case of Li 2 O—Al 2 O 3 —SiO 2 based crystallized glass, TiO 2 is a nucleating agent, and ZnO and MgO are constituents of crystals, but these components remain in the glass matrix. Affects the valence and coordination state of the colored ions. In terms of mass%, TiO 2 is 0.3 to 3%, TiO 2 + MgO + ZnO is 1.5 to 8%, and TiO 2 / (TiO 2 + MgO + ZnO) is 0.2 to 0.9, TiO 2 , MgO And a part of ZnO is taken in and consumed by the crystal, and TiO 2 , MgO and ZnO remain in an appropriate amount in the glass matrix after crystallization, so that coloring of ions such as Fe, Co, Cr, Ni and Mn is weakened Coloring is suppressed by taking such a valence and coordination state.

TiO2は核形成剤と呼ばれ、均一にガラス中に結晶が析出するように添加される成分であり、TiO2が0.3%よりも少ないと、結晶が均一に析出しにくいため、熱膨張係数のばらつきに起因する熱ひずみによって破損するおそれがある。一方、3%よりも多いと、結晶化後のガラスマトリックス中に多量のTiO2が残存することになり、着色イオンによる結晶化ガラスの着色を抑制するどころか、逆に着色を強める場合がある。TiO2のより好ましい範囲は0.3〜2.5%、更に好ましい範囲は0.3〜1.9%である。 TiO 2 is called a nucleating agent and is a component added so that crystals are uniformly precipitated in glass. If TiO 2 is less than 0.3%, crystals are difficult to precipitate uniformly, There is a risk of breakage due to thermal strain caused by variation in expansion coefficient. On the other hand, if it exceeds 3%, a large amount of TiO 2 remains in the glass matrix after crystallization, and on the contrary, coloring may be strengthened rather than suppressing coloring of the crystallized glass by colored ions. A more preferable range of TiO 2 is 0.3 to 2.5%, and a further preferable range is 0.3 to 1.9%.

TiO2、MgO、ZnOの合量が1.5%よりも少ないと、ガラスマトリックス中に存在する着色イオンの着色を強めるような価数や配位状態となりやすく、着色しやすくなる。一方、4.3%よりも多いとガラスマトリックスに残存するTiO2、MgO、ZnOの合量が多くなり、ガラスマトリックスの塩基性度が高くなるため、結晶化ガラスの着色を抑制するどころか、逆に着色を強める場合がある。 When the total amount of TiO 2 , MgO, and ZnO is less than 1.5%, the valence and the coordination state tend to increase the coloring of the colored ions present in the glass matrix, and the coloring becomes easy. On the other hand, if it exceeds 4.3 %, the total amount of TiO 2 , MgO, and ZnO remaining in the glass matrix increases, and the basicity of the glass matrix increases. If it intensifies the coloring there Ru to.

TiO2/(TiO2+MgO+ZnO)が0.2より小さいと、ガラスマトリックス中に存在する着色イオンの着色を制御するような価数や配位状態となりにくい傾向があり、着色を抑制しにくい。一方、0.9よりも大きいと、0.2より小さい場合と同様に、ガラスマトリックス中に存在する着色イオンの着色を制御するような価数や配位状態となりにくい傾向があり、着色を抑制しにくい。TiO2/(TiO2+MgO+ZnO)のより好ましい範囲は0.3〜0.85である。 When TiO 2 / (TiO 2 + MgO + ZnO) is smaller than 0.2, there is a tendency that a valence or coordination state that controls the coloring of the colored ions present in the glass matrix tends to be difficult, and coloring is difficult to suppress. On the other hand, when it is larger than 0.9, as in the case where it is smaller than 0.2, there is a tendency that the valence and coordination state that controls the coloring of the colored ions existing in the glass matrix tend to be difficult, and the coloring is suppressed. Hard to do. A more preferable range of TiO 2 / (TiO 2 + MgO + ZnO) is 0.3 to 0.85.

