JP5655338B2 - Partially tempered softened steel sheet and press-formed parts using the steel sheet - Google Patents

Partially tempered softened steel sheet and press-formed parts using the steel sheet Download PDF

Info

Publication number
JP5655338B2
JP5655338B2 JP2010072269A JP2010072269A JP5655338B2 JP 5655338 B2 JP5655338 B2 JP 5655338B2 JP 2010072269 A JP2010072269 A JP 2010072269A JP 2010072269 A JP2010072269 A JP 2010072269A JP 5655338 B2 JP5655338 B2 JP 5655338B2
Authority
JP
Japan
Prior art keywords
strength
steel sheet
softening
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072269A
Other languages
Japanese (ja)
Other versions
JP2011068979A (en
Inventor
英之 木村
英之 木村
健太郎 佐藤
健太郎 佐藤
金晴 奥田
金晴 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010072269A priority Critical patent/JP5655338B2/en
Publication of JP2011068979A publication Critical patent/JP2011068979A/en
Application granted granted Critical
Publication of JP5655338B2 publication Critical patent/JP5655338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車構造部材用途に用いられる加工素材用鋼板に関し、母材強度の高強度化に伴う加工性の低下を鋼板の段階で事前に部分焼戻し処理を施すことで補完した部分焼戻し軟化鋼板に関するものである。また本発明はその鋼板を用いた耐衝撃特性に優れた自動車構造部材用途のプレス成形部品に関するものである。   TECHNICAL FIELD The present invention relates to a steel sheet for a work material used for automobile structural member applications, and a partially tempered softened steel sheet supplemented by performing a partial tempering treatment in advance at the stage of the steel sheet in order to compensate for a decrease in workability accompanying an increase in strength of the base material. It is about. The present invention also relates to a press-formed part for use in automobile structural members having excellent impact resistance characteristics using the steel plate.

薄鋼板を加工した自動車構造部材には、自動車が衝突時にその部材が完全に破壊することなく変形することで、衝突時の衝撃エネルギーを吸収する特性が必要となる場合がある。例えば、自動車側面の重要な部材であるセンターピラーやサイドメンバーなどは、衝突時に3点曲げによる衝撃的な変形が生じるため、曲げ変形が予想される部材に補強材が使用されている。   An automobile structural member obtained by processing a thin steel plate may need to have a characteristic of absorbing impact energy at the time of collision when the automobile is deformed without being completely destroyed at the time of collision. For example, center pillars and side members, which are important members on the side of an automobile, undergo impact deformation due to three-point bending at the time of a collision, and therefore, a reinforcing material is used for a member that is expected to undergo bending deformation.

一方、自動車の軽量化の観点から、補強材を省略あるいは簡略化することが望ましく、このためには素材の高強度化が有効と考えられる。しかし、高強度鋼板は成形性に劣るという問題があり、近年、高強度鋼板を使用する代わりに比較的強度の低い鋼板を用いて所定の形状に成形した後、強度が必要とされる部分にレーザー焼入れや高周波焼入れを施して焼入れ強化する技術が適用されつつある。   On the other hand, from the viewpoint of reducing the weight of the automobile, it is desirable to omit or simplify the reinforcing material. For this purpose, it is considered effective to increase the strength of the material. However, there is a problem that high-strength steel sheets are inferior in formability, and in recent years, instead of using high-strength steel sheets, after forming into a predetermined shape using a relatively low-strength steel sheet, in parts where strength is required Technologies for strengthening quenching by applying laser quenching or induction quenching are being applied.

例えば、特許文献1にはプレス加工時には優れた加工性を有し、加工完了後に強度が必要とされる部分にレーザーなどのエネルギービームを照射して焼入れ硬化させ、高強度化して使用することができる高加工性鋼板が開示されている。また、特許文献2には所定形状に成形された鋼板の一部分を高周波誘導加熱により、焼入温度に加熱し、この加熱に起因する変形を矯正しながら冷却する技術が開示されている。特許文献3には所定形状に成形された鋼板を高周波誘導加熱により焼入れ強化する鋼板において、Ti、N、Bを適正に制御し、Bによる焼入れ効果を十分に発揮させることで、ハット型成形部材に成形後、部材強度を向上させたい部位に高周波焼入れした部材の衝撃3点曲げ試験において、衝突時に割れ発生することなく、高い衝撃吸収エネルギーが得られる技術が開示されている。   For example, Patent Document 1 has excellent workability at the time of press working, and it is possible to irradiate an energy beam such as a laser to a portion where strength is required after the processing is completed and harden and harden it, and use it with high strength. A high workability steel sheet is disclosed. Patent Document 2 discloses a technique in which a part of a steel sheet formed into a predetermined shape is heated to a quenching temperature by high-frequency induction heating and cooled while correcting deformation caused by the heating. Patent Document 3 describes a hat-shaped molded member by appropriately controlling Ti, N, and B and sufficiently exerting the quenching effect of B in a steel sheet that is hardened and strengthened by induction heating of a steel sheet that has been formed into a predetermined shape. In addition, a technique is disclosed in which high impact absorption energy can be obtained without cracking at the time of impact in a three-point impact bending test of a member that has been subjected to induction hardening at a portion where the strength of the member is desired to be improved after molding.

特開平6-73438号公報JP-A-6-73438 特開平11-140537号公報Japanese Patent Laid-Open No. 11-140537 特開2000-248338号公報JP 2000-248338 A

「レスリー鉄鋼材料学」、P.273、丸善株式会社“Leslie Steel Materials Science”, P.273, Maruzen Co., Ltd.

しかしながら、上記従来技術には次のような問題点がある。   However, the above prior art has the following problems.

特許文献1、2、3に記載された技術は、プレス加工後に部分的に焼入れを施すものであり、自動車構造用部品に要求される強度が高くなるほど大きな面積に焼入れ処理を施す必要があるため、焼入れ処理時の鋼板の変形による形状凍結性の低下が課題となる。形状凍結性が劣位な場合、例えば、自動車構造部品用途のハット型成形部材において、スポット溶接されるフランジ部の精度が悪く、溶接不良の原因になることがある。また、加工後に焼入れ強化する方法では、焼入れ装置の形状が複雑となるため、コストの増大が課題となる。   The techniques described in Patent Documents 1, 2, and 3 are partially quenched after press working, and it is necessary to quench the larger area as the strength required for automotive structural parts increases. The problem of reduction in shape freezing property due to deformation of the steel sheet during the quenching process is a problem. When the shape freezing property is inferior, for example, in a hat-shaped molded member for use in automobile structural parts, the accuracy of the flange part to be spot-welded is poor, which may cause welding failure. In addition, in the method of strengthening quenching after processing, the shape of the quenching apparatus becomes complicated, so that an increase in cost becomes a problem.

さらに、特許文献3に記載された技術は、3点曲げ試験に用いたハット型成形部材の曲げ半径が記載されていない。曲げ半径が小さいほど、吸収エネルギーが高くなる傾向にあるため、吸収エネルギーを高める観点から、曲げ半径は小さい方が望ましいが、一方で、曲げ半径が小さいほど、衝撃3点曲げ試験時に、コーナー部に応力集中しやすく、割れが発生しやすい。実施例を見ると、焼入れ部の平均硬さがHv:429と非常に硬い場合においても割れが発生していない実験結果から、曲げ半径は10mmか、それ以上に大きいことが推測され、吸収エネルギーは1994〜2577Jと必ずしも高いとはいえない。   Furthermore, the technique described in Patent Document 3 does not describe the bending radius of the hat-shaped molded member used in the three-point bending test. The smaller the bend radius, the higher the absorbed energy. Therefore, a smaller bend radius is desirable from the viewpoint of increasing the absorbed energy. On the other hand, the smaller the bend radius, the smaller the corner portion during the impact three-point bending test. It is easy for stress to concentrate on and cracking easily occurs. Looking at the examples, even when the average hardness of the hardened part is very hard as Hv: 429, it is estimated that the bending radius is 10 mm or more from the experimental results in which cracks do not occur, and the absorbed energy Is not necessarily as high as 1994-2577J.

本発明は、従来技術に見られる形状凍結性の低下やコスト増大の問題がなく、自動車構造部材用途に用いられたときに優れた耐衝撃性を発現できる自動車構造部材用途に用いられる加工素材用鋼板を提供することを課題とする。   The present invention does not have the problem of reduction in shape freezing and cost increase seen in the prior art, and is used for processing materials used for automotive structural members that can exhibit excellent impact resistance when used for automotive structural members. It is an object to provide a steel plate.

また、本発明は、耐衝撃特性に優れた自動車構造部材用途のプレス成形部品を提供することを課題とする。   Another object of the present invention is to provide a press-molded part for automobile structural members having excellent impact resistance.

本発明は、上述の問題を解決するためになされたもので、自動車用構造部品として必要な部品強度を確保する方法として、熱処理時の鋼板の変形が大きい加工後に焼入れ強化する方法ではなく、母材強度を高めて部品強度を確保した上で、成形性の必要な部位のみ部分的に焼戻し軟化させる方法とした。これにより、部品強度を同一とした場合、焼入れ強化に比べて、熱処理領域が小さくてよく、かつ熱処理温度が低いため、形状凍結性の低下が抑制でき、スポット溶接不良等が抑制できる。さらに加工前の鋼板に焼戻し軟化処理を施すため、熱処理装置の形状が単純化でき、熱処理装置のコストを抑制することができる。また、例えば、ハット型成形部材のコーナー部は焼戻し軟化されるため、コーナー部の曲げ半径を小さくでき、さらに、焼戻し軟化領域を規定することで、吸収エネルギーの低下が抑制され、高い耐衝撃吸収特性が得られる。   The present invention has been made in order to solve the above-mentioned problems. As a method for ensuring the strength of a component necessary as a structural component for automobiles, it is not a method for strengthening quenching after processing with a large deformation of a steel plate during heat treatment, but a mother In this method, the material strength was increased to ensure the strength of the parts, and then only the part requiring formability was partially tempered and softened. As a result, when the component strength is the same, the heat treatment region may be smaller and the heat treatment temperature is lower than in the case of quenching strengthening, so that a decrease in shape freezing property can be suppressed, and spot welding defects and the like can be suppressed. Furthermore, since the temper softening process is performed on the steel sheet before processing, the shape of the heat treatment apparatus can be simplified, and the cost of the heat treatment apparatus can be suppressed. In addition, for example, since the corner portion of the hat-shaped molded member is tempered and softened, the bending radius of the corner portion can be reduced, and further, by defining the tempered softened region, a decrease in absorbed energy is suppressed and high shock resistance absorption is achieved. Characteristics are obtained.

本発明者らは、上記視点に基づき、自動車のサイドメンバーを模擬したハット型形状の部材を対象に、3点曲げ衝撃特性に及ぼす影響因子について鋭意検討を重ねた結果、焼戻し軟化領域の焼戻し後強度と母材強度の比(以下、焼戻し後強度/母材強度と記載する。)を適正な範囲に制御し、さらにハット型成形部材のコーナー部の軟化領域を制御することで、3点曲げ衝撃特性が高位となることを見出した。本発明はこの知見を基にさらに検討を加えてなされたものであり、以下に本発明の要旨を説明する。   Based on the above viewpoints, the present inventors have conducted extensive studies on influencing factors on the three-point bending impact characteristics for hat-shaped members simulating automobile side members, and as a result, after tempering of the temper softening region The ratio of strength to base metal strength (hereinafter referred to as strength after tempering / base material strength) is controlled within an appropriate range, and further, the softening area of the corner part of the hat-shaped molded part is controlled to be bent at three points. It was found that the impact characteristics are high. The present invention has been made on the basis of this finding and further studied, and the gist of the present invention will be described below.

[1]引張強度が980MPa以上の高強度鋼板であって、局部的に焼戻し処理が施された焼戻し軟化領域を有し、該焼戻し軟化領域の強度は、母材強度の0.5〜0.7の範囲内にあることを特徴とする部分焼戻し軟化鋼板。   [1] A high-strength steel sheet having a tensile strength of 980 MPa or more, having a temper softening region that has been locally tempered, and the strength of the temper softening region is within the range of 0.5 to 0.7 of the base material strength. A partially tempered softened steel sheet characterized by

[2]質量%で、C:0.10〜0.20%、Si:0.5〜1.5%、Mn:1.5〜3.0%、P:0.05%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下、Cr:0.05〜1.0%、さらに、Ti、Nb、Mo、V、Wの1種以上を合計0〜0.2%の範囲で含有し、残部がFeおよび不可避的不純物からなる母材の引張強度が980MPa以上の高強度鋼板であって、局部的に焼戻し処理が施された焼戻し軟化領域を有し、該焼戻し軟化領域の強度は、母材強度の0.5〜0.7の範囲内にあることを特徴とする部分焼戻し軟化鋼板。   [2] By mass%, C: 0.10 to 0.20%, Si: 0.5 to 1.5%, Mn: 1.5 to 3.0%, P: 0.05% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.01 % Or less, Cr: 0.05 to 1.0%, and further containing one or more of Ti, Nb, Mo, V and W in a total range of 0 to 0.2%, with the balance being Fe and unavoidable impurities It is a high-strength steel sheet having a strength of 980 MPa or more, and has a temper softening region that has been locally tempered, and the strength of the temper softening region is in the range of 0.5 to 0.7 of the base material strength. A partially tempered softened steel sheet.

[3] [1]または[2]において、焼戻し処理は、焼戻し軟化する領域を局部的に450℃〜Ac3-50℃の温度域に加熱し、その温度で10s以下保持した後冷却する部分焼戻し軟化処理であることを特徴とする部分焼戻し軟化鋼板。 [3] In [1] or [2], the tempering process is a part in which the region to be softened by tempering is locally heated to a temperature range of 450 ° C. to Ac 3 -50 ° C., held at that temperature for 10 s or less, and then cooled. A partially tempered softened steel sheet, characterized by being tempered softened.

[4] [1]〜[3]のいずれかに記載された部分焼戻し軟化鋼板を断面形状がハット型形状の部品にプレス成形して得たプレス成形部品であって、前記ハット型形状の部品の曲げコーナー部に焼戻し軟化領域を有することを特徴とするプレス成形部品。   [4] A press-molded part obtained by press-molding the partially tempered softened steel sheet according to any one of [1] to [3] into a hat-shaped part, the hat-shaped part A press-molded part having a temper softening region in a bending corner portion of the.

[5] [4]において、前記曲げコーナー部の焼戻し軟化幅は、上面の軟化幅と側面の軟化幅の和、下面の軟化幅と側面の軟化幅の和がいずれも20mm以下であることを特徴とするプレス成形部品。   [5] In [4], the temper softening width of the bending corner portion is that the sum of the softening width of the upper surface and the softening width of the side surface, and the sum of the softening width of the lower surface and the softening width of the side surface are both 20 mm or less. A feature of press-molded parts.

[6] [4]または[5]において、前記曲げコーナー部の焼戻し軟化幅は、上面の軟化幅、下面の軟化幅および側面の軟化幅がいずれもコーナー部の曲げ半径(R)と鋼板板厚(t)の和(R+t)の1/√2以上であることを特徴とするプレス成形部品。   [6] In the above [4] or [5], the temper softening width of the bending corner portion is the bending radius (R) of the corner portion and the steel plate in the softening width of the upper surface, the softening width of the lower surface and the softening width of the side surface. A press-formed part characterized by being 1 / √2 or more of the sum (R + t) of thickness (t).

本発明の部分焼戻し軟化鋼板は、化学成分および焼戻し処理条件を適正に制御することで、980MPa以上の母材強度を有し、かつ、焼戻し後強度/母材強度が0.5〜0.7の範囲内であるものとする。また、この鋼板を用いた自動車構造用途のプレス成形部品において、さらに曲げコーナー部の上面の軟化幅と側面の軟化幅の和、下面の軟化幅と側面の軟化幅の和、又はさらに上面の軟化幅、下面の軟化幅、側面の軟化幅を制御することで、3点曲げ衝撃特性の良好な自動車構造部材が得られる。   The partially tempered softened steel sheet of the present invention has a base material strength of 980 MPa or more by appropriately controlling chemical components and tempering treatment conditions, and the strength after tempering / base material strength is within a range of 0.5 to 0.7. It shall be. In addition, in press-formed parts for automotive structural applications using this steel plate, the sum of the softening width of the upper surface of the bending corner and the softening width of the side surface, the sum of the softening width of the lower surface and the softening width of the side surface, or further softening of the upper surface By controlling the width, the softening width of the lower surface, and the softening width of the side surface, an automobile structural member having good three-point bending impact characteristics can be obtained.

本発明によれば、母材強度を高めて部品強度を確保した上で、成形性の必要な部位のみ部分的に焼戻し軟化させるので、部品強度を同一とした場合、焼入れ強化に比べて、熱処理領域が小さくてよく、かつ熱処理温度が低いため、形状凍結性の低下が抑制できる。また加工前の鋼板に焼戻し軟化処理を施すため、熱処理装置の形状が単純化でき、熱処理装置のコストを抑制することができる。また、例えば、ハット型成形部材のコーナー部を局部的に焼戻し軟化させた領域を配置することで、コーナー部の曲げ半径を小さくでき、さらに、焼戻し領域を規定することで、吸収エネルギーの低下が抑制され、高い耐衝撃吸収特性が得られる。   According to the present invention, the strength of the base material is increased to ensure the strength of the part, and only the part that requires formability is partially tempered and softened. Since the region may be small and the heat treatment temperature is low, a decrease in shape freezing property can be suppressed. Moreover, since the temper softening process is performed on the steel sheet before processing, the shape of the heat treatment apparatus can be simplified, and the cost of the heat treatment apparatus can be suppressed. Further, for example, by arranging a region in which the corner portion of the hat-shaped molded member is locally tempered and softened, the bending radius of the corner portion can be reduced, and by further defining the tempering region, the absorption energy can be reduced. Suppressed and high shock absorption characteristics can be obtained.

衝撃3点曲げ試験片の形状を説明する図で、(a)は断面形状、(b)は外観を示す。It is a figure explaining the shape of an impact 3 point | piece bending test piece, (a) is a cross-sectional shape, (b) shows an external appearance. 衝撃3点曲げ試験方法を説明する概略断面図。FIG. 3 is a schematic cross-sectional view illustrating an impact three-point bending test method. 衝撃3点曲げ試験の荷重−変位曲線を説明する模式図。The schematic diagram explaining the load-displacement curve of an impact 3 point | piece bending test.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の部分焼戻し軟化鋼板は、引張強度が980MPa以上の高強度鋼板であって、局部的に焼戻し処理が施された焼戻し軟化領域を有し、該焼戻し軟化領域の強度は、母材強度の0.5〜0.7の範囲内にある。母材強度が980MPa以上でかつ、焼戻し後強度/母材強度を0.5〜0.7とすることで、衝撃3点曲げ時の曲げ部においても割れの発生はなく、優れた耐衝撃性が得られる。この部分焼戻し軟化鋼板は、鋼の化学成分および焼戻し処理条件を適正に制御することで得られる。   The partially tempered softened steel sheet of the present invention is a high-strength steel sheet having a tensile strength of 980 MPa or more, and has a tempered softened area that has been locally tempered. It is in the range of 0.5 to 0.7. When the base material strength is 980 MPa or more and the strength after tempering / base material strength is 0.5 to 0.7, cracks are not generated even in the bending portion at the time of impact three-point bending, and excellent impact resistance is obtained. This partially tempered softened steel sheet can be obtained by appropriately controlling the chemical components and tempering conditions of the steel.