MgOとZnOは、β‐石英固溶体やβ‐スポジュメン固溶体に固溶して結晶を構成する成分であるとともに、ガラスの粘性を低下させる成分であり、それらの合量が0.3〜7%であると好ましい。0.3%よりも少ないと充分にガラスの粘性を低くすることが困難なため、ガラスの溶融や成形が困難になる傾向があり、7%よりも多いと、結晶化後のガラスマトリックス中に多量のMgOやZnOが残存することになり、着色イオンによる結晶化ガラスの着色を抑制するどころか、逆に着色を強める場合がある。MgOとZnOの合量の好ましい範囲は0.3〜6%、より好ましい範囲は0.3〜5%である。   MgO and ZnO are components that form crystals by solid solution in β-quartz solid solution or β-spodumene solid solution, and are components that lower the viscosity of glass, and their total amount is 0.3 to 7%. Preferably there is. If it is less than 0.3%, it is difficult to sufficiently lower the viscosity of the glass, so that it tends to be difficult to melt or mold the glass. If it is more than 7%, the glass matrix after crystallization tends to be difficult. A large amount of MgO or ZnO remains, and rather than suppressing the coloring of the crystallized glass by the colored ions, the coloring may be strengthened. A preferable range of the total amount of MgO and ZnO is 0.3 to 6%, and a more preferable range is 0.3 to 5%.

また、清澄剤として添加されるSb23はFeなどの不純物着色を増強する作用を有する。そのため、Sb23の含有量は3%以下にすることが好ましい。Sb23の好ましい範囲は2%以下、より好ましい範囲は1.4%以下である。 Further, Sb 2 O 3 added as a fining agent has an effect of enhancing the coloring of impurities such as Fe. Therefore, the content of Sb 2 O 3 is preferably 3% or less. A preferred range for Sb 2 O 3 is 2% or less, and a more preferred range is 1.4% or less.

結晶析出を促進させる核形成剤としては、ZrO2やP25が用いられる。ZrO2を0.5〜7%にすれば、TiO2、MgOやZnOは結晶中に取り込まれやすくなり、ガラスマトリックス中のTiO2、MgOやZnOの濃度が適量となるため、不純物着色し難くなる。ZrO2の好ましい範囲は0.8〜6%である。 ZrO 2 or P 2 O 5 is used as a nucleating agent for promoting crystal precipitation. If ZrO 2 is 0.5 to 7%, TiO 2 , MgO, and ZnO are easily taken into the crystal, and the concentration of TiO 2 , MgO, and ZnO in the glass matrix becomes an appropriate amount, so that it is difficult to color impurities. Become. A preferable range of ZrO 2 is 0.8 to 6%.

25は、ZrO2より効果は小さいものの結晶の析出を促進する効果を有する。P25の好ましい範囲は0〜10%、より好ましい範囲は0.02〜8%、さらに好ましい範囲は0.1〜6.9%である。10%よりも多いと溶融時にガラスが分相しやすい傾向がある。 Although P 2 O 5 is less effective than ZrO 2, it has the effect of promoting crystal precipitation. A preferable range of P 2 O 5 is 0 to 10%, a more preferable range is 0.02 to 8%, and a further preferable range is 0.1 to 6.9%. If it exceeds 10%, the glass tends to phase-separate at the time of melting.

Na2OやK2Oのフラックス成分が減少すると、ガラスの塩基性度が下がり、不純物着色が低減されることがある。そのため、Na2O+K2Oは4%以下にすることが好ましい。好ましい範囲は3%以下、さらに好ましい範囲は1.4%以下である。 When the flux component of Na 2 O or K 2 O is reduced, the basicity of the glass is lowered and impurity coloring may be reduced. Therefore, Na 2 O + K 2 O is preferably 4% or less. A preferred range is 3% or less, and a more preferred range is 1.4% or less.

また、ハロゲン(F、Cl、Br、I)は着色を増強する作用を有する。そのため、原料からの混入不可避の分を除いて、実質的にハロゲンは添加しないことが好ましい。   Halogen (F, Cl, Br, I) has an effect of enhancing coloring. Therefore, it is preferable that substantially no halogen is added except for the inevitable mixing from the raw materials.

上記以外の成分として、SiO2 を61〜67%、Al23を19〜24%、Li2Oを3.2〜4.4%、BaOを0〜1.4%含有することが好ましい。 As components other than the above, the SiO 2 61 to 67%, the Al 2 O 3 19~24%, the Li 2 O 3.2~4.4%, preferably contains from 0 to 1.4% of BaO .