まず、鋼の好ましい成分組成について説明する。なお、成分の量を表す%は、特に断らない限り質量%を意味する。   First, the preferable component composition of steel will be described. In addition, unless otherwise indicated,% showing the quantity of a component means the mass%.

C:0.10〜0.20%
Cはマルテンサイトを形成し、強度向上に寄与する元素である。C量が低くなると所定のマルテンサイト量が得られず、980MPa以上の母材強度が得られなくなり、また焼戻し後の軟化が不十分となり、焼戻し後強度/母材強度が0.7超となり適正範囲に制御できない。このため、Cを0.10%以上添加する。一方、C量が0.20%を超えて含有すると溶接性の劣化が懸念される。したがって、C量は0.10%以上0.20%以下とする。
C: 0.10-0.20%
C is an element that forms martensite and contributes to strength improvement. When the C content is low, the specified martensite amount cannot be obtained, and a base metal strength of 980 MPa or more cannot be obtained, and the softening after tempering becomes insufficient, and the post-tempering strength / base material strength exceeds 0.7 and is within an appropriate range. I can't control it. For this reason, 0.10% or more of C is added. On the other hand, if the C content exceeds 0.20%, there is a concern about deterioration of weldability. Therefore, the C content is 0.10% or more and 0.20% or less.

Si:0.5〜1.5%
Siは高強度化に有効な元素であるため、0.5%以上添加する。一方、Siは1.5%を超えて含有させると、連続焼鈍中に表面に濃化し、雰囲気中に存在する微量の水蒸気と反応して、表面でのSi系の酸化物を形成し、塗装の前処理として行う化成処理性を著しく劣化させ、塗装との密着性が著しく低下する。また、Siは焼戻し軟化を遅らせる傾向を示すため、1.5%を超えて添加すると、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難となる。したがって、Si量は0.5%以上1.5%以下とする。
Si: 0.5-1.5%
Since Si is an element effective for increasing the strength, 0.5% or more is added. On the other hand, if Si exceeds 1.5%, it is concentrated on the surface during continuous annealing and reacts with a small amount of water vapor present in the atmosphere to form Si-based oxides on the surface before coating. The chemical conversion treatment performed as a treatment is significantly deteriorated, and the adhesion to the coating is remarkably lowered. Further, since Si tends to delay temper softening, if it is added in excess of 1.5%, the strength after tempering / base material strength exceeds 0.7, making it difficult to control within an appropriate range. Therefore, the Si content is 0.5% or more and 1.5% or less.

Mn:1.5〜3.0%
Mnはマルテンサイトの生成に有効な元素であり、焼入性を向上させ、マルテンサイトを安定して生成させる。Mn量が低くなると所定のマルテンサイト量が得られず、980MPa以上の母材強度が得られなくなる。このため、母材の強度確保の観点から、Mnを1.5%以上添加する。一方、3.0%を超えてMnを添加すると、スラブコストの著しい上昇を招く。したがって、Mn量は1.5%以上3.0%以下とする。
Mn: 1.5-3.0%
Mn is an element effective for the generation of martensite, improves the hardenability and stably generates martensite. When the Mn amount is low, a predetermined martensite amount cannot be obtained, and a base material strength of 980 MPa or more cannot be obtained. For this reason, 1.5% or more of Mn is added from the viewpoint of securing the strength of the base material. On the other hand, when Mn is added exceeding 3.0%, the slab cost is significantly increased. Therefore, the Mn content is 1.5% or more and 3.0% or less.

P:0.05%以下
Pは高強度化に有効な元素である。しかし、P 量が0.05%を超えると、鋼板の粒界に偏析して耐二次加工脆性を劣化させる。したがって、P 量は0.05%以下とする。
P: 0.05% or less
P is an element effective for increasing the strength. However, if the P content exceeds 0.05%, it segregates at the grain boundaries of the steel sheet and deteriorates the secondary work brittleness resistance. Therefore, the P content is 0.05% or less.

S:0.03%以下
Sは熱間加工性を低下させ、スラブの熱間割れ感受性を高め、0.03%を超えると微細なMnSの析出により加工性を劣化させる。したがって、S量は0.03%以下とし、0.01%以下とすることが好ましい。
S: 0.03% or less
S decreases the hot workability and increases the hot cracking susceptibility of the slab. If it exceeds 0.03%, the workability deteriorates due to the precipitation of fine MnS. Therefore, the S content is 0.03% or less, preferably 0.01% or less.

Al:0.01〜0.1%
Alは脱酸元素として鋼中の介在物を減少させる作用を有している。しかし、Al量が0.01%未満では上述した作用が安定して得られない。一方、Al量が0.1%を超えると、クラスター状のアルミナ系介在物が増加し、表面性状を劣化させる。したがって、Al量は0.01%以上0.1%以下とする。
Al: 0.01 to 0.1%
Al has a function of reducing inclusions in steel as a deoxidizing element. However, when the Al content is less than 0.01%, the above-described action cannot be obtained stably. On the other hand, if the amount of Al exceeds 0.1%, cluster-like alumina inclusions increase and the surface properties deteriorate. Therefore, the Al content is set to 0.01% or more and 0.1% or less.

N:0.01%以下
Nは不可避的不純物であり、その含有量は低い方が好ましい。特にN量が0.01%超では過剰な窒化物の生成により、延性、靭性および表面性状が劣化する。したがって、N量は0.01%以下とする。
N: 0.01% or less
N is an inevitable impurity, and its content is preferably low. In particular, when the N content exceeds 0.01%, the formation of excess nitride deteriorates ductility, toughness, and surface properties. Therefore, the N content is 0.01% or less.

Cr:0.05〜1.0%
Crはマルテンサイトの生成に有効な元素であり、焼入性を向上させ、マルテンサイトを安定して生成させる。Cr量が低くなると所定のマルテンサイト量が得られない場合があるため、母材の強度確保の観点から、その効果を発現させるために0.05%以上添加する。一方、Crは焼戻し軟化抵抗を示すため、1.0%を超えて添加すると焼戻し軟化が抑制され、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難となる。したがって、Cr量は0.05%以上1.0%以下とする。
Cr: 0.05-1.0%
Cr is an effective element for the generation of martensite, improves the hardenability and stably generates martensite. If the amount of Cr is low, a predetermined amount of martensite may not be obtained, so from the viewpoint of securing the strength of the base material, 0.05% or more is added in order to exhibit the effect. On the other hand, since Cr exhibits temper softening resistance, if it exceeds 1.0%, temper softening is suppressed, and the strength after tempering / base metal strength exceeds 0.7, making it difficult to control within an appropriate range. Therefore, the Cr content is 0.05% or more and 1.0% or less.

Ti、Nb、Mo、V、Wの1種以上を合計0〜0.2%(無添加の場合を含む)
Ti、Nb、Mo、V、Wは析出強化元素であり、鋼を安価に強化するのに有用であるため、必要に応じて添加することができる。しかしながら、これらの元素は、焼戻し処理時に微細な炭化物を析出し、2次硬化を引き起こす場合があり、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難になる。しかしながら、これらの元素の添加量が合計で0.2%以下であれば顕著な2次硬化が認められず、許容されるため、Ti、Nb、Mo、V、Wは、1種以上をその合計添加量で0.2%以下とする。
One or more of Ti, Nb, Mo, V, and W in total 0 to 0.2% (including no additive)
Ti, Nb, Mo, V, and W are precipitation strengthening elements and are useful for strengthening steel at low cost, and can be added as necessary. However, these elements may precipitate fine carbides during the tempering process and cause secondary hardening, and the strength after tempering / base metal strength exceeds 0.7, making it difficult to control within an appropriate range. However, if the total amount of these elements is 0.2% or less, significant secondary hardening is not recognized and allowed, so Ti, Nb, Mo, V, and W are added at least one of them in total. The amount is 0.2% or less.

なお、上記以外の残部はFe及び不可避的不純物からなる.不可避的不純物として、例えば、Oは非金属介在物を形成し品質に悪影響を及ぼすため、Oは0.003%以下に低減するのが望ましい。   The remainder other than the above consists of Fe and inevitable impurities. As an unavoidable impurity, for example, O forms non-metallic inclusions and adversely affects quality, so it is desirable to reduce O to 0.003% or less.

次に、本発明鋼の組織について説明する。   Next, the structure of the steel of the present invention will be described.

本発明の鋼板組織は、特に規定しないが、母材強度が980MPa以上で、かつ、焼戻し後強度/母材強度を0.5〜0.7の範囲に制御する観点から、フェライトと体積率で60〜100%のマルテンサイトから構成される2相組織あるいはマルテンサイト単相組織が望ましい。以下にその詳細を説明する。   The steel sheet structure of the present invention is not particularly defined, but from the viewpoint of controlling the base material strength to 980 MPa or more and the strength after tempering / base material strength in the range of 0.5 to 0.7, the volume ratio of ferrite and 60 to 100%. A two-phase structure composed of martensite or a single-phase martensite structure is desirable. Details will be described below.