特に、Li2Oは結晶性への影響が大きいため重要な成分である。Li2Oが3.2%より少ないと、結晶化度が低下し、熱膨張が大きくなり耐熱衝撃性が低下する。また、TiO2が析出されにくくなり、ガラス相での不純物着色が強くなる傾向がある。Li2Oが4.5%より大きいと、熱膨張は小さくなるとともにTiO2の析出を促進するが、Li2O自体がガラス相に残りやすくなり、ガラスの塩基性度が上がり、不純物着色が強くなるため好ましくない。Li2Oのより好ましい範囲は、3.5〜4.3%、更に好ましい範囲は3.7〜4.3%である。 In particular, Li 2 O is an important component because it has a large effect on crystallinity. If the Li 2 O content is less than 3.2%, the crystallinity is lowered, the thermal expansion is increased, and the thermal shock resistance is lowered. In addition, TiO 2 is less likely to be precipitated, and impurity coloring in the glass phase tends to be strong. When Li 2 O is larger than 4.5%, thermal expansion is reduced and precipitation of TiO 2 is promoted, but Li 2 O itself tends to remain in the glass phase, the basicity of the glass is increased, and impurity coloring is increased. Since it becomes strong, it is not preferable. A more preferable range of Li 2 O is 3.5 to 4.3%, and a further preferable range is 3.7 to 4.3%.

SiO2はガラスの骨格を形成するとともに結晶を構成する成分である。SiO2を61%未満とすると熱膨張が大きくなりすぎるため好ましくない。67%を越えるとガラス溶融が困難となる。 SiO 2 is a component that forms a glass skeleton and constitutes a crystal. If SiO 2 is less than 61%, thermal expansion becomes too large, which is not preferable. If it exceeds 67%, glass melting becomes difficult.

Al23もガラスの骨格を形成するとともに結晶を構成する成分である。19%より少ないと、失透しやすくなったりガラス化学的耐久性が低下するため好ましくない。24%を越えるとガラスの粘度が大きくなりすぎてガラス溶融が困難となる。 Al 2 O 3 is also a component that forms a glass skeleton and constitutes crystals. If it is less than 19%, it tends to be devitrified and glass chemical durability is lowered, which is not preferable. If it exceeds 24%, the viscosity of the glass becomes too high and glass melting becomes difficult.

BaOはSb23ほどではないが、Feなどの不純物着色を増強する作用を有する。そのため、1.4%以下とすることが好ましい。 BaO has an effect of enhancing the coloring of impurities such as Fe, although not as much as Sb 2 O 3 . Therefore, it is preferable to set it as 1.4% or less.

本発明の結晶化ガラスは、Fe2+比率(Fe2+/全Fe)が90質量%以下である結晶性ガラスを熱処理することによって作製すると、着色しにくい。Fe、Co、Cr、Ni、Mnによる結晶化ガラスの着色は、結晶性ガラスの酸化還元(レドックス)雰囲気と相関がある。結晶性ガラスの酸化雰囲気が強いほどその着色は弱くなる傾向がある。なお、結晶性ガラスの酸化雰囲気の強さは、Fe2+比率(Fe2+/全Fe)を指標として表すことができる。すなわち、還元体であるFe2+比率が低く、ガラスの酸化雰囲気が強いと判断できる。Fe2+比率(Fe2+/全Fe)の好ましい範囲は85質量%以下であり、さらに好ましい範囲は70質量%以下である。 When the crystallized glass of the present invention is produced by heat-treating a crystalline glass having an Fe 2+ ratio (Fe 2+ / total Fe) of 90% by mass or less, it is difficult to color. The coloring of the crystallized glass with Fe, Co, Cr, Ni, and Mn has a correlation with the redox atmosphere of the crystalline glass. The stronger the oxidizing atmosphere of the crystalline glass, the weaker the coloring. The strength of the oxidizing atmosphere of the crystalline glass can be expressed by using the Fe 2+ ratio (Fe 2+ / total Fe) as an index. That is, it can be judged that the ratio of Fe 2+ as a reductant is low and the oxidizing atmosphere of the glass is strong. A preferable range of the Fe 2+ ratio (Fe 2+ / total Fe) is 85% by mass or less, and a more preferable range is 70% by mass or less.