マルテンサイトの体積率:60〜100%
本発明の鋼板は、フェライトと体積率で60〜100%のマルテンサイトの2相組織あるいはマルテンサイト単相組織で構成される。マルテンサイトの体積率が60%未満では所望の母材強度が得られない場合があり、さらに、焼戻し軟化の効果が小さいため、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難となる。したがって、マルテンサイトの体積率は60%以上とし、より安定的に980MPa以上の母材強度を得て、より顕著な焼戻し軟化効果を得るためには70%以上とすることが好ましい。
Martensite volume ratio: 60-100%
The steel sheet of the present invention is composed of ferrite and a martensite two-phase structure or a martensite single-phase structure having a volume ratio of 60 to 100%. If the martensite volume fraction is less than 60%, the desired strength of the base metal may not be obtained. Furthermore, since the effect of temper softening is small, the strength after tempering / base metal strength exceeds 0.7 and should be controlled within an appropriate range. It becomes difficult. Therefore, the volume ratio of martensite is preferably 60% or more, and in order to obtain a base material strength of 980 MPa or more stably and a more remarkable temper softening effect, it is preferably 70% or more.

なお、本発明の鋼板ではフェライトとマルテンサイトの2相以外にパーライト、ベイナイト、さらには残留γ、不可避的な炭化物が5%程度であれば含まれても良い。   In the steel sheet of the present invention, in addition to the two phases of ferrite and martensite, pearlite, bainite, residual γ, and inevitable carbides may be included as long as about 5%.

焼戻し後強度/母材強度:0.5〜0.7
上記の化学成分と組織を有する鋼板は、局部的に焼戻し処理を施した焼戻し軟化領域を有する。この焼戻し軟化領域の焼戻し後強度と母材強度の比、焼戻し後強度/母材強度は0.5〜0.7の範囲内にある。
Strength after tempering / base material strength: 0.5-0.7
The steel sheet having the above chemical components and structure has a temper softening region that has been locally tempered. The ratio between the strength after tempering and the strength of the base material and the strength after tempering / base strength in the temper softening region are in the range of 0.5 to 0.7.

焼戻し後強度/母材強度が0.7を超えると、コーナー部の成形性が低下し、曲げ加工が困難となるだけでなく、曲げ加工ができたとしても、曲げ加工部の延性が低下するため、3点曲げ試験時に割れが発生しやすく、衝撃特性が低下する。また、焼戻し後強度/母材強度が0.5未満では、3点曲げ試験時に応力集中しやすいコーナー部の強度低下が顕著となり、部品強度の低下を招く。したがって、焼戻し後強度/母材強度は0.5〜0.7に限定した。   If the strength after tempering / base material strength exceeds 0.7, the formability of the corner portion will be reduced, and not only will bending be difficult, but even if bending can be done, the ductility of the bent portion will decrease, Cracks are likely to occur during the three-point bending test, and impact characteristics are reduced. In addition, if the strength after tempering / base metal strength is less than 0.5, the strength of the corner portion where stress tends to concentrate during the three-point bending test is significantly reduced, and the strength of the component is reduced. Therefore, the strength after tempering / base material strength was limited to 0.5 to 0.7.

本発明における鋼の製造条件は特に限定しないが、マルテンサイト体積率が60〜100%でかつ980MPa以上の母材強度を得るために以下に示す製造条件であることが望ましい。   The production conditions of the steel in the present invention are not particularly limited, but the following production conditions are desirable in order to obtain a base material strength of martensite volume ratio of 60 to 100% and 980 MPa or more.

本発明の鋼板は、前述の化学成分範囲に調整された鋼を溶製し、次いで、熱間圧延後、酸洗、冷間圧延を行い、得られた冷延鋼板を焼鈍する工程から製造され、さらに部分的に焼戻し処理が施される。ここで、鋼の溶製方法は特に限定せず、電気炉でも良いし、転炉を用いても良い。また、溶製後の鋼の鋳造方法は、連続鋳造法により鋳片としても良いし、造塊法により鋼塊としても良い。連続鋳造後にスラブを熱間圧延するにあたって、加熱炉でスラブを再加熱した後に圧延してもよいし、またはスラブを加熱することなく直送圧延することもできる。また、鋼塊を造塊した後に分塊圧延してから、熱間圧延に供しても良い。熱間圧延は常法に従って実施すればよく、例えば、スラブの加熱温度は1100〜1300℃、仕上圧延温度はAr3以上、仕上圧延後の冷却速度は10〜200℃/s、巻取温度は400〜750℃とすればよい。冷間圧延率については、通常の操業範囲内の40〜85%とすればよい。 The steel sheet of the present invention is manufactured from the step of melting the steel adjusted to the above-mentioned chemical composition range, then performing hot pickling and cold rolling after the hot rolling, and annealing the obtained cold rolled steel sheet. Further, a part of the tempering process is performed. Here, the method for melting steel is not particularly limited, and an electric furnace or a converter may be used. Moreover, the casting method of the steel after melting may be a slab by a continuous casting method, or may be a steel ingot by an ingot forming method. When the slab is hot-rolled after continuous casting, the slab may be reheated in a heating furnace and then rolled, or may be rolled directly without heating the slab. In addition, the steel ingot may be ingot-rolled and then subjected to hot rolling and then subjected to hot rolling. What is necessary is just to implement hot rolling according to a conventional method, for example, the heating temperature of a slab is 1100-1300 ° C, the finishing rolling temperature is Ar 3 or more, the cooling rate after finishing rolling is 10-200 ° C / s, and the winding temperature is What is necessary is just to be 400-750 degreeC. The cold rolling rate may be 40 to 85% within the normal operating range.

焼鈍温度は、フェライトとマルテンサイトの2相組織あるいはマルテンサイト単相組織を得るため、適切な温度に加熱する必要がある。焼鈍温度がAc1+60℃未満では、オーステナイトの生成量が少ないため、所定のマルテンサイト体積率が得られず、所望の強度が得られない。したがって、焼鈍温度は、Ac1+60℃以上とし、より安定して高強度を得るためにはAc1+100℃以上が好ましい。一方、焼鈍温度の上限は特に定めないが、1000℃超えの高温では焼戻し処理時の有効な拡散経路である旧γ粒径が粗大となるため、セメンタイトの凝集・粗大化がやや抑制され、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難な場合があり、さらに、生産性の低下やエネルギーコストの増加を招くので1000℃以下とする。また、焼鈍時間についてはフェライト+オーステナイトの2相域で焼鈍する場合は、オーステナイトへの元素濃化を促進する観点から15s以上とすることが好ましいが、オーステナイト単相域で焼鈍する場合は特に限定されない。なお、Ac1は実測により求めることができるが、非特許文献1に記載される下記式を用いて鋼板の成分組成から算出しても差し支えない。 The annealing temperature must be heated to an appropriate temperature in order to obtain a two-phase structure of ferrite and martensite or a martensite single-phase structure. When the annealing temperature is less than Ac 1 + 60 ° C., the amount of austenite produced is small, so that the predetermined martensite volume fraction cannot be obtained and the desired strength cannot be obtained. Therefore, the annealing temperature is set to Ac 1 + 60 ° C. or higher, and Ac 1 + 100 ° C. or higher is preferable in order to obtain high strength more stably. On the other hand, the upper limit of the annealing temperature is not particularly defined, but at high temperatures exceeding 1000 ° C, the old γ grain size, which is an effective diffusion path during tempering, becomes coarse, so cementite aggregation and coarsening are somewhat suppressed, and tempering is performed. The post-strength / base metal strength exceeds 0.7, and it may be difficult to control the strength within the proper range. Further, the productivity is lowered and the energy cost is increased. As for the annealing time, when annealing in the two-phase region of ferrite + austenite, it is preferably 15 s or more from the viewpoint of promoting element concentration to austenite, but particularly limited when annealing in the austenite single-phase region. Not. Ac 1 can be obtained by actual measurement, but may be calculated from the component composition of the steel sheet using the following formula described in Non-Patent Document 1.

Ac1(℃)=723-10.7Mn(%)-16.9Ni(%)+29.1Si(%)+16.9Cr(%)+290As(%)+6.38W(%)
また、焼鈍後の冷却速度は所望のマルテンサイト体積率が得られるように、適宜制御すればよい。
Ac 1 (° C) = 723-10.7Mn (%)-16.9Ni (%) + 29.1Si (%) + 16.9Cr (%) + 290As (%) + 6.38W (%)
Further, the cooling rate after annealing may be appropriately controlled so that a desired martensite volume fraction is obtained.

例えば、焼鈍温度から急速冷却開始温度までの1次冷却を平均速度3℃/s以上とし、急速冷却開始温度から200℃以下の温度域までの2次冷却を平均速度100〜1000℃/sとする。ここで、急速冷却開始温度は450℃以上焼鈍温度以下とし、より安定的に所望の母材強度を得るためには急冷開始温度を550℃以上焼鈍温度以下とする。1次冷却速度が3℃/s未満の場合、フェライトあるいはパーライトの生成ノーズを通過するため、フェライトあるいはパーライトが多量に生成し、所定のマルテンサイト体積率が得られず、所望の母材強度が得られない。また、急速冷却開始温度が450℃未満では、冷却中にベイナイト変態が起こりやすく、所定のマルテンサイト体積率が得られず、所望の母材強度が得られない。したがって、所定のマルテンサイト体積率を得るために、急速冷却開始温度、1次冷却速度および2次冷却速度を上記範囲に制御する。また、延性や靭性を回復させるために、上記焼鈍後、必要に応じて250〜450℃の温度域で100s以上の過時効処理を施してもよい。この場合、過時効処理温度が250℃未満では延性や靭性の顕著な回復が認められず、また、450℃超ではマルテンサイトの焼戻しの進行が顕著となり、母材強度が低下し、所望の母材強度が得られない場合があるため、過時効処理を行う場合は、250〜450℃の温度域とする。   For example, the primary cooling from the annealing temperature to the rapid cooling start temperature is set to an average rate of 3 ° C / s or more, and the secondary cooling from the rapid cooling start temperature to the temperature range of 200 ° C or less is set to an average rate of 100 to 1000 ° C / s. To do. Here, the rapid cooling start temperature is 450 ° C. or higher and the annealing temperature or lower, and the rapid cooling start temperature is 550 ° C. or higher and the annealing temperature or lower in order to obtain a desired base material strength more stably. When the primary cooling rate is less than 3 ° C / s, it passes through the generation nose of ferrite or pearlite, so a large amount of ferrite or pearlite is generated, the predetermined martensite volume ratio cannot be obtained, and the desired base metal strength is obtained. I can't get it. Further, when the rapid cooling start temperature is less than 450 ° C., bainite transformation is likely to occur during cooling, a predetermined martensite volume ratio cannot be obtained, and a desired base material strength cannot be obtained. Therefore, in order to obtain a predetermined martensite volume fraction, the rapid cooling start temperature, the primary cooling rate, and the secondary cooling rate are controlled within the above ranges. Moreover, in order to recover ductility and toughness, an overaging treatment of 100 s or more may be performed in the temperature range of 250 to 450 ° C. as necessary after the annealing. In this case, when the overaging temperature is less than 250 ° C., remarkable recovery of ductility and toughness is not observed, and when it exceeds 450 ° C., the tempering of martensite becomes remarkable, the strength of the base material decreases, and the desired base metal is reduced. Since material strength may not be obtained, the temperature range is 250 to 450 ° C. when overaging treatment is performed.

また、上記では、急速冷却開始温度から200℃以下までの2次冷却を平均100〜1000℃/sで急速冷却を行うため、例えば、噴流水中に焼入れるなどの急速冷却(WQ-CAL)が必要となるが、ガスジェット冷却(GJ-CAL)などによっても製造することができる。例えば、焼鈍温度から450℃以上焼鈍温度以下の急速冷却開始温度までの1次冷却を平均速度3℃/s以上とし、急速冷却開始温度から250℃〜450℃の過時効処理温度までの2次冷却を平均速度10℃/s以上で冷却した後、延性や靭性を回復させるために、該過時効処理温度で100s以上保持し、次いで、マルテンサイトを安定して得るために過時効処理温度から200℃以下の温度までの3次冷却を平均速度5℃/s以上とする。この場合、1次冷却速度が3℃/s未満では、フェライトあるいはパーライトが多量に生成し、所定のマルテンサイト体積率が得られず、所望の母材強度が得られない場合がある。また、2次冷却速度が10℃/s未満では冷却中にパーライトあるいはベイナイトが生成し、3次冷却速度が5℃/s未満では冷却中にベイナイトが生成するため、所定のマルテンサイト体積率が得られず、所望の強度が得られない場合がある。   In addition, in the above, since the secondary cooling from the rapid cooling start temperature to 200 ° C. or less is performed at an average of 100 to 1000 ° C./s, for example, rapid cooling (WQ-CAL) such as quenching in jet water is performed. Although necessary, it can also be manufactured by gas jet cooling (GJ-CAL). For example, the primary cooling from the annealing temperature to the rapid cooling start temperature not lower than 450 ° C and not higher than the annealing temperature is set to an average rate of 3 ° C / s or higher, and the secondary cooling from the rapid cooling start temperature to the overaging treatment temperature of 250 ° C to 450 ° C. After cooling at an average rate of 10 ° C / s or more, in order to recover ductility and toughness, hold at the overaging temperature for 100s or more, and then from the overaging temperature to stably obtain martensite. The third cooling to a temperature of 200 ° C or lower is set to an average rate of 5 ° C / s or higher. In this case, when the primary cooling rate is less than 3 ° C./s, a large amount of ferrite or pearlite is generated, and a predetermined martensite volume ratio cannot be obtained, and a desired base material strength may not be obtained. Also, when the secondary cooling rate is less than 10 ° C / s, pearlite or bainite is generated during cooling, and when the tertiary cooling rate is less than 5 ° C / s, bainite is generated during cooling. In some cases, the desired strength cannot be obtained.

また、溶融亜鉛めっき鋼板を製造する場合、連続溶融亜鉛めっきライン(CGL)にて、上記焼鈍温度で焼鈍処理を行い、焼鈍温度から通常450〜500℃に保持されている亜鉛めっき浴の温度までの1次冷却を平均速度3℃/s以上で冷却する。1次冷却速度が3℃/s未満では、フェライトあるいはパーライトの生成ノーズを通過するため、フェライトあるいはパーライトが多量に生成し、所望のマルテンサイト体積率が得られず、所望の強度が得られない場合がある。その後、亜鉛めっき浴に浸漬して亜鉛めっきを施す。亜鉛めっき後、必要に応じて、500〜600℃の温度域で数秒〜数十秒保持することにより合金化処理を施すこともできる。亜鉛めっき後あるいは合金化処理後の冷却は、マルテンサイトを安定して得るために200℃以下の温度までの2次冷却を平均速度5℃/s以上で冷却する。この2次冷却速度が5℃/s未満では、合金化処理温度から450℃付近の温度域での冷却中にパーライトあるいはベイナイトが生成し、所望のマルテンサイト体積率が得られず、所望の強度が得られない場合がある。溶融亜鉛めっき条件としては、めっき付着量は片面あたり20〜70g/m2であり、合金化処理する場合、めっき層中のFe%は6〜15%とすることが好ましく、溶融亜鉛めっき鋼板の表面に、さらに有機皮膜処理を施してもよい。 In addition, when manufacturing hot dip galvanized steel sheets, in the continuous hot dip galvanizing line (CGL), the annealing treatment is performed at the above annealing temperature, from the annealing temperature to the temperature of the zinc plating bath normally maintained at 450 to 500 ° C. The primary cooling of is cooled at an average rate of 3 ° C / s or more. If the primary cooling rate is less than 3 ° C / s, it passes through the nose of ferrite or pearlite, so a large amount of ferrite or pearlite is generated, the desired martensite volume fraction cannot be obtained, and the desired strength cannot be obtained. There is a case. Then, it is immersed in a galvanizing bath and galvanized. After galvanization, if necessary, alloying treatment can be carried out by holding for several seconds to several tens of seconds in a temperature range of 500 to 600 ° C. As for cooling after galvanization or alloying, secondary cooling to a temperature of 200 ° C. or lower is performed at an average rate of 5 ° C./s or higher in order to stably obtain martensite. If the secondary cooling rate is less than 5 ° C / s, pearlite or bainite is generated during cooling in the temperature range from the alloying temperature to around 450 ° C, and the desired martensite volume fraction cannot be obtained, and the desired strength is obtained. May not be obtained. As hot dip galvanizing conditions, the amount of plating is 20 to 70 g / m 2 per side, and when alloying is performed, the Fe% in the plating layer is preferably 6 to 15%. The surface may be further subjected to organic film treatment.

さらに、本発明においては、これらの熱処理後に形状矯正のために調質圧延をすることも可能である。   Furthermore, in the present invention, temper rolling can be performed for shape correction after these heat treatments.

このように製造されたマルテンサイト体積率が60〜100%でかつ980MPa以上の母材強度を有する高強度鋼板において、本発明ではさらに局部的に焼戻し処理を施す。すなわち、部分的に焼戻しを施したい領域を450℃〜Ac3-50℃の温度域まで加熱し、その温度で最大10s保持した後、200℃以下の温度域まで冷却する。 In the present invention, the high strength steel sheet having a base material strength of martensite volume ratio of 60 to 100% and 980 MPa or more is further tempered locally in the present invention. That is, the region to be partially tempered is heated to a temperature range of 450 ° C. to Ac 3 -50 ° C., held at that temperature for a maximum of 10 s, and then cooled to a temperature range of 200 ° C. or less.

焼戻し温度が450℃未満では、セメンタイトの凝集・粗大化が不十分であり、顕著な焼戻し軟化効果が得られず、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難となる。また、焼戻し温度がAc3-50℃超えではオーステナイト分率が高めとなるため、その後の冷却条件によっては軟化効果が得られない場合があり、この場合についても焼戻し後強度/母材強度が0.7超になり適正範囲に制御することが困難となる。したがって、部分焼戻し温度は450℃以上Ac3-50℃以下とすることが好ましい。 When the tempering temperature is less than 450 ° C, the cementite is not sufficiently aggregated and coarsened, and a remarkable tempering softening effect cannot be obtained, and the strength after tempering / base material strength exceeds 0.7 and it is difficult to control within an appropriate range. Become. In addition, when the tempering temperature exceeds Ac 3 -50 ° C, the austenite fraction becomes higher, and depending on the subsequent cooling conditions, the softening effect may not be obtained. In this case as well, the strength after tempering / base material strength is 0.7. It becomes difficult to control to an appropriate range. Therefore, the partial tempering temperature is preferably 450 ° C. or higher and Ac 3 -50 ° C. or lower.

なお、Ac3は実測により求めることができるが、非特許文献1に記載される下記式を用いて鋼板の成分組成から算出しても差し支えない。 Ac 3 can be obtained by actual measurement, but may be calculated from the component composition of the steel sheet using the following formula described in Non-Patent Document 1.