なお、結晶性ガラス中のFe2+比率(Fe2+/全Fe)を90質量%以下にする方法としては、TiO2、MgO、ZnOの含有量を制御する(質量%表記で、TiO2が0.3〜3%、TiO2+MgO+ZnOが1.5〜8%、TiO2/(TiO2+MgO+ZnO)が0.2〜0.9)に加えて、カーボン、金属などの還元剤を含有させないことが必要である。さらに、ガラスの低温溶融、溶融時における硝酸塩などの酸化剤の添加、などを用いることが好ましい。 In addition, as a method of setting the Fe 2+ ratio (Fe 2+ / total Fe) in the crystalline glass to 90% by mass or less, the content of TiO 2 , MgO, and ZnO is controlled (in terms of mass%, TiO 2 Is 0.3 to 3%, TiO 2 + MgO + ZnO is 1.5 to 8%, TiO 2 / (TiO 2 + MgO + ZnO) is 0.2 to 0.9), and does not contain a reducing agent such as carbon or metal. It is necessary. Furthermore, it is preferable to use low-temperature melting of glass, addition of an oxidizing agent such as nitrate at the time of melting, and the like.

また、結晶性ガラスを熱処理する条件として、核形成処理温度(一次処理温度)は、600〜800℃、核形成処理時間(一次処理時間)は、0.2〜5時間、結晶成長処理温度(二次処理温度)は、830〜910℃、結晶成長処理時間(二次処理時間)は0.1〜3時間であり、核形成処理に続けて結晶成長処理を行なうとTiO2、MgO、ZnOは結晶に取り込まれやすくなり、ガラスマトリックス中のTiO2、MgO、ZnOの濃度が適量となるため着色は低減しやすくなる。 As conditions for heat-treating the crystalline glass, the nucleation treatment temperature (primary treatment temperature) is 600 to 800 ° C., the nucleation treatment time (primary treatment time) is 0.2 to 5 hours, and the crystal growth treatment temperature ( (Secondary treatment temperature) is 830 to 910 ° C., and the crystal growth treatment time (secondary treatment time) is 0.1 to 3 hours. When the crystal growth treatment is performed after the nucleation treatment, TiO 2 , MgO, ZnO Tends to be taken into the crystal, and the concentration of TiO 2 , MgO, and ZnO in the glass matrix becomes an appropriate amount, so that coloring is easily reduced.

本発明の結晶化ガラスを、実施例および比較例を用いて詳細に説明する。   The crystallized glass of the present invention will be described in detail using examples and comparative examples.

表1〜3は、本発明の実施例、参考例及び比較例を示している。Tables 1 to 3 show examples, reference examples, and comparative examples of the present invention.

まず、表の組成となるように、ナトリウム、カリウム及びバリウムの硝酸塩を含むガラス原料を調合し、調合したガラス原料を1550〜1750℃で4〜40時間溶融した後、成形し、Li2O−Al23−SiO2系結晶性ガラスを得た。尚、実施例5は、BaOを含有していないため、バリウムの硝酸塩を使用しなかった。また比較例6は、原料として硝酸塩を用いず、カーボンを0.5%含有させたガラス原料を用い、1750℃で溶融を行った。 First, a glass raw material containing sodium, potassium and barium nitrates was prepared so as to have the composition shown in the table, and the prepared glass raw material was melted at 1550 to 1750 ° C. for 4 to 40 hours, then molded, and Li 2 O— An Al 2 O 3 —SiO 2 crystalline glass was obtained. Since Example 5 does not contain BaO, barium nitrate was not used. Moreover, the comparative example 6 melted at 1750 degreeC using the glass raw material which contained 0.5% of carbon without using nitrate as a raw material.

続いて、この結晶性ガラスからなる成形体を700〜800℃で1〜4時間保持して核形成を行い、800〜950℃で0.5〜3時間熱処理してβ−石英固溶体を析出させ、Li2O−Al23−SiO2系結晶化ガラスを得た。 Subsequently, the formed body made of the crystalline glass is held at 700 to 800 ° C. for 1 to 4 hours for nucleation, and heat treated at 800 to 950 ° C. for 0.5 to 3 hours to precipitate β-quartz solid solution. Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass was obtained.