Ac3(℃)=910-203√C(%)−15.2Ni(%)+44.7Si(%)+104V(%)+31.5Mo(%)+13.1W(%)−30Mn(%)−11Cr(%)−20Cu(%)+700P(%)+400Al(%)+120As(%)+400Ti(%)
保持時間が10sを超えると、Ti、Nb、Mo、V、Wが微細炭化物として析出し、2次硬化を引き起こす場合があり、焼戻し後強度/母材強度が0.7超となり適正範囲に制御することが困難となる場合がある。したがって、部分焼戻し処理における保持時間は10s以下とする。
Ac 3 (° C) = 910-203√C (%)-15.2Ni (%) + 44.7Si (%) + 104V (%) + 31.5Mo (%) + 13.1W (%) − 30Mn (%) − 11Cr ( %)-20Cu (%) + 700P (%) + 400Al (%) + 120As (%) + 400Ti (%)
If the holding time exceeds 10 s, Ti, Nb, Mo, V, and W may precipitate as fine carbides and cause secondary hardening, and the strength after tempering / base material strength should exceed 0.7 and be controlled within an appropriate range. May be difficult. Therefore, the holding time in the partial tempering process is 10 s or less.

加熱保持後の冷却速度は、特に規定しないが、焼戻しによる顕著な軟化効果を得るには加熱温度(部分焼戻し温度)から200℃以下の温度域までの平均冷却速度が20℃/s以下となるように冷却することが好ましい。   The cooling rate after heating and holding is not particularly specified, but in order to obtain a remarkable softening effect by tempering, the average cooling rate from the heating temperature (partial tempering temperature) to the temperature range of 200 ° C or lower is 20 ° C / s or lower. It is preferable to cool so that.

焼戻し処理を行う領域は、鋼板全体ではなく部分的とし、ハット型形状にプレス成形する自動車構造部材用途のプレス成型部品用素材鋼板には、成形後に曲げコーナー部の一部または全長にあたる部分を成形前に焼戻し処理を行い、焼戻し軟化領域を形成する。   The area to be tempered is not the entire steel sheet, but part of it, and the part corresponding to the part of the bending corner or the entire length is formed on the steel sheet for press-formed parts for automotive structural parts that are press-formed into a hat shape. A tempering treatment is performed before to form a temper softening region.

この場合、プレス成形部品における各曲げコーナー部では、当該曲げコーナー部の焼戻し軟化領域は、上面の軟化幅(b)と側面の軟化幅(h)の和、下面の軟化幅(b)と側面の軟化幅(h)の和が20mm以下にすることが好ましい。なお、上面、下面の軟化幅は曲げコーナー部外面の円弧部の中心からの水平方向幅、側面の軟化幅は曲げコーナー部外面の円弧中心からの鉛直方向幅である。当該曲げコーナー部の上面の軟化幅(b)と側面の軟化幅(h)の和、下面の軟化幅(b)と側面の軟化幅(h)の和が20mmを超えると、3点曲げ衝撃特性の低下が顕著となり、自動車構造部品用途として必要な特性が得られない場合がある。さらに、曲げコーナー部の上面の軟化幅(b)と側面の軟化幅(h)の和、下面の軟化幅(b)と側面の軟化幅(h)の和が20mm以下であっても、当該曲げコーナー部の上面の軟化幅、下面の軟化幅、側面の軟化幅のいずれかが当該曲げコーナー部の曲げ半径(R)と鋼板板厚(t)の和(R+t)の1/√2未満の場合、軟化処理されていない母材の一部が曲げ加工による変形を受け、この部分が加工硬化により強度上昇するため、3点曲げ時に割れが生じやすく、3点曲げ衝撃特性が低下する場合がある。したがって、各曲げコーナー部の上面の軟化幅(b)、下面の軟化幅(b)および側面の軟化幅(h)は当該コーナー部の曲げ半径(R)と鋼板板厚(t)の和(R+t)の1/√2以上とすることがさらに好ましい。   In this case, in each bending corner portion in the press-formed part, the temper softening region of the bending corner portion is the sum of the softening width (b) of the upper surface and the softening width (h) of the side surface, the softening width (b) of the lower surface and the side surface. The sum of the softening widths (h) is preferably 20 mm or less. The softening width of the upper surface and the lower surface is the horizontal width from the center of the arc portion of the outer surface of the bending corner portion, and the softening width of the side surface is the vertical width from the arc center of the outer surface of the bending corner portion. If the sum of the softening width (b) of the upper surface of the bending corner and the softening width (h) of the side surface and the sum of the softening width (b) of the lower surface and the softening width (h) of the lower surface exceeds 20 mm, a three-point bending impact will occur. The deterioration of the characteristics becomes remarkable, and the characteristics required for automobile structural parts use may not be obtained. Further, even if the sum of the softening width (b) of the upper surface of the bending corner portion and the softening width (h) of the side surface, the sum of the softening width (b) of the lower surface and the softening width (h) of the side surface is 20 mm or less, The softening width of the upper surface of the bending corner portion, the softening width of the lower surface, or the softening width of the side surface is 1 / √ of the sum (R + t) of the bending radius (R) of the bending corner portion and the steel plate thickness (t). If it is less than 2, part of the base material that has not been softened is deformed by bending, and this part increases in strength due to work hardening, so cracking is likely to occur during 3-point bending, and 3-point bending impact characteristics are reduced. There is a case. Therefore, the softening width (b) of the upper surface of each bending corner portion, the softening width (b) of the lower surface and the softening width (h) of the side surface are the sum of the bending radius (R) of the corner portion and the steel plate thickness (t) ( R + t) is more preferably 1 / √2 or more.

また、本発明における部分焼戻しの方法は特に限定しないが、高周波による誘導加熱や直接通電加熱法、電子ビームやレーザーを用いる方法、ガス炎、アークを用いる方法など、局部的に加熱処理できる方法であればどのような方法でもよい。   In addition, the method of partial tempering in the present invention is not particularly limited, but a method that can be locally heat-treated, such as induction heating using a high frequency or direct current heating method, a method using an electron beam or a laser, a method using a gas flame, or an arc. Any method is acceptable.

以下、実施例により本発明をさらに説明する。   Hereinafter, the present invention will be further described by examples.

表1に示す化学成分を有する鋼を真空溶解にて溶製し、スラブを作製した。   Steels having chemical components shown in Table 1 were melted by vacuum melting to produce slabs.

これらのスラブを1200℃にて加熱した後、仕上げ温度を850℃として、熱間圧延を行い、次いで冷却した後、600℃で巻取り、板厚3.4mmの熱延鋼板を製造した。得られた熱延鋼板に対して酸洗した後、圧延率53%で冷間圧延を行い、板厚1.6mmの冷延鋼板とし、表2に示す条件にて焼鈍した後、衝撃3点曲げ試験片の曲げコーナー部に相当する領域(b+h)を表3に示す焼戻し条件にて部分的に焼戻し処理を施した。ここで、部分焼戻しは、部分的加熱が可能な高周波誘導加熱(陽極出力:20kW、定格周波数:100kHz)により行い、温度は熱電対により測定した。   These slabs were heated at 1200 ° C., then hot rolled at a finishing temperature of 850 ° C., then cooled, and wound at 600 ° C. to produce a hot-rolled steel sheet having a thickness of 3.4 mm. After pickling the obtained hot-rolled steel sheet, it is cold-rolled at a rolling rate of 53% to obtain a cold-rolled steel sheet with a thickness of 1.6 mm, annealed under the conditions shown in Table 2, and then subjected to impact three-point bending The region (b + h) corresponding to the bending corner of the test piece was partially tempered under the tempering conditions shown in Table 3. Here, partial tempering was performed by high frequency induction heating (anode output: 20 kW, rated frequency: 100 kHz) capable of partial heating, and the temperature was measured with a thermocouple.

このようにして得られた鋼板からサンプルを採取し、母材のマルテンサイト体積率を測定し、さらに引張試験、硬度測定を行った。また、部分焼戻し軟化後の硬度を測定し、軟化後の硬度と母材の硬度の比を算出し、これを焼戻し後強度/母材強度とした。   A sample was taken from the steel sheet thus obtained, the martensite volume fraction of the base material was measured, and further a tensile test and a hardness measurement were performed. Further, the hardness after partial temper softening was measured, the ratio of the hardness after softening and the hardness of the base material was calculated, and this was defined as the strength after tempering / base material strength.

ここで、マルテンサイト体積率は、サンプルのL断面(圧延方向に平行な垂直断面)を機械的に研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)で倍率2000倍にて観察を行い、撮影した組織写真(SEM写真)を用いて定量化した。また、引張特性は圧延方向に対して90°方向(C方向)にJIS5号試験片を採取し、JIS Z 2241の規定に準拠した引張試験を行い、引張強度(TS)、全伸び(T.El)を測定した。さらに、硬度はサンプルの切断面をバフ研磨仕上げ後、JIS Z 2244の規定に準拠した方法にて、板厚中央部を荷重500gfで5点測定し、平均硬度を求めた。   Here, the volume ratio of martensite was observed by a scanning electron microscope (SEM) at a magnification of 2000 times after mechanically polishing the L section of the sample (vertical section parallel to the rolling direction) and corroding with nital. Quantification was performed using the photographed tissue photograph (SEM photograph). Tensile properties were taken from 90 ° direction (C direction) with respect to the rolling direction, and JIS No. 5 test specimens were collected and subjected to a tensile test in accordance with the provisions of JIS Z 2241, tensile strength (TS), total elongation (T. El) was measured. Further, the hardness was measured by buffing the cut surface of the sample and then measuring the central part of the plate thickness at five points with a load of 500 gf by a method in accordance with the provisions of JIS Z 2244 to obtain the average hardness.

この部分焼戻し軟化鋼板を用いて、図1に示した自動車構造部材用途のハット型成形部品を模擬した3点曲げ試験片(曲げ半径:5mm)1を製作し、衝撃3点曲げ試験により衝撃吸収エネルギーを測定した。ここで、3点曲げ試験片1の長さは500mmとし、ハット型成形部材2のフランジ部と背板3を30mmピッチでスポット溶接を施してある。   Using this partially tempered softened steel plate, a three-point bending test piece (bending radius: 5 mm) 1 simulating a hat-shaped molded part for automotive structural members shown in Fig. 1 was manufactured, and the impact was absorbed by an impact three-point bending test. Energy was measured. Here, the length of the three-point bending test piece 1 is 500 mm, and the flange portion of the hat-shaped molded member 2 and the back plate 3 are spot-welded at a pitch of 30 mm.

前記衝撃3点曲げ試験は、図2に示すように、前記3点曲げ試験片1をハット型成形部材2が上になるように、支点間隔(4−4)が300mmで水平に配置した。この状態で保持した後、3点曲げ試験片の長さ方向の中心部を曲げ治具5にて5mm/secで衝突させ、このときに生じた衝撃吸収エネルギーを測定するもので、曲げ治具5が3点曲げ試験片と接触した瞬間を0として、各変位における荷重をロードセルにて求め、図3に模式的に示すような荷重-変位曲線を測定し、荷重-変位曲線から変位量が70mmとなるまでの吸収エネルギーを求めた。   In the impact three-point bending test, as shown in FIG. 2, the three-point bending test piece 1 was placed horizontally with a fulcrum interval (4-4) of 300 mm so that the hat-shaped molded member 2 was on top. After holding in this state, the center part in the length direction of the three-point bending test piece is caused to collide with the bending jig 5 at 5 mm / sec, and the impact absorption energy generated at this time is measured. The load at each displacement is obtained with a load cell, where 0 is the moment when 5 comes in contact with the three-point bend specimen, the load-displacement curve schematically shown in Fig. 3 is measured, and the amount of displacement is calculated from the load-displacement curve. The absorbed energy up to 70 mm was obtained.

以上の測定結果を表2、表3に示す。   The measurement results are shown in Tables 2 and 3.

鋼板No.3、4、9はTi、Nb、Mo、V、Wの合計添加量が0.2%を超えており、焼戻し処理時に微細な炭化物が析出し、2次硬化するため、焼戻し後強度/母材強度が本発明範囲を外れている比較例である。また、鋼板No.8はC量が、鋼板No.11はMnおよびCr量が本発明範囲を外れており、所定のマルテンサイト量が得られず、母材強度が980MPa未満の比較例である。さらに、鋼板No.10はSiが本発明範囲を超えており、化成処理性が劣位であるとともに焼戻し軟化が遅れるため、焼戻し後強度/母材強度が本発明範囲を外れている比較例である。これらの比較例は、焼戻し後強度/母材強度が本発明の範囲外であり、母材強度が980MPa未満の鋼板No.8、11を除くと、衝撃3点曲げ時に曲げ部で割れが発生するため、母材強度が同一の発明例と比較し、吸収エネルギーが20〜30%低くなっている。一方、鋼板No.1、2、5、6、7は、化学組成が本発明の範囲内であるため、母材強度が980MPa以上でかつ、焼戻し後強度/母材強度が0.5〜0.7であるため、衝撃3点曲げ時の曲げ部においても割れの発生はなく、優れた耐衝撃性が得られていることがわかる。   Steel plates No. 3, 4, and 9 have a total addition amount of Ti, Nb, Mo, V, and W exceeding 0.2%, and fine carbides precipitate during tempering treatment and secondary hardening, so strength after tempering / It is a comparative example in which the base material strength is out of the scope of the present invention. Steel plate No. 8 is a comparative example in which the amount of C is outside the scope of the present invention, and the amount of Mn and Cr in steel plate No. 11 is outside the scope of the present invention, and a predetermined martensite amount cannot be obtained, and the base material strength is less than 980 MPa. . Furthermore, steel sheet No. 10 is a comparative example in which Si exceeds the scope of the present invention, the chemical conversion processability is inferior, and temper softening is delayed, so the strength after tempering / base metal strength is out of the scope of the present invention. . In these comparative examples, the strength after the tempering / base metal strength is outside the range of the present invention, and when the base material strength is less than 980 MPa steel plates No. 8 and 11, cracks occur at the bending part during impact three-point bending. Therefore, compared with the invention example with the same base material strength, the absorbed energy is 20 to 30% lower. On the other hand, steel plates No. 1, 2, 5, 6, and 7 have a chemical composition within the scope of the present invention, and therefore, the base material strength is 980 MPa or more and the strength after tempering / base material strength is 0.5 to 0.7. Therefore, it can be seen that there is no occurrence of cracks in the bending portion at the time of impact three-point bending, and excellent impact resistance is obtained.

表1の鋼種Bの示す化学成分を有する鋼を真空溶解にて溶製し、スラブを作製した後、加熱温度:1200℃、仕上げ温度:850℃、巻取り温度:600℃の条件にて、熱間圧延を行い、板厚3.4mmの熱延鋼板を製造した。その後、熱延鋼板に酸洗を施した後、圧延率53%で冷間圧延を行い、板厚1.6mmの冷延鋼板とし、表4、表5に示す条件にて焼鈍、部分焼戻し処理を施した後、衝撃3点曲げ試験を実施し、耐衝撃特性に及ぼす製造条件およびハット型成形部材の軟化幅の影響を評価した。結果を表4、表5に示す。なお、評価項目、評価方法は実施例1と同様である。   After melting the steel having the chemical composition shown by steel type B in Table 1 by vacuum melting and producing a slab, under the conditions of heating temperature: 1200 ° C, finishing temperature: 850 ° C, winding temperature: 600 ° C, Hot rolling was performed to produce a hot rolled steel sheet having a thickness of 3.4 mm. Then, after pickling the hot-rolled steel sheet, it is cold-rolled at a rolling rate of 53% to obtain a cold-rolled steel sheet having a thickness of 1.6 mm, and annealing and partial tempering treatment are performed under the conditions shown in Tables 4 and 5. After application, an impact three-point bending test was conducted to evaluate the influence of the manufacturing conditions and the softening width of the hat-shaped molded member on the impact resistance characteristics. The results are shown in Tables 4 and 5. The evaluation items and the evaluation method are the same as in Example 1.

鋼板No.12は焼鈍均熱温度および均熱温度から急速冷却開始温度までの平均冷却速度が本発明の範囲外であるため、所定のマルテンサイト体積率が得られず、所望の母材強度が得られない。また、鋼板No.15、19は部分焼戻し温度および部分焼戻し温度から200℃までの平均冷却速度が本発明の範囲外であるため、焼戻し後強度/母材強度が0.5〜0.7に制御することができず、本発明範囲内の鋼板No.16、17、18に比べて、衝撃3点曲げ吸収エネルギーが20〜30%程度低位である。   Steel plate No. 12 has an annealing rate of the soaking temperature and an average cooling rate from the soaking temperature to the rapid cooling start temperature outside the scope of the present invention, so a predetermined martensite volume ratio cannot be obtained, and the desired base metal strength is I can't get it. Steel plates No. 15 and 19 are partially tempered and the average cooling rate from the partially tempered temperature to 200 ° C. is outside the scope of the present invention, so the strength after tempering / base material strength can be controlled to 0.5 to 0.7. However, compared with steel plates Nos. 16, 17, and 18 within the scope of the present invention, the impact three-point bending absorption energy is about 20 to 30% lower.

また、焼戻し軟化幅(b、h、b+h)が好適範囲を外れる鋼板No.22、No.23は、好適範囲の鋼板No.20、21に比べて衝撃3点曲げ吸収エネルギーがわずかに低いが、両鋼板とも比較例に比べて高い吸収エネルギーを示す本発明例である。   Steel plates No. 22 and No. 23 whose temper softening widths (b, h, b + h) are outside the preferred range have a slight impact 3-point bending absorbed energy compared to steel plates No. 20 and 21 in the preferred range. Although it is low, both steel plates are examples of the present invention showing higher absorbed energy than the comparative example.

以上のように、化学成分に加えて、部分焼戻し軟化鋼板の製造方法およびハット型成形部材の軟化幅を適正に制御することで、衝撃3点曲げ試験時においても割れ発生することなく、優れた耐衝撃性が得られていることがわかる。   As described above, in addition to chemical components, by appropriately controlling the manufacturing method of the partially tempered softened steel sheet and the softening width of the hat-shaped molded member, it is excellent without causing cracks even during the impact three-point bending test. It can be seen that impact resistance is obtained.

表1の鋼種A、E、F、Gに示す化学成分を有する鋼を実施例1と同様の方法にて、板厚1.6mmの冷延鋼板とし、表6、表7に示す条件にて焼鈍、部分焼戻し処理を施した後、または表8、表9に示す条件にて焼鈍・めっき、部分焼戻し処理を施した後、各々衝撃3点曲げ試験を実施した。結果を表6〜表9に示す。なお、評価項目、評価方法は実施例1と同様である。   Steels having chemical components shown in Table 1 steel types A, E, F, and G were made into cold-rolled steel plates with a thickness of 1.6 mm in the same manner as in Example 1, and were annealed under the conditions shown in Tables 6 and 7. After the partial tempering treatment, or after annealing / plating and partial tempering treatment under the conditions shown in Tables 8 and 9, an impact three-point bending test was performed. The results are shown in Tables 6-9. The evaluation items and the evaluation method are the same as in Example 1.