表1〜3から明らかなように、実施例1〜3、5〜12は、可視平均透過率が65%以上であり、かつa*値は−2〜2、b*値は−10〜20であり、透明体であった。 As apparent from Tables 1 to 3, Examples 1 to 3 and 5 to 12 have a visible average transmittance of 65% or more, a * value of −2 to 2, and b * value of −10 to 20 It was a transparent body.

一方、比較例1〜5は、a*値が−2〜2およびb*値が−10〜20をともに満たすものはなかった。 On the other hand, in Comparative Examples 1 to 5, none of the a * values satisfy −2 to 2 and the b * values satisfy −10 to 20 respectively.

なお、結晶性ガラスの全Fe量は、ICP発光分析法によって、Fe2+量は、O−フェナントロリン吸光光度法によって求めた。 The total Fe amount of the crystalline glass was determined by ICP emission analysis, and the Fe 2+ amount was determined by O-phenanthroline spectrophotometry.

結晶化度は、X線回折装置(リガク製)を用い、回折角2θが10〜60°の範囲にお
いて測定した結晶性ガラスの散乱強度面積と結晶化ガラスの結晶ピーク面積を多重ピーク
分離法を用いて算出し、結晶性ガラスの散乱強度面積に対する結晶化ガラスの結晶ピーク面積の比率(%)として求めた。
The degree of crystallinity is determined by a multiple peak separation method using the X-ray diffractometer (manufactured by Rigaku Corporation) to measure the scattering intensity area of the crystalline glass and the crystal peak area of the crystallized glass measured at a diffraction angle 2θ of 10 to 60 °. And calculated as a ratio (%) of the crystal peak area of the crystallized glass to the scattering intensity area of the crystalline glass.

可視透過率は、肉厚5mmに両面光学研磨した結晶化ガラスからなる板について、分光光度計を用いて測定した波長380〜780nmでの透過率からJIS R 3106の記載により算出した。   The visible transmittance was calculated according to JIS R 3106 from the transmittance at a wavelength of 380 to 780 nm measured using a spectrophotometer for a plate made of crystallized glass that was optically polished on both sides to a thickness of 5 mm.

*値、b*値は、肉厚4mmに両面光学研磨した結晶化ガラスからなる板について、分光光度計を用いて測定した波長380〜780nmでの透過率から算出した。 The a * value and b * value were calculated from transmittance at a wavelength of 380 to 780 nm measured using a spectrophotometer for a plate made of crystallized glass that was optically polished on both sides to a thickness of 4 mm.

以上のように、本発明の結晶化ガラスは、白色不透明または無色透明であるため、石油ストーブ、薪ストーブ等の前面窓、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子レンジ用棚板、電磁調理用トッププレート、防火戸用窓ガラス等に好適である。   As described above, since the crystallized glass of the present invention is white opaque or colorless and transparent, front windows such as petroleum stoves and wood stoves, substrates for high-tech products such as color filters and image sensor substrates, and shelf for microwave ovens Suitable for plates, top plates for electromagnetic cooking, window glass for fire doors, etc.

Claims (7)

質量換算で、TiO2+MgO+ZnOが1.5〜4.3%、TiO 2 /(TiO 2 +MgO+ZnO)が0.2〜0.9、Fe23が50〜500ppm、CoO+Cr23+NiO+MnOが5〜100ppm、CoO+NiOが0〜70ppmを含有し、Fe 2+ /全Feが90%以下の結晶性ガラスを熱処理して得られるLi2O−Al23−SiO2系結晶化ガラスであって、4mm厚でL***表色系のa*値が−2〜2、b*値が−10〜20であることを特徴とするLi2O−Al23−SiO2系結晶化ガラス。 In terms of mass, TiO 2 + MgO + ZnO is 1.5 to 4.3%, TiO 2 / (TiO 2 + MgO + ZnO) is 0.2 to 0.9, Fe 2 O 3 is 50 to 500 ppm, CoO + Cr 2 O 3 + NiO + MnO is 5 to 100 ppm, CoO + NiO is contained 0~70Ppm, a Fe 2+ / total Fe is that obtained by heat treatment of 90% or less of crystalline glass Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass Li 2 O—Al 2 O 3 —SiO 2 system having a thickness of 4 mm and an L * a * b * color system having an a * value of −2 to 2 and a b * value of −10 to 20 Crystallized glass. 質量%表記で、TiO2が0.3〜3%であることを特徴とする請求項1に記載のLi2O−Al23−SiO2系結晶化ガラス。 The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass according to claim 1, wherein TiO 2 is 0.3 to 3% in terms of mass%. 波長380〜780nmにおける可視光線の平均透過率が、5mm厚で65%以上であることを特徴とする請求項1又は2に記載のLi2O−Al23−SiO2系結晶化ガラス。 3. The Li 2 O—Al 2 O 3 —SiO 2 -based crystallized glass according to claim 1, wherein an average transmittance of visible light at a wavelength of 380 to 780 nm is 65% or more at a thickness of 5 mm. 質量%表記で、Sb23の含有量が3%以下であることを特徴とする請求項1〜3のいずれかに記載のLi2O−Al23−SiO2系結晶化ガラス。 In mass% notation, Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass according to any one of claims 1 to 3, wherein the content of Sb 2 O 3 is 3% or less. 質量%表記で、ZrO2を0.5〜7%、P25を0〜10%含有することを特徴とする請求項1〜4のいずれかに記載のLi2O−Al23−SiO2系結晶化ガラス。 By mass% notation, the ZrO 2 0.5 to 7%, Li according to any one of claims 1 to 4, characterized in that it contains P 2 O 5 0~10% 2 O -Al 2 O 3 -SiO 2 based crystallized glass. 質量%表記で、Na2O+K2Oを0〜4%含有することを特徴とする請求項1〜5のいずれかに記載のLi2O−Al23−SiO2系結晶化ガラス。 In mass% notation, Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass according to any one of claims 1 to 5, characterized in that it contains 0-4% of Na 2 O + K 2 O. 質量%表記で、Li2Oを3.2〜4.5%含有することを特徴とする請求項1〜6のいずれかに記載のLi2O−Al23−SiO2系結晶化ガラス。 In mass% notation, Li 2 O-Al 2 O 3 -SiO 2 based crystallized glass according to any one of claims 1 to 6, characterized in that it contains Li 2 O 3.2 to 4.5% .
JP2007140056A 2006-05-29 2007-05-28 Li2O-Al2O3-SiO2 based crystallized glass Active JP5656040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140056A JP5656040B2 (en) 2006-05-29 2007-05-28 Li2O-Al2O3-SiO2 based crystallized glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006148389 2006-05-29
JP2006148389 2006-05-29
JP2007140056A JP5656040B2 (en) 2006-05-29 2007-05-28 Li2O-Al2O3-SiO2 based crystallized glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013095029A Division JP2013151428A (en) 2006-05-29 2013-04-30 Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS

Publications (2)

Publication Number Publication Date
JP2008007398A JP2008007398A (en) 2008-01-17
JP5656040B2 true JP5656040B2 (en) 2015-01-21

Family

ID=39065924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140056A Active JP5656040B2 (en) 2006-05-29 2007-05-28 Li2O-Al2O3-SiO2 based crystallized glass

Country Status (1)

Country Link
JP (1) JP5656040B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014035791A2 (en) 2012-08-28 2014-03-06 Corning Incorporated Colored and opaque glass-ceramic(s), associated colorable and ceramable glass(es), and associated process(es)
WO2015011041A1 (en) * 2013-07-24 2015-01-29 Agc Glass Europe High infrared transmission glass sheet
US9950946B2 (en) * 2013-12-19 2018-04-24 Agc Glass Europe Glass sheet having high transmission of infrared radiation
FR3069240B1 (en) * 2017-07-21 2021-04-23 Eurokera SPODUMENE-BETA VITROCERAMICS, WHITE, OPALESCENT OR OPAQUE, LOW TITANIUM CONTENT, TIN REFINED
KR102595466B1 (en) * 2017-09-05 2023-10-30 니폰 덴키 가라스 가부시키가이샤 LAS-based crystalline glass, LAS-based crystallized glass, and methods for producing them
CN113423671A (en) * 2019-03-22 2021-09-21 日本电气硝子株式会社 Li2O-Al2O3-SiO2Crystallized glass of system
WO2020203308A1 (en) * 2019-04-01 2020-10-08 日本電気硝子株式会社 Li2o-al2o3-sio2-based crystallized glass
CN113831019B (en) * 2021-08-31 2023-05-30 重庆鑫景特种玻璃有限公司 Glass ceramic and protective piece