鋼板No.25、30は1次冷却速度あるいは1次冷却速度および2次冷却速度が本発明の範囲外であるため、所定のマルテンサイト体積率が得られず、所望の母材強度が得られなくなり、焼戻し後強度/母材強度が本発明範囲を外れ、したがって、衝撃3点曲げ吸収エネルギーが本発明例に比べて、非常に低位である。一方、鋼板No.24、26、29、31〜33は、化学組成および製造方法が本発明の範囲内であるため、母材強度が980MPa以上で焼戻し後強度/母材強度が0.5〜0.7の範囲内にあり、優れた耐衝撃性が得られている。   Steel plates No. 25 and 30 have a primary cooling rate or a primary cooling rate and a secondary cooling rate outside the scope of the present invention, so that a predetermined martensite volume ratio cannot be obtained and a desired base material strength can be obtained. The strength after tempering / the strength of the base material is out of the range of the present invention, and therefore, the impact three-point bending absorbed energy is very low as compared with the example of the present invention. On the other hand, steel plates No. 24, 26, 29, 31 to 33 are within the scope of the present invention in terms of chemical composition and manufacturing method, so that the base material strength is 980 MPa or more and the strength after tempering / base material strength is 0.5 to 0.7. It is within the range, and excellent impact resistance is obtained.

本発明の部分焼戻し軟化鋼板およびその鋼板を用いた自動車構造部材用途のハット型成形部品を実車に適用することにより、耐衝突性能と車体軽量化の両立が可能となる。   By applying the partially tempered softened steel sheet of the present invention and a hat-shaped molded part for automobile structural members using the steel sheet to an actual vehicle, it is possible to achieve both collision resistance and weight reduction of the vehicle body.

1 衝撃3点曲げ試験片
2 ハット型成形部材
3 背板
4 支点
5 曲げ治具
1 Impact 3-point bending test piece 2 Hat-shaped molded member 3 Back plate 4 Support point 5 Bending jig

Claims (5)

質量%で、C:0.10〜0.20%、Si:0.5〜1.5%、Mn:1.5〜3.0%、P:0.05%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下、Cr:0.05〜1.0%、さらに、Ti、Nb、Mo、V、Wの1種以上を合計0〜0.2%の範囲で含有し、残部がFeおよび不可避的不純物からなる母材の引張強度が980MPa以上の高強度鋼板であって、局部的に焼戻し処理が施された焼戻し軟化領域を有し、該焼戻し軟化領域の強度は、母材強度の0.5〜0.7の範囲内にあることを特徴とする部分焼戻し軟化鋼板。 In mass%, C: 0.10 to 0.20%, Si: 0.5 to 1.5%, Mn: 1.5 to 3.0%, P: 0.05% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, Cr: 0.05-1.0%, and further containing one or more of Ti, Nb, Mo, V, W in the total range of 0-0.2%, the balance of the base material consisting of Fe and unavoidable impurities is 980MPa The above high-strength steel sheet has a temper softening region that has been locally tempered, and the strength of the temper softening region is in the range of 0.5 to 0.7 of the base material strength. Partially tempered softened steel sheet. 焼戻し処理は、焼戻し軟化する領域を局部的に450℃〜Ac3-50℃の温度域に加熱し、その温度で10s以下保持した後、該温度から200℃以下の温度域までの平均冷却速度が20℃/s以下となるように冷却する部分焼戻し軟化処理であることを特徴とする請求項1に記載の部分焼戻し軟化鋼板。 The tempering treatment is performed by locally heating the temper softening region to a temperature range of 450 ° C. to Ac 3 -50 ° C., holding at that temperature for 10 s or less, and then the average cooling rate from the temperature to the temperature range of 200 ° C. or less. The partially tempered softened steel sheet according to claim 1, wherein the partially tempered softened steel sheet is cooled to a temperature of 20 ° C./s or less . 請求項1または2に記載された部分焼戻し軟化鋼板を断面形状がハット型形状の部品にプレス成形して得たプレス成形部品であって、前記ハット型形状の部品の曲げコーナー部に焼戻し軟化領域を有することを特徴とするプレス成形部品。 A press-molded part obtained by press-molding the partially tempered softened steel sheet according to claim 1 or 2 into a hat-shaped part, wherein a temper-softening region is formed at a bending corner portion of the hat-shaped part. A press-molded part characterized by comprising: 前記曲げコーナー部の焼戻し軟化幅は、上面の軟化幅と側面の軟化幅の和、下面の軟化幅と側面の軟化幅の和がいずれも20mm以下であることを特徴とする請求項に記載のプレス成形部品。 Temper softening width of the bent corner portion, according to claim 3 in which the sum of the softening width softening width and sides of the upper surface, the sum of softening width softening width and sides of the lower surface, characterized in that both at 20mm or less Press molded parts. 前記曲げコーナー部の焼戻し軟化幅は、上面の軟化幅、下面の軟化幅および側面の軟化幅がいずれもコーナー部の曲げ半径(R)と鋼板板厚(t)の和(R+t)の1/√2以上であることを特徴とする請求項またはに記載のプレス成形部品。 The tempered softening width of the bending corner portion is the sum of the bending radius (R) of the corner portion and the steel plate thickness (t) (R + t). The press-formed part according to claim 3 or 4 , wherein the press-formed part is 1 / √2 or more.
JP2010072269A 2009-08-24 2010-03-26 Partially tempered softened steel sheet and press-formed parts using the steel sheet Active JP5655338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072269A JP5655338B2 (en) 2009-08-24 2010-03-26 Partially tempered softened steel sheet and press-formed parts using the steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009193006 2009-08-24
JP2009193006 2009-08-24
JP2010072269A JP5655338B2 (en) 2009-08-24 2010-03-26 Partially tempered softened steel sheet and press-formed parts using the steel sheet

Publications (2)

Publication Number Publication Date
JP2011068979A JP2011068979A (en) 2011-04-07
JP5655338B2 true JP5655338B2 (en) 2015-01-21

Family

ID=44014511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072269A Active JP5655338B2 (en) 2009-08-24 2010-03-26 Partially tempered softened steel sheet and press-formed parts using the steel sheet

Country Status (1)

Country Link
JP (1) JP5655338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376318B1 (en) * 2017-03-24 2018-08-22 新日鐵住金株式会社 Hat member and manufacturing method thereof
WO2018174082A1 (en) * 2017-03-24 2018-09-27 新日鐵住金株式会社 Hat member and manufacturing method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130304A1 (en) * 2015-11-05 2017-05-11 Caterpillar Inc. Alloy with High Core Hardness Suitable for Rapid Nitriding
KR101808431B1 (en) 2016-06-21 2017-12-13 현대제철 주식회사 High strength cold- rolled steel sheet having improved workablity and method of manufacturing the same
WO2020075739A1 (en) * 2018-10-12 2020-04-16 日本製鉄株式会社 Skeletal structure member
MX2021005521A (en) * 2018-11-14 2021-06-18 Nippon Steel Corp Skeleton member.
US20220135143A1 (en) * 2019-03-06 2022-05-05 Nippon Steel Corporation Vehicle body structure
JP2020172680A (en) * 2019-04-10 2020-10-22 日本製鉄株式会社 Steel sheet
EP3954475A4 (en) * 2019-04-10 2023-01-11 Nippon Steel Corporation Blank and component
KR102638472B1 (en) * 2019-04-11 2024-02-21 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141706A (en) * 1975-05-31 1976-12-06 Toyota Central Res & Dev Lab Inc A partial annealing method
JP3993703B2 (en) * 1998-09-03 2007-10-17 新日本製鐵株式会社 Manufacturing method of thin steel sheet for processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376318B1 (en) * 2017-03-24 2018-08-22 新日鐵住金株式会社 Hat member and manufacturing method thereof
WO2018174082A1 (en) * 2017-03-24 2018-09-27 新日鐵住金株式会社 Hat member and manufacturing method therefor
CN110446649A (en) * 2017-03-24 2019-11-12 日本制铁株式会社 Cap component and its manufacturing method

Also Published As

Publication number Publication date
JP2011068979A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5655338B2 (en) Partially tempered softened steel sheet and press-formed parts using the steel sheet
JP6704995B2 (en) Aluminum-iron alloy plated steel sheet for hot forming excellent in hydrogen delayed fracture resistance, peeling resistance, and weldability, and hot forming member using the same
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5879364B2 (en) Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP6248207B2 (en) Hot-dip galvanized steel sheet excellent in hole expansibility, alloyed hot-dip galvanized steel sheet, and manufacturing method thereof
WO2011118459A1 (en) Ultra high strength cold rolled steel sheet and method for producing same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP5070947B2 (en) Hardened steel plate member, hardened steel plate and manufacturing method thereof
JP2023093564A (en) Hot-forming member
WO2012060294A1 (en) High-strength cold-rolled steel sheet having excellent deep-drawability and bake hardenability, and method for manufacturing same
JP2015507094A (en) Ultra-high-strength cold-rolled steel sheet excellent in weldability and bending workability and manufacturing method thereof
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2005029867A (en) High strength and high ductility galvanized steel sheet having excellent aging resistance, and its production method
JP7031795B1 (en) Steel sheets, members and their manufacturing methods
JP2007077510A (en) High-strength high-ductility galvanized steel sheet excellent in aging resistance and its production method
JP4730070B2 (en) Manufacturing method of thin steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250