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4192688A (en) * 1972-07-07 1980-03-11 Owens-Illinois, Inc. Product and process for forming same
JP2668075B2 (en) * 1987-01-19 1997-10-27 日本板硝子株式会社 Transparent crystallized glass
JPH0686311B2 (en) * 1989-05-17 1994-11-02 セントラル硝子株式会社 Bronze transparent crystallized glass
FR2657079B1 (en) * 1990-01-12 1993-04-09 Corning France VITROCERAMIC PRECURSOR GLASSES, PROCESS FOR CONVERTING THESE VERY LOW OR NULL DILATION VITROCERAMIC GLASSES AND VITROCERAMIC MATERIALS OBTAINED.
US5478783A (en) * 1994-02-03 1995-12-26 Libbey-Owens-Ford Co. Glass compositions
EP1837312B2 (en) * 2006-03-20 2015-07-22 Schott AG Lithium-aluminium-silicate glass with short ceramisation time

Also Published As

Publication number Publication date
JP2008007398A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP7477644B2 (en) Transparent beta quartz glass ceramic with specific transmittance
JP5969011B2 (en) Beta quartz glass ceramic with controlled transmission and method for producing the same
JP5656040B2 (en) Li2O-Al2O3-SiO2 based crystallized glass
JP2013151428A (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS
US8753991B2 (en) Beta-quartz glass ceramics and related precursor glasses
CN101679104B (en) Bismuth-containing glass, glass-ceramic, articles and fabrication process
KR101361444B1 (en) Preparation of glass-ceramics of β-quartz and/or of β-spodumene, of articles made from such glass-ceramics ; glass-ceramics, articles made from said glass-ceramics and precursor glasses
CN108373267B (en) Glass ceramic plate
KR20210091179A (en) Transparent β-quartz glass-ceramic with low lithium content
KR20200018578A (en) Β-quartz glass-ceramic with high zinc content
KR101433213B1 (en) Method for refining a lithium alumino-silicate glass and glass ceramic thus obtained
JP6019153B2 (en) Blue beta quartz glass-ceramic material and article and manufacturing method
KR20200016358A (en) Transparent β-quartz glass-ceramic with low lithium content
KR20160146746A (en) Partially crystallised glass plate
JP6212128B2 (en) Β-quartz glass ceramic with controlled transmittance curve and high content of iron oxide and tin oxide, articles of said glass ceramic, precursor glass
WO2013179894A1 (en) Li2o-al2o3-sio2-based crystallized glass and method for producing same
JP2016509987A (en) Lithium aluminosilicate type glass ceramics containing solid solution of β-lithia pyroxene
KR20110070892A (en) Transparent, dyed cooktop or hob with improved colored display capability, and a method for the manufacturing of such a cooktop or hob
JP2006199538A (en) Li2O-Al2O3-SiO2 CRYSTALLINE GLASS AND CRYSTALLIZED GLASS AND MANUFACTURING METHOD OF Li2O-Al2O3-SiO2 CRYSTALLIZED GLASS
KR20150035711A (en) Method for producing a glass ceramic with a predefined transmittance
CN110563338B (en) Beta-quartz glass-ceramics with controlled transmission curve and high iron oxide content, articles and precursor glasses comprising the same
CN102300824A (en) Crystallized glass and top plate for cooking device comprising same
CN113321421A (en) Lithium aluminosilicate glass, glass ceramic made therefrom, method for producing same and use thereof
JP5645101B2 (en) Cooker top plate
Nakane et al. Li 2 O-Al 2 O 3-SiO 2 based crystallized glass and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5656040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